
Typechecking Top-Down Uniform Unranked
Tree Transducers

Wim Martens and Frank Neven

University of Limburg
E-mail: {wim.martens,frank.neven}@luc.ac.be

Abstract. We investigate the typechecking problem for XML queries:
statically verifying that every answer to a query conforms to a given out-
put schema, for inputs satisfying a given input schema. As typechecking
quickly turns undecidable for query languages capable of testing equal-
ity of data values, we return to the limited framework where we abstract
XML documents as labeled ordered trees. We focus on simple top-down
recursive transformations motivated by XSLT and structural recursion
on trees. We parameterize the problem by several restrictions on the
transformations (deleting, non-deleting, bounded width) and consider
both tree automata and DTDs as output schemas. The complexity of
the typechecking problems in this scenario range from ptime to exp-
time.

1 Introduction

The emergence of XML as the likely standard for representing and exchange of
data on the Web confirmed the central role of semistructered data. However, it
has also marked the return of the schema. In the context of the Web, schemas
can be used to validate data exchange. In a typical scenario, a user community
agrees on a common schema and on producing only data conforming to that
schema. This raises the issue of typechecking: verifying at compile time that
every XML document which is the result of a specified query applied to a valid
input document, satisfies the output schema [23, 24].

Obviously, typechecking depends on the transformation language and the
schema language at hand. As shown by Alon et al. [1, 2], when transformation
languages have the ability to compare data values, the typechecking problem
quickly turns undecidable. Milo, Suciu, and Vianu argued that the capability
of most XML transformation languages can be encompassed by k-pebble trans-
ducers when data values are ignored and XML documents can be abstracted
by labeled ordered trees [15]. Further, the authors showed that the typecheck-
ing problem in this context is decidable. More precisely, given two types τ1 and
τ2, represented by tree automata, and a k-pebble transducer T , it is decidable
whether T (t) ∈ τ2 for all t ∈ τ1. Here, T (t) is the tree obtained by running T on
input t. The complexity, however, is very bad: non-elementary.

In an attempt to lower the complexity, we consider much simpler tree trans-
formations: those defined by deterministic top-down uniform tree transducers

Table 1. The presented results: the top row of the table shows the representation of
the input and output schemas and the left column shows the type of tree transducer.

NTA DTA DTD(NFA) DTD(DFA) DTD(SL)

general exptime exptime exptime exptime exptime

non-deleting exptime exptime pspace pspace conp

bounded width exptime in exptime/pspace-hard pspace ptime conp

on unranked trees. Such transformations correspond to structural recursion on
trees [5] and to simple top-down XSLT transformations [3, 6]. The transducers
are called uniform as they cannot distinguish between the order of siblings. In
brief, a transformation consists of a top-down traversal of the input tree where
every node is replaced by a new tree (possibly the empty tree).

We show that the ability of transducers to delete interior nodes (i.e., replacing
them by the empty tree) already renders the typechecking problem exptime-
hard for very simple DTDs (e.g. DTDs with deterministic regular expressions
on their right hand side). To obtain a lower complexity, for the remainder of
the paper, we focus on non-deleting transformations. Our inquiries reveal that
the complexity of the typechecking problem of non-deleting transducers is deter-
mined by two features: (1) non-determinism in the schema languages; and, (2)
unbounded copying of subtrees by the transducer. Only when we disallow both
features, we get a ptime-complexity for the typechecking problem. An overview
of our results is given in Table 1. Unless specified otherwise, all complexities are
both upper and lower bounds. The top row of the table shows the representa-
tion of the input and output schemas and the left column shows the type of
tree transducer. NTA and DTA stand for non-deterministic and deterministic
tree automata, respectively. Such automata abstract the expressiveness of XML
Schema [7]. DTD(X) stands for DTDs whose right-hand sides consist of regular
languages in X. The exact definitions are given in section 2.

Related Work. A problem related to typechecking is type inference [14, 19]. This
problem consists in constructing a tight output schema, given an input schema
and a transformation. Of course, solving the type inference problem implies a
solution for the typechecking problem: check containment of the inferred schema
into the given one. However, characterizing output languages of transformations
is quite hard [19].

The transducers considered in the present paper are restricted versions of the
ones studied by Maneth and Neven [13]. They already obtained a non-elementary
upper bound on the complexity of typechecking (due to the use of monadic
second-order logic in the definition of the transducers).

Although the structure of XML documents can be faithfully represented by
unranked trees (these are trees without a bound on the number of children of
nodes), Milo, Suciu, and Vianu chose to study k-pebble transducers over binary
trees as there is an immediate encoding of unranked trees into binary ones. The

top-down variants of k-pebble transducers are well-studied on binary trees [11].
However, these results do not aid in the quest to characterize precisely the com-
plexity of typechecking transformations on unranked trees. Indeed, the class of
unranked tree transductions can not be captured by ordinary transducers work-
ing on the binary encodings. Macro tree transducers can simulate our transducers
on the binary encodings [13, 9], but as very little is known about their complexity
this observation is not of much help. For these reasons, we chose to work directly
with unranked tree transducers.

Tozawa considered typechecking w.r.t. tree automata for a fragment of top-
down XSLT similar to ours [25]. He adapts the backward type inference technique
of [15] and obtains a double exponential time algorithm.

Due to space limitations, we only provide sketches of proofs.

2 Definitions

In this section we provide the necessary background on trees, automata, and
uniform tree transducers.

2.1 Trees and Hedges

We fix a finite alphabet Σ. The set of unranked Σ-trees, denoted by TΣ , is the
smallest set of strings over Σ and the parenthesis symbols ‘)’ and ‘(’ such that
for σ ∈ Σ and w ∈ T ∗

Σ , σ(w) is in TΣ . We write σ rather than σ(). Note that
there is no a priori bound on the number of children of a node in a Σ-tree; such
trees are therefore unranked. In the following, whenever we say tree, we always
mean Σ-tree. A hedge is a finite sequence of trees. The set of hedges, denoted
by HΣ , is defined as T ∗

Σ .
For every hedge h ∈ HΣ , the set of nodes of h, denoted by Dom(h), is the

subset of N
∗ defined as follows:

– if h = ε, then Dom(h) = ∅;
– if h = t1 · · · tn where each ti ∈ TΣ , then Dom(h) =

⋃n
i=1{iu | u ∈ Dom(ti)};

and,
– if h = σ(w), then Dom(h) = {ε} ∪ Dom(w).

In the sequel we adopt the following convention: we use t, t1, t2, . . . to denote
trees and h, h1, h2, . . . to denote hedges. Hence, when we write h = t1 · · · tn we
tacitly assume that all ti’s are trees. For every u ∈ Dom(h), we denote by labh(u)
the label of u in h. A tree language is a set of trees.

2.2 DTDs and Tree Automata

We use extended context-free grammars and tree automata to abstract from
DTDs and the various proposals for XML schemas. Further, we parameterize the
definition of DTDs by a class of representations M of regular string languages
like, e.g., the class of DFAs or NFAs. For M ∈ M, we denote by L(M) the set
of strings accepted by M .

Definition 1. Let M be a class of representations of regular string languages
over Σ. A DTD is a tuple (d, sd) where d is a function that maps Σ-symbols to
elements of M and sd ∈ Σ is the start symbol. For simplicity, we usually denote
(d, sd) by d.

A tree t satisfies d if labt(ε) = sd and for every u ∈ Dom(t) with n chil-
dren labt(u1) · · · labt(un) ∈ L(d(labt(u))). By L(d) we denote the tree language
accepted by d.

We parameterize DTDs by the formalism used to represent the regular lan-
guage M. Therefore, we denote by DTD(M) the class of DTDs where the regular
string languages are represented by elements of M. The size of a DTD is the
sum of the sizes of the elements of M used to represent the function d.

To define unordered languages we make use of the specification language SL
inspired by [17] and also used in [1, 2]. The syntax of the language is as follows.

Definition 2. For every σ ∈ Σ and natural number i, σ=i and σ≥i are atomic
SL-formulas; true is also an atomic SL-formula. Every atomic SL-formula is an
SL-formula and the negation, conjunction, and disjunction of SL-formulas are
also SL-formulas.

A string w over Σ satisfies an atomic formula σ=i if it has exactly i occur-
rences of σ; w satisfies σ≥i if it has at least i occurrences of σ. Further, true is
satisfied by every string.1 Satisfaction of Boolean combinations of atomic for-
mulas is defined in the obvious way. As an example, consider the SL formula
co-producer≥1 → producer≥1. This expresses the constraint that a co-producer
can only occur when a producer occurs. The size of an SL-formula is the number
of symbols that occur in it (every i in σ=i or σ≥i is written in binary notation).

We recall the definition of non-deterministic tree automata from [4]. We refer
the unfamiliar reader to [16] for a gentle introduction.

Definition 3. A nondeterministic tree automaton (NTA) is a tuple B = (Q,Σ,
δ, F), where Q is a finite set of states, F ⊆ Q is the set of final states, and δ is a
function Q × Σ → 2Q∗

such that δ(q, a) is a regular string language over Q for
every a ∈ Σ and q ∈ Q.

A run of B on a tree t is a labeling λ : Dom(t) → Q such that for every
v ∈ Dom(t) with n children, λ(v1) · · ·λ(vn) ∈ δ(λ(v), labt(v)). Note that when
v has no children, then the criterion reduces to ε ∈ δ(λ(v), labt(v)). A run is
accepting iff the root is labeled with an accepting state, that is, λ(ε) ∈ F . A tree
is accepted if there is an accepting run. The set of all accepted trees is denoted
by L(B). We extend the definition of δ to trees and denote this by δ∗(t): if t
consists of only one node labeled with a then δ∗(t) = {q | ε ∈ δ(q, a)}; if t is
of the form a(t1 · · · tn), then δ∗(t) = {q | ∃q1 ∈ δ∗(t1), . . . ,∃qn ∈ δ∗(tn) and
q1 · · · qn ∈ δ(q, a)}. So, t is accepted if δ∗(t) ∩ F �= ∅.

A tree automaton is bottom-up deterministic if for all q, q′ ∈ Q with q �= q′

and a ∈ Σ, δ(q, a) ∩ δ(q′, a) = ∅. We denote the set of bottom-up deterministic

1 The empty string is obtained by
∧

σ∈Σ σ=0 and the empty set by ¬ true.

NTAs by DTA. A tree automaton is top-down deterministic if for all q, q′ ∈ Q
with q �= q′, a ∈ Σ, and n ≥ 0, δ(q, a) contains at most one string of length n.

Like for DTDs, we parameterize NTAs by the formalism used to represent
the regular languages in the transition functions δ(q, a). So, for M a class of
representations of regular languages, we denote by NTA(M) the class of NTAs
where all transition functions are represented by elements of M. The size of an
automaton B is then |Q|+ |Σ|+

∑
q,a |δ(q, a)|+ |F |. Here, by |δ(q, a)| we denote

the size of the automaton accepting δ(q, a). Unless explicitly specified otherwise,
δ(q, a) is always represented by an NFA.

Let 2AFA be the class of two-way alternating finite automata [12]. We give
without proof the following theorem which will be a useful tool for obtaining
upper bounds.

Theorem 1. 1. Emptiness of NTA(NFA) is in ptime;
2. Emptiness of NTA(2AFA) is in pspace.

2.3 Transducers

We next define the tree transducers used in this paper. To simplify notation, we
restrict to one alphabet. That is, we consider transductions mapping Σ-trees to
Σ-trees. It is, however, possible to define transductions where the input alphabet
differs from the output alphabet.

For a set Q, denote by HΣ(Q) (resp. TΣ(Q)) the set of Σ-hedges (resp. trees)
where leaf nodes can be labeled with elements from Q.

Definition 4. A uniform tree transducer is a tuple (Q,Σ, q0, R), where Q is a
finite set of states, Σ is the input and output alphabet, q0 ∈ Q is the initial
state, and R is a finite set of rules of the form (q, a) → h, where a ∈ Σ, q ∈ Q,
and h ∈ HΣ(Q). When q = q0, h is restricted to TΣ(Q) \ Q.

The restriction on rules with the initial state ensures that the output is always
a tree rather than a hedge. For the remainder of this paper, when we say tree
transducer, we always mean uniform tree transducer.

Example 1. Let T = (Q,Σ, p,R) where Q = {p, q} and R contains the rules

(p, a) → d(e) (p, b) → c(q p)
(q, a) → c q (q, b) → d(q) .

Our definition of tree transducers corresponds to structural recursion [5] and
a fragment of top-down XSLT. For instance, the XSLT program equivalent to
the above transducer is given in Figure 1 (we assume the program is started in
mode p). �

The translation defined by T = (Q,Σ, q0, R) on a tree t in state q, denoted by
T q(t), is inductively defined as follows: if t = ε then T q(t) := ε; if t = a(t1 · · · tn)
and there is a rule (q, a) → h ∈ R then T q(t) is obtained from h by replacing

<xsl:template match="a" mode ="p">

<d>

<e/>

</d>

</xsl:template>

<xsl:template match="a" mode ="q">

<c/>

<xsl:apply-templates mode="q"/>

</xsl:template>

<xsl:template match="b" mode ="p">

<c>

<xsl:apply-templates mode="q"/>

<xsl:apply-templates mode="p"/>

</c>

</xsl:template>

<xsl:template match="b" mode ="q">

<d>

<xsl:apply-templates mode="q"/>

</d>

</xsl:template>

Fig. 1. The XSLT program equivalent to the transducer of Example 1.

every node u in h labeled with p by the hedge T p(t1) · · ·T p(tn). Note that such
nodes u can only occur at leaves. So, h is only extended downwards. If there is
no rule (q, a) → h ∈ R then T q(t) := ε. Finally, define the transformation of t
by T , denoted by T (t), as T q0(t).

For a ∈ Σ, q ∈ Q and (q, a) → h ∈ R, we denote h by rhs(q, a). If q and a are
not important, we say that h is a rhs. The size of T is |Q|+|Σ|+

∑
(q,a) |rhs(q, a)|.

Example 2. In Figure 2 we give the translation of the tree t defined as

b

b a

a a

b

a

by the transducer of Example 1. �

We discuss two features which are of importance in the remainder of the paper:
copying and deleting. The rule (p, b) → c(q p) in the above example copies the
children of the current node in the input tree two times: one copy is processed
in state q and the other in state p. The symbol c is the parent node of the two
copies. So the current node in the input tree corresponds to the latter node. The
rule (q, a) → c q also copies the children of the current node two times. However,
in this case, one copy is replaced by the single symbol tree c, the other copy is
obtained by processing the children in state q. No parent node is given for this
copy. So, there is no corresponding node for the current node in the input tree.
We, therefore, say it is deleted. For instance, T q(a(b)) = c d where d corresponds
to b and not to a.

2.4 The Typechecking Problem

We define the problem central to this paper.

Definition 5. A tree transducer T typechecks w.r.t. to an input tree language
Sin and an output tree language Sout, if T (t) ∈ Sout for every t ∈ Sin.

We parameterize the typechecking problem by the kind of tree transducers
and tree languages we allow. Let T be a class of transducers and S be a class of
tree languages. Then TC[T ,S] denotes the typechecking problem where T ∈ T
and Sin, Sout ∈ S. The size of the input of the typechecking problem is the sum
of the sizes of the input and output schema and the tree transducer.

A transducer T has width k if there are at most k occurrences of states
in every rhs of T . By BWk we denote the class of transducers of width k. A
transducer is non-deleting if no states occur at the top-level of a rhs. We denote
by Tg the class of all transducers and by Tnd the class of non-deleting transducers.
For a class of representations of regular string languages M, we write TC[T ,M]
rather than TC[T ,DTD(M)].

3 The General Case

When we do not restrict our transducers in any way, the typechecking problem
is in exptime and is exptime-hard for even the simplest DTDs: those where
the right-hand sides are specified with SL-formulas or with DFAs. The main
reason is that the deleting states allow the transducer to simulate deterministic
top-down tree automata in such a way that the transducer produces no output
besides acceptance information. In this way, even a very simple DTD can check
whether the output was rejected or not. By copying the input several times,
we can execute several deterministic tree automata in parallel. These are all
the ingredients we need for a reduction from non-emptiness of the intersection
of an arbitrary number of deterministic tree automata which is known to be
exptime-hard.

Theorem 2. 1. TC[Tg,NTA] is in exptime;
2. TC[Tg,SL] is exptime-hard;
3. TC[Tg,DFA] is exptime-hard.

Proof. (Sketch) (1) Let T = (QT , Σ, q0
T , RT) be a transducer and let Ain and

Aout = (QA, Σ, δA, FA) be two NTAs representing the input and output schema,
respectively. We next describe a non-deleting transducer S and an NTA Bout

which can be constructed in logspace, such that T typechecks w.r.t. Ain and
Aout iff S typechecks w.r.t. Ain and Bout. From Theorem 3(1) it then follows
that TC[Tg,NTA] is in exptime.

Intuitively, S puts a # whenever T would process a deleting state. For in-
stance, the rule (q, a) → c q is replaced by (q, a) → c#(q). We introduce some
notation to characterize the behavior of Bout. Define the #-eliminating func-
tion γ as follows: γ(σ(h)) is γ(h) when σ = # and σ(γ(h)) otherwise; further,
γ(t1 · · · tn) := γ(t1) · · · γ(tn). Then, clearly, for all t ∈ TΣ , T (t) = γ(S(t)). Bout

then accepts a tree t iff γ(t) ∈ L(Aout).

T p(t)

⇓

c

T q(b) T q(a(aa)) T q(b(a)) T p(b) T p(a(aa)) T p(b(a))

⇓

c

d

T q(ε)

c T q(a) T q(a) d

T q(a)

c

T q(ε) T p(ε)

d

e

c

T q(a) T p(a)

⇓

c

d c c T q(ε) c T q(ε) d

c T q(ε)

c d

e

c

c T q(ε) d

e

⇓

c

d c c c d

c

c d

e

c

c d

e

Fig. 2. The translation of t = b(b a(a a)b(a)) by the transducer T of Example 1.

(2) We use a reduction from the intersection problem of deterministic binary
top-down tree automata Ai (i = 1 . . . n), which is known to be hard for exp-
time [21]. The problem is stated as follows, given deterministic binary top-down
automata A1, . . . , An, is

⋂n
i=1 L(Ai) = ∅? We define a transducer T and two

DTDs din and dout such that
⋂n

i=1 L(Ai) �= ∅ iff T does not typecheck w.r.t. din

and dout. In the construction, we exploit the copying power of transducers to
make n copies of the input tree: one for each Ai. By using deleting states, we can
execute each Ai on its copy of the input tree without producing output. When
an Ai does not accept, we output an error symbol under the root of the out-
put tree. The output DTD should then only check that an error symbol always
appears.

The proof of (3) is similar to the one for (2). �

4 Non-deleting Transformations

In an attempt to lower the complexity, we consider, in the present section, non-
deleting transformations w.r.t. various schema formalisms. We observe that when
schemas are represented by tree automata, the complexity remains exptime-
hard. When tree languages are represented by DTDs, the complexity of the
typechecking problem drops to pspace and is hard for pspace even when right-
hand sides of rules are represented by DFAs. The main reason for this is that
the tree transducers can still make an unbounded number of copies of the input
tree. This allows to simulate in parallel an unbounded number of DFAs and
makes it possible to reduce the intersection emptiness problem of DFAs to the
typechecking problem. In the next section, we therefore constrain this copying
power. In summary, we prove the following results:

Theorem 3. 1. TC[Tnd,NTA] is exptime-complete;
2. TC[Tnd,DTA] is exptime-complete;
3. TC[Tnd,NFA] is pspace-complete;
4. TC[Tnd,DFA] is pspace-complete;
5. TC[Tnd,SL] is conp-complete.

4.1 Tree Automata

Consider the case where the input and output schemas are represented by
NTA(NFA)s. One way to obtain an appropriate typechecking algorithm, would
be to build a composite automaton Aco that on input t, runs Aout on T (t) without
actually constructing T (t). The given instance typechecks iff L(Ain) ⊆ L(Aco).
However, constructing Aco would lead to an exponential blowup because the
state set of Aco would be 2QT × 2Qout . Since Aco is nondeterministic because
Aout is nondeterministic, solving the inclusion problem on this instance would
lead to a double exponential time algorithm. Thus, to show that TC[Tnd,NTA]
can be solved in exptime, we need a slightly more sophisticated approach.

Theorem 3(1). TC[Tnd,NTA] is exptime-complete.

Proof. (Sketch) Hardness is immediate as containment of NTAs is already hard
for exptime [20]. We, therefore, only prove membership in exptime. The proof
is similar in spirit to a proof in [18], which shows that containment of Query
Automata is in exptime. Let T = (QT , Σ, q0

T , RT) be a non-deleting tree trans-
ducer and let Ain = (Qin, Σ, δin, Fin) and Aout = (Qout, Σ, δout, Fout) be the
NTAs representing the input and output schema, respectively.

For ease of exposition, we restrict hedges in the rhs of T to be trees. In brief,
our algorithm computes the set

P = {(S, f) | S ⊆ Qin, f : QT → 2Qout ,∃t such that
S = δ∗in(t) and ∀q ∈ QT , f(q) = δ∗out(T

q(t))}.

Intuitively, in the definition of P , t can be seen as a witness of (S, f). That
is, S is the set of states reachable by Ain at the root of t, while for each state
q of the transducer, f(q) is the set of states reachable by Aout at the root of
T q(t) (recall that this is the translation of t started in state q). So, the given
instance does not typecheck iff there exists an (S, f) ∈ P such that Fin ∩ S �= ∅
and Fout ∩f(q0

T) = ∅. In Figure 3, an algorithm for computing P is depicted. By
rhs(q, a)[p ← f1(p) · · · fn(p) | p ∈ QT], we denote the tree obtained from rhs(q, a)
by replacing every occurrence of a state p by the sequence f1(p) · · · fn(p). For
c ∈ {in, out}, δ∗c : TΣ(2Qc) → 2Qc is the transition function extended to trees
in TΣ(2Qc). To be precise, for a ∈ Σ, δ∗c (a) := {q | ε ∈ δc(q, a)}; for P ⊆ Qc,
δ∗c (P) := P ; and, δ∗c (a(t1 · · · tn)) := {q | ∃qi ∈ δ∗c (ti) : q1 · · · qn ∈ δ∗c (q, a)}.
The correctness of the algorithm follows from the following lemma which can be
easily proved by induction.

Lemma 1. A pair (S, f) has a witness tree of depth i iff (S, f) ∈ Pi.

It remains to show that the algorithm is in exptime. The set P1 can be
computed in time polynomial in the sizes of Ain, Aout, and T . As Pi ⊆ Pi+1

for all i, the loop can only make an exponential number of iterations. It, hence,
suffices to show that each iteration can be done in exptime. Actually, we argue
that it can be checked in pspace whether a tuple (S, f) ∈ Pi. Indeed, the question
whether there are (S1, f1) · · · (Sn, fn) ∈ P ∗

i−1 can be reduced to the emptiness
test of a 2AFA A which works on strings over the alphabet Pi−1. On input
(S1, f1) · · · (Sn, fn) the 2AFA A operates as follows: for every p ∈ S it checks
whether there are ri ∈ Si such that r1 . . . rn ∈ δ(p, a). This can be done by |S|
traversals through the input string. Next, A checks for every q ∈ Qin \S whether
for all ri ∈ Si, r1 . . . rn �∈ δ(q, a). This can be done by |Qin\S| traversals through
the input string while using alternation. In a similar way f(q) is checked. The
automaton A is exponential in the input. However, we can construct A on the fly
when executing the pspace algorithm for non-emptiness. The latter algorithm is
an adaptation of the technique used by Vardi [26]. As there are only exponentially
many tuples (S, f), the overall algorithm is in exptime. �

In the remainder of this section, we examine what happens when tree au-
tomata are restricted to be deterministic. From the above result, it is immediate

P0 := ∅;
i := 1;
P1 := {(S, f) | ∃a : ∀r ∈ S : ε ∈ δin(r, a), ∀q ∈ QT : f(q) = δ∗out(T

q(a))};
while Pi �= Pi−1 do

Pi :=
{
(S, f) | ∃(S1, f1) · · · (Sn, fn) ∈ P ∗

i−1, ∃a ∈ Σ :
S = {p | ∃rk ∈ Sk, k = 1 . . . n, r1 · · · rn ∈ δin(p, a)}
∀q ∈ QT : f(q) = δ∗out

(
rhs(q, a)[p ← f1(p) · · · fn(p) | p ∈ QT]

)}
;

i := i + 1;
end while
P := Pi;

Fig. 3. The algorithm of Theorem 3(1) computing P .

that TC[Tnd,DTA] is in exptime. To show that it is hard, we can use a reduction
from the intersection problem of deterministic binary top-down tree automata
like in the proof of Theorem 2(2). The reduction is almost identical to the one
in Theorem 2(2): Ain defines the same set of trees as din does with the excep-
tion that Ain enforces an ordering of the children. The transducer in the proof
of Theorem 2(2) starts the in parallel simulation of the n automata, but then,
using deleting states, delays the output until it has reached the leaves of the
input tree. In the present setting, we can not use deleting states. Instead, we
copy the input tree and attach error-symbols to the leaves when an automaton
rejects. The output automaton then checks whether at least one error occurred.
We obtain the following theorem.

Theorem 3(2) TC[Tnd,DTA] is exptime-complete.

4.2 DTDs

When we consider DTDs as input schemas the complexity drops to pspace and
conp.

Theorem 3(3) TC[Tnd,NFA] is pspace-complete.

Proof. (Sketch) The hardness result is immediate as containment of regular ex-
pressions is known to be pspace-hard [22]. For the other direction, let T be a
non-deleting tree transducer. Let din and dout be the input and output DTDs,
respectively. We construct an NTA(2AFA) B such that L(B) = {t ∈ L(din) |
T (t) �∈ dout}. Moreover, the size of B is polynomial in the size of T , din, and
dout. Thus, L(B) = ∅ iff T typechecks w.r.t. din and dout. By Theorem 1(2), the
latter is in pspace. To explain the operation of the automaton we introduce the
following notion: let q be a state of T and a ∈ Σ then define q(a) := z where z
is the concatenation of the labels of the top most nodes of rhs(q, a). For a string
w := a1 · · · an, we define p(w) := p(a1) · · · p(an). Intuitively, the automaton B
now works bottom-up as follows: (1) B checks that t ∈ L(din); (2) at the same
time, B guesses a node v labeled σ with n children and picks a state q in which

v is processed: B then accepts if h does not satisfy dout, where h is obtained
from rhs(σ, q) by replacing every state p by p(labt(u1) · · · labt(un)). As dout is
specified by NFAs and we have to check that dout is not satisfied, we need al-
ternation to specify the transition function of B. Additionally, as T can copy its
input, we need two-way automata.

Formally, let T = (QT , Σ, qT
0 , δT). Define B = (QB , Σ, FB , δB) as follows.

The set of states QB is the union of the following sets: Σ, {(σ, q) | q ∈ QT , σ ∈
Σ}, and {(σ, q, check) | q ∈ QT , σ ∈ Σ}. If there is an accepting run on a tree
t, then a node v labeled with a state of the form σ, (σ, q), (σ, q, check) has the
following meaning:

σ: the current node is labeled with σ and the subtree rooted at this node satisfies
din.

(σ, q): same as in previous case with the following two additions: (1) v is pro-
cessed by T in state q; and, (2) a descendant of v will produce a tree that
will not satisfy dout.

(σ, q, check): same as the previous case only now v itself will produce a tree that
does not satisfy dout.

The set of final states is defined as follows: FB := {(σ, qT
0) | σ ∈ Σ}. The

transition function is defined as follows:

1. δB(a, b) = δB((a, q), b) = δB((a, q, check), b) = ∅ for all a �= b;
2. δB(a, a) = din(a) and

δB((a, q), a) = {Σ∗(b, p)Σ∗+Σ∗(b, p, check)Σ∗ | p occurs in rhs(q, a), b ∈ Σ},

for all a ∈ Σ and q ∈ QT .
3. Finally, δB((a, q, check), a) = {a1 · · · an | h �∈ L(dout) and a1 · · · an ∈ din(a)}.

Here, h is obtained from rhs(q, a) by replacing every q by q(a1 · · · an).

We are left with the proof that δB((a, q, check), a) can be computed by a
2AFA A with only a polynomial blowup. Before we define A, we define some
other automata. First, for every b ∈ Σ, let Ab be the NFA accepting dout(b).

For every v in rhs(q, a), let w be the largest string in (Σ ∪ QT)∗ such that
labh(v)(w) is a subtree rooted at v in h. Define the 2NFA Bv as follows: sup-
pose w is of the form z0p1z1 · · · p�z�, then a1 · · · an ∈ L(Bv) if and only if
z0p1(a1 · · · an)z1 · · · p�(a1 · · · an)z� ∈ L(Alabh(v)). As w is fixed, Bv can recognize
this language by reading a1 · · · an � times while simulating Alabh(v). Intuitively,
the automaton simulates Alabh(v) on zi−1pi(a1 · · · an) on the ith pass.

It remains to describe the construction of A. To this end, let Aa
in be the

NFA such that din(a) = L(Aa
in). On input a1 · · · an, A first checks whether

a1 · · · an ∈ L(Aa
in) by simulating Aa

in. After this, A goes back to the beginning
of the input string, guesses an internal node u in rhs(q, a) and simulates the
negation of Bu. As Bu is a 2NFA, A is a 2AFA. �

The intersection problem of deterministic finite automata is known to be
pspace-hard [10] and is easily reduced to TC[Tnd,DFA]. This implies the follow-
ing result:

Theorem 3(4) TC[Tnd,DFA] is pspace-complete.

Using SL-expressions to define right-hand sides of DTDs reduces the com-
plexity of typechecking to conp.

Theorem 3(5) TC[Tnd,SL] is conp-complete.

Proof. (Sketch) First, we prove the hardness result. Let φ be a sat-formula and
let v1, . . . , vn be the variables occurring in φ. We define the typechecking instance
as follows. Σ = {σ1, . . . , σn}. We only define din and dout for σ1, since this is
all we require. din(σ1) = φ′, where φ′ is the formula φ with every occurrence
of vi replaced by σ=1

i for i = 1 . . . n. The transducer T is the identity, and
dout(σ1) = ∅. Hence, this instance typechecks iff φ is not satisfiable.

To prove the upper bound, let T = (QT , Σ, q0
T , RT) and let (din, sin) and

(dout, sout) be the input and output DTD respectively. We describe an np algo-
rithm that accepts iff the given instance does not typecheck.

We introduce some notation. For a DTD (d, sd) and σ ∈ Σ, we denote by
dσ the DTD d with start symbol σ, that is, (d, σ). Let k be the largest number
occurring in an SL-formula in din. Set r = (k + 1) × |Σ|.

The algorithm consists of three main parts:

1. First, we sequentially guess a subset L of the derivable symbols {b ∈ Σ |
L(db

in) �= ∅}.
2. Next, we guess a path of a tree in din. In particular, we guess a sequence of

pairs (ai, qi) ∈ L × QT , i = 0, . . . ,m, with m ≤ |Σ| × |QT |, such that
(a) a0 = sin and q0 = q0

T ;
(b) ∃t,∃u ∈ Dom(t) such that a0 · · · am is the concatenation of the labels of

the nodes on the path from the root to u; and,
(c) ∀i = 1, . . . ,m: T visits ai in state qi.

3. Finally, we guess a string w ∈ L∗ of length at most r such that T qm(am(w)) �∈
L(dσ

out) with σ the root symbol of T qm(am(w)).

All guesses can be done at once and can be checked by a polynomial verifier.
This completes the description of the algorithm. �

5 Transducers of Bounded Width

When we put a bound on the width (or copying power, recall the discussion at
the end of sections 2.3 and 2.4) of transducers we get a ptime algorithm for
typechecking when the right-hand sides of DTDs are represented by DFAs. All
other results have the same complexity as in the case of unrestricted copying.

Theorem 4. 1. TC[BWk,NTA] is exptime-complete;
2. TC[BWk,RE] is pspace-complete;
3. TC[BWk,DFA] is ptime-complete;
4. TC[BWk,SL] is conp-complete.

The lower bounds of (1), (2), and (4) follow immediately from the construc-
tion in the proofs of Theorem 3(1), (3), and (5).

Theorem 4(3) TC[BWk,DFA] is ptime-complete.

Proof. (Sketch) In the proof of Theorem 3(3), TC[Tnd,NFA] is reduced to the
emptiness of NTA(2AFA)s. Alternation was needed to express negation of NFAs;
two-wayness was needed because T could make arbitrary copies of the input tree.
However, when transducers can make only a bounded number of copies and DFAs
are used, TC[BWk,DFA] can be logspace-reduced to emptiness of NTA(NFA)s.
From Theorem 1(1), it then follows that TC[BWk,DFA] is in ptime. A ptime
lower bound is obtained by a reduction from path systems [8]. �

6 Conclusion

Motivated by structural recursion and XSLT, we studied typechecking for top-
down XML transformers in the presence of both DTDs and tree automata. In
this setting the complexity of the typechecking problem ranges from ptime to
exptime. In particular, the ptime algorithm is obtained by restricting to non-
deleting tree transducers of bounded width and DTD(DFA)s. The main open
question for future research is how these restrictions can be relaxed while still
having a ptime algorithm. Another question we left open is the exact complexity
of TC[BWk,DTA] which is in exptime and pspace-hard.

References

1. N. Alon, T. Milo, F. Neven, D. Suciu, and V. Vianu. Typechecking XML views
of relational databases. In Proc. 16th IEEE Symposium on Logic in Computer
Science (LICS 2001), pages 421–130, 2001.

2. N. Alon, T. Milo, F. Neven, D. Suciu, and V. Vianu. XML with data values: Type-
checking revisited. In Proc. 20th Symposium on Principles of Database Systems
(PODS 2001), pages 560–572, 2001.

3. G. J. Bex, S. Maneth, and F. Neven. A formal model for an expressive fragment
of XSLT. Information Systems, 27(1):21–39, 2002.

4. A. Brüggemann-Klein, M. Murata, and D. Wood. Regular tree and regular hedge
languages over unranked alphabets: Version 1, april 3, 2001. Technical Report
HKUST-TCSC-2001-0, The Hongkong University of Science and Technology, 2001.

5. P. Buneman, M. Fernandez, and D. Suciu. UnQl: a query language and algebra for
semistructured data based on structural recursion. The VLDB Journal, 9(1):76–
110, 2000.

6. James Clark. XSL transformations version 1.0. http://www.w3.org/TR/WD-xslt,
august 1999.

7. World Wide Web Consortium. XML Schema. http://www.w3.org/XML/Schema.
8. S.A. Cook. An observation on time-storage trade-off. Journal of Computer and

System Sciences, 9(3):308–316, 1974.
9. J. Engelfriet and H. Vogler. Macro tree transducers. Journal of Computer and

System Sciences, 1985.

10. M.R. Garey and D.S. Johnson. Computers and Intractability: A Guide to the
Theory of NP-Completeness. Freeman, 1979.

11. F. Gécseg and M. Steinby. Tree languages. In G. Rozenberg and A. Salomaa,
editors, Handbook of Formal Languages, volume 3, chapter 1, pages 1–68. Springer,
1997.

12. R. E. Ladner, R. J. Lipton, and L. J. Stockmeyer. Alternating pushdown and stack
automata. SIAM Journal on Computing, 13(1):135–155, 1984.

13. S. Maneth and F. Neven. Structured document transformations based on XSL. In
R. Connor and A. Mendelzon, editors, Research Issues in Structured and Semistruc-
tured Database Programming (DBPL’99), volume 1949 of Lecture Notes in Com-
puter Science, pages 79–96. Springer, 2000.

14. T. Milo and D. Suciu. Type inference for queries on semistructured data. In
Proceedings of the Eighteenth ACM Symposium on Principles of Database Systems,
pages 215–226. ACM Press, 1999.

15. T. Milo, D. Suciu, and V. Vianu. Type checking for XML transformers. In Pro-
ceedings of the Nineteenth ACM Symposium on Principles of Database Systems,
pages 11–22. ACM Press, 2000.

16. F. Neven. Automata theory for XML researchers. SIGMOD Record, 31(3), 2002.
17. F. Neven and T. Schwentick. XML schemas without order. Unpublished

manuscript, 1999.
18. F. Neven and T. Schwentick. Query automata on finite trees. Theoretical Computer

Science, 275:633–674, 2002.
19. Y. Papakonstantinou and V. Vianu. DTD inference for views of XML data. In

Proc. 20th Symposium on Principles of Database Systems (PODS 2001), pages
35–46. ACM Press, 2001.

20. H. Seidl. Deciding equivalence of finite tree automata. SIAM Journal on Comput-
ing, 19(3):424–437, 1990.

21. H. Seidl. Haskell overloading is DEXPTIME-complete. Information Processing
Letters, 52(2):57–60, 1994.

22. L. J. Stockmeyer and A. R. Meyer. Word problems requiring exponential time:
Preliminary report. In Conference Record of Fifth Annual ACM Symposium on
Theory of Computing, pages 1–9, Austin, Texas, 30 April–2 May 1973.

23. D. Suciu. Typechecking for semistructured data. In Proceedings of the 8th Work-
shop on Data Bases and Programming Languages (DBPL 2001), 2001.

24. D. Suciu. The XML typechecking problem. SIGMOD Record, 31(1):89–96, 2002.
25. A. Tozawa. Towards static type checking for XSLT. In Proceedings of ACM

Symposium on Document Engineering, 2001.
26. M. Y. Vardi. A note on the reduction of two-way automata to one-way automata.

Information Processing Letters, 30:261–264, March 1989.

