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Abstract

Structured document databases can be naturally viewed as deriva-
tion trees of a context-free grammar. Under this view, the classical
formalism of attribute grammars becomes a formalism for structured
document query languages. From this perspective, we study the ex-
pressive power of BAGs: Boolean-valued attribute grammars with
propositional logic formulas as semantic rules, and RAGs: relation-
valued attribute grammars with first-order logic formulas as semantic
rules. BAGs can express only unary queries; RAGs can express queries
of any arity. We first show that the (unary) queries expressible by
BAGs are precisely those definable in monadic second-order logic. We
then show that the queries expressible by RAGs are precisely those
definable by first-order inductions of linear depth, or, equivalently,
those computable in linear time on a parallel machine with polyno-
mially many processors. Further, we show that RAGs that only use
synthesized attributes are strictly weaker than RAGs that use both
synthesized and inherited attributes. We show that RAGs are more
expressive than monadic second-order logic for queries of any arity.
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Finally, we discuss relational attribute grammars in the context of
BAGs and RAGs. We show that in the case of BAGs this does not
increase the expressive power, while different semantics for relational
RAGs capture the complexity classes NP, coNP and UP N coUP.

1 Introduction

As originally proposed by Gonnet and Tompa [14], a structured document
database can be naturally viewed as a derivation tree over a context-free
grammar. In essence, this is also the view taken by SGML [13, 31].

The classical formalism of attribute grammars, introduced by Knuth [18],
has always been a prominent framework for expressing computations on
derivation trees. Attribute grammars provide a mechanism for annotating
the nodes of a tree with so-called “attributes”, by means of so-called “se-
mantic rules” which can work either bottom-up (for so-called “synthesized”
attribute values) or top-down (for so-called “inherited” attribute values). At-
tribute grammars are applied in such diverse fields of computer science as
compiler construction and software engineering (for a survey, see [5]).

Hence, it is natural to consider attribute grammars as a basis for struc-
tured document database languages. For instance, this approach was chosen
by Abiteboul, Cluet and Milo [1]. Our goal in this paper is to understand
the expressive power of attribute grammars as a structured document query
language.

In the simple query facility provided by most information retrieval sys-
tems, a query amounts to the selection of certain nodes in the tree, corre-
sponding to positions in the document or structural elements of the docu-
ment, that are to be retrieved. We propose to use Boolean-valued attribute
grammars (BAGs) to express such unary queries. BAGs are attribute gram-
mars with Boolean attribute values, and with propositional logic formulas
as semantic rules. A BAG indeed expresses a query in a natural way: the
result of the query expressed by a BAG consists of those nodes in the tree
for which some designated attribute is true. Information retrieval systems
usually query a set of structured documents instead of only one document.
However, as far as query language design is concerned, a set of documents
can be considered as one long structured document.

We show that a unary query is expressible by a BAG if and only if it is



definable in monadic second-order logic (MSO).! We found this pleasantly
surprising, since at first it was not even clear to us that all first-order queries
are BAG-expressible. The only-if direction is easy to prove. For the if di-
rection, we make use of a classical theorem from the field of automata and
logic (Doner-Thatcher-Wright [27, 6]) stating that a tree language is recog-
nizable by a finite bottom-up tree automaton if and only if it is definable
by an MSO-sentence. Using this theorem, we can prove our result by an
intricate construction of a BAG which simulates, in parallel, the runs of a
tree automaton on all possible Boolean labelings of a tree. As a corollary of
the proof, we obtain that every BAG is equivalent to a BAG that consists of
one bottom-up pass followed by one top-down pass.

One can use BAGs also to express Boolean queries, and in this more
restricted setting the equivalence between BAGs and MSO follows much more
directly from the Doner-Thatcher-Wright Theorem. From this equivalence
then follows a bottom-up property for Boolean BAG queries: every Boolean
query expressible by a BAG is already expressible by a BAG using synthesized
attributes only. This bottom-up property does not hold for BAGs expressing
unary queries.

Having understood the expressive power of BAGs, we then turn to queries
that result in relations, of arbitrary fixed arity, among the nodes of the tree.
These queries are for example used when one wants to define “wrappers” that
map relevant parts of the document into a relational database [1, 21, 25]. To
this end, we introduce relation-valued attribute grammars (RAGs), which use
first-order logic formulas as semantic rules. The query expressed by a RAG
is naturally defined as the value (a relation) of some designated attribute of
the root. We show that the queries expressible by RAGs are precisely those
definable by first-order inductions of linear depth. Results by Immerman [16]
imply that these are precisely the queries computable in linear time on a
parallel random access machine with polynomially many processors.

We also investigate whether the above-mentioned bottom-up property for
Boolean BAG queries carries over to Boolean RAG queries; using tools from
finite model theory we prove that it does not.

We complete the picture by showing that synthesized RAGs are strictly
more powerful than monadic second-order logic, for queries of any arity. This
implies in particular that even when restricting attention to unary queries,
RAGs are more powerful than BAGs. Moreover, it turns out that each query

'We point out that this result was obtained independently by Bloem and Engelfriet [3].



defined by a monadic second-order logic formula can be expressed by a RAG
that uses only synthesized attributes.

Finally, we consider Boolean-valued and relation-valued relational at-
tribute grammars. Relational attribute grammars are introduced by Cour-
celle and Deransart [4]. This concept is a generalization of standard attribute
grammars, where the semantic rules do not specify functions, computing at-
tributes in terms of other attributes, but rather relations among attributes.
We discuss several natural semantics for relational BAGs and RAGs. We
show that relational BAGs are entirely equivalent to standard BAGs. For
RAGs, however, this is much less clear; under various semantics, relational
RAGs capture complexity classes such as NP, coNP and UP N coUP, whose
relationship to the linear parallel time complexity class of standard RAGs is
unknown.

The results obtained in this paper are summarized graphically in Figure 9.

This paper is further organized as follows. In Section 2, we introduce
Boolean-valued and relation-valued attribute grammars as a query language.
In Section 3, we characterize the expressive power of BAGs in terms of
monadic second-order logic and establish a bottom-up property for Boolean
BAG queries. In Section 4, we characterize the expressiveness of RAGs in
terms of linear inductions of linear depth. Here, we also show that there is no
bottom-up property for Boolean RAG queries, and we discuss the relation-
ship between RAGs and MSO. Finally, in Section 5, we consider relational
BAGs and RAGs. We present some concluding remarks in Section 6. Some
technical proofs are moved to an appendix.

2 Attribute grammars as query languages

2.1 Data model

For all what follows in this paper, we fix a contezrt-free grammar G =
(N,T,P,U), where N is the set of non-terminals, T is the set of termi-
nals, P is the set of productions, and U is the start symbol. We make the
harmless technical assumption that the start symbol U does not appear on
the right-hand side of any production. A derivation tree of GG is defined in
the standard way (see, e.g., [15]).

Let t be a derivation tree of G and let ng, ny, ..., n, be nodes of t such



that ng has exactly the n children ny, ..., n,:

n

N\

ng n,.
Let p = Xy — X;...X,, be a production. If the label of ngy is X, and n; is
labeled by X; for 2 =1,...,n, then we say that ng is derived by p.

Definition 2.1 The context-free grammar models the schema of the data-
base. A database instance is a derivation tree of G.

Definition 2.2 Let k£ be a natural number. A k-ary query is a function Q
that maps each derivation tree to a k-ary relation over its nodes. If Q is a
nullary query, i.e., k is zero, then we also say that Q is a Boolean query.

2.2 Attribute grammar formalism

We now define the concepts common to both Boolean-valued and relation-
valued attribute grammars.

Definition 2.3 An attribute grammar vocabulary has the form
(A, Syn, Inh, Att),
where

e A is a finite set of symbols called attributes;

e Syn, Inh, and Att are functions from N U T to the powerset of A
such that for every X € N, Syn(X) N Inh(X) = 0; for every X € T,
Syn(X) = 0; and Inh(U) = 0.

e for every X, Att(X) = Syn(X) U Inh(X).

If a € Syn(X), we say that a is a synthesized attribute of X. If a € Inh(X),
we say that a is an inherited attribute of X. The above conditions express
that an attribute cannot be a synthesized and an inherited attribute of the
same symbol, that terminal symbols do not have synthesized attributes, and
that the start symbol does not have inherited attributes.

From now on we fix some attribute grammar vocabulary.

Definition 2.4 Let p = Xy — X;...X, be a production in P, and a an
attribute of X; for some i € {0,...,n}. Then the triple (p,a,i) is called a
context if a € Syn(X;) implies i = 0, and a € Inh(X;) implies ¢ > 0.



U—S  x_before(l) := false
S — BS x_before(2) := is_x(1) V z_before(0)
even(0) := —even(2)
result(0) := even(0) A x_before(0)
S — B  even(0) := false
result(0) := false
B — 1z is.x(0) := true
B —vy  is.x(0) := false
Figure 1: Example of a BAG.

2.3 Boolean-valued attribute grammars for unary and
Boolean queries

Definition 2.5 A BAG-rule in the context (p,a,i), withp = Xog — X ... X,
is an expression of the form

a(i) == ¢,

where ¢ is a propositional logic formula over the set of proposition symbols
{b(j) | 7 €{0,...,n} and b € Att(X;)}.
A BAG is then defined as follows:

Definition 2.6 A Boolean-valued attribute grammar (BAG) B consists of
an attribute grammar vocabulary, together with a mapping assigning to each
context a BAG-rule in that context.

Example 2.7 In Figure 1 a simple example of a grammar and a BAG over
this grammar are depicted. We have Syn(S) = {result, even}, Inh(S) =
{z_before}, Syn(B) = {is_r}, and Att(U) = Att(x) = Att(y) = Inh(B) = 0.
The semantics of this BAG will be explained below. [ |

The semantics of a BAG is that it defines Boolean attributes of the nodes
of derivation trees of the underlying grammar G. This is formalized next.

Definition 2.8 Let t be a derivation tree of G. A wvaluation of t is a function
that maps pairs (n,a), where n is a node in t and a is an attribute of the
label of n, to truth values (0 or 1).



In the sequel, for a pair (n, a) as above we will use the more intuitive notation

a(n).

Definition 2.9 Let B be a BAG, and let t be a derivation tree. Let a(i) := ¢
be the BAG-rule in context (p, a, 7). Let ng be a node with childrenny, ..., n,
derived by p. Then the formula obtained from ¢ by replacing each occurrence
of a propositional symbol of the form b(j) by the new propositional symbol
b(n;), is denoted by A(B,t,a,n;).

Definition 2.10 Let B be a BAG and t a derivation tree. We define a
sequence (B;(t));>o of partial valuations as follows:

e By(t) is the empty valuation (B, (t) is nowhere defined).

e B(t), for [ > 0, is defined as the following extension of B,_(t). For
every a(n), if B, 1(t) is defined on all propositional symbols that occur
in A(B,t,a,n), then B)(t) is defined on a(n) and gets the truth value
taken by A(B,t,a,n) under the valuation B;_(t).

If for every t there is an [ such that B;(t) is a totally defined valuation
of t (this implies that By,; = B;), then we say that B is non-circular. From
now on, we will only consider BAGs that are non-circular. (Non-circularity
is well known to be decidable [18].) The valuation B(t) is then defined as

By(t).

It is well known that the evaluation of an attribute grammar takes linear
time when counting the evaluation of a semantic rule as one unit of time (see,
e.g., [5]). This is simply because only a constant number of attributes should
be defined for every node. Since a fixed propositional formula can indeed be
evaluated in constant time, the valuation B(t) of a BAG B on a tree t can
thus be computed in time linear in the size of t.2

An arbitrary total valuation v of t is said to satisfy B if v(a(n)) equals
the truth value taken by A(B,t,a, n) under v, for each attribute a and node
n of t such that a is an attribute of the label of n.

We shall make use of the following lemma:

Lemma 2.11 For each BAG B and derivation tree t, B(t) is the only valu-
ation that satisfies B.

2We use the RAM model of computation.



Proof. It follows immediately from the definitions that B(t) satisfies B.

Suppose that v satisfies B. We now show by induction on [ that if a(n)
is defined in B;(t) then B;(t)(a(n)) = v(a(n)). This clearly holds for [ = 0.
Suppose [ > 0 and a(n) is defined in B;(t). If a(n) is already defined in B;_;(t)
then the claim holds by the inductive hypothesis. If a(n) is not defined in
B, 1(t), then, by definition, the value B(t)(a(n)) equals the truth value
of A(B,t,a,n) under the valuation B, {(t). By assumption v(a(n)) equals
the truth value of A(B,t,a,n) under the valuation v. By the inductive
hypothesis we have that Bi_;(t)(b(m)) = v(b(m)), for all b(m) that are
defined in B;_;(t). Hence, B;(t)(a(n)) = v(a(n)).

By definition of B(t) the lemma now holds. |

A BAG B can be used in a simple way to express unary (i.e., l-ary)
queries. Among the attributes in the vocabulary of B, we designate some
attribute result, and define:

Definition 2.12 A BAG B expresses the unary query Q defined by
Q(t) = {n | B(t)(result(n)) =1},
for every derivation tree t.

Example 2.13 Recall the BAG of Figure 1. A derivation tree of the under-
lying grammar can be viewed naturally as a string over the alphabet {z,y}.
Every node labeled S in the tree represents a position in the string. Now
consider the semantic rules defining the synthesized attribute even. They
can be evaluated bottom-up; for any node n, even(n) is true iff n is even-
numbered when counting up from the bottom. The semantic rules defining
the inherited attribute z_before can be evaluated top-down; z_before(n) is
true iff the letter x occurs in the string somewhere before position n. Fi-
nally, the semantic rules for the attribute result simply define result(n) as
xz_before(n) A even(n). Hence, the BAG expresses the query retrieving those
even-numbered positions that come after an x in the string. An illustration
is given in Figure 2. [ |

A BAG can also be used to express Boolean (i.e., nullary) queries. Among
the attributes of the start symbol, we designate some attribute result, and
define:



even =0 even =1 even =0 even =1 even =0
x_before =0 xz_before =0 x_before =0 x_before=1 z_before=1

result =0 result =0 result = 0 result = 1 result =0
v — § — S — 5 — 5 — S
1 1 \ 1 1
B isx=0 B isx=0 B isxz=1 B isx=0 B isxa—=1
1 1 \ 1 1
Yy Yy T Yy Y

Figure 2: A derivation tree and its valuation defined by the BAG of Figure 1.

Definition 2.14 A BAG B expresses the Boolean query Q defined by

o(t) = { true if B(t)(result(r)) = 1;

false otherwise,

for every derivation tree t. Here r denotes the root of t.

2.4 Relation-valued attribute grammars for relational
queries

In this section, we generalize BAGs to relation-valued attribute grammars
(RAGs). We start by giving an example.

Example 2.15 As a first example, consider the RAG shown in Figure 3. A
derivation tree of the underlying grammar models a set (S) of documents (D).
Each document is a list (L) of paragraphs (p). The synthesized attribute
result of U and S is relation-valued; on any tree, the value of result at
the root will be the ternary relation consisting of all triples (d, f,[) such
that, intuitively, d is a document, f is the first paragraph of d, and [ is
the last paragraph of d. More precisely, d, f, and [ are not actual parts
of the derivation tree, but are just nodes corresponding to documents and
paragraphs. The result relation is computed using the synthesized attributes
first and last of D and L; for every document node n, first(n) contains
the first paragraph of that document, and last(n) contains the last. These
attributes are computed in turn using the inherited attribute begin and the
synthesized attribute end of L, which are Boolean-valued; for any L-node



U—S  result(0) := result(1)
S — DS result(0) := ({(1)} x first(1) x last(1)) U result(2)
S — result(0) := ()
D — L first(0) := first(1)
last(0) := last(1)
begin(1) := true
L — pL  first(0) := if begin(0) then {(1)} else ()
last(0) := if end(2) then {(1)} else last(2)
begin(2) := false
end(0) := false

L— end(0) := true
first(0) := 0
last(0) :== 0

Figure 3: Example of a RAG. Technically, the rule bodies in this RAG are not
strictly first-order formulas, but they can certainly be expressed in first-order
logic.

n, begin(n) is true if n marks the beginning of a document, and end(n) is
true if n marks the end. In the rules, 1 is a constant that refers to the first
child of the node where the rule is evaluated. So, in the definition of first(0)
for the production L — pL, 1 refers to the p-labeled child. Note that we
now use first-order expressions, rather than propositional ones, to define the
values of the attributes. [ |

Let us indicate the differences between BAGs and RAGs more formally.

Definition 2.16 To each attribute a we associate an arity r, (a natural
number). A RAG-rule in the context (p,a,i), with p = Xy — X;...X,, is
an expression of the form

a(i) == @(x1,...,2,),

where x4, ..., x,, are all the free variables occurring in ¢. Further, ¢ is a
first-order logic formula over the vocabulary

U{b(j) | b€ Att(X;)} U {0,1,...,n},

10



where for each j = 0,...,n, b(j) is a relation symbol of arity r,, and j is a
constant symbol. A valuation of a derivation tree t is a function that maps
each pair (n,a), where n is a node labeled X and a is an attribute of X, to
an rq-ary relation over the nodes of t. A RAG R consists of an attribute
grammar vocabulary together with a mapping assigning to each context a
RAG-rule in that context.

Definition 2.17 Let R be a RAG, and let t be a derivation tree. Let a(i) :=
¢ be the RAG-rule in the context (p,a,i). Let ny be a node with children
ng, ..., n, derived by p. Then the formula obtained from ¢ by replacing
each occurrence of a relation symbol b(j) by the relation symbol b(n;), and by
replacing each constant symbol j by the node n;, is denoted by A(R, t, a, n;).

Definition 2.18 Let R be a RAG and t a derivation tree. We define a
sequence (R;(t));>o of partial valuations as follows:

e Ry(t) is the empty valuation (Ry(t) is nowhere defined).

e Ry(t), for I > 0, is defined as the following extension of R;,_;(t). For
every a(n), if R;—; is defined on all relational symbols that occur in
A(R,t,a,n), then R;(t) is defined on a(n) as the relation obtained
by evaluating the FO-formula A(R, t, a, n) over the whole tree t where
each relation symbol b(m) in A(R, t, a,n) is interpreted by R, 1(b(m)).

The valuation R(t) is then defined as R,(t), where [ is such that R, is a total
valuation.

An arbitrary total valuation v of t is said to satisfy R if v(a(n)) equals the
relation defined by the FO-formula A(R, t, a,n), where each relation symbol
b(n;) is interpreted by v(b(n;)). Analogous to Lemma 2.11, one can prove
the following lemma:

Lemma 2.19 For each RAG R and derivation tree t, R(t) is the only val-
uation that satisfies R.

A RAG can be used to express k-ary queries in a simple way. Among the
attributes of the start symbol U we designate some k-ary attribute result,
and define:

Definition 2.20 A RAG R expresses the query Q defined as follows: for
any tree derivation t, Q(t) equals the value of result(r) in R(t), where r is
the root of t.

11



U—N result(0) := order(1) U {(1,0)} U {(0,0)}
U descendants(1) x {(0)}
N —- NN descendants(0) := {(0)} U descendants(1) U descendants(2)
order(0) := descendants(0) x {(0)}
U (descendants(1) x descendants(2))
U order(1) U order(2)
N —x descendants(0) := {(0), (1)}
order(0) := {(1,0),(0,0),(1,1)}

Figure 4: Computing a linear order on the nodes using a RAG.

Example 2.21 Another example of a RAG is depicted in Figure 4. The
RAG expresses a binary (i.e., 2-ary) query. When applied to a tree, the
query returns a linear order of the tree nodes corresponding to a postorder
traversal [17] of the tree. This example can easily be generalized to arbitrary
gramimars. |

As mentioned in the introduction RAGs can be seen as an abstract model
for wrappers. These are tools that map relevant parts of the document at
hand into, for instance, a relational database [1, 21, 25]. We give an example
to illustrate this.

Example 2.22 The grammar in Figure 5 models a list of publications. Each
publication consists of a list of authors and a title. We now want a wrapper
generating a binary relation consisting of all pairs (a,t) such that a is an
author of a publication with title . The RAG in Figure 5 expresses this
transformation. Here, for every AuthorList node n, b(n) contains the set of
authors in the author list associated to n. Further, for every Pub node n,
result(n) contains all pairs (a,t) where a is an author and ¢ is the title of the
publication represented by n.

Of course, the binary relation created by a real wrapper, as opposed to
the abstraction of it by RAGs, would contain the actual string content (that
is, actual names of authors and titles) rather than just the nodes in the
document corresponding to them. [ |

12



PubList — Pub PubList result(0) := result(1) U result(2)
PubList — Pub result(0) := result(1)

Pub — AuthorList Title result(0) := b(1) x {2}
AuthorList — Author AuthorList b(0) := {1} Ub(2)

AuthorList — Author b(0) := {1}

Figure 5: RAGs as an abstraction of wrappers.

3 Expressive power of BAGs

In this section we characterize the expressive power of BAGs in terms of
monadic second-order logic (MSO). As a corollary we obtain a bottom-up
property for Boolean BAG queries. First we recall the definitions of tree
automata and MSO.

3.1 Tree automata and MSO
3.1.1 Tree automata

In the theory of tree languages [11, 12, 30], trees are usually viewed as terms
over a ranked alphabet. A ranked alphabet ¥ is a vocabulary of function
symbols with associated arities. The set Ty, of ¥-trees is inductively defined
in the following manner: if f is a function symbol in ¥ of arity n, and t;,

, t, are Y-trees, then also f(tq,...,t,) is a X-tree (the base case of this
definition is given by the constant symbols, i.e., the function symbols of arity
0). A Y-tree t can be thought of as a labeled tree, the nodes of which are all
subterms of t (including t itself), where each node of the form f(ty,...,t,)
is labeled f.

Definition 3.1 A (bottom-up deterministic) tree automaton is a triple M =
(Q, 6, F), consisting of a finite set of states @, a set F' C @ of final states,
and a transition function § mapping tuples of the form (f,qi,...,q,), where
f € Xisof arity n and ¢y, ..., q, € @, to elements of (). The function ¢ can
be extended in the canonical manner to a mapping ¢ : Ty, — Q. A S-tree t
is accepted by M if §(t) € F

The set of all ¥-trees accepted by M is denoted by L(M) (called the tree
language defined by M). A set of X-trees (a tree language) 7 is recognizable

13



if there exists a tree automaton M, such that 7 = L(M).

3.1.2 Monadic second-order logic

Let r be the maximal arity of function symbols in the ranked alphabet 3. A
Y-tree t can be naturally viewed as a finite structure (in the sense of math-
ematical logic [8, 9]) over the binary relation symbols {Si,...,S,} and the
unary relation symbols {O; | f € ¥}. We denote the vocabulary associated
with ¥ by 7s. The domain of t, viewed as a structure, equals the set of nodes
of t. The relation S; in t equals the set of pairs (n,n’) such that n’ is the
i-th child of n in t. The set Oy in t equals the set of f-labeled nodes of t.

Monadic second-order logic (MSO) allows the use of set variables ranging
over sets of nodes of a tree, in addition to the individual variables ranging over
the nodes themselves as provided by standard first-order logic. A detailed
exposition on this logic can be found in, e.g., Ebbinghaus and Flum’s book
[7].

Example 3.2 Consider the following MSO-formula ¢(x, y):

(VX)((X(JU) A (vzl)(VZé)((X(Zl) N \/ Si(z1, 22)) — X(Z2))) - X(y)).

=1

Note that X is a set-variable; the other variables, in particular the free
variables x and ¥, are individual variables. For any tree t and two nodes n
and m of t, we have t = p[n, m] if and only if n is an ancestor of m. Indeed,
x is an ancestor of y iff every set of nodes that contains x and is closed under
the child relations, also contains y. [ |

We denote the set of monadic second-order formulas over 7s; by MSO(X).
If ¥ is clear from the context we sometimes omit it and just write MSO.

Consider a Y-tree t and a sequence si,...,s; of sets of nodes of t. We
can view the tuple (t,s,...,s;) as a labeling of t: a node n in t is labeled
by uq ...ug, where for i =1,...,k,

o 1 ifne€s,,
"1 0 otherwise.

Let ©* be the ranked alphabet obtained from ¥ as follows: for each function
symbol f in X, we have for each @ € {0, 1}*, the function symbol fu in X,
of the same arity as f. So if t is a Y-tree, then (t,sy,...,s;) is a XF-tree.

14



Let ¢(Z,...,Z) be an MSO(X)-formula where Z,, ..., Z; are free set
variables. By the above, the set

o i={(t,s1,...,86) | t E@[s1,...,86]},

can be viewed as a set of X-trees.

Definition 3.3 A YFf-tree language 7 is MSO(X)-definable if there exists
an MSO(X)-formula ¢(Z,. .., Zg) such that T = L.

A standard theorem in the theory of logic and tree languages [28] now states:

Theorem 3.4 [6, 27] Let k be a natural number. A YF-tree language is
MSO(Y)-definable if and only if it is recognizable.

An important special case is when the tree language is defined by an MSO(X)-
sentence @. Then the tree language defined by ¢, L, := {t | t = ¢}, is a set
of Y-trees, instead of a set of trees over an annotatlon of X.

3.1.3 Derivation trees as Y-trees

We now link derivation trees with Y-trees. We associate with the grammar
G a ranked alphabet Y as follows: every terminal symbol of GG is a constant
symbol in ¥, and every production p = Xy — X;...X, of G is a function
symbol in ¥ of arity n. A derivation tree of G can now be naturally viewed
as a Lg-tree.

In the previous section we defined MSO over Y-trees. However, in the
context of derivation trees, when we use the alphabet Y4, it is a bit more
convenient to use the vocabulary 7¢ = {Si,..., S, (Ox)xenur}. Here Sy,

., S, are defined as before, and for each X € NUT', Oy is the unary relation
that specifies which nodes in the tree are labeled with X. The vocabularies
7¢ and 7y, can easily be defined in terms of each other. Indeed, for each
XeN

\{Oy(z) Ip=X—...eP},

and foreach p=Xy —> X;...X,, € P

Op(ro) = (3m)...(3wy,) (/\S x0, T; /\/\OX T )

Hence, w.l.o.g., we use the vocabulary 7¢.
In the following, unless explicitly specified otherwise, if we say ‘tree’ we
always mean ‘derivation tree of G’.
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3.2 Main Theorem

We now show that the unary queries expressed by BAGs are exactly those
definable in MSO. MSO can be used in the usual way to define unary queries.

Definition 3.5 Let ¢(z) be an MSO(X)-formula where z is a free individual
variable. Then ¢ defines the unary query Q defined by

Q(t) :={n [t | ¢[n]},
for every tree t.

Lemma 3.6 Fuvery query expressible by a BAG is definable in MSO.

Proof. Let B be a BAG. We know from Lemma 2.11 that for each tree
there exists only one valuation that satisfies B. In MSO we can easily define
this valuation. For each attribute a we have a set variable Z,. This variable
will contain all the nodes for which the attribute a is true in B(t). To
this end, we associate a formula to each semantic rule in the following way.
Consider a rule a(i) := ¢ of B in the context (p,a,i) for some production
p=Xo— X;...X, of G. Define the formula p, ,i(z,) as

pp,a,i(zaa (Zb)beA) =

n

(320)(3z1) . .. (3z) /\ Ox,(z)) N \ Si(z0. ) A za =2 AT,

J=1

(

J/

-~

(*)

where @ is obtained from ¢ by replacing each propositional symbol b(j)
occurring in ¢ by Z(z;). Intuitively, formula (x) states that

20

21 Zn

is derived by the production p. Formula ¢ states that ¢ holds for zq, 21, .. ., 2,
i.e., that a(z;) is true. We now define ¢, as the following disjunction over all
rules defining the attribute a:

Qpa(zaa (Zb)beA) = \/{pp,a,i(zaa (Zb)bEA) | (pa a, Z) is a context}.
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Define £((Z4)aca) as the formula

A V2)(Za(2) < ¢alz, (Z)sea))-

a€A

Let t be a tree and for each a € A let s, be a set of nodes of t such that
t = &[(Sa)acal]. Then define the valuation v as follows:

_J 1 ifnes,,
v(a(n)) = { 0 otherwise.
If follows from the definition of ¢ that v satisfies B. Since, according to
Lemma 2.11, there exists only one valuation that satisfies B, it follows that for
each t there exists only one sequence of sets (8,)qc4 such that t = &[(sq)acal-
Hence, the following formula defines the query expressed by B:

O'(Z) = (ElZa)aeA (6((Za)a€A) A Zresult(z)) .

We now state and prove our first main result.

Theorem 3.7 A unary query is expressible by a BAG if and only if it is
definable in MSO.

Proof. The only-if direction is given by Lemma 3.6.

For the other direction, consider the unary query defined by the MSO-
formula ¢(z) with one free individual variable z. Define the MSO-formula
¢'(Z), having one free set variable Z but no free individual variables, as
¢'(Z) := (V2)(Z(z) <> ¢(2)). The formula ¢'(Z) defines Z as the set of nodes
that are selected by ¢(z). By Theorem 3.4, the set L, = {(t,s) | t = ¢'[s]}
is a recognizable Y} -tree language. Let M = (Q, F, ) be a tree automaton
over L.}, recognizing this language. So for every derivation tree t, M accepts
exactly those pairs (t,s) for which t = ¢'[s]. Note that we have constructed
¢’ in such a way that for every tree t there is exactly one set s of nodes
of t for which t | ¢'[s], namely s = {n | t E ¢[n]}. In other words, for
each t, the automaton M will accept exactly one 0-1-labeling of t, and this
“accepted labeling” labels with 1 precisely those nodes in the result on t of
the query defined by .

17



Idea. The theorem is proved if we can construct a BAG B with an attribute
result, such that for each tree t and each node n of t, result(n) is true in B(t)
iff n is labeled 1 in the labeling of t accepted by M. This can be achieved
by simulating the execution of M on all possible 0-1-labelings of t. (It is
important to realize that B must be defined over the original grammar G,
while M is defined over the annotated vocabulary ©}.) The BAG behaves
as follows. In a first, bottom-up, pass over the tree, synthesized attributes
can-q are defined such that for each node n and each state ¢, can-g(n) is true
in B(t) iff M assumes state ¢ at n in its execution on some labeling of t.
Since the accepted labeling is unique, there is exactly one final state gp such
that can-qp(r) is true, where r is the root of t. So we can define synthesized
attributes must-g of U (the start symbol) such that must-¢r(r) is true, and
for all other states ¢, must-g(r) is false. Now in a second, top-down, pass
over the tree, inherited attributes must-q are defined on all other nodes, such
that for each node n, must-g(n) is true iff in a possible execution M assumes
q at n and ¢’ at the parent p of n, where ¢’ is the state such that must-¢'(p)
is true. We show that M assumes state ¢ at n on the accepted labeling if and
only if must-¢(n) is true. Hence, after all attributes must-q are defined for a
particular node, we can set the desired value for its attribute result.

Construction. Formally, the BAG B is constructed as follows. The set of
attributes of B is defined as

A = {result} U{can-q | ¢ € Q} U {must-q | ¢ € Q},

where for each terminal X, Inh(X) = A, and for each non-terminal X that
is not the start symbol, Syn(X) = {result} U {can-¢ | ¢ € @} and Inh(X) =
{must-q | ¢ € Q}. For the start symbol U, Syn(U) = A.

Let p = Xy — X;...X, beaproduction. We have the following semantic
rules (as usual, the empty disjunction is false):

e For each ¢ € @), and for every j such that X is a terminal add the rule

true if §(X,0) = ¢ or §(X;1) =g,
false otherwise.

st - |
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For each ¢ € () we have

can-q(0) := \/{/\ can-q;(i) |

qla"'aanQa
Ju € {0,1} such that

6(pu7q17QZa .- an) - Q}

e If X is the start symbol then for each ¢ € ) add the semantic rule

must-q(0) = {

From our assumption that the start symbol U does not occur on the
right-hand side of any production, we know that there is only one
occurrence of U in the tree and this is at the root.®> So the second,
top-down, pass will start at the root.

For j =1,...,n, and ¢ € @ add the rule

n

must-q(j) = \/{(must—q’(O) A /\ can-q;(i)) |

i=1

can-q(0) ifg € F,
false otherwise.

qlaqla"'aqn € Qa
Ju € {0,1} such that

0(pu,q1, @2, - an) =4 NG = q}
e Add the rule
result(0) = \/{(must—q(()) A /\ must-q; (1)) |
i=1

q,q91,--.,4n EQ; and
6(p17q17q27 s 7QTL) - q},

and and for every j such that X is a terminal add

result () = \/{must-q(j) | ¢ € Q,6(X;1) = q}.

30ne can get rid of this assumption by allowing the start symbol to have inherited
attributes. The formalism of attribute grammars becomes much less elegant then, however.
Hence our harmless technical assumption concerning the start symbol.
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Correctness. We now establish the correctness of B. Fix a derivation
tree t. Let ¢ be a labeling of the nodes of t with 0 or 1. We denote the
corresponding labeled tree by /(t). If n is a node of t, then denote the
subtree of t with root n by t(n). If #' is a labeling of t(n) and / is a labeling
of t, then [¢/¢'] is the following labeling of t: for each node m of t,

¢'(m) if m is a node of t(n),

[£/¢](m) = { ¢(m) otherwise.

The following lemma can be proved by a straightforward induction on the
height of n.

Lemma 3.8 For every node n of t, can-q(n) is true if and only if there
exists a labeling ¢ of t such that M assumes state q at n in its execution on
input £(t).

Since M is deterministic, if for a node n, both can-q;(n) and can-gz(n)
are true and q; # ¢o, then there exist two different labelings ¢; and /5 for
t(n) such that M assumes state ¢; (¢2) at n in its execution on ¢;(t(n))
(£3(t(n))). There is exactly one labeling ¢* of t such that M accepts £*(t).
In particular, M assumes a state ¢ € F' at the root r of t on £*(t). Hence,
there is exactly one ¢ € F such that can-q(r) is true. Hence, by definition of
the semantic rules for the attributes must-¢(r), only one must-q(r) is true.

Lemma 3.9 For each n, must-g(n) is true if and only if M assumes state
q at n on 0*(t).

Proof. We show this by induction on the depth of n. The base case, where
n is r, has just been treated.

Now, consider a node ny with children ny, ..., n, derived by the produc-
tion p= Xy — X;y...X,. Let j € {1,...,n}.

(i) Suppose must-g(n;) is true. Then there exists a u € {0,1}, and
¢, q1,-..,q, € Q with ¢ = ¢; such that

5(pu7q17q27"'7qn) = qla (1)

and
n

must-¢' (ng) A /\ can-q;(n;)
i=1
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is true. From A!_, can-¢;(n;) it follows that for each i = 1,...,n there
exists a labeling ¢; of t(n;), such that M assumes state ¢; at n; on
/;(t(n;)). Define the labeling ¢ of t(ng) as follows: £(ng) = u and for
i=1,...,n,ifn € t(n;) then ¢/(n) = ¢;(n). From (1) it follows that M
assumes state ¢’ at ng on £(t(ng)). From must-¢'(ny) it follows by the
inductive hypothesis that M assumes state ¢’ at ny on £*(t). Hence,
the tree [¢*/¢](t) is accepted by M. Since there is only one accepted
labeling, it follows that ¢ is the restriction of £* to t(ny) and M assumes
state ¢ at n; on £*(t).

(ii) Suppose M assumes state ¢ at n; on ¢*(t). Let ¢’ be the state that
M assumes at ny on ¢*(t). There have to be ¢,...,q, € Q, with
¢; = ¢, and a u € {0,1} such that é(pu,qi,...,¢,) = ¢, and such that
M assumes state ¢; at n; on £*(t), for i = 1,...,n. By the inductive
hypothesis must-¢'(ng) is true, and by Lemma 3.8, can-¢;(n;) is true for
each i = 1,...,n. Hence, must-g(n;) is true by definition. [ |

We now show that for each node n, result(n) is true in B(t) if and only
if /*(n) = 1. Since for every derivation tree t, ¢*(n) = 1 exactly if t = ¢[n],
the proof is complete.

1. Let n be a leaf node labeled with X.

(i) Suppose result(n) is true. Hence, there exists a state ¢ such that
must-¢(n) is true and §(X1) = ¢. It follows from Lemma 3.9,
that M assumes state ¢ at n on ¢*(t). It cannot be the case
that §(X0) = ¢, because then M would accept two labelings of t.
Hence, ¢*(n) = 1.

(ii) Suppose £*(n) = 1. Let ¢ be the state that M assumes at n on
0*(t). Then 6(X1) = q. Hence, result(n) is true.

2. Let n be an interior node, with children nq, ..., n,, derived by produc-
tion p.
(i) Suppose result(n) is true. Hence, there exist states qi,...,¢q,q

such that 6(pl,qi,...,q,) = ¢, and must-¢(n) A\, must-¢;(n;)
is true. It follows from Lemma 3.9 that M assumes state ¢ at

n, and state ¢; at n; on ¢*(t), for i = 1,...,n. It cannot be the
case that §(p0,q1,...,q,) = ¢, because then M would accept two
labelings of t. Hence, ¢*(n) = 1.
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(ii) Suppose ¢*(n) = 1. Let ¢ be the state that M assumes at n on
0*(t), and for i = 1,...,n, let ¢; be the state that M assumes at

n; on (*(t). Then 6(pl,qi,...,q,) = q. Hence, result(n) is true.

|

As a corollary of our proof of Theorem 3.7 we obtain a normal form for
BAGs. The BAG described in the proof is special in two ways. First, it needs
only positive formulas (involving only the connectives V and A, without —) in
its semantic rules. Second, it can be evaluated on any tree by one bottom-up
pass followed by one top-down pass. So we have the following:

Corollary 3.10 Every BAG is equivalent to one which uses only positive
formulas in its semantic rules, and moreover which can be evaluated in two
passes (more precisely, which is simply-2-pass [5]).

Actually, part of the above corollary, that one can always find an equiva-
lent BAG which uses only positive rules, can also quite easily be seen directly.
Let B be BAG over the attribute grammar vocabulary (A, Syn,Inh, Att).
We construct an equivalent BAG B’ over the attribute grammar vocabulary
(A',Syn’, Inh’, Att") that does not use negation in its semantic rules in the
following way. For each attribute a we add an attribute Na that becomes
true if the attribute a is false. Formally, A’ = AU {Na | a € A}, for each
grammar symbol X,

Syn’(X) = Syn(X) U{Na|a € Syn(X)},

and
Inh'(X) = Inh(X) U {Na | a € Inh(X)}.

For each rule a(i) := ¢ of B in context (p,a,i), add the rule a(i) := ¢ in
context (p,a,i) and the rule Na(i) := =¢ in context (p, Na,i) to B'. The
formula ¢, where ¢ = ¢ or 1) = =, is obtained from ) by transforming it
into disjunctive normal form and then replacing each literal =b(j) by Nb(j).

Example 3.11 The BAG in Example 2.7 uses negation to select all nodes
on an even numbered position. In Figure 6 a BAG is depicted that retrieves
those nodes without using negation. For clarity we replaced the attribute
Newven by odd. [ |
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U—S  x_before(l) := false
S — BS x_before(2) := is_x(1) V z_before(0)
even(0) := odd(2)
0dd(0) := even(2)
result(0) := even(0) A x_before(0)
S — B even(0) := false
0dd(0) := true

result(0) := false
B —x  is.x(0) := true
B —vy  is.x(0) := false

Figure 6: Example of a BAG without negation.

3.3 Bottom-up property for Boolean BAG queries

Another view of a BAG is that of a two-way version of finite bottom-up tree
automata, alternative to the more classical two-way generalization of tree
automata provided by Moriya [22]. The two-way generalization is provided
by the two different types of attributes in a BAG: intuitively, synthesized
attributes provide the bottom-up direction, and inherited attributes provide
the top-down direction.

The following proposition relates BAGs and tree automata.

Proposition 3.12 For each tree automaton M there exists a BAG B such
that for every derivation tree t, M accepts t if and only if B accepts t. This
BAG uses only synthesized attributes.

Proof. The execution of M = (@, F,§) on t can easily be simulated by a
BAG B having synthesized attributes ¢ for all states ¢ in Q. If n is a node
of t, then the attribute value ¢(n) is true in B(t) iff M assumes state ¢ at
n in its execution on t. Let p = Xg — X;...X, be a production of G,
T(p):={je{l,...,n}| X;is a terminal}, and N(p) := {1,...,n} — T(p).
Add for each ¢ € @ the semantic rule

q(0) :=

V{ /\ qz(l) | qi,---,qn € Q such that 6(p7q17"'7qn) =4q
i€N(p) and 6(X;) = ¢;, for each i € T'(p) }.

Finally, the attribute result of U is defined by the rule result(0) := \/ . q(0).
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It now follows from Theorem 3.4 and Proposition 3.12, that every MSO-
definable Boolean query is expressible by a synthesized BAG. This then leads
to the following bottom-up property for Boolean BAG queries:

Corollary 3.13 For every BAG B there is a BAG B' having only synthesized
attributes, such that B and B' express the same Boolean query.

In the general case of arbitrary attribute grammars, where semantic rules
can be arbitrary computable functions, it is well known that the use of in-
herited attributes can be simulated using synthesized attributes only [18]; we
thus see that a similar phenomenon holds when semantic rules can only be
propositional formulas.

Corollary 3.13 does not hold for BAGs expressing unary queries, as illus-
trated in the following example.

Example 3.14 Consider again the grammar in Example 2.7. A query that
can only be expressed with synthesized and inherited attributes is the one
that retrieves all nodes, if both the first and the last letter of the string are
x’s and retrieves no nodes otherwise. This query can not be expressed with
only synthesized attributes. Indeed, every synthesized BAG already has to
decide to select the last letter of the string without having visited the first
letter, that is, without knowing whether the first letter carries an z. A same
argument holds for BAGs having only inherited attributes. [ |

4 Expressive power of RAGs

In this section we characterize RAGs as the queries defined by first-order
inductions of linear depth, or, equivalently those computable in linear time
on a parallel machine with polynomially many processors. We also show that,
in contrast to BAGs, even for Boolean queries, synthesized RAGs are strictly
less expressive than RAGs with both synthesized and inherited attributes.
Hence, there is no bottom-up property for Boolean RAG queries. In the last
subsection, we discuss the relationship between MSO and RAGs. First, we
introduce the necessary logical definitions.

4.1 Fixpoint logic

See Ebbinghaus and Flum’s book [7] for more background on the logics we
are about to define.
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4.1.1 Partial and least fixpoint logic

Fixpoint logic allows first-order logic formulas to be iterated. We will consider
several kinds of fixpoint logics. Let ¢(z,...,2;, Z) be a first-order logic
formula over the vocabulary 74. The z;’s are free individual variables, Z is
a k-ary relation variable that can be used in ¢ in addition to the relation
symbols provided by the vocabulary. On any tree t, ¢ defines the following
relations obtained by iterating ¢ starting with the empty relation for Z.
Define

) = 0 |
etHt) = {(my,...mp) [t E g, 0, ' (8)])

We say that ¢ converges to a fixpoint on t if there exists an n such that
©"(t) = ¢"T'(t). We denote this fixpoint by p>(t). If ¢ does not reach
a fixpoint on t we define p>®(t) as the empty set. We define partial fiz-
point logic (PFP) as follows: formulas are constructed just as in first-order
logic, with the addition that we also allow atomic formulas of the form
PFP[p, Z](z1, ..., 2x), where Z is k-ary and ¢(z1,..., 2k, Z) is a first-order
logic formula. The semantics is as follows: for any tree t, and nodes ny, ...,
n; of t,

t E PFP[p, Z|[ny,...,ng] & (ny,...,105) € o(t).

The formula ¢ in PFP[y, Z](z1,. .., z) is called positive if every occur-
rence of the variable Z occurs under an even number of negations. For such
formulas the above described iteration process always reaches a fixpoint after
a finite number of stages. Moreover, this fixpoint is also the least fixpoint of
the operator defined by ¢: over a tree t, this operator maps k-ary relations
R over the domain of t to k-ary relations and is defined by

©(R) :={(ny,...,n5) | t E ¢[ny,...,ng R]}.

We now define least fizpoint logic (LFP), in the same way as PFP except
that for each formula of the form LFP[p, Z](z1, ..., 2k), ¢ has to be positive.

Note that our definitions of PFP and LFP differ from those in the litera-
ture: we do not allow nesting of fixpoints and we do not allow parameters in
the formula constituting the fixpoint. However, since these can be dispensed
with, our definitions are equivalent to the usual ones [7].
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4.1.2 Fixpoints of linear depth

Consider a PFP-formula of the form PFP[p, Z](z1,. .., zx). If there exist nat-
ural numbers ¢ and d such that for every tree t, ¢ reaches its partial fixpoint
after at most c- |t| + d iterations, where |t| denotes the number of nodes in t,
then we say that ¢ is linearly bounded by the partial fizpoint semantics. We
define the logic PFP-LIN as the fragment of PFP where only partial fixpoints
of linearly bounded formulas are allowed.

LFP-LIN is then the fragment of PFP-LIN that only allows formulas
under the fixpoint operator that are both positive and linearly bounded.

4.1.3 Simultaneous fixpoint logic

Let v1(Z1, 21,y Zk)y -y 0k(Zky Z1, - .., Zk) be a system of first-order for-
mulas, where for j = 1,...,k, Z; is an rj-ary relation variable. On a tree t,
consider for 7 = 1,...,k, the stages defined by

Y

gpg-(t) = 0
Pt) = {(nny..my) [ 6 @i, ny, 0l (6), . 0k (8)])

We say that this system reaches a simultaneous fizpoint on t if there exists
an n such that for all j =1,...,k, ¢7(t) = "' (t). We denote the relation
defined by ¢; in this fixpoint by ¢3°(t). If there does not exist a simultaneous
fixpoint on t, then ¢2°(t) is defined as the empty set. We now define simul-
taneous partial fixpoint logic (S-PFP) as follows: formulas are constructed
just as in first-order logic, with the addition that we also allow formulas of
the form S-PFP;[p1,..., ¢k, Z1,..., Zk)(21,- .., 2 ), where Z; is r-ary and ;
is a first-order formula for « = 1,..., k. The semantics is defined as follows:
for any tree t, and nodes n, ..., n,

t | S-PFP;[3, Z][ny,...,n,] & (n,...,n,) € p(t).

We say that the system of first-order formulas 1, . . ., @i is linearly bounded
by the simultaneous partial fixpoint semantics if there exist natural numbers
¢ and d such that for every derivation tree t, the system of first-order formu-
las @1, . .., ¢k reaches its simultaneous partial fixpoint after at most c- [t| +d
iterations. We define the logic S-PFP-LIN as the fragment of S-PFP where
only simultaneous partial fixpoints of linearly bounded systems of first-order
formulas are allowed.
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The next proposition states that S-PFP-LIN is equivalent to PFP-LIN.
In particular this means that mutual recursion can be replaced by simple
recursion while preserving linearly boundedness. The proof is exactly as
the proof of the Simultaneous Induction Lemma known from the theory of
inductive definitions and finite model theory [23, 7].

Proposition 4.1 Every S-PFP-LIN-formula of the form
S-PFP][G,Z](Z),
where j € {1,...,k}, is equivalent to a PFP-LIN-formula of the form

(Ju) (PFP[y, Z](zu));

4.2 Main Theorem

We now relate RAGs to PFP-LIN. PFP-LIN-formulas can express k-ary
queries in the following way:

Definition 4.2 Let ¢(x1,...,2x) be a PFP-LIN-formula. Then ¢ expresses
the k-ary query Q defined by

Q(t) = {(n17 ) nk) | t ): gp[nla ) nk]}a
for every tree t.

Theorem 4.3 A query over derivation trees is expressible by a RAG if and
only if it 1s definable in PFP-LIN.

Proof. Only if. Let R be a RAG. We assume w.l.o.g. that no semantic
rule contains a variable of (z,)ac4, 20, 21, 22, .... We define an S-PFP-LIN-
formula that simulates R. As induction variables of this system we have an*
(rq + 1)-ary relation variable Z, for each attribute a; Z, stands for the set of
tuples (n,ny,...,n, ), where n is a node labeled X such that a € Att(X),
and (ni,...,n,, ) is a tuple in the currently computed value of R(t)(a(n)).
For each attribute a there is a formula ,(2., Z1, ..., 2, (Zp)pca), defining

4Recall that r, is the arity of the attribute a.
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the new value of Z, from the old values of the Z,’s, built up as follows. Con-
sider a rule a(i) := ¢(zy,...,2,,) of R in the context (p,a,i) for some pro-
duction p = Xy — X ... X, of G. The formula p, .;(z4, T1, ..., Tr,, (Zb)bca)
is defined as

(320)(3z1) . .. (3z,) (/\ Ox; (2;) A /\ S;(20,2) A 2o = 2 A @) :

J=1

where $ is obtained from ¢ by replacing each occurrence of b(j)(d) by
Zy(zj,d), and by replacing each occurrence of the constant symbol k by z.
The formula ¢, then is the disjunction over all rules defining the attribute a:

Val2a, T1 ooy Tryy (Z)pen) ==

\/{pp,a,i(za, 1.y Tryy (Zn)bea) | (pya,i) is a context}.
Let o(Z) be the formula

(HZ) (OU(Z) A S'PFPI[(Presulta (wa)GGAf{result}a (Za)(aEA)](Za 2)) :

Here |Z| equals the arity of result. By an easy induction on 7 one can now
show that for any node n and attribute a, if R;(t) is defined on a(n) then
for all nodes my,...,m,_,

(n,my,...,m.,) €¢y(t) & (my,...,m,) € Ri(t)(a(n)).
This implies that
(n,my,...,m, ) € X(t) < (n,m,...,m,) € R(t)(a(n)).

Further, for each tree t, let [y be the smallest integer such that R;, = Ry, 1.
Then, obviously, Iy < |A] - |t|. Hence, the S-PFP-formula in o reaches its
fixpoint after at most |A| - |t] iterations. Proposition 4.1 now gives us the
desired formula in PFP-LIN.

If. The crux of the proof is the simple observation that there is a RAG
that computes all the relations that make up a derivation tree, viewed as
a relational structure, in one bottom-up pass over the tree. In a subse-
quent top-down pass, we can make these relations available at all nodes. A
linearly-bounded iteration of a first-order formula can then be simulated in
one preorder traversal of the tree, where the different stages are passed over
as relational attribute values.
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We now formally describe the RAG R that expresses the query defined
by a PFP-LIN-formula. To compute the relations that make up a derivation
tree we make use of the binary attributes Sj,...,S., where 7 is the maxi-
mum width of any production in P, and the unary attributes (O%)xenur-
These attributes are synthesized for non-terminals and inherited for termi-
nals. They are defined by the following semantic rules. Consider the produc-
tion p= Xy — X;...X,,. For j =,1...,r, define

US’ Juf{(0,j)} ifj<n,
SL(0) :=

J

U S (i) if j > n.
For each X € NUT, define

Joxiufo}  ifx=x,

0% (0) := n
U O’ (7) otherwise.
For each i, such that X; is a terminal, and for each 7 =1,...,r, define
Si(i) := 0,

and for each X € NUT define
on = { {0 X=X

0 otherwise.

The values of the relations (S})1<j<, and (O)xenur at the root then
form the relational structure that represents the derivation tree. These values
are now made available to the other nodes in the attributes (5;)i<j<, and
(Ox)xenur- These attributes are synthesized for the start symbol U and
inherited for all other symbols, and are defined via the following rules. For
every production of the form U — X;...X,, for every j = 1,...,r, and
X € NUT, define

S;(0):=Si(0) and  Ox(0) = Ok(0).
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For every production of the form X, — X;...X,, where X, # U, and for
every j=1,...,r,i=1,...,n,and X € NUT, define

S](Z) = S](O) and O)((Z) = O)((O)

Let ¢ be a PFP-LIN-formula. Then ¢ is a first-order combination of
formulas of the form S;(zy, 23), Ox(2), and PFP[, Z](z, ..., z;). Each rela-
tion S; and Oy is already available at the root. Hence, it suffices to compute
each subformula PFP[¢, Z](Z) occurring in ¢ in some attribute and make it
available at the root.

Let ¢ and d be numbers such that 1 reaches its fixpoint after at most
c- |t|+d iterations on each tree t. For any i, there exists a first-order formula
V'(z, Z) that defines i stages of ¢ at once. Indeed, let y, ...,y be variables
that do not occur in ¢. Then, define ¥'(z, Z) as ¢(z,7), and for ¢ > 1,
Y'(z,7) as the formula obtained from ¢ by replacing each atomic formula of
the form Z(d), by the formula (37)(7 = d A (32)(2 = § AY~Y(Z, Z))).

The RAG RY evaluates the formula PFP[¢), Z](2) in the following way:
First, d stages of ¢ are evaluated at the root of the tree; this is achieved by
evaluating the formula ¢%(z,()). Then RY makes a preorder traversal of the
tree while evaluating ¢ stages of 1, i.e., evaluating the formula ¢, at each
node.

We now formally describe the RAG RY. It uses the k-ary attribute Z,
which is synthesized for the start symbol and inherited for the other gram-
mar symbols, and the k-ary attribute Z’, which is synthesized for the non-
terminals and inherited for the terminals. The attributes Z and 7' are de-
fined by the following semantic rules. Consider a production of the form
p=Xg— X;...X,.

1. If Xy = U then add the rule
Z(0) == {z [ p"*(2,0)}.
2. Further, define
Z(1) :={z | vi(2)},
where ¢ is obtained from ¢ by replacing each occurrence of Ox(z)

or Sp(z1, 22) by Ox(1)(z) or Si(1)(21, 22) respectively, and by replacing

each occurrence of Z(d) by Z(0)(d).
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3. For each j, such that X is a terminal, define
Z'(5) :== Z(j).
4. For each 7 =2,...,n, we have

Z2(3) ={z 1 ¥j(2)},

where 1% is obtained from )¢ by replacing each occurrence of Ox(2)
or Sp(z1, 22) by Ox(j)(2) or Su(j)(21, z2) respectively, and by replacing

each occurrence of Z(d) by Z'(j — 1)(d).
5. Finally, define

Note that on every tree t, the evaluation of RY performs exactly 2 - |t|
iterations. In each iteration exactly one attribute Z or exactly one attribute
7" is defined. For a tree t, let for i > 1, a;(t) (5;(t)) be the number of Z
(Z') attributes that are defined in R;(t). The correctness of this construction
now follows from the following lemma:

Lemma 4.4 Let t be a derivation tree, let n be a node of t and let a €
{Z,2'}. If a(n) is defined in RY (t) but not in RY_,(t), then

RY(t)(a(n)) = {n | t £ v~ n, 0]},

This lemma can be proved by induction on the pair («;(t), 5;(t)).
Hence, Ry(t)(Z'(r)) equals the relation defined by PFP[¢y, Z](Z), where
r is the root of t. u

The logic PFP-LIN has a rather bizarre syntax, as it allows the iteration
of a formula only when that formula is linearly bounded, which is not an
obvious syntactic property. Actually, we do not know whether linear bound-
edness of first-order formulas over derivation trees of some fixed grammar
is decidable. Over graphs the property can be shown undecidable by a re-
duction from validity; but over derivation trees (or equivalently Y-trees, for
some ranked alphabet ), satisfiability and validity of first-order logic (even
monadic second-order logic) is decidable [6, 27, 28].

This problem of bizarre syntax can be avoided, however, by defining PFP-
LIN in an alternative manner. Under this alternative, the iteration of any
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formula is allowed (so that the syntax is now trivially decidable). We then
build into the semantics that the iteration is performed exactly n times,
where n is the cardinality of the domain. It is not difficult to adapt the proof
of Theorem 4.3 for this alternative view of PFP-LIN.

4.3 Complexity of RAGs

Immerman [16] showed that LFP-LIN captures the complexity class CRAM]|n]
consisting of all queries computable in time O(n) by a parallel machine with
polynomially many processors.

Theorem 4.5 [16] LFP-LIN = CRAM|[n] on the class of all ordered finite
structures.

Using Theorem 4.3 and Theorem 4.5, we show the following:

Corollary 4.6 A query is expressible by a RAG if and only if it is com-
putable in linear parallel time with polynomially many processors.

Proof. In Lemma 4.7(ii) we show that PFP-LIN = LFP-LIN on the class
of all trees. Hence, by Theorem 4.5, we have that PFP-LIN = CRAM|n] on
the class of all ordered trees. By Theorem 4.3, it then suffices to show that
PFP-LIN = CRAM|[n] on the class of all trees without a linear order. The or-
der requirement in Theorem 4.5 is only needed to show that every CRAM]|n|
program can indeed be simulated by an LFP-LIN formula. Hence, it readily
follows that PFP-LIN C CRAM|[n] on the class of all trees without a lin-
ear order. It remains to show the converse inclusion. Let P be a CRAM|[n]
program over trees with a linear order and let £ be the PFP-LIN formula sim-
ulating P. For expository purposes assume ¢ is of the form PFP[p, X](Z). By
Lemma 4.7(i), there exists a PFP-LIN formula PFP[¢, Y](y1, y2) computing
a linear order. We can not simply plug in the formula PFP[¢, Y](y1, y2) for
each occurrence of y; < y» in & because we do not allow nesting of fixpoints.
However, we can use the following composition trick: we first compute the
ordering and only then start iterating ¢. That is, we just use the formula

S—PFPl[(PI,lb,X, Y]("E)’ (*)

where ¢ is the formula pin. orq.(Y) A @. Here, piin. ora.(Y) is the first-order
logic formula defining Y as a total linear order, and ¢ is the formula obtained
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from ¢ by replacing each occurrence of y; < yo by Y (y1,92). By definition
of ¢/, the iteration of ¢ only starts when Y is indeed a linear order. Further,
!

¢’ is linearly bounded since both ¢ and ¢ are. By Proposition 4.1, (*) is
equivalent to a PFP-LIN formula. [ |

It remains to prove the following lemma.

Lemma 4.7 (i) There exists a PFP-LIN-formula that uniformly defines
a total order on all trees.

(17) PFP-LIN = LFP-LIN on the class of all trees.

Proof. (i) Example 2.21 shows how an ordering of a binary tree can be
obtained using a RAG. It is straightforward to generalize this construction
to arbitrary derivation trees. By Theorem 4.3, this RAG is equivalent to a
PFP-LIN-formula.

(17) In Example 2.21, we saw how we can compute an ordering of a tree
using a RAG. We can also compute this ordering directly in LFP-LIN. Hence,
the equivalence of LFP-LIN and PFP-LIN on trees reduces to their equiva-
lence on ordered trees (we can compose the computation of the ordering with
other PFP constructs like in the proof of the previous theorem). The proof
of the latter equivalence is similar to the proof of the known fact that LFP
equals PFP|prpvE on ordered structures [7, Thm 7.4.14] (see also [2]). Here
PFP|prive denotes the fragment of PFP, where every fixpoint is reached
after at most a polynomial number of iterations. [ |

4.4 No bottom-up property for RAGs

In this section we prove that synthesized RAGs, i.e., RAGs that only use
synthesized attributes, are strictly less expressive than RAGs that can use
both synthesized and inherited attributes.

For the rest of this section, let G be the grammar {U — LL,L — L, L —
f}. Derivation trees of this grammar consists simply of two monadic trees
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concatenated at the root:

U
VAR
L L
) )
Lol
L L

Let equal_subtree be the query that is true on t when the left subtree
has the same number of nodes as the right subtree. We show that this query

cannot be expressed by a synthesized RAG. However, it can be expressed by
a RAG.

Proposition 4.8 The query equal_subtree is expressible by a RAG.

Proof. By Theorem 4.3, it suffices to show that equal_subtree is definable
in PFP-LIN:

0= (EIx)(EIy)(x #yANOs(x) ANOs(y) ANPFP|o, X](x,y)),
where

o(xz,y, X) = (Hz)(OU(z) A Si(z,z) A Sy(z, y))
v (323 (X (2", ') A Si(2',2) A Si(y, y)).

This formula maintains a binary relation X. In the first iteration of o, the
first node of the left subtree and the first node of the right subtree are put in
X. In the following iterations, the next pair of corresponding nodes is added
to X, provided it exists. Hence, o iterates at most [t|/2 times on a tree t,
and thus belongs to PFP-LIN. The formula ¢ then becomes true if both the
last node of the left subtree and the last node of the right subtree belong to
X. [ |

In Appendix A we formally prove the next theorem.

Theorem 4.9 The query equal_subtree is not expressible by a synthesized
RAG.
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4.5 RAGs versus MSO

We have characterized BAGs as the unary queries definable in MSO (Theo-
rem 3.7), and RAGs as the queries (of arbitrary arity) definable in PFP-LIN
(Theorem 4.3). It remains to compare these two formalisms with each other.
We will show that synthesized RAGs are actually strictly more powerful than
MSO.

MSO can be used in the standard way to define queries of any arity:

Definition 4.10 Let ¢(xq,...,zx) be an MSO-formula. Then ¢ defines the
k-ary query Q defined by

Q(t) = {(n17 sy nk) | t ): So[nla SR nk]}a
for every tree t.

Theorem 4.11 Every k-ary query over derivation trees definable in MSO is
expressible by a RAG using only synthesized attributes.

Proof. Consider an MSO-formula ¢(z1,...,2;). For any tree t and nodes
ny, ..., ng of t, we can view the tuple (t,nj,...,n;) as a labeling of t
with elements of {0,1}* by labeling a node n with wu;...u; such that for
i=1,... .k
u-—{ 1 ifn=n;,
* 1 0 otherwise.
So (t,ny,...,n;) is a Yk-tree as defined in Section 3.1. It is easy to write
an MSO(X%)-sentence 1) such that for every derivation tree t and nodes ny,
..., ng of t:

(t,ny,...,n5) F¢¥ &  tE@n,..., 0.

Indeed, for i = 1,...,k, define J; as the set of grammar symbols for which
the i-th component is 1, i.e.,

Ji={Xu|X e NuT,u€ {0,1}* and u; = 1}.
Then ) is defined as
(Fz1) ... (Fz)

<<< v OXu(Zl)> VAPV < v OXu(Zk:)>> —)gOl(Zl,...,Zk)>,
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where ¢’ is the formula obtained by replacing each atomic formula Ox(z) in
@ by \/ﬂe{o,l}k Oxa(2).

By Theorem 3.4 there exists a tree automaton M (defined over X%,) that
accepts only those (t,ny,...,ng) such that (t,n;,...,n;) E ¢, where t is
a derivation tree. Hence, the theorem is proved if we can construct a RAG
R which, on each derivation tree t, simulates M in parallel on all possible
labelings of t, returning those labelings (ny, ..., n) such that (t,n;,..., ng)
is accepted by M. Thereto, we use a k-ary relation-valued synthesized at-
tributes ¢ for each state ¢ of M. The semantic rules are such that for each
node n, (ny,...,n;) € ¢(n) iff M assumes state ¢ on node n in its execution
on (t,ny,...,ng). The attribute result at the root is then defined as quF q,
where F' is the set of final states of M.

The formula matchg (21, ..., 2, y) defines the labelings (21, ..., 2x) of the
tree t such that node y is labeled with u:

matchg (21, ..., 2k, y) == /\ zi =y AN /\ zi # Y.

u; =1 u; =0

Let p = Xy — Xj...X, be a production of G. Define T(p) := {i €
{1,...,n} | X; is a terminal} and N(p) := {1,...,n} =T (p). Foreach ¢ € Q
define the semantic rule

q(0) :=
\/{matchy, (2,00 A A\ (matchy, (2,0) Ag:(D) () A A\ 0i(z,1) |
1EN(p) 1€T(p)
tg, . . .,y € {0,1}",
q1y---,4n EQ)

6(X()ﬂo — Xy .. -Xnﬂ/n;qla SR ;Qn) = q}’

where 0;(Z,y) is the formula matchg, (Z,y) if §(X@;) = ¢; and is false other-
wise.

The correctness of this construction now follows from the following lemma,
which is easily proven by induction on the height of n.

Lemma 4.12 Lett be a derivation tree. For each noden of t, (my,...,my) €
q(n) iff M assumes state q on node n in its execution on the labeled tree
(t,my,..., mg).
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This concludes the proof. [ |

The proof of the previous theorem, like the proof of Theorem 3.7, in-
volves the simulation in parallel of a tree automaton on different labelings
of a tree. However, here, the simulation is much more straightforward since
we can simply parameterize the simulation, using relation-valued attributes.
This was not possible in the case of BAGs (Theorem 3.7) which have only
Boolean-valued attributes; the simulation there was much more intricate. In
particular, while Theorem 4.11 states that synthesized attributes are enough
for a RAG to express all of MSO, this is not the case for BAGs. Indeed as
explained at the end of Section 3.3, BAGs with only synthesized attributes
are weaker than MSO.

We finally show that synthesized RAGs are strictly more powerful than
MSO. However, this only holds under the assumption that the underlying
grammar can generate an infinite number of derivation trees.

Definition 4.13 A grammar is unbounded if the number of its derivation
trees is infinite.

Clearly, if the grammar is not unbounded, i.e., the number of derivation trees
is finite, then RAGs and MSO are equally powerful because a query simply
reduces to a case analysis.

Theorem 4.14 Owver any unbounded grammar, synthesized RAGs can ez-
press Boolean queries not definable in MSO.

Proof. Consider an unbounded grammar G. There exists a sequence of
productions p = pi,...,pm, a sequence of numbers k = ky,...,kn, and a
non-terminal X, such that (i) X is the left-hand side of p; and occurs in
position k,, of the right-hand side of p,,; (ii) for i = 1,...,m — 1 the symbol
in position k; of the right-hand side of p; equals the non-terminal on the left-
hand side of p;,1; (iii) the left-hand sides of py, ..., p,, are mutually distinct;
and (iv) X is reachable from the start symbol.

Consider a derivation tree t of G. We say that a node n; is an occurrence
of (p, k) in t if there exists a sequence of nodes ny, ..., N, Ny such that
forv=1,...,m, n; is derived with p; and n;,, is the k;-th child of n;. We say
that n,,; is the tail of the occurrence n;. Note that n,,; is labeled with X.

We call a sequence of nodes ny, ..., ng a chain of occurrences of (p, k) if for
each i =1,...,s — 1, n; is an occurrence, n;, is the tail of the occurrence
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n;, and n, is not derived with p;. The length of the chain of occurrences
ny,...,Nng is s.

Let Q be the Boolean query defined as follows: on every derivation tree t,
Q(t) is true if there is a chain of occurrences starting on the first X-labeled
node in the preorder traversal of the tree and its length is a power of two.
Note that Q is true on any tree where there is no X-labeled node.

We now show that Q is not expressible in MSO. Let ¢ be an MSO-
sentence. By Theorem 3.4 there exists a tree automaton M' = (Q',d', F")
accepting precisely the trees satisfying ¢. Consider a tree t such that the
length, which we denote by ¢, of the chain of occurrences of (p, k) starting
in the first X-labeled node in the preorder traversal of the tree is a power of
two and is bigger than |Q| + 1. There have to be two nodes n and n’ of t,
such that n’ is a descendant of n, both are occurrences of (p, k) in the chain,
and §(t(n)) = d(t(n’)), where t(n) denotes the subtree of t with root n. Let
n be the o;-th occurrence and n’ be the os-th occurrence in the chain. Let
t’ be the tree obtained from t by replacing the subtree t(n’) by the subtree
t(n). Then the chain of occurrences of (p, k) starting in the first X-labeled
node in the preorder traversal of t' has length ¢+ 0, —o07. This is not a power
of two because ¢ < ¢ + 0y — 0; < 2¢. However, §(t) = 6(t'), and thus t' = ¢
if and only if t = . Hence, ¢ does not define Q.

In Appendix B we formally show that Q is indeed expressible by a syn-
thesized RAG. [}

As a corollary, we note:

Corollary 4.15 RAGs can express more unary queries than BAGS.

5 Relational attribute grammars

Relational attribute grammars® are a generalization of standard attribute

grammars introduced by Courcelle and Deransart [4]. In relational attribute
grammars, the semantic rules no longer specify functions, computing at-
tributes in terms of other attributes, but rather relations among attributes.
Also there is no longer a distinction between synthesized and inherited at-
tributes, and the values of the attributes are no longer uniquely determined

"Relational attribute grammars are not to be confused with the relation-valued stan-
dard attribute grammars (RAGs) of the previous section. In fact, in the present section,
we will indeed consider relational versions of RAGs.
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for every tree. We consider relational attribute grammars in the context of
BAGs and RAGs, and discuss how they can express queries. We show that
for BAGs this does not increase the expressive power, while in the case of
RAGs the complexity classes NP, coNP and UP N coUP are captured.

5.1 Relational BAGs

An attribute grammar vocabulary is now just a tuple (A, Att), where A is
a finite set of attributes and Att is a function from A to the powerset of
NUT. A relational BAG B assigns to each production p = Xq — X;...X,
a propositional formula ¢, over the set of propositional symbols

{a(4) | €{0,...,n},a € Att(X;)}.

A waluation of a derivation tree t is a mapping that assigns a truth value to
each a(n), where a € A, n is a node of t, and a is an attribute of the label of
n. Let ng be a node of t with children ny,...,n, derived by production p.
Let ¢, be the formula associated to p. Then define A(B, t, ngy) as the formula
obtained from ¢, by replacing each propositional symbol of the form b(j) by
the new propositional symbol b(n;). An arbitrary total valuation v of t is
said to satisfy B if A(B,t,n) is true under v for every internal node n.

A relational BAG can express unary queries in various ways. Let Q be a
unary query and let B be a relational BAG. Designate among the attributes
of A an attribute result.

(1) Q is expressed existentially by B iff for every derivation tree t

Q(t) = {n | there exists a valuation v of t that satisfies B,
and v(result(n)) is true};

(17) Q is expressed universally by B iff for every derivation tree t

Q(t) = {n | for every valuation v of t that satisfies B,
v(result(n)) is true};

(17i) Q is expressed implicitly by B iff for every derivation tree t there ex-
ists exactly one valuation v of t that satisfies B, and n € Q(t) iff
v(result(n)) is true.
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U—S  —a_before(1)
S — BS (x_before(2) < is_x(1) V x_before(0))
A (even(0) <» —even(2))
A (result(0) <> even(0) A x_before(0))
S — B  —even(0) A —result(0)
B—z  is.x(0)
B—y  —iszx(0)

Figure 7: Example of a relational BAG.

We denote the class of unary queries existentially (respectively, universally
and implicitly) expressible by relational BAGs by 3-BAG (respectively, V-
BAG and IBAG).

Example 5.1 In Figure 7 an example of a relational BAG is depicted. It
expresses existentially, universally and implicitly the same query expressed
by the BAG in Example 2.7. [ |

The following theorem says that going from BAGs to relational BAGs
does not increase the expressive power.

Theorem 5.2 BAG = 3-BAG =V-BAG = IBAG.

Proof. Clearly, by Lemma 2.11, BAG C 3-BAG, BAG C V-BAG and BAG
C IBAG. By using Theorem 3.7, we then only have to prove that every query
in 3-BAG, V-BAG and IBAG is definable in MSO.

1. Let Q be a query that is existentially expressed by the relational BAG
B. Then Q is defined by the MSO-formula ¢ (z) :=

@Zder(( A (a0)o (ol 7) = 3))

p:X()*)Xl...Xn

A Zresult (ZC) )

where A is the set of attributes of B, p(zq, ..., z,) is the FO-formula
that expresses that nodes xg, ..., z, are derived by production p, and
@, is the formula obtained from ¢, by replacing each occurrence of b(j)
by Zy(x;). Intuitively, the Z,’s define valuations that satisfy B.
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2. Let Q be a query that is universally expressed by the relational BAG
B. Then Q is defined by the MSO-formula ¢ (z) :=

(vza)a€A<( A (V30) - (Va) (0 20) = 5))

p:X()*)Xl...Xn

— Zresult (l‘) ) .

Here p(xy,...,x,) and @, are defined as in (1).

3. Let Q be a query that is implicitly expressed by the relational BAG B.
Then the MSO-formula that defines Q is the same as in (1). |

5.2 Relational RAGs

Each attribute a has an associated arity r,. A relational RAG R associates to
each production p = Xy, — X; ... X, an FO-sentence ¢, over the vocabulary

U{a(j) |a € Att(X;)}U{0,1,...,n},

where for each j = 0,...,n, j is a constant symbol and a(j) is a relation
symbol of arity r,. A waluation of a derivation tree t is a mapping that
assigns to each a(n) an r,-ary relation over the nodes of t, where a € A, n
is a node of t and a is an attribute of the label of n. Let ng be a node of t
with children ny, ..., n, derived by production p. Let ¢, be the FO-sentence
associated to p. Then define A(R,t,ny) as the FO-sentence obtained from
¢p by replacing each occurrence of the relation symbol b(j) by the relation
symbol b(n;) and by replacing each constant symbol j by the node n;. A
valuation v of t is said to satisfy R if A(R,t,n) evaluates to true for all n
when each relation symbol b(m) in A(R,t,n) is interpreted by v.

A relational RAG can express k-ary queries in various ways. Let Q be a
k-query and let R be a relational RAG. Designate among the attributes of
A a k-ary attribute result. Let r denote the root of t.

(1) Q is expressed ezistentially by R iff for every derivation tree t

Q(t) = {(ny,...,n;) | there exists a valuation v of t that satisfies R,
and (ni,...,n,) € v(result(r))}.
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U— LL (Vz)(3ly)(C(1)(x) = (C(2)(y) A R(0)(x,y)))
A (Vy)(3z)(C(2)(y) — (C(1)(z) A R(0)(x,y)))

A result(0)
L—L (V2)(C(0)(z) & z=0VC(1)(x))
L—f (Vo)(CO)(z)«>z=0Vzx=1)

Figure 8: Example of a relational RAG.

(17) Q is expressed universally by R iff for every derivation tree t

Q(t) = {(ny,...,ny) | for every valuation v that satisfies R
(ny,...,n5) € v(result(r))}

(171) Q is expressed implicitly by R iff for every derivation tree t there exists
exactly one valuation v of t that satisfies R, and (ni,...,n;) € Q(t)
iff (ny,...,ng) € v(result(r)).

We denote the class of unary queries existentially (respectively, universally
and implicitly) expressible by relational RAGs by 3-RAG (respectively, V-
RAG and IRAG).

Example 5.3 In Figure 8 an example of a relational RAG R is depicted.
This RAG expresses existentially the Boolean query which is true for a tree
if the number of nodes in its left subtree equals the number of nodes in its
right subtree. Let t be a tree, r the root of t, r; the left child and let ry, be
the right child of the root. For any valuation v of t that satisfies R, v(C'(ry))
contains the nodes of the left subtree, and v(C(ry) contains the nodes of the
right subtree. The sentence associated to the root can only be true under v
if v(R(r)) contains a bijection between v(C(ry)) and v(C(rz)). |

Clearly, any query expressible by a RAG is in 3-RAG, V-RAG and TRAG.
Indeed, let ay (1) := @1, ..., ap(in) := @ be all the semantic rules in a RAG
R associated to a production p. In the corresponding relational RAG, we
just replace these by the single rule

(VZ)(a1(i1)(7) & @1 (7)) Ao A (VE) (an(in) (T) < @n(T))-

This is indeed a correct translation for all three discussed semantics since by
Lemma 2.19 there exists only one valuation for each tree that satisfies R.

42



In the following theorem, we characterize the 3 classes of relational RAG
queried in terms of the complexity classes NP and UP (and their comple-
ments). NP is well known; UP is the class of problems decidable by a poly-
nomial time non-deterministic Turing machine that is unambiguous, i.e., that
has at most one accepting computation for every input [29, 24].5 We obtain
the following:

Theorem 5.4 1. 3-RAG equals the class of queries in NP;
2. V-RAG equals the class of queries in coNP; and

3. IRAG equals the class of queries in UP N coUP.
Proof.

1. The containment 3-RAG C NP is clear. For the converse, we make use
of Fagin’s Theorem [10, 7], which states that the queries expressible in
NP are exactly those that are definable in existential second-order logic
(ESO). Every ESO-formula is of the form

(321)...3Z)(W(7, Z1, ..., Zy)),

where the Z; are relation variables and ¢ is an FO-formula over the
vocabulary expanded with the relation symbols {71, ..., Z,}.

Consider the ESO-formula: (37;)...(3Z,)¢(zx, Z). Like in the proof of
Theorem 4.3, we can construct a RAG that computes all the relations
that make up a derivation tree viewed as a relational structure. Add
to this RAG the rule for the start symbol

(V) (result(0)(z) < ¢'(z)),

where ¢ is obtained from ¢ by replacing each Z;(y) by Z;(0)(y), and
by replacing each relation of the vocabulary of the relational structure
by its corresponding attribute. It then follows that this relational RAG
expresses existentially the query defined by (37))...(37Z,)v(z, Z).

2. To prove that V-RAG are the queries computable in coNP, we make use
of the complement of Fagin’s Theorem: coNP = Universal second-order
logic. The proof is then analogous to (1).

6A k-ary query Q belongs to a complexity class C if the decision problem
{(t,n1,...,n) | (n1,...,nt) € Q(t)} is in C.
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3. Clearly, IRAG C UP N coUP.
Let (Q1,...,9Q,) be a sequence of queries. We say that the sequence

(Q1,---,9n)
is implicitly definable in FO if there is an FO-sentence (71,...,Z,)
over the vocabulary of derivation trees augmented with {Zy,...,7,}

such that for every tree t the sequence (Qq(t),..., Q,(t)) is the only
sequence of relations (Ry,..., R,) over t such that t = ¢[Ry,..., R,)].

We write IMP(FO) to denote the collection of all queries Q such that
Q = Q, for some sequence (Qy,...,Q,) of queries which is implicitly
definable in FO.

Analogously to (1) it can be shown that every query in IMP(FO) is
expressible by a RAG. Kolaitis [20] proved that on every class of or-
dered structures, a query is definable in IMP(FO) if and only if it is
computable in UP N coUP. The trees we consider are not ordered. How-
ever, they can be ordered by a RAG, as we already saw in Lemma 4.7.

|

6 Concluding remarks

The results obtained in this paper are summarized in Figure 9. An arrow
from a class of queries C to a class of queries C’, means C' C C'. A negated
arrow from C' to C’, means there is a Boolean query in C' that is not in C".

BAGs as a language for expressing simple retrieval queries strike a rea-
sonable balance between expressive power and complexity; on the one hand,
they are as powerful as monadic second-order logic; on the other hand, they
can be evaluated in linear time.

RAGs as a language for expressing general relational queries on structured
documents offer more expressive power than BAGs, while remaining within
polynomial-time complexity.

As already mentioned, Theorem 3.7 was independently proved by Bloem
and Engelfriet [3]. Actually, they did not investigate BAGs, but considered
finite-valued attribute grammars. These are attribute grammars where the
values for the attributes come from a fixed finite set. It is readily seen that
they express the same unary queries as BAGs do. Bloem and Engelfriet,
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3-RAG = NP V-RAG = coNP IRAG = UP N coUP

RAG = PFP-LIN = CRAM][n]

synthesized RAG

BAG = 3-BAG = V-BAG = IBAG = MSO

non-Boolean queries

synthesized BAG

Figure 9: Summary of results.

however, did not study the expressiveness of attribute grammars as an ab-
stract model of a query language. Their goal was proving the equivalence
between two tree transformation languages. More precisely, their main result
shows the equivalence between MSO tree transducers and two-stage attribute
grammars that in the first stage compute a relabeling of the tree, by means
of a finite valued attribute grammar, and in the second stage compute the
output tree by means of tree-valued attributes.
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Appendix A

In this appendix we prove Theorem 4.9. We start with the following defini-
tion.

Definition 6.1 A simple RAG is a synthesized RAG over the attribute
grammar vocabulary that has only the attribute ¢ for L and only the zero-ary
attribute result for U.

We focus attention on simple RAGs and show later that any synthesized
RAG can be transformed into an equivalent simple one.

For any integers n; and ny greater than 1, let t(ny,ns) denote the tree
which has a left subtree of length n, and a right subtree of length n,. Let R be
a simple RAG. In Lemma 6.3 we show that the values of R(t(ny,n2))(c(ny))
and R(t(ny,ns))(c(nz)), where n; is the first child and ns is the second child
of the root, can be uniformly defined in PFP over a structure that, essentially,
only contains an ordering of part of the domain of t(ny,ns). First, we need
some definitions.

Definition 6.2 Let 7. = {0,1,2, <} be the vocabulary consisting of the
constant symbols 0, 1 and 2, and the binary relation symbol <. Let n; and
ne be two integers greater than 1.

1. Define N (n1,ns) as the 7--structure with domain {1,...,n; +ny+1},
where 0 = n;+ns+1, 1 = ny, 2 = n; + ny, and where < is interpreted
as the total order on {1,...,n1};

2. Define N3(ny,ns) similarly as Nj(ny,ns), except that now < is inter-
preted as the total order on {n; +1,...,n; +ny}.

Let &(x1,...,7,) be a PFP-formula over the vocabulary 7.. We define
E(Ni(n1,ng)), for i € {1,2}, as the relation defined by & on N;(nq,ns), i.e.,
by

{(ny,...,np) | Ni(n1,n2) E &ny,...,ng}.

Lemma 6.3 Let R be a simple RAG. There exists a PFP formula
g(xla s 71‘%)7

such that for all ny,ne > 1

R(t(n1,n2))(c(n1)) = E(N1(n1,n2)),

49



and

R(t(n1,n2))(c(n2)) = (No(n1, n2)),
where ny is the first child and ny is the second child of the root of t(ny,ns).

Proof. Let ¢(0) := ¢(z) be the rule in the context (L — f,¢,0), and let
c(0) := ¢(Z) be the rule in the context (L — L,c,0). Let yi, yo, y3, 21, 22,
23, U1, ..., Uy, be variables not occurring in ¢ or ). Then define £(Z) as the
formula

(1) (root(y1) A PFPlo, X](y1, 41,1, 7)) -
Here root(y;) is an FO-formula that defines the root of the tree, and
U(yla Y2,Y3, L1y« ooy gy X)

is the formula

(11 = First A (y2 = y3 = ¢'(7)))
V (F21)(Suce(z1) = y1 A (F22)(F23) (F0) (X (21, 22, 23, 0) A (Y2 = y3 — ¥'(T))),

where First is the first element of < and Succ is the successor function ob-
tained from <; ¢’ is obtained from ¢ by replacing each occurrence of 1 by
and each occurrence of 0 by Succ(y;); ¢’ is obtained from v by replacing each

occurrence of ¢(1)(d) by X (z, 21, 21, d), each occurrence of 0 by y;, and each
occurrence of 1 by z;. The variables y, and y3 make sure that the relation
X is never empty. It might happen that ¢ defines an empty relation; then
the fixpoint would be empty. [ |

The next lemma is an immediate observation.

Lemma 6.4 Let £(z4,...,2¢) be a PFP-formula over 7. For any ny and
ny greater than 1, and i € {1,...,0}:

(l) [le(nl,TLQ) ):f[nl,...,ng] and
n,€{n+1,....n0+ny—1} —{ny,...,n; 1,n;,...05}
then for all m € {ny +1,...,n1 +ny — 1} — {ny,...,n,},

Ni(ny,ng) E €My, ..., mn,q, ..., 0.
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(ZZ) [ng(nl,nQ) ):f[nl,...,ng] and
n,€{l,...,ny — 1} —{ny,...,n; 1,n;,...n4}
then for all m € {1,...,ny — 1} — {ny,...,ny},

N2(n1,n2) ): f[nla ceey My, ML NG, . nl]-

Proof. This follows from the fact that PFP cannot distinguish between ele-
ments that are automorphic. Clearly, the transposition of any two elements

n,n € {n;+1,...,n; +ny — 1} is an automorphism of Nj(ny,ns), and the
transposition of any two elements n,n’ € {1,...,n; — 1} is an automorphism
OfNQ(TLl,TLQ). |

Definition 6.5 Let (z1,...,x,) be a PFP-formula over the vocabulary 7.
Let n; and ny be two integers greater than 1. Let 7., be the vocabulary
{0,1,2, ¢, 2}, consisting of the constant symbols 0,1,2 and the f-ary re-
lation symbols ¢; and ¢y. Define t(&,ny,ng) as the 7. -structure with do-
main {1,...,n1 +ny + 1}, where 0 = ny + no + 1, 1 = ny, 2 = ny + no,
c1 = E(N1(n1,n)), and ¢y = E(Na(n1,ns)).

We now show that, under certain assumptions, on the structures t(&, ny, ns)
every FO-formula can be split into formulas that essentially speak only about
the relation ¢; or only about the relation ¢y, but not about both.

Lemma 6.6 Let £ be a PFP-formula with ¢ free variables. Assume there are
FO-formulas Py(x) and Py(z) such that for all ny,ne > 1,

t(ganlanQ) ):Pl[n] A ne{la"'anl_l}a

and

t({,nl,ng)):Pg[n] = nE{n1+1,...,n1+n2—1}.
For every FO-formula p(x1, ..., x) over the vocabulary 7., expanded with the
unary relational symbols Py and Py, there exists a disjunction V(xy,. .., xx)

of FO-formulas of the form
k
a(xy, ..., xk) A B(x1, .. 2k) A /\ wj(x;),
j=1
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where « does neither contain Py, nor co, 5 does neither contain Py nor cq,
and each w;(xz;) is of the form x; =0, x; = 1, x; = 2, Py(z;) or Py(z;). For
every ny,ng > 1, and for every ny, ... ,ng € {1,...,ny+ny+1} it holds that

t(§n,ne) Eomy, ... o0kl & t(En,n) E Yy, ml.

Proof. The proof goes by induction on the structure of . We can assume
w.l.o.g. that constants only appear in atomic formulas that are equalities.

1. If ¢ equals ¢ = ¢', where c,c¢’ € {0,1,2} and ¢ # ¢/, then ¢ is the
empty disjunction.

2. If ¢ equals ¢ = ¢, where ¢ € {0, 1,2}, then ¢ is (true A true).

3. Suppose ¢(x) is x = ¢ or ¢ = x, where ¢ € {0,1,2}. Then ¢ is
(true A true A x = c).

4. Suppose p(z1,T2) is 1 = x5. We first introduce some notation. Define
D as the set of symbols {0,1,2, P;, P,}. Let p be a natural number.
For any d = d,, .. .,d, € DP, and variables y = yi,...,y,, define for
j=1,...,p, the formula w;;(y) as

Y; = 0 if dj = 0,
Y; = 1 if dj = ].,
wdf,j(gj) = Y; = 2 if dj = 2,
Pl(yj) ifdjzpl,
Now define

2
(1, x9) = \/ (xl =29 AT; = Ty A /\wd,d,j(xl,@)) .

deD j=1

5. Suppose @(z1,...,2¢) is ¢1(z1, ..., z¢). Then define

)= \/ (cl(xl,...,xg) A true A /\wd,j(f)) :

deD! Jj=1
6. Suppose p(z1,...,x) is c2(x1,...,2¢). This is symmetric to (5).
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7. Suppose 90(1'1, s Jxk) is Sol(yla s 7yk1) v ()02(Z17 s '7zk2)' Herea

{Y1, - Ue, JU {21,y 2k F = {21, -0 2 )
Let

{uy, .., ugt ={yi, - ye } — {21, 20 }
and let

{vi, .. vy ={z,. .,z ) —{yi, - Uk b

By the inductive hypothesis, there exists a ¢, equivalent to ¢; of the

form
n

k
v (ﬁ/\)
j=1

i=1
and a 1 equivalent to ¢y of the form

m

k
\ (a?/\ﬁf/\ /2\ng> |
j=1

=1

The formula 1 is obtained from ), and v, by replacing every disjunct
af ABEANGL why in ¢y by

k1 p
\/ (a} ANBEA N\ wij A /\wd’j(@)> :
j=1 j=1

deDp

and by replacing every disjunct o A 32 A /\fi1 w;; in 9y by

k2 q
\/ (a? ANBEA P\ whi A /\wd,j(ﬂ)> .
J Jj=1

deDa j=1
8. Suppose p(z1,...,x) is 7' (21, ..., x1). By the inductive hypothesis,
there is a v’ equivalent to ¢’ of the form
n

k
\/ (a; A BLA /\w;]> :
j=1

=1
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Then —)' is equivalent to

n

k
/\ <—|Oz; V=BV \/ —wu;,j) )
j=1

=1

We now transform this formula to an equivalent one in the right form.
Replace each —w ; of the form

(a) ﬁ(l‘jZO) by I]:1VI]:2VP1(I])\/P2(IL’]),
(b ﬁ(l‘j:].) by IJZO\/I]:2\/P1(I])\/P2(IL’]),
C —|(xj22) byx]:0\/x]:1\/P1(x])\/P2(:E]),

);
)

_|P1(.'L’j) by$]ZOV$]ZIV$]:2VP2($]
_|P2(.'L’j) by$]ZOV$]ZIV$]:2VP1($]

Put the resulting formula in disjunctive normal form (here the literals
are the formulas =}, =f!, 2 =0, 2 = 1, 2 = 2, Pi(z) and P»(z)). Each
disjunct now looks like

—|az~1/\.../\—|ais/\—|ﬁil/\.../\—|BZ~T/\61/\.../\51,,

where each ¢ is of the form z =0, z = 1, z = 2, P;(z) or P»(z). The
disjunct is discarded if there are two different ¢'s for the same variable
(e.g., one is z = 0 and the other is P;(z)). Otherwise, define « as the
formula —a;, A...A—q;, , and define § as the formula =f;, A... A—f;, .
Let y1,...,y, be the variables in {z1,..., 2} for which there is no ¢ in
the disjunct. Then replace this disjunct by

\V (aABA/\éjA/\wJ,j(y)>.

deD9

. Suppose p(z1,...,x) is (Fzge1)@' (21, ..., Tk, Tp11). By the inductive
hypothesis, there is a ¢’ equivalent to ¢’ of the form

m k+1
\/ <Oz; A BLA /\ wl'-ﬂ-) :
j=1

i=1
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Then ¢ is equivalent to

m k+1
\/(Hl‘k_H) (ai— A BEA /\ wl'-’j) :
7=1

=1

This is then equivalent to

VV (st n A o

i=1p=1

k k1
% \/ Axgy1) (/\ Tp # Tpp1) N A B A /\ w;j) . (3)
7=1

p=1

Here o} , is false if w; , # w;,,,, otherwise it equals the formula that is
obtained from o} by replacing each occurence of the variable zy,; by
Tp.

The subformula (2) is already in the right form. For each disjunct i of

(3),

o . - .
(a) if Wi 1 18 Tpr1 = ¢ then define a; as

k
(Foesr)(\ (@p # Tr1) A zisr = € A ),
p=1
fB; as
k
(Elxkﬂ)(/\(% # Ti1) AT = €A B)),
p=1
and for j =1,... k, define w;; as w; ;.

(b) if w11 is Pi(zx41) then define a; as

(Fzir1) (/\ (@ # Ta11) A Prlw41) A 0f),

p=1

B; as

E

(3zr41) /\ Tp F# Tki1)

-1
P2($k+1) ANZppr ZON T #F LAz # 20 5)),
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(the correctness follows from Lemma 6.4(ii)), and for j =1, ...,
k, define w; ; as w; ;

(c¢) if wj )1 = Po(xy1) then define a; as

k
(Fzpt1) /\ T, # Tpy1)

,_.

_‘Pl(karl) ANTpi1 FON Ty # LA Tpy1 # 2N ),

(the correctness follows from Lemma 6.4(i)), §; as

k
(E!xk+1)(/\ Tp # Thi1 A Po(Tp41) A ),

p=1
;o !/
and for j =1,...,k, define w; ; as w; ;. [ |

In the next lemma we prove that if an FO-formula can only speak about
c¢1 (respectively ¢y) then this formula in general cannot distinguish between
E(Ni(n1, 1)) and (N1 (n1, n2)) (respectively (Na(ni, mi)) and (N2 (n1, n2))),

where n; # ns.

Lemma 6.7 Let &(xq,...,2¢) be a PFP-formula over the wvocabulary 7.
Suppose & contains only m distinct variables.

(i) Let 1 be an FO-sentence over the vocabulary 1., that contains only m’
distinct variables and that does not contain the relation symbol co. Let
ny > m+m'. Then for all ny,nl, > m +m/,

t(ganlanQ) ):,QZ} ~ t(ganlané) ):lb
(it) Let ¢ be an FO-sentence over the vocabulary 7., that contains only m'

distinct variables and that does not contain the relation symbol ¢. Let
ny > m+m'. Then for all ny,n| > m+m/,

t(ganlanQ) ): ,QZ} A t(gvnllanQ) ): ¢

Proof. We only prove (i), (i) is symmetric. We can assume w.l.o.g. that
¢ and ¢ have no variables in common. Let (£, ny,n2)® be the structure
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t(&, n1, no) restricted to 0, 1, 2 and ¢;. Since ¢ does not speak about cs, it
suffices to prove that for all ny, ny, nh, > m +m':

25(67711;”2)6é ): 1/) <~ t(ganlané)@ ): 1/)

Suppose there exist ng, n), > m + m' such that

t(fa”la”?)@ ): w and t(fanlan;)@ b& w

Let ¢ be the formula obtained from ¢ by replacing each atomic subformula
c1(z1,...,20) by &(z1,. .., 20). Hence, Ni(n1,nq) E ¢ and Nq(ny,nl) = .
Thus, there exists a sentence with m + m' variables that distinguishes be-
tween N (ni,ny) and Ni(ny,nb). However, for ny,ny,nh > m + m', using
pebble games [19, 7] it is easy to show that Ni(ny,ny) and Nj(nq,n}) are
indistinguishable in PFP with m 4+ m/ variables. This leads to the desired
contradiction. [ |

Before starting with the actual proof we show how to simulate several
attributes by one attribute.

Lemma 6.8 Fuvery synthesized RAG is equivalent to a simple one

Proof. Suppose R has attributes a, ..., a; for the grammar symbol L, and
attributes result, by, ..., by for the start symbol U. We show that R is equiv-
alent to the simple RAG R'. To this end, let r, = k + 1+ max{r,,,...,7q,}
Assume, w.l.o.g., that none of the variables y, ..., y,, occurs in a semantic
rule of R. Fori=1,... k, let vi(y1,...,yrs1) be the formula

VilYis -y Ypt1) = yi:yk—l-l/\/\{yj # Y1 |7 €{L... Kk} A J# i}

The simulation of the relations aq, ..., ag, by one relation ¢ is the usual one
(see, e.g., the proof of the simultaneous induction lemma [7]). We present it
in detail as we will refer to it later on. So, for i = 1,..., k, let a;(0) := ¢; be
the rule in the context (L — f,a;,0). In R', define ¢ in context (L — f,¢,0)
as

k
c(0) == {(, - v | Vs wk) A @ilgiras s Ukriena,) -
=1
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For i =1,...,k, let a;(0) := 1; be the rule in context (L — L,a;,0). In R/,
define ¢ in context (L — L,¢,0) as

k
C(O) = {(yla RS yrc) | \/fYZ(yla s 7yk+1) A ¢;(yk+2a s 7yk+1+7"ai)}7
=1

where 1} is obtained from 1); by replacing each occurrence of a;(1)(Z) by

(F9)(32) (vi(y) A e(1)(, 7, 2)),

where z and z have no variables in common.

Finally, let result(0) := o be the rule in context (U — LL, result,0),
and let for i = 1,...,¢, b;(0) := o; be the rule in context (U — LL,b;,0).
Assume, w.l.o.g., that o, oy, ..., o, have no variables in common. Let o’
be the formula obtained from o by replacing each occurrence of b;(0)(7) by
0i(7). Then define result in R’ by the formula obtained from ¢’ by replacing
each occurrence of a;(7)(z) by (3g)(32)(7:(9) A c(j)(y, 7, Z)), where z and T
have no variables in common.

It follows that for any tree t with root r, R(t)(result(r)) is true if and
only if R'(t)(result(r)) is true. |

By putting all the pieces together we can prove Theorem 4.9. Indeed,
towards a contradiction suppose equal_subtree is expressible by a synthe-
sized RAG. Suppose R has attributes ay, ..., ay for the grammar symbol
L, and attributes result, by, ..., b, for the start symbol U. W.l.o.g., we can
assume that a; is a set-valued attribute that contains for each node all its
descendants: for production L — ¢ define a,(0) := {0, 1}, and for production
L — L define a;(0) := {0} Uay(1).

By Lemma 6.8, R is equivalent to the simple RAG R'. It, hence, suffices
to show that R’ cannot express equal_subtree.

According to Lemma 6.3, there exists a PFP-formula (x4, ..., x,,) such
that for all ny,ny > 1

R/ (t(n1,12))(c(n1)) = EN1 (1, n2)),

and

R'(t(n1,n2))(c(n2)) = {(Na(n1,n2)),
where n; is the first child and n, is the second child of the root. Let v be
the sentence that defines result in R’. Then for all ny,ny > 1,

R'(t(n1,n2))(result(r)) is true < t(&,ny,ng) E ¢, (4)
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where ¢ is obtained from 1) by replacing each occurrence of ¢(1)(Z) by ¢;(Z)
and each occurrence of ¢(2)(Z) by ¢2(Z), and where r is the root of t(&, ny, ns).
Now, define P;(x) as

Pi(z) .= Fy)E2) @) Az, 2) Ao #0Az £ 1 AT #2),

and Ps(z) as

Po(w) = (37) 3 (1(5) A a7, 2) Ax £ O AT £ L AT #2).

Note that P, and P, just define the value of a;(n;) and a;(ny), respectively.
Here, 7, is the formula defined in the proof of Lemma 6.8 to encode the
attributes ay, ..., a; into c.

Then for all ny,ny > 1,

t(ganlan2) ):Pl[n] g ne{la"'anl_l}a

and
t(&,n,ne) ERn < ne{n+1,...,n +ny— 1}

Hence, by Lemma 6.6, ¢’ is equivalent to a sentence of the form \/}_, o; A 3;,
where the o;’s are sentences that do not contain c,, and the (3;’s are sentences
that do not contain ¢; (since there are no free variables, there are no w’s).
W.Lo.g., we can assume that £ and \/]_, o; A 3; have no variables in common.
Let m be the number of variables in &, and let m’ be the number of variables
in \/'_, &; A B;. By a simple counting argument, there have to exist n} >
ny > m + m' such that for alli =1,...,n:

t(&n,m+mYEa & tEn,m+m)Eq.
Hence, by applying Lemma 6.7(i) twice, for i = 1,...,n:
t(En,m) Ea & t(E 0], ) E .
From Lemma 6.7(ii), it follows that for i = 1,... n:

t(&nm,m) =6 e t(En,m) E B

Hence,

t(f,nl,nl) ):\/OZZ/\BZ == t(§,n'1,n1) ):\/az/\ﬁz

=1 =1
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But then by (4), we have that
R'(t(n1,n1))(result(r)) is true < R'(t(ng,n}))(result(r)) is true,

and n; # n|. Hence, R’ does not express equal_subtree. This concludes
the proof of Theorem 4.9.
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Appendix B

In this appendix we show that the query Q in the proof of Theorem 4.14 is
expressible by a synthesized RAG.

The RAG computing Q uses the following synthesized attributes for all
non-terminals:

1. X is a Boolean attribute: X (n) is true if there is a node labeled X
among the descendants of n (note that X is a non-terminal);

2. chain is a Boolean attribute:

(a)

chain(n) is false if there is no X-labeled node among the descen-
dants of n, or if there is no chain of occurrences starting on the
the first X-labeled node in the preorder traversal of the subtree
with root n;

chain(n) is true if the length of the chain of occurrences of (jp, k)
starting at the first X-labeled node in the preorder traversal of
the subtree with root n is a power of two. Note that if this node
is not derived by py, then the length of the chain of occurrences
starting at that node is 1, which is a power of two.

3. D is a set-valued attribute: D(n) contains n and all descendants of n.

4. < is a binary attribute: <(n) is a total order on D(n).

5. occ is a Boolean attribute: occ is true if n is derived with p;, for some
i€ {1,...,m}, and there exist nodes n;,1, ..., n,,1, such that a chain
of occurrences starts at n,,;, and for j =74 1,...,m, n; is derived
with p;, and n;y; is the k;-th child of n;.

6. is-p; is a Boolean attribute: is-p;(n) is true if n is derived with p;.

7. ais a set-valued attribute: a(n) is a subset of D(n).

(a) If occ is false, then a(n) is empty;

(b)

If occ is true and n is not derived by p;, then the nodes in a(n) en-
code, w.r.t. <(n), in binary the length of the chain of occurrences

of (p, k) starting at n,, 1, where n,,; is as defined in 5: if a(n)
contains the nodes ny, ..., n,, and these occur respectively in the
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i1-th, ..., ix-th position in the ordering <(n), then a(n) encodes
the number ¥7_ 27",

(c) If occis true and n is derived by py, then the nodes in a(n) encode,
w.r.t. <(m), in binary the length of the chain of occurrences of
(p, k) starting at n.

The RAG is now defined as follows:

1. Consider the production p = Xy — X;... X, not in p. Define T'(p) =
{i € {1,...,n} | X; is a terminal}. We write ¢ ¢ T'(p) as a shorthand
forie {1,...,n} —T(p). Define

true if Xo=X;
X(0) = {\/igT(p)X(i) otherwise;

and

true if Xy = X;
0 otherwise,

chain(0) = {

where v is an FO-sentence whose truth value equals that of chain(i),
where i is the smallest such that X (i) is true; if such an i does not
exists, v is false. For i = 1,...,n, let E(i) be D(i) if i ¢ T(p), and
{(i)} when i € T'(p). Then define

D) = JE® u{(0))

<(0) = | <@umO)x{opu J {Gi}
iZT'(p) i€T(p)
Ul HEG) x E(j) |i,j € {1,....,n} ANi<j};

occ(0) = false;

is-p1(0) = false;
and
a(0) = 0.
If Xy = U then define
result(0) := X (0) — chain(0).
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2. For p; = Xy — X;... X,,,, define
X(0) := true;
and

chain(0) = oce(0) A (3z)(a(0)(x) A (V) (a(0)(y) = = = y)).

The attribute chain becomes true if occ(0) is true and if a(0) contains
exactly one element, i.e., a(0) encodes a number which is a power of
two. Define,

D) = [JE@u{(O))

<(0) = J <@(u U (D(k,) x E(i))
iZT (p1) ie{l,...,n1}—{k1}

u(DO) x{@pu J {60}

i€T (p1)
UlUJ(EG) x E() |
i,ile {]_,...,’I’Ll}, i<i,, Z;ékl/\ll%kl},

The reason for this definition is that, in order to correctly represent the
number in a(k;), we have to make sure that all elements not in D(k;)
come after the elements in D(k;) in the ordering <(0). Finally define

occ(0) = occ(ky);
is-p1(0) := true;

and
a(0) = occ(0) A p(z,a(ky), <(0)),
where ¢(z, Z, <) is the formula
(32)(Z(') A =Z(Suce(2) A (V") (2" < 2" — Z(2"))

A (z = Succ(Z) V (2 <z A Z(z))))
% (EIz’)(First(z’) N=Z(Z)N(z=2"V Z(z))),

with Succ the successor function, and First is the first element in the
ordering <. This formula augments the number in a(k;) with 1.
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3. For j =2,...,m— 1, define for p; = Xo — X;... X},

X(0) = \/ X()
iZT(p;)
and
chain(0) = ~,

where v is defined as in (1). Further, define

D(0) = [JEG) u{(0)}
<(0) := <@u U (D) xE@)
i¢T(p;) ie{l,...,nj}—{k;}
U (Do) x {fOhHu |J {61}
€T (p;)
U UJLEG) x B(i) |

i€ {1, g}, i< i A kAN # k)

oce(0) = oce(k;);
is-p1(0) := false;

and
a(0) = occ(0) A a(k;)(2).

4. For p,, = Xo = X;... X, , define

X(0) := true;

and
chain(0) = 7.

Here v is defined as in (1). Define,

D) = B U(©O):
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<(0) := <(i)u U (D (k) x E(i))
i¢T(p1) i€{l,..nm}—{km}

u(@O) x{Ohu (J {61}

i€T (p1)
UlU{EG) x E@) |

Qi €1, ), i< i kg AT # k)

occ(0) = —is-pi(km) V oce(kpm);
is-p1(0) := false;

and define
a(0) == o.

Here, o is an FO-sentence that expresses the following: a(0) contains
the singleton consisting of the first element in <(0) if is-p; (k) is false;
a(0) equals a(ky,) if oce(kyy,) is true; and a(0) = () otherwise.
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