
Deciding Termination of Query Evaluation
in Transitive-Closure Logics for

Constraint Databases

Floris Geerts�1 and Bart Kuijpers2

1 University of Helsinki
Helsinki Institute for Information Technology

PO Box 26 (Teollisuuskatu 23), Fin-00014, Helsinki, Finland
floris.geerts@cs.helsinki.fi

2 University of Limburg
Dept. of Mathematics, Physics and Computer Science

Universitaire Campus, 3590 Diepenbeek, Belgium
bart.kuijpers@luc.ac.be

Abstract. We study extensions of first-order logic over the reals with
different types of transitive-closure operators as query languages for con-
straint databases that can be described by Boolean combinations of poly-
nomial inequalities over the reals. We are in particular interested in de-
ciding the termination of the evaluation of queries expressible in these
transitive-closure logics. It turns out that termination is undecidable in
general. However, we show that the termination of the transitive closure
of a continuous function graph in the two-dimensional plane, viewed as
a binary relation over the reals, is decidable, and even expressible in
first-order logic over the reals. Based on this result, we identify a par-
ticular transitive-closure logic for which termination of query evaluation
is decidable and which is more expressive than first-order logic over the
reals. Furthermore, we can define a guarded fragment in which exactly
the terminating queries of this language are expressible.

1 Introduction

The framework of constraint databases, introduced in 1990 by Kanellakis, Ku-
per and Revesz [12] and by now well-studied [17], provides an elegant and
powerful model for applications that deal with infinite sets of points in some
real space IRn, for instance spatial databases. In the setting of the constraint
model, these infinite sets are finitely represented as Boolean combinations of
polynomial equalities and inequalities over the reals. For example, the spatial
database consisting of the set of points on the northern hemisphere together
with the points on the equator of the unit sphere in the three-dimensional space
IR3 can be represented by the formula x2 + y2 + z2 = 1 ∧ z ≥ 0. The re-
lational calculus augmented with polynomial constraints, FO for short, is the
� The research presented here was done while this author was at the University of

Limburg.

standard first-order query language for constraint databases. The FO-sentence
(∃r)(∀x)(∀y)(∀z)(S(x, y, z) → x2 + y2 + z2 < r2) expresses that the three-
dimensional spatial relation S is bounded.

Although many interesting properties can be expressed in FO, its most im-
portant deficiency is that its expressive power is rather limited. For instance,
several practically relevant topological properties of spatial data, such as con-
nectivity and reachability, are not expressible in FO and various people have
proposed and studied extensions of FO with tractable recursion mechanisms
to obtain more expressive languages [2, 11, 14–16]. In analogy with the classical
graph connectivity query, which cannot be expressed in the standard relational
calculus but which can be expressed in the relational calculus augmented with a
transitive-closure operator, also extensions of FO with various transitive-closure
operators have been proposed to obtain languages that are more expressive, in
particular that allow the expression of connectivity and reachability queries and
that are even computationally complete. Recently, the present authors intro-
duced FO+TC and FO+TCS, two languages in which an operator is added to
FO that allows the computation of the transitive closure of unparameterized sets
in some IR2k [10]. In the latter language also FO-definable stop conditions are
allowed to control the evaluation of the transitive-closure. Later on, Kreutzer has
studied the language that we refer to as FO+KTC [15], which is an extension
of FO with a transitive-closure operator that may be applied to parameterized
sets and in which the evaluation of a transitive-closure expression may be con-
trolled by the termination of particular paths in its computation rather than
by the termination of the transitive closure of the complete set. The fragments
of FO+TCS and FO+KTC, that does not use multiplication, are shown to be
computationally complete on databases definable by linear constraints [10, 15].

In all of these transitive-closure languages, we face the well-know fact that
recursion involving arithmetic over an infinite domain, such as the reals with
addition and multiplication in this setting, is not guaranteed to terminate. In
this paper, we are interested in termination of query evaluation in these different
transitive-closure logics and in particular in deciding termination. We show that
the termination of the evaluation of a given query, expressed in any of these lan-
guages, on a given input database is undecidable as soon as the transitive closure
of 4-ary relations is allowed. In fact, a known undecidable problem in dynamical
systems theory, namely deciding nilpotency of functions from IR2 to IR2 [3, 4],
can be reduced to our decision problem. When the transitive-closure operator
is restricted to work on binary relations, the matter is more complicated. We
show the undecidability of termination for FO+TCS restricted to binary rela-
tions. However, both for FO+TC and FO+KTC restricted to binary relations,
finding an algorithm for deciding termination would also solve some outstanding
open problems in dynamical systems theory. Indeed, a decision procedure for
FO+TC restricted to binary relations would solve the nilpotency problem for
functions from IR to IR and a decision procedure for FO+KTC restricted to bi-
nary relations would solve the point-to-fixed-point problem. Both these problems
are already open for some time [3, 13].

x
0

y = 2x

y = 0

y = 1

1
2 1

y = x − 1
4

y = 3
4

y = 0

0 1
4

Fig. 1. On the left, a function graph (thick) with non-terminating transitive closure
(thin). On the right, a function graph (thick) with terminating transitive closure (thin).

For FO+TC restricted to binary relations, we have obtained a positive de-
cidability result, however. A basic problem in this context is deciding whether
the transitive closure of a fixed subset of the two-dimensional plane, viewed as a
binary relation over the reals, terminates. Even if these subsets are restricted to
be the graphs of possibly discontinuous functions from IR to IR, this problem is
already puzzling dynamical system theorists for a number of years (it relates to
the above mentioned point-to-fixed-point problem). However, when we restrict
our attention to the transitive closure of continuous function graphs, we can show
that the termination of the transitive closure of these figures is decidable. As an
illustration of possible inputs for this decision problem, two continuous function
graphs are given in Fig. 1. The one on the left has a non-terminating transitive
closure, but the one on the right terminates after four iterations. Furthermore,
we show that this decision procedure is expressible in FO. In the course of our
proof, we also give a stronger version of Sharkovskĭı’s theorem [1] from dynami-
cal systems theory for terminating continuous functions. We also extend another
result in this area, namely, we show that nilpotency of continuous semi-algebraic
functions is decidable and that this decision procedure is even expressible in FO.
Previously, this result was only stated, without proof, for continuous piecewise
affine functions [4].

Based on this decision result, we define a fragment of FO+TC in which the
transitive-closure operator is restricted to work on graphs of continuous functions
from IR to IR. Termination of queries in this language is shown to be decidable.
Furthermore, we define a guarded fragment of this transitive-closure logic in
which only, and all, terminating queries can be formulated. We also show that
this very restricted form of transitive closure yields a language that is strictly
more expressive than FO.

This paper is organized as follows. In Section 2, we define constraint da-
tabases, the query language FO and several extensions with transitive-closure
operators. In Section 3, we give general undecidability results. In Section 4, we
give a procedure to decide termination of the transitive closure of continuous
function graphs in the plane. In Section 5, we study the extension of FO with
a transitive closure operator that is restricted to work on continuous function

graphs. In this section, we also describe a guarded fragment of this language and
give expressiveness results. The paper concludes with some remarks.

2 Definitions and Preliminaries

In this section, we define constraint databases and their standard first-order
query language FO. We also define existing extensions of this logic with different
transitive-closure operators: FO+TC, FO+TCS and FO+KTC.

2.1 Constraint Databases and First-Order Logic over the Reals

Let IR denote the set of the real numbers, and IRn the n-dimensional real space
(for n ≥ 1).

Definition 1. An n-dimensional constraint database3 is a geometrical figure
in IRn that can be defined as a Boolean combination (union, intersection and
complement) of sets of the form {(x1, . . . , xn) | p(x1, . . . , xn) > 0}, where
p(x1, . . . , xn) is a polynomial with integer coefficients in the real variables x1, . . . ,
xn. ��

We remark that in mathematical terminology, constraint databases are called
semi-algebraic sets [5]. If a constraint database can be described by linear poly-
nomials only, we refer to it as a linear constraint database.

In this paper, we will use FO, the relational calculus augmented with poly-
nomial inequalities as a basic query language.

Definition 2. A formula in FO, over an n-dimensional input database, is a first-
order logic formula, ϕ(y1, . . . , ym, S), built, using the logical connectives and
quantification over real variables, from two kinds of atomic formulas, namely
S(x1, . . . , xn) and p(x1, . . . , xk) > 0, where S is a n-ary relation name represent-
ing the input database and p(x1, . . . , xk) is a polynomial with integer coefficients
in the real variables x1, . . . , xk. ��

In the expression ϕ(y1, . . . , ym, S), y1, . . . , ym denote the free variables. Vari-
ables in such formulas are assumed to range over IR. Tarski’s quantifier-elimina-
tion procedure for first-order logic over the reals guarantees that FO expressions
can be evaluated effectively on constraint database inputs and their result is a
constraint database (in IRm) that also can be described by means of polynomial
constraints over the reals [6, 21].

If ϕ(y1, . . . , ym, S) is an FO formula, a1, . . . , am are reals, and A is an n-
dimensional constraint database, then we denote by (a1, . . . , am, A) |= ϕ(y1, . . . ,
ym, S) that (a1, . . . , am, A) satisfies ϕ. We denote by ϕ(A) the set {(a1, . . . , am) |
(a1, . . . , am, A) |= ϕ(y1, . . . , ym, S)}.

The fragment of FO in which multiplication is disallowed is called FOLin.
This fragment is closed on the class of linear constraint databases [17].
3 Spatial databases in the constraint model are usually defined as finite collections of

such geometrical figures. We have chosen the simpler definition of a database as a
single geometrical figure, but all results carry over to the more general setting.

2.2 Transitive-Closure Logics

We now define a number of extensions of FO (and of FOLin) with different types
of transitive-closure operators. Recently, we introduced and studied the first two
extensions, FO+TC and FO+TCS [9, 10]. The latter extension, FO+KTC, is
due to Kreutzer [15].

Definition 3. A formula in FO+TC is a formula built in the same way as an
FO formula, but with the following extra formation rule: if ψ(x,y) is a formula
with x and y k-tuples of real variables, and with all free variables of ψ among
x and y and if s, t are k-tuples of real variables, then

[TCx;y ψ(x,y)](s, t) (1)

is also a formula which has as free variables those in s and t. ��

The semantics of a subformula of the above form (1) evaluated on a database
A is defined in the following operational manner: Start computing the following
iterative sequence of 2k-ary relations: X0 := ψ(A) and Xi+1 := Xi ∪ {(x,y) ∈
IR2k | (∃z) (Xi(x,z) ∧X0(z,y))} and stop as soon as Xi = Xi+1. The semantics
of [TCx;y ψ(x,y)](s, t) is then defined as (s, t) belonging to the 2k-ary relation
Xi.

Since every step in the above algorithm, including the test for Xi = Xi+1, is
expressible in FO, every step is effective and the only reason why the evaluation
may not be effective is that the computation does not terminate. In that case
the semantics of the formula (1) (and any other formula in which it occurs as
subformula) is undefined.

As an example of an FO+TC formula over a 2-dimensional input database,
we take [TCx;y S(x, y)](s, t). This expression, when applied to a 2-dimensional
figure, returns the transitive closure of this figure, viewed as a binary relation over
IR. For illustrations of the evaluation of this formula, we refer to the examples
in Fig. 1 in the Introduction.

The language FOLin+TC consists of all FO+TC formulas that do not use
multiplication.

The following language, FO+TCS, is a modification of FO+TC that incor-
porates a construction to specify explicit termination conditions on transitive
closure computations.

Definition 4. A formula in FO+TCS is built in the same way as an FO formula,
but with the following extra formation rule: if ψ(x,y) is a formula with x and
y k-tuples of real variables; σ is an FO sentence over the input database and a
special 2k-ary relation name X; and s, t are k-tuples of real variables, then

[TCx;y ψ(x,y) | σ](s, t) (2)

is also a formula which has as free variables those in s and t. We call σ the stop
condition of this formula. ��

The semantics of a subformula of the above form (2) evaluated on databases
A is defined in the same manner as in the case without stop condition, but now
we stop not only in case an i is found such that Xi = Xi+1, but also when
an i is found such that (A,Xi) |= σ, whichever case occurs first. As above,
we also consider the restriction FOLin+TCS. It was shown that FOLin+TCS is
computationally complete, in the sense of Turing-complete on the polynomial
constraint representation of databases (see Chap. 2 of [17]) on linear constraint
databases [10].

Finally, we define FO+KTC. In finite model theory [8], transitive-closure
logics, in general, allow the use of parameters. Also the language FO+KTC
allows parameters in the transitive closure.

Definition 5. A formula in FO+KTC is a formula built in the same way as
an FO formula, but with the following extra formation rule: if ψ(x,y,u) is a
formula with x and y k-tuples of real variables, u some further �-tuple of free
variables, and where s, t are k-tuples of real terms, then

[TCx;y ψ(x,y,u)](s, t) (3)

is also a formula which has as free variables those in s, t and u. ��

Since the free variables in ψ(x,y,u) are those in x, y and u, here parameters
are allowed in applications of the TC operator. The semantics of a subformula
of the form (3), with s = (s1, . . . , sk), evaluated on a database A is defined in
the following operational manner: Let I be the set of indices i for which si is a
constant. Then we start computing the following iterative sequence of (2k + �)-
ary relations: X0 := ψ(A)∧∧

i∈I(si = xi) and Xi+1 := Xi∪{(x,y,u) ∈ IR2k+� |
(∃z) (Xi(x,z,u) ∧ ψ(z,y,u))} and stop as soon as Xi = Xi+1. The semantics
of [TCx;y ψ(x,y,u)](s, t) is then defined as (s, t,u) belonging to the (2k+�)-ary
relation Xi.

We again also consider the fragment FOLin+KTC of this language. It was
shown that FOLin+KTC is computationally complete on linear constraint data-
bases [15].

For all of the transitive-closure logics that we have introduced in this section,
we consider fragments in which the transitive-closure operator is restricted to
work on relations of arity at most 2k and we denote this by adding 2k as a
superscript to the name of the language. For example, in the language FO+TCS4,
the transitive closure is restricted to binary and 4-ary relations.

3 Undecidability of the Termination of the Evaluation of
Transitive-Closure Formulas

The decision problems that we consider in this section and the next take couples
(ϕ,A) as input, where ϕ is an expression in the transitive-closure logic under
consideration and A is an input database, and the answer to the decision problem

is yes if the computation of the semantics of ϕ on A (as defined for that logic)
terminates. We then say, for short, that ϕ terminates on A.

We give the following general undecidability result concerning termination.
In the proof and further on, the notion of nilpotency of a function will be used: a
function f : IRn → IRn is called nilpotent if there exists a natural number k ≥ 1
such that for all x ∈ IRn, fk(x) = (0, . . . , 0).

Theorem 1. It is undecidable whether a given formula in FO+TC4 terminates
on a given input database.

Proof (sketch). We reduce deciding whether a piecewise affine function4 f :
IR2 → IR2 is nilpotent to deciding whether the evaluation of a formula in
FO+TC4 terminates. So, assume that termination of formulas in FO+TC4 is
decidable. For a given piecewise affine function f : IR2 → IR2, graph(f), the
graph of f , is a semi-algebraic subset of IR4. We give a procedure to decide
whether f is nilpotent:
Step 1. Decide whether the FO+TC4-query [TCx1,x2;y1,y2 S(x1, x2, y1, y2)](s1, s2,
t1, t2) terminates on the input graph(f); if the answer is no, then return no, else
continue with Step 2.

Step 2. Compute f1(IR2), f2(IR2), f3(IR2), . . . and return yes if this ends with
{(0, 0)}, else return no.

This algorithm decides correctly whether f is nilpotent, since for a nilpotent
f , the evaluation of the transitive closure of graph(f) will terminate, and the
process in Step 2 is therefore also guaranteed to terminate. Since nilpotency of
piecewise affine functions from IR2 to IR2 is known to be undecidable [4], this
completes the proof. ��

The following corollary follows from the previous theorem and the fact that
FO+TC4-formulas are in FO+KTC4.

Corollary 1. It is undecidable whether a given formula in FO+KTC4 termi-
nates on a given input database. ��

For transitive-closure logics with stop-condition, we even have undecidability
for transitive closure restricted to binary relations.

Theorem 2. It is undecidable whether a given formula in FO+TCS2 terminates
on a given input database.

Proof (sketch). We prove this result by reducing the undecidability of a variant
of Hilbert’s 10th problem to it. This problem is deciding whether a polynomial
p(x1, . . . , x13) in 13 real variables and with integer coefficients has a solution in

4 A function f : IRn → IRn is called piecewise affine if its graph is a linear semi-
algebraic subset of IRn × IRn.

the natural numbers [7, 19]. For any such polynomial p(x1, . . . , x13), let σp be
the FO-expressible stop-condition:

(∃x1) · · · (∃x13)(
13∧
i=1

X(−1, xi) ∧ p(x1, . . . , x13) = 0).

Since, in consecutive iterations of the computation of the transitive closure
of the graph of y = x+ 1, −1 is mapped to 0, 1, 2, . . ., it is easy to see that
p(x1, . . . , x13) has an integer solution if and only if [TCx;y (y = x+ 1) | σp](s, t)
terminates. Since the above mentioned Diophantine decision problem is unde-
cidable, this completes the proof. ��

The results in this section are complete for the languages FO+TC, FO+TCS
and FO+KTC, apart from the cases FO+TC2 and FO+KTC2. The former case
will be studied in the next sections. For the latter case, we remark that an open
problem in dynamical systems theory, namely, the point-to-fixed-point problem
reduces to it. This open problem is the decision problem that asks whether for a
given algebraic number x0 and a given piecewise affine function f : IR → IR, the
sequence x0, f(x0), f2(x0), f3(x0), . . . reaches a fixed point. Even for piecewise
linear functions with two non-constant pieces this problem is open [3, 13]. It is
clear that this point-to-fixed-point problem can be expressed in FO+KTC2. So,
we are left with the following unsolved problem.

Open problem 1. Is it decidable whether a given formula in FO+KTC2 ter-
minates on a given input database? ��

4 Deciding Termination for Continuous Function Graphs
in the Plane

In this section, we study the termination of the transitive closure of a fixed semi-
algebraic subset of the plane, viewed as a binary relation over IR. We say that
a subset A of IR2 has a terminating transitive closure, if the query expressed by
[TCx;y S(x, y)](s, t) terminates on input A using the semantics of FO+TC. In
the previous section, we have shown that deciding nilpotency of functions can be
reduced to deciding termination of the transitive closure of their function graphs.
However, since it is not known whether nilpotency of (possible discontinuous)
functions from IR to IR is decidable, we cannot use this reduction to obtain
the undecidability in case of binary function graphs. We therefore have another
unsolved problem:

Open problem 2. Is it decidable whether a given formula in FO+TC2 termi-
nates on a given input database? ��

There are obviously classes of functions for which deciding termination of
their function graphs is trivial. An example is the class of the piecewise constant
functions. In this section, we concentrate on a class that is non-trivial, namely

the class of the continuous semi-algebraic5 functions from IR to IR. The main
purpose of this section is to prove the following theorem.

Theorem 3. There is a decision procedure that on input a continuous semi-
algebraic function f : IR → IR decides whether the transitive closure of graph(f)
terminates. Furthermore, this decision procedure can be expressed by a formula
in FO (over a 2-ary database that represents the graph of the input function). ��

Before we arrive at the proof of Theorem 3, we give a series of six technical
lemma’s. First, we introduce some terminology.

Let f : IR → IR be a continuous function and let x be a real number. We call
the set {fk(x) | k ≥ 0} the orbit of x (with respect to f). A real number x is said
to be a periodic point of f if fd(x) = x for some natural number d ≥ 1. And we
call the smallest such d the period of x (with respect to f). Let Per(f) be the
set of periodic points of f . If a real number x is not a periodic point of f , but if
fk(x) is periodic for some natural number k ≥ 1, we call x an eventually periodic
point of f and we call the smallest such number k the run-up of x (with respect
to f). Finally, we call f terminating if graph(f) has a terminating transitive
closure.

The following lemma holds for arbitrary functions, not only for continuous
ones. We also remark that Lemmas 1–4 hold for arbitrary functions, not only
for semi-algebraic ones. We omit the proofs of Lemmas 1–4.

Lemma 1. The function f : IR → IR is terminating if and only if there exist
natural numbers k and d such that for each x ∈ IR, fk(x) is a periodic point of
f of period at most d. ��
Lemma 2. Let f : IR → IR be a continuous function. If f is terminating,
then Per(f) is a non-empty, closed and connected part of IR. In particular,
Per(f) = fk(IR) for some k ≥ 1. ��
Lemma 3. Let C be a non-empty, closed and connected part of IR. If f : C → C
is a continuous function and if every x ∈ C is periodic for f , then f or f2 is
the identity mapping on C. ��
Lemma 4. For a continuous and terminating f : IR → IR, Per(f) = {x ∈ IR |
f2(x) = x}. ��

Denote by Ci the set of fixed points of f i, i.e., the set of x ∈ IR for which
f i(x) = x. From the previous lemmas it follows that for continuous and termi-
nating f ,

Per(f) = C1 ∪ C2,

and that either C2 \ C1 is empty and C1 is non-empty or C2 \ C1 is non-empty
and C1 is a singleton with the points of C2 \ C1 appearing around C1.

Sharkovskĭı’s theorem [1], one of the most fundamental result in dynami-
cal system theory, tells us that for a continuous and terminating f : IR → IR
5 A function is called semi-algebraic if its graph is semi-algebraic.

graph(f1)

a

a
ba

a

b

graph(f)

Fig. 2. Illustration of the construction of f1 (right) from f (left).

only periods 1, 2, 4, . . . , 2d can appear for some integer value d. The previous
lemma has the following corollary which strengthens the result of Sharkovskĭı’s
for terminating functions.

Corollary 2. If f : IR → IR is continuous and terminating, then f can only
have periodic points with periods 1 and 2. ��

Further on, in the proof of Theorem 3, for functions f for which Per(f) is IR,
we only have to verify whether IR is C1 ∪C2. For other f we have to do further
tests. Hereto, we now describe the construction of a continuous function f̃ from
a given continuous function f .

Let C denote the set Per(f), which, by Lemma 2 and the assumption that
Per(f) is not IR, we can take to be [a, b], [a,+∞) or (−∞, b].

First, we collapse C to {a} if C is bounded or of the form [a,+∞); and to
{b} if C is of the form (−∞, b]. Let us first consider the case C = [a, b]. Let
f∈C = {x ∈ IR | f(x) ∈ C}, f<C = {x ∈ IR | f(x) < a}, and f>C = {x ∈ IR |
f(x) > b}.

We define the continuous function f1 on IR as f1(x) :=⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

f(x) if x ∈ f<C and x < a,

f(x) − (b− a) if x ∈ f>C and x < a,

f(x+ (b− a)) if x ∈ f<C and x > a,

f(x+ (b− a)) − (b− a) if x ∈ f>C and x > a,

a if x ∈ f∈C .

This construction is illustrated in Fig. 2.
Let us next consider the case C = [a,+∞). Here, the function f1 on IR is

defined as {
f(x) if x ∈ f<C and x < a,

a if x ∈ f∈C and x < a or if x ≥ a.

In the case C = (−∞, b], f1 is defined similarly to the previous case. Finally, we
define

f̃(x) := f1(x+ α) − α,

where α is a or b, depending on the case.
The following lemma is readily verified.

Lemma 5. Let f : IR → IR be a function. We have fk(IR) = Per(f) if and only
if f̃k(IR) = {0}. ��

As mentioned in the previous section, in the area of dynamical systems, a
function f̃ is called nilpotent if f̃k(IR) = {0} for some integer k. The following
lemma’s show that this is a decidable property in our setting. For continuous
piecewise affine functions this result was already stated (without proof) [4]. So,
we extend this result to continuous semi-algebraic functions and furthermore
show that the decision procedure is expressible in FO.

Lemma 6. There is an FO sentence that expresses whether a continuous semi-
algebraic function f : IR → IR is nilpotent.

Proof (sketch). We now describe the algorithm nilpotent(input f) to decide
nilpotency of continuous semi-algebraic functions f : IR → IR.

Algorithm nilpotent(input f):
Step 1. Compute the set {x ∈ IR | f2(x) = x}. If this set differs from {0}, then
answer no, else continue with Step 2.

Step 2. Compute the set B = {r | γBB(r)}, where γBB(r) is the formula that
defines positive real numbers r that satisfy one of the following three conditions:

1. limx→−∞ f(x) and limx→+∞ f(x) are constants and f((−∞, r]) ⊂ (−r,+r)
and f([r,+∞)) ⊂ (−r,+r);

2. limx→−∞ f(x) = +∞ and limx→+∞ f(x) is a constant and f([r,+∞)) ⊂
(−r,+r);

3. limx→−∞ f(x) is a constant and limx→+∞ f(x) = −∞ and f((−∞, r]) ⊂
(−r,+r);
If B is empty, answer no, else compute the infimum r0 of B and continue

with Step 3.

Step 3. Let g be the function defined as g(x) := f(x) if −r0 < x < r0 and
g(x) := f(−r0) if x ≤ −r0 and g(x) := f(r0) if x ≥ r0. Take r1 larger than r0
and max {|g(x)| | x ∈ IR}.

If for g there exists a positive real number ε such that

1. g is constant 0 on (−ε,+ε), or
2. g is constant 0 on (−ε, 0) and has a right tangent with strictly negative slope

in 0, or
3. g is constant 0 on (0,+ε) and has a left tangent with strictly negative slope

in 0,

then continue with Step 4, else answer no.

Step 4. If for all x > 0, g(x) < x and g2(x) < x and for every x < 0, g(x) > x
and g2(x) > x holds, then answer yes, else answer no.

We omit the proof of the correctness of the algorithm nilpotent. ��

We are now ready for the proof of Theorem 3.

Proof of Theorem 3 (sketch). We describe a decision procedure terminate
that on input a function f : IR → IR, decides whether the transitive closure of
graph(f) terminates after a finite number of iterations.

Algorithm terminate(input f):
Step 1. Compute the sets C1 = {x | f(x) = x} and C2 = {x | f2(x) = x}. If C2

is a closed and connected part of IR and if C1 is a point with C2 \ C1 around it
or if C2 \ C1 is empty, then continue with Step 2, else answer no.

Step 2. If C2 is IR, answer yes, else compute the function f̃ (as described before
Lemma 5) and apply the algorithm nilpotent in the proof of Lemma 6 to f̃
and return the answer.

The correctness of this procedure follows from Lemmas 4, 5 and 6. It should
be clear that all ingredients can be expressed in FO. ��

We use the function f1, given on the left in Fig. 1 in the Introduction, and
the function f2, given on the right in Fig. 1, to illustrate the decision procedure
terminate(input f). For f1, C1 ∪C2 is {0, 1}, and therefore f1 doesn’t survive
Step 1 and terminate(input f1) immediately returns no. For f2, C1∪C2 is {0},
and therefore we have f̃2 = f2. Next, the algorithm nilpotent is called with
input f2. For f2, the set B, computed in Step 2 of the algorithm nilpotent, is
non-empty and r0 is 1. So, the function g in Step 3 will be f2 again and r1 is
1. Since g is identical zero around the origin, finally the test in Step 4 decides.
Here, we have that for x > 0, g(x) < x and also g2(x) < x since x − 1

4 < x
and x − 1

2 < x. For x < 0, we have that both g(x) and g2(x) are identical zero
and thus the test succeeds also here. The output of nilpotent on input f2 and
therefore also the output of terminate on input f2 is yes.

For a continuous and terminating function, the periods that can appear are
1 and 2 (see Lemma 3). In dynamical systems theory, finding an upper bound
on the length of the run-ups in terms of some characteristics of the function, is
considered to be, even for piecewise affine functions, a difficult problem [18, 20].
Take, for instance, the terminating continuous piecewise affine function that is
constant towards −∞ and +∞ and that has turning points (0, 1

3), (1
3 ,

2
3 − ε),

(4
9 ,

4
9), (5

9 ,
5
9), (2

3 ,
1
3), and (1, 2

3), with ε > 0 small. Here, it seems extremely
difficult to find an upper bound on the length of the run-ups in terms of the
number of line segments or of their endpoints. The best we can say in this
context, is that from Theorem 3, it follows that also the maximal run-up can be
computed.

Corollary 3. Let f : IR → IR be a continuous, terminating semi-algebraic func-
tion. The maximal run-up of a point in IR with respect to f is computable. ��

We end this section with a remark concerning termination of continuous
functions that are defined on a connected part I of IR. Let f : I → I be such
a function. We define the function f̄ to be the continuous extension of f to
IR that is constant on IR \ I. It is readily verified that the transitive closure
of graph(f) terminates if and only if f̄ is terminating. We therefore have the
following corollary of Theorem 3.

Corollary 4. Let I be a connected part of IR. There is an FO expressible de-
cision procedure that decides whether the transitive closure of the graph of a
continuous semi-algebraic function f : I → I terminates. ��

5 Logics with Transitive Closure Restricted to Function
Graphs

In this section, we study fragments of FO+TC and FO+TCS where the transi-
tive-closure operator is restricted to work only on the graphs of continuous semi-
algebraic functions from IRk to IRk. These languages bear some similarity with
deterministic transitive-closure logics in finite model theory [8].

If x and y are k-dimensional real vectors and if ψ(x,y) is an FO+TC-
formula (respectively FO+TCS-formula), let γψ be the FO+TC-sentence (re-
spectively FO+TCS-sentence) γ1

ψ ∧ γ2
ψ, where γ1

ψ expresses that ψ(x,y) defines
the graph of a function from IRk to IRk and where γ2

ψ expresses that ψ(x,y)
defines a continuous function graph. We can express γ2

ψ using the classical ε-δ
definition of continuity. Therefore, it should be clear that γ1

ψ and γ2
ψ can be

expressed by formulas that make direct calls to ψ(x,y). Thus, the following
property is readily verified.

Proposition 1. Let ψ(x,y) be an FO+TC-formula (respectively an FO+TCS-
formula). The evaluation of ψ(x,y) on an input database A terminates if and
only if the evaluation of γψ on A terminates. ��
Definition 6. We define FO+cTC (respectively FO+cTCS) to be the fragment
of FO+TC (respectively FO+TCS) in which only TC-expressions of the form
[TCx;y ψ(x,y)∧γψ](s, t) (respectively [TCx;y ψ(x,y)∧γψ | σ](s, t)) are allowed
to occur. ��

We again use superscript numbers to denote restrictions on the arities of the
relations of which transitive closure can be taken.

5.1 Deciding Termination of the Evaluation of FO+cTC2 Queries

Since, when ψ(x, y) is y = x + 1, γψ is true, from the proof of Theorem 2 the
following negative result follows.

Corollary 5. It is undecidable whether a given formula in FO+cTCS2 termi-
nates on a given input database. ��

We remark that for this undecidability it is not needed that the transitive
closure of continuous functions on an unbounded domain is allowed (f(x) = x+1
in the proof of Theorem 2). Even when, for example, only functions from [0, 1]
to [0, 1] are allowed, we have undecidability. We can see this by modifying the
proof of Theorem 2 as follows. For any polynomial p(x1, . . . , x13), let σp be the
FO-expressible stop-condition:

(∃x1) · · · (∃x13)(
13∧
i=1

((∃yi)(xiyi = 1 ∧ X(1, yi)) ∨

xi = 0 ∨ xi = 1) ∧ p(x1, . . . , x13) = 0).

Since, in consecutive iterations, the function f̄ , for f : [0, 1] → [0, 1], with f(x) =
x
x+1 , maps 1 to 1

2 ,
1
3 ,

1
4 , . . ., it is then easy to see that p(x1, . . . , x13) having an

integer solution is equivalent to

[TCx;y graph(f̄) | σp](s, t)

terminating (remark again that the γgraph(f̄) is true).
The main result of this section is the following.

Theorem 4. It is decidable whether a given formula in FO+cTC2 terminates
on a given input database. Moreover, this decision procedure is expressible in
FO+cTC2.

Proof (sketch). Given a formula ϕ in FO+cTC2 and an input database A,
we can decide whether the evaluation of ϕ on A terminates by first evaluating
the deepest FO-formulas on which a TC-operator works on A and then using
Theorem 3 to decide whether the computation of transitive closure halts on
this set. If it does not terminate, we answer no, else we compute the result and
continue recursively to less deep occurrences of TC-operators in ϕ. We continue
this until the complete formula ϕ is processed. Only if we reach the end and all
intermediate termination tests returned yes, we output yes.

The expressibility of the decision procedure in FO can also be proven by
induction on the structure of the formula. ��

5.2 A Guarded Fragment of FO+cTC2

The fact that termination of FO+cTC2-formulas is expressible in FO+cTC2, al-
lows us to define a guarded fragment, FO+cTC2

G , of this language. Indeed, if ψ is
a formula in FO+cTC2 of the form [TCx;y ψ(x,y)](s, t), let τψ be the FO+cTC2-
sentence that expresses that this TC-expression terminates (obviously, τψ also
depends on the input database). We can now define the guarded fragment of
FO+cTC2, in which every TC-expression is accompanied by a termination guard.

Definition 7. We define FO+cTC2
G to be the fragment of FO+cTC2 in which

only TC-expressions of the form [TCx;y ψ(x,y) ∧ τψ](s, t) are allowed. ��
The following property follows from the above remarks.

Proposition 2. In the language FO+cTC2
G, every query terminates on all pos-

sible input databases. Furthermore, all terminating queries of FO+cTC2 are
expressible in FO+cTC2

G. ��

5.3 Expressiveness Results

Even the least expressive of the transitive-closure logics is more expressive than
first-order logic.

Theorem 5. The language FO+cTC2
G is more expressive than FO on finite

constraint databases.

Proof (sketch). Consider the following query Qint on 1-dimensional databases
S: “Is S a singleton that contains a natural number?”. The query Qint is not
expressible in FO (if it would be expressible, then also the predicate nat(x), ex-
pressing that x is a natural number, would be in FO). The query Qint is express-
ible in FO+cTC2

G by the sentence that says that S is a singleton that contains 0,
1 or an element r > 1 such that (∃s)(∃t)([TCx;y ψ(x, y)∧ γψ ∧ τψ(x,y)∧γψ](s, t) ∧
s = 1 ∧ t = 1

r), where ψ(x, y) is the formula (∃r)(S(r) ∧ ϕ(r, x, y)). Here,
ϕ(r, x, y) defines the graph of the continuous piecewise affine function that maps
x to

y =

⎧⎪⎨
⎪⎩

0 if x ≤ 1
r ,

x− 1
r if 1

r < x < 1,
1 − 1

r if x ≥ 1.

Remark that γψ is always true. The sentence τψ(x,y)∧γψ is true when the database
is a singleton containing a number larger than one. The function given by
ϕ(r, x, y) is illustrated on the right in Fig. 1 for r = 4. The evaluation of this
transitive closure is guaranteed to end after at most �r� iterations and this sen-
tence indeed expresses Qint since (1, 1

r) belongs to the result of the transitive
closure if and only if r > 1 is a natural number. ��

6 Concluding Remarks

We conclude with a number of remarks. One of our initial motivations to look
at termination of query evaluation in transitive closure logics was to study the
expressive power of FO+TC compared to that of FO+TCS. As mentioned in
the Introduction, the latter language is computationally complete on linear con-
straint databases. It is not clear whether FO+TC is also complete. In general,
we have no way to separate these languages. But if we restrict ourselves to their
fragments FO+cTC2 and FO+cTCS2, the fact that for the former termination is

decidable, whereas it is not for the latter, might give the impression that at least
these fragments can be separated. But this is not the case, since equivalence of
formulas in these languages is undecidable. In fact, the expressions used in the
proof of Theorem 2, are expressible in FO+TC (they do not even use an input
database).

A last remark concerns the validity of the results in Section 4 for more general
settings. Lemmas 1–5 are also valid for arbitrary real closed fields R. One could
ask whether the same is true for Lemma 6. However, the proof of the correctness
of the FO-sentence which decides global convergence in Step 4 [3], relies on the
Bolzano-Weierstrass theorem, which is known not to be valid for arbitrary real
closed fields [5]. Furthermore, we can even prove that no FO-sentence exists
that decides termination of semi-algebraic functions f : R → R for arbitrary
real closed fields R.

Acknowledgments. We thank the reviewers for a number of suggestions to
improve the presentation of our results.

References

1. Ll. Alsedà, J. Llibre, and M. Misiurewicz. Combinatorial Dynamics and Entropy
in Dimension One, volume 5 of Advances Series in Nonlinear Dynamics. World
Scientific, 1993.

2. M. Benedikt, M. Grohe, L. Libkin, and L. Segoufin. Reachability and connectiv-
ity queries in constraint databases. In Proceedings of the 19th ACM SIGMOD-
SIGACT-SIGART Symposium on Principles of Database Systems (PODS’00),
pages 104–115. ACM, 2000.

3. V.D. Blondel, O. Bournez, P. Koiran, C.H. Papadimitriou, and J.N. Tsitsiklis.
Deciding stability and mortality of piecewise affine dynamical systems. Theoretical
Computer Science, 255(1-2):687–696, 2001.

4. V.D. Blondel, O. Bournez, P. Koiran, and J.N. Tsitsiklis. The stability of satu-
rated linear dynamical systems is undecidable. Journal of Computer and System
Sciences, 62(3):442–462, 2001.

5. J. Bochnak, M. Coste, and M.-F. Roy. Real Algebraic Geometry, volume 36 of
Ergebenisse der Mathematik und ihrer Grenzgebiete. Folge 3. Springer-Verlag, 1998.

6. G.E. Collins. Quantifier elimination for real closed fields by cylindrical algebraic
decomposition. In Automata Theory and Formal Languages, volume 33 of Lecture
Notes in Computer Science, pages 134–183. Springer-Verlag, 1975.

7. M. Davis, Y. Matijasevič, and J. Robinson. Hilbert’s Tenth Problem. Diophantine
equations: positive aspects of a negative solution. In Mathematical Developments
Arising from Hilbert Problems, volume 28, pages 323–378. American Mathematical
Society, 1976.

8. H.-D. Ebbinghaus and J. Flum. Finite Model Theory. Springer-Verlag, 1995.

9. F. Geerts. Linear approximation of semi-algebraic spatial databases using transi-
tive closure logic, in arbitrary dimension. In G. Ghelli and G. Grahne, editors, Pro-
ceedings of the 8th International Workshop on Database Programming Languages
(DBPL’01), volume 2397 of Lecture Notes in Computer Science, pages 182–197.
Springer-Verlag, 2002.

10. F. Geerts and B. Kuijpers. Linear approximation of planar spatial databases us-
ing transitive-closure logic. In Proceedings of the 19th ACM SIGMOD-SIGACT-
SIGART Symposium on Principles of Database Systems (PODS’00), pages 126–
135. ACM, 2000.

11. S. Grumbach and G. Kuper. Tractable recursion over geometric data. In G. Smolka,
editor, Proceedings of Principles and Practice of Constraint Programming (CP’97),
volume 1330 of Lecture Notes in Computer Science, pages 450–462. Springer-
Verlag, 1997.

12. P.C. Kanellakis, G.M. Kuper, and P.Z. Revesz. Constraint query languages. Jour-
nal of Computer and System Science, 51(1):26–52, 1995. A preliminary report
appeared in the Proceedings 9th ACM Symposium on Principles of Database Sys-
tems (PODS’90).

13. P. Koiran, M. Cosnard, and M. Garzon. Computability with low-dimensional dy-
namical systems. Theoretical Computer Science, 132:113–128, 1994.

14. S. Kreutzer. Fixed-point query languages for linear constraint databases. In Pro-
ceedings of the 19th ACM SIGMOD-SIGACT-SIGART Symposium on Principles
of Database Systems (PODS’00), pages 116–125. ACM, 2000.

15. S. Kreutzer. Operational semantics for fixed-point logics on constraint databa-
ses. In R. Nieuwenhuis and A. Voronkov, editors, Proceedings of the 8th Interna-
tional Conference on Logic for Programming, Artificial Intelligence, and Reasoning
(LPAR’01), volume 2250 of Lecture Notes in Computer Science, pages 470–484.
Springer-Verlag, 2001.

16. S. Kreutzer. Query languages for constraint databases: First-order logic, fixed-
points, and convex hulls. In J. Van den Bussche and V. Vianu, editors, Proceedings
of 8th International Conference on Database Theory (ICDT’01), volume 1973 of
Lecture Notes in Computer Science, pages 248–262. Springer-Verlag, 2001.

17. G.M. Kuper, J. Paredaens, and L. Libkin. Constraint databases. Springer-Verlag,
1999.

18. J. Llibre and C. Preston. Personal communication. 2002.
19. Y. Matiyasevich. Hilbert’s Tenth Problem. The MIT Press, 1993.
20. C. Preston. Iterates of Maps on an Interval, volume 999 of Lecture Notes in

Mathematics. Springer-Verlag, 1983.
21. A. Tarski. A Decision Method for Elementary Algebra and Geometry. University

of California Press, 1951.

