
Towards a Theory of Movie Database Queries

Bart Kuijpers
University of Limburg (LUC)

Department WNI
B-3590 Diepenbeek, Belgium

bart.kuijpers@luc.ac.be

Jan Paredaens
University of Antwerp (UIA)

Dept. of Math. & Computer Science
Universiteitsplein 1

B-2610 Antwerpen, Belgium
pareda@uia.ua.ac.be

Dirk Van Gucht
Indiana University

Computer Science Dept.
Bloomington, IN 47405-4101, USA
vgucht@cs.indiana.edu

Abstract

We present a data model for movies and movie databa-
ses. A movie is considered to be a 2-dimensional semi-
algebraic figure that can change in time. We give a num-
ber of computability results concerning movies: it can be
decided whether a frame of a movie is only a topologically
transformation of another frame; a movie has a finite num-
ber of scenes and cuts and these can be effectively com-
puted.

Based on these computability results we define an SQL-
like query language for movie databases. This query lan-
guage supports most movie editing operations like cutting,
pasting and selection of scenes.

1. Introduction

We present a data model for movies and movie databa-
ses. We consider a movie to be an infinite sequence of 2-
dimensional figures that evolve in time. Each figure consists
of a possibly infinite number of points in the 2-dimensional
plane. A recent and much acclaimed method for effectively
representing infinite geometrical figures is provided by the
constraint database model, that was introduced by Kanel-
lakis, Kuper and Revesz in their 1990 seminal paper [10] (an
overview of the area of constraint databases can be found
in [13]). In this model, a 2-dimensional geometrical fig-
ure is finitely represented by means of a Boolean combi-
nation of polynomial equalities and inequalities. These in-
volve polynomials with two real variables that represent the

spatial coordinates of a point in the plane. The set of points
on the upper half of the unit circle, for instance, is in this
context given by

���� �� � �� � �� � �� � � � � � ���

In more mathematical terminology, these figures are called
semi-algebraic sets and for an overview of their properties
we refer to [3, 6].

This way of representing fixed figures can easily be
adapted to describe figures that change. Indeed, we can
add a time dimension and consider geometrical objects in
3-dimensional space-time that are described by polynomial
equalities and inequalities that also have a time variable �.
This gives us a data model for movies. Figure 1 gives an ex-
ample of a movie, in particular a potential scene from Star
Trek. In this short movie the starship Enterprise remains at
a constant position in space and can therefore be described
by formula�������������� �� �� � ������ � � � ����� �
������ � � � �� in which � is lacking. A fired photon torpedo
follows the dotted line (between the moments � � � and
� � �) an then explodes (depicted as increasing dotted cir-
cles, between � � � and � � �). At the bottom of Figure 1
three frames of the movie are shown: at � � ���� � and �.
The complete movie can be described by the set

���� �� �� � �� �� � ��������������� �� � � 	 � 	 �� �

(�� � � � � � �� � � 	 � 	 �� �

���
 ��� � �� 	 ��
 �� � � � � 	 ��)��

The movie of Figure 1 can be used to illustrate a number
of properties that all movies in this model have in common.

� � ��� � � � � � �

Figure 1. USS Enterprise firing a photon torpedo at a (cloaked) Klingon vessel.

For instance, between � � � and � � � the movie frames
change continuously and all frames (� � � 	 �) are, topo-
logically seen, the same. We will call such a sequence of
frames a scene of the movie. Moments in which the movie
changes discontinuously are referred to as cuts in the movie.
In the movie of Figure 1 there is, for instance, a cut at � � �:
a point changes into an increasing circle. The movie of Fig-
ure 1 has five scenes and six cuts (start and end of the movie
included). We remark that our notion of scene is finer that
the cinematographic notion of scene.

We will show that the number of cuts and scenes in a
semi-algebraic movie is always finite and that a represen-
tation of them by means of polynomial constraints can be
effectively computed. A key ingredient in this computa-
tion is a decision procedure for testing whether two movie
frames can be topologically transformed into one another,
i.e., whether they are homeomorphic. Although deciding
whether two 2-dimensional semi-algebraic sets are home-
omorphic is a result that belongs to the mathematical folk-
lore, a written proof of it is not to be found in the mathemat-
ical literature [15, 18]. We give a decision procedure and we
also generalize it to parameterized frames: there is an algo-
rithm that, given two movie frames that depend on time pa-
rameters �	 and ��, produces a formula built with conjunc-
tion and disjunction from formulas of the form � � � � � 	
and �� �
 (�� 	�
 constants and � � �� �) that expresses,
in function of �	 and ��, whether the frames are homeomor-
phic.

Finally, we define an SQL-like language to query movie
databases. This language is based on the above computabil-
ity results and on a well-known language to query databa-
ses in the constraint model, namely the relational calculus
augmented with polynomial inequalities [10, 16, 13]. It fol-
lows from a result by Tarski that the latter language is also

effective [20] (although variables range over the real contin-
uum). Our query language supports all basic movie editing
operations like selecting scenes that satisfy some condition,
composing several scenes into a movie, removing scenes,
etc. It also allows for the manipulation of single scenes and
even of single frames.

This paper is organized as follows. In Section 2, we for-
mally define the notion of movie, frame, scene and cut. Pro-
cedures to decide homeomorphism of frames and to com-
pute the scenes and cuts of a movie are given in Section 3.
In Section 4, we present a query language and discuss ex-
pressibility issues.

2. Movies, Frames, Scenes and Cuts

We denote the set of the real numbers by �. In the fol-
lowing we will consider planar figures that change in time.
A moving figure is described by means of an (often infinite)
set of tuples ��� �� �� in �� � �, where � and � represent
the spatial coordinates of a point in the 2-dimensional real
plane�� and � represents the time coordinate in�. We first
define the notion of a movie.

Definition 2.1 A movie is a set

� � ���� �� �� � �� �� � � 	 � 	 	 � ���� �� ����

where � and 	 are real algebraic numbers and where
���� �� �� is a formula built with the logical connectives
����� from atomic formulas of the form ���� �� ��
 �,
with ���� �� �� a polynomial with real algebraic coefficients
and real variables �� �� �. The numbers � and 	 are called
the beginning and end of the movie respectively and are de-
noted by �������� and ������.

A movie database is a finite set of movies.
�

�

� �� �

�

	

�

Figure 2. An example of a movie.

Figure 2 depicts the movie ���� �� �� � �� �� �
� 	
� 	 	 � (�� � �� � �� 	 � � ��� � �� � ��
 ��� �
� � � 	 	��� � ��� � �� � ��

�� � � � �
 	���)�
in the space �� � �. This movie shows at its beginning
(i.e., at � �
�) a single point in the origin. Then it shows a
disk whose radius increases and later decreases and ends in
a point at moment � � �, followed by a circle whose radius
increases, decreases, increases and then shrinks to a point.
Finally, for � � � 	 	, this movie shows nothing.

Definition 2.2 Let � be the movie ���� �� �� � �� �� �
� 	 � 	 	 � ���� �� ��� and let � 	 �
 	 	. The set
���� �� � �� � ���� �� �
�� is called the frame of the movie
� at the moment �
 and is denoted by��� .
�

For the movie of Figure 2, for instance, the frame ��	

is the origin, �
 is the closed unit disk and �� is the
empty set.

We can use this same example to illustrate the notion of
a scene. For
� � � � �, the movie of Figure 2 shows
a disk on which is zoomed into and then zoomed out of.
This continuous sequence of frames will be called a scene.
Also for � � � � �, we have a scene in which a circle is
continuously deformed. Scenes are separated by cuts.

In the following definition these concepts are formalized.
The notion of continuity that we will give may seem rather
involved. It corresponds, however to the intuitive notion of
“continuously changing,” as illustrated by the above exam-
ple.

Definition 2.3 Let � � ���� �� �� � �� �� � � 	 � 	
	 � ���� �� ��� be a movie and let � 	 �
 	 	.

� � is continuous on the right in �
 if there exists an
�
 � and a continuous (in �) series ��� � �

� � �� �
��� �� �� ����� �� � �
 	 � 	 �
 � �� of homeo-
morphisms of �� such that ������� � �� for all
� � ��
� �
 � �
. � is continuous on the left in �
 is
defined similarly. And � is continuous in �
 if it is
continuous both on the right and on the left in �
.

� A set ���� �� �� � �� �� � � � � � ���� �� ��� is a
scene of � if � is a maximal open interval in �� � � 	
� 	 	� such that � is continuous in each �
 � � .

� A point �
 in which� is not continuous is called a cut
in �.
�

The movie of Figure 2 is continuous in every � in the
open intervals �
�� ��, ��� �� and ��� 	�. These intervals
therefore determine the three scenes of the movie. There
are four cuts in the movie of Figure 2: in � �
�, �, � and
	. Remark that the beginning and the end of a movie are
always cuts.

3. Computability Results

In this section, we present two computability results con-
cerning movies. First, we show that it is decidable whether
two (parameterized) frames are homeomorphic. Next, we
will show that a movie has a finite number of scenes and
cuts and that formulas describing them can be computed
from the formula that defines the movie.

A key lemma in this context is the following.

Lemma 3.1 It is decidable whether two movie frames are
isotopic1, and also whether they are homeomorphic.

Proof (sketch). Let � and � be two movie frames. � and
� are homeomorphic if and only if � is isotopic to � or to
a reflection of � (see, e.g., [7, 14, 19]). It therefore suffices
to prove that it is decidable whether � is isotopic to �.

The algorithm to decide isotopy first computes for � �
�, respectively � the labeled planar graph embedding ��

as follows. The nodes of �� are the “singular points” of
� , i.e., the points that do not belong to the topological in-
terior of � or the complement of � , nor to a topologically
smooth border of � (see [12] for a formal definition) to-
gether with the lowest left most points on each closed curve
of the topological border of � on which there is no singu-
lar point. As an illustration, we take the frame � shown
in (a) of Figure 3. The singular points of � are �	� �� and
��. The closed polygon in the right upper corner of � does
not contain a singular point and has more than one most left
point. Of these the lowest is picked: �
. We remark that the
singular points can be computed by means of a first-order
formula in the theory of the real numbers. It was shown
by Tarski that this theory is effective [20], and symbolic
algorithms for the first-order theory of the reals [1, 5, 17]
can effectively compute the nodes. The computation of the
other nodes can be performed via a Cylindrical Algebraic
Decomposition (CAD) [5] (see also [1]).

1Isotopic means homeomorphic by an orientation preserving homeo-
morphism.

���

���

(a) (b)

���

���

��

��

��

��

���

���

���

���
��� ���

���

������

�

Figure 3. A frame of a movie � (a) and its graph �� (b).

In the graph �� (see (b) in Figure 3) these nodes are
labeled with typed labels: ��� for nodes that belong to �
and ��� labels for nodes that do not belong to � .

Next, the connected components of the intersection of�
with the topological border of � minus the labeled points
are computed. These form edges of �� and are labeled
with labels of type ��� . Similarly, ��� labels are given to the
connected components of the border that does not belong
to � . The topological border of a frame can be computed
in the first-order theory of the reals. The computation of
connected components of a frame is described in [4, 8, 9].
Finally, the areas formed by the graph embedding are com-
puted and labeled ��� , respectively ��� depending on their
containment in � . Let the sets of labeled nodes, edges and
areas be called �� , �� and�� , respectively.

From results in [11] it follows that � and � are iso-
topic if and only if there exist bijections 	� � �� � �� ,
	� � �� � �� , and 	� � �� � �� that map �-labels
to �-labels and
-labels to
-labels and that preserve the
clockwise occurrence of edges and areas around each of the
labeled nodes. These conditions can be verified. It is there-
fore decidable whether two movie frames are isotopic.
�

It should be remarked (details omitted) that it can be de-
cided whether two frames � and � are isotopic in polyno-
mial time (in the size of the polynomial constraint formulas
that describe � and �).

Theorem 3.1 Let �	 and �� be two movies. There is
an algorithm that on input these two movies produces a for-
mula �����

��	� ��� built with conjunction and disjunction
from formulas of the form � � �� � 	 and �� �
 (�� 	�

constants and � � �� �) that expresses, in function of �	 and
��, whether the two frames ���

	 and ���
� are isotopic (the

same is true for homeomorphic).

Proof (sketch). Let � be the movie ���� �� �� � �� �� �
� 	 � 	 	 � ���� �� ���� Collins proves that from the for-
mula � 	 � 	 	 � ���� �� �� a Cylindrical Algebraic De-
composition (CAD) � of���� can be computed such that

each cell in � entirely belongs to � or to the complement
of� [5] (see also [1]). � induces a CAD ���� of the ��� ��-
plane which in its turn induces a CAD �� of the �-axis. For
the movie of Figure 2 this is illustrated in Figure 4. The
cells of � are points, lines, curves, 2-dimensional surfaces
and 3-dimensional areas that are built as stacks on the dif-
ferent cells of ����. The cells of ���� are the (black and grey)
dots, arcs and patches of white space in Figure 4 (compare
with Figure 2). �� consists of the grey dots on the �-axis and
the open intervals determined by them as shown in Figure 4.
The cells of ���� are stacks built on these points and inter-
vals. It can be easily shown that the movie� is continuous
in each � that belongs to one of the open intervals of � �. So,
� remains isotopic in these intervals. The only possible
cuts of the movie are therefore the points of � � (grey dots).

The algorithm we seek could therefore work as follows.
Compute, using Collins’s CAD algorithm, both for�	 and
�� the representatives of all the cells in the induced CAD
��. Let these be �	 � �� � � � � � �	 and �	 � �� � � � � �
�
 respectively. Decide, using Lemma 3.1, for each pair
��� �� in the set ��	� � � � � �	����	� � � � � �
�, whether��

	 is
isotopic to ��

�. If they are, and if � represents, let’s say an
interval � � �	 � 	 of the induced CAD of the �-axis in�	

and if � represents, let’s say a point
 in the induced CAD
of the �-axis in ��, then we add the conjunction � � �	 �
	 � �� �
 as a disjunct to the formula �����

��	� ���.
�

To illustrate the previous theorem, we give�����	� ���
for the movie� of Figure 2:

(��� � �� � �� � � � �� � �� � ��� � �� � �� � � � �� � ��)
� ��� � �� � � � �� � �� � �� � �� � �� � � � � � �� � ��

� (��� � � � �� � ��� � ��� � � � �� � ���)�

Theorem 3.2 A movie has a finite number of scenes and
cuts. Polynomial constraint formulas describing them can
be effectively computed.

Proof (sketch). Let � be the movie ���� �� �� � �� �� �
� 	 � 	 	 � ���� �� ���� Consider again a CAD of �,

�

� �

�

	

Figure 4. The induced CADs ���� (black and grey) and �� (grey only) for the movie of Figure 2.

as in the proof of the previous theorem. From the proof of
the previous theorem it is clear that there are only a finite
number of cuts and scenes. The cuts are among the points
of the induced CAD ��. Not all these points must be cuts,
however. For the example of Figures 2 and 4, the grey dots
at � �
�� �� � and 	 are cuts. The one at � � 	��, however,
is not.

For what concerns the computation of the scenes and
cuts, we first compute the candidate points for cuts (namely,
the points in ��). It remains to be tested whether � is con-
tinuous in these points. Let �
 be a point in �� different from
the beginning or end of�. The test for continuity of� in
�
 is two-fold:

1. test whether the frame ��� is isotopic to two frames
����
 and ����
 in the neighboring intervals;

2. test for each ��� �� �
� � � (resp. �� �) whether for
each small enough �
 � and each Æ
 � there exist a
points ���� ��� and ����� ���� at distance at most Æ from
��� �� such that ���� ��� �
 � �� �� (resp. �� �) and
����� ���� �

 �� � � (resp. �� �).

The first test can be performed using the techniques out-
lined in Lemma 3.1. The second test can be expressed as a
sentence in the first-order theory of the reals and is therefore
effective [20]. Condition 1 is clearly necessary for continu-
ity. It is, however, not sufficient. At a cut, a frame can,
for instance, just jump to a different location. This would
not violate Condition 1. Condition 2 guarantees that there
is not a jump. When it is decided which of the points of � �
are cuts, the computation of the scenes is straightforward.
Collins’s algorithm produces polynomial constraint formu-
las for all the cells in a CAD. The scenes and cuts can there-
fore also be given by means of their defining polynomial
constraint formula.
�

4. Querying Movie Databases

In this section, we present an effective SQL-like lan-
guage to query movie databases: �SQL. This language
is based on the computability results of the previous section
and on a well-known query language for databases in the
constraint databases model, namely the relational calculus
augmented with polynomial constraints.

First, we define

Definition 4.1 A movie database query is a mapping that
maps every �-tuple of movies to a movie.
�

In the following, we will consider queries that have pa-
rameters�	� � � � ��	.

The calculus: We will use the relational calculus aug-
mented with polynomial constraints, the calculus for short,
as an essential part of�SQL. The calculus was introduced
and studied in, e.g., [10, 16] (see also [13]).

A calculus formula

���	� � � � � �
��	� � � � ��	�

is built from the atomic formulas����� �� �� (� � �� � � � � �)
and ���	� � � � ���
 � (� a polynomial), the logical connec-
tives ����� and the quantifiers ���.

The calculus formula ���
����
����
 ����������
(��
 �
�

� ���
 �
�
� � �� ��	��� �� ��), for instance,

defines the moments when there appears a circle (as a sub-
set) in movie�	.

The language �SQL: An elementary query in �SQL
is of the form

������ ��� �� ��
���� ����� � � � �
	
��� � 	 � 	 	 � �,

where � and 	 are real algebraic numbers and � is a con-
dition that can be expressed by means of the usual logical

connectives and quantifiers, calculus expressions, other ele-
mentary�SQL queries and the following primitives:

� �	�������� �� �� � � 	 � 	 	 � ���� �� ��
�	� � � � ��	��� ��� ���, with � a calculus formula
and � and � computable2 functions that work on in-
puts ��	� � � � ��	� and ����	� � � � ��	� (� a nat-
ural number), respectively, and return natural num-
bers. This primitive returns the movie consisting of
the scenes and cuts in the movie defined by � 	 � 	
	 � ���� �� ���	� � � � ��	� whose sequence num-
bers are �����	� � � � ��	�� �����	� � � � ��	�� � � � �
�����	� � � � ��	���	� � � � ��	� (in that order and
consecutive);

�
������� �� �� � � 	 � 	 	 �
���� �� ���	� � � � ��	��� ��, with � a calcu-
lus formula and � a natural number. It re-
turns the �-th cut in the movie defined by
� 	 � 	 	 � ���� �� ���	� � � � ��	�;

�
������	����� �� �� � � 	 � 	 	 �
�	��� �� ���	� � � � ��	��

�� � ���� �� �� � � 	 � 	 	 �
����� �� ���	� � � � ��	��

���, with �	 and �� calcu-
lus formulas. It expresses the condition on �	 and ��
that tells us when the two given frames are isotopic (as
discussed in Theorem 3.1);

� ���������� �� �� � � 	 � 	 	 �
���� �� ���	� � � � ��	��� with � a calculus for-
mula. Also �������� �� �� � � 	 � 	 	 �
���� �� ���	� � � � ��	���, with � a calculus formula.
They express the beginning and end of the movie
defined by � 	 � 	 	 � ���� �� ���	� � � � ��	�.

Furthermore, from elementary queries more complicated
queries can be constructed by composition, which we de-
note by Æ. For two movies �	 and ��, �	 Æ �� is
defined to be the movie consisting of �	 without its last
frame, immediately followed by ��.

The result of an �SQL query is a movie. The meaning
of these queries is the obvious one and will be illustrated by
the consequent examples. The function of the ����-part of
an elementary query is to indicate which of the input movies
are under consideration. It should be noted that some of
these primitives are redundant and are only added for ease
of use. From the proof of Theorem 3.2 it follows that
����
can be expressed in terms of
������	��.

Finally, we remark that

Theorem 4.1 �SQL queries are computable.

2This means computable on the polynomial constraint formulas that
define the movies.

Proof (sketch). Let� be a�SQL query. Given the polyno-
mial constraint formulas of the input movies�	� � � � ��	,
we can, by Theorems 3.1 and 3.2 replace all the occur-
rences of �	�����,
���� and
������	�� in � by con-
crete constraint formulas. Also the beginning and end
of movies can be computed (from a CAD, for instance).
Therefore all occurrences of������� and����� can be re-
placed by concrete constraint formulas. This way we obtain
a first-order formula over the reals, that can possibly con-
tain quantifiers. From Tarski’s quantifier elimination theo-
rem it follows that these can be eliminated [20]. This yields
a polynomial constraint formula for the output of the query
�. The output is guaranteed to be a movie by the syntactic
condition � 	 � 	 	 that appears in the 	
��� part of ele-
mentary�SQL queries.
�

We give some examples of�SQL queries, that illustrate
that all the basic movie editing operations can be performed
in �SQL:

Example 1: “Give all the frames of the movie �	 that are
homeomorphic to a circle” is expressible by the elementary
query

������ ��� �� ��
���� �	

	
��� �������	� 	 � �
� 	 �����	� � �	��� �� �� �

������	��� � !� � � � !� � �����

	�.

Example 2: “Give all the scenes of the movie�	 of which
all frames are homeomorphic to a circle” is a variation on
the query of Example 1 and it is expressible by the elemen-
tary query

������ ��� �� ��
���� �	

	
��� �������	� 	 � � � 	 �����	� �
�	�����	� ��������� ������� �� �� �

������	��� � !� � � � !� � ���

�	�����	� ��������� ������,

where ������� is the function that returns the number of
scenes of the input movie and �� is the identity function of
the natural numbers.

Example 3: “Remove scene 2 from movie �	” is ex-
pressed by

������ ��� �� ��
���� �	

	
��� �������	� 	 � � � 	 �����	� �
�	�����	� ��������
 �� ������ �� ���

where � is the function that maps 1 to itself and all �
 �
to �� �.

Example 4: “Give me the first scene of movie�	 followed
by the second scene of movie�� followed by movie��”
is a query that manipulates complete scenes. It can be ex-
pressed as the composition of the elementary queries given
by the following three expressions:

������ ��� �� ��
���� �	

	
��� �������	�����	� ��� ���� 	 � �
� 	 �����	�����	� ��� ���� �
�	�����	� ��� ������ �� ��

������ ��� �� ��
���� ��

	
��� �������	������� ��� ���� 	 � �
� 	 �����	������� ��� ���� �
�	������� ��� ������ �� ��

������ ��� �� ��
���� ��

	
��� ��������� 	 � �
� 	 ������� ������ �� ���

where the numbers � and � stand for the constant functions
to � and �.

Example 5: A query of particular interest for the Star Trek
movie of the Introduction: “Give all frames of �	 that
contain a photon torpedo (i.e., an isolated point)” can be
expressed as

������ ��� �� ��
���� �	

	
��� �������	� 	 � � � 	 �����	� �

�	��� �� �� � ���
����
�(�	��
� �
� �� �
���
 ���� ���!���	� � !� �� �

�
 �
�
� � �!
 �
�

� � �

� � � �
 � ! � �
�)�

Example 6: The following query manipulates the frames of
a scene. It also reverses a complete scene. “Play movie�	

at double speed followed by the reversed play of movie� �

turned upside down” is expressed as the composition of the
movies expressed by the following elementary queries

������ ��� �� ��
���� �	

	
��� �������	� 	 �� �
�� 	 �����	�
��	��� �� ���

������ ��� �� ��
���� ��

	
���
������� 	 � �
� 	
��������� ������
��
���

Example 7: The next example manipulates one scene. “Re-
turn the first half of the first scene of movie �	” is ex-
pressed by

������ ��� �� ��
���� �	

	
��� �	�����	� ��� ������ �� �� �
�������	�����	� ��� ���� � � �
� � ��������	�����	� ��� �����

�����	�����	� ��� ��������

Example 8: The next example manipulates complete
scenes without touching their individual frames. “Return
the movie consisting of the scenes of movie�	 but played
in reversed order” is expressed by

������ ��� �� ��
���� �	

	
��� �������	� 	 � �
� 	 �����	� �
�	�����	� ��������� ������ �� ���

where � is the function that maps � to �������
 �� �.

Example 9: The last example returns a certain computable
scene. “Return the middle scene of movie�	” is expressed
by

������ ��� �� ��
���� �	

	
��� �������	� 	 � �
� 	 �����	� �
�	�����	� ��� ������ �� ���

where � is the function that maps every natural number to
�������� � ���� if the number of scenes is odd and to
��������� if it is even.

5. Discussion and conclusion

We have presented a data model for movies and movie
databases, in which a movie is considered to be a 2-
dimensional semi-algebraic figure that can change in time.
We have given a number of computability results concern-
ing movies: homeomorphism and isotopy of movie frames
are decidable; a movie has a finite number of scenes and
cuts and these can be effectively computed.

Based on these computability results we have defined an
SQL-like query language for movie databases. This query
language supports most movie editing operations like cut-
ting, pasting and selection of scenes.

We remark that the presented model is very elementary
and that it can be extended and made more suitable for prac-
tical applications in many ways. For instance, the movies
that we consider here have frames that are purely black and
white (even without variations of grey and certainly without
colors). Movies have one single “image”, whereas many

movies (e.g., cartoon movies) are multi-layered. The pre-
sented model can be extended to cope with this.

Finally, we remark that our model cannot straightfor-
wardly be applied to existing movies. The problem of con-
verting cinematographic movies, for instance, into the pro-
posed model is beyond the scope of this paper. We remark
however that a number of 3D animation tools and virtual re-
ality environments work with data that can be readily con-
verted into the constraint model. 3D Studio Max [21] and
Virtual Reality Modeling Language (VRML) [2] are exam-
ples of such environments.

Acknowledgements. The authors are grateful to Sofie Hae-
sevoets for helpful comments and suggestions to improve
the paper.

References

[1] D.S. Arnon. Geometric reasoning with logic and alge-
bra. Artificial Intelligence, 37, pages 37–60, 1988.

[2] G. Bell, A. Parisi, and M. Pesce. The Virtual Reality
Modeling Language.
www.vrml.org/VRLM1.0/vrml10c.html

[3] J. Bochnak, M. Coste, and M.-F. Roy. Géométrie
Algébrique Réelle. Springer-Verlag, 1987.

[4] J. Canny, D. Grigor’ev, and N.N. Vorobjov jr. Find-
ing Connected Components of a Semialgebraic Set
in Subexponential Time. Applicable Algebra in En-
gineering, Communication and Computing, 2, pages
217–238, 1992.

[5] G.E. Collins. Quantifier elimination for real closed
fields by cylindrical algebraic decomposition. In vol-
ume 33 of Lecture Notes in Computer Science, pages
134–183. Springer-Verlag, 1975.

[6] M. Coste. Ensembles semi-algébriques. In Géometrie
Algébrique Réelle et Formes Quadratiques, volume
959 of Lecture Notes in Mathematics, pages 109–138.
Springer-Verlag, 1982.

[7] R.H. Cromwell and R.H. Fox. Introduction to Knot
Theory, volume 57 of Graduate Texts in Mathematics.
Springer-Verlag, 1977.

[8] J. Heintz, T. Recio, and M.-F. Roy. Algorithms in
Real Algebraic Geometry and Applications to Compu-
tational Geometry. DIMACS Series in Discrete Math-
ematics and Theoretical Computer Science, Volume 6,
pages 137–163, 1991.

[9] J. Heintz, M.-F. Roy, and P. Solernó. Description of
the Connected Components of a Semialgebraic Set
in Single Exponential Time. Discrete and Computa-
tional Geometry, 6, pages 1–20, 1993..

[10] P.C. Kanellakis, G.M. Kuper, and P.Z. Revesz. Con-
straint query languages. Journal of Computer and Sys-
tem Sciences, 51(1), pages 26–52, August 1995.

[11] B. Kuijpers, J. Paredaens, and J. Van den Bussche.
Lossless Representation of Topological Spatial Data.
In M. Egenhofer and J. Herring, editors, Advances
in Spatial Databases, 4th International Symposium,
SSD’95, volume 951 of Lecture Notes in Computer
Science, pages 1–13, Springer-Verlag, 1995.

[12] B. Kuijpers, J. Paredaens, and J. Van den Bussche. On
topological elementary equivalence of spatial databa-
ses. In F. Afrati and Ph. Kolaitis, editors, 6th Inter-
national Conference on Database Theory (ICDT ’97),
volume 1186 of Lecture Notes in Computer Science,
pages 432–446, Springer-Verlag, 1997.

[13] G. Kuper, L. Libkin, and J. Paredaens. Constraint da-
tabases. Springer-Verlag, 2000.

[14] E.E. Moise. Geometric Topology in Dimensions 2
and 3, volume 47 of Graduate Texts in Mathematics.
Springer-Verlag, 1977.

[15] A. Nabutovsky. Personal communication. June 1997.

[16] J. Paredaens, J. Van den Bussche, and D. Van Gucht.
Towards a theory of spatial database queries. In Pro-
ceedings 13th ACM Symposium on Principles of Da-
tabase Systems, pages 279–288. ACM Press, 1994.

[17] J. Renegar. On the computational complexity and ge-
ometry of the first-order theory of the reals. Journal
of Symbolic Computation, 13, pages 255–352, 1989.

[18] M.-F. Roy. Personal communication. May 1997.

[19] J. Stillwell. Classical Topology and Combinatorial
Group Theory, volume 72 of Graduate Texts in Math-
ematics. Springer-Verlag, 1980.

[20] A. Tarski. A Decision Method for Elementary Algebra
and Geometry. University of California Press, 1951.

[21] 3D Studio MAX. http://www.max3d.com/.

