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Abstract. The Generic Graph Machine (GGM) model is a Turing machine-like
model for expressing generic computations working directly on graph structures.
In this paper we present a number of observations concerning the expressiveness
and complexity of GGMs. Our results comprise the following: (i) an intrinsic char-
acterization of the pairs of graphs that are an input–output pair of some GGM;
(ii) a comparison between GGM complexity and TM complexity; and (iii) a detailed
discussion on the connections between the GGM model and other generic computa-
tion models considered in the literature, in particular the generic complexity classes
of Abiteboul and Vianu, and the Database Method Schemes of Denninghoff and
Vianu.

1. Introduction

Traditional models of computation, like the Turing Machine (TM) or the Random Access
Machine (RAM), express computable functions mapping strings to strings or numbers to
numbers. Sometimes, however, one is interested in computations that occur at a higher
level of abstraction. For example, many information structures can be naturally repre-
sented as a labeled graph, and one is then interested in computable functions mapping
graphs to graphs.

Of course, computations from graphs to graphs can be modeled on a TM, by encoding
graphs as strings over some finite alphabet, or on a RAM, by encoding graphs as certain
arrays of natural numbers. A fundamental problem with this approach, however, is that
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the encoding of a graph contains much more information than the graph itself. For
example, in the TM encoding of a graph one can identify the nodev1 of the graph that
comes first in the linear listing of all the nodes on the input tape; in the RAM encoding of
a graph one can identify the nodevmax that is maximal among all nodes, considering that
the nodes are given as natural numbers. Nodes likev1 or vmax thus have a special status
in the encoding of a graph, while they may have no such status in the graph itself. (As
an extreme example, in completely symmetric graphs like cliques or discrete graphs, no
node is distinguishable from another node.)

Hence, when using conventional computation models like TMs or RAMs for ex-
pressing computations on graphs, one might want to restrict the computations to those
that are “admissible,” i.e., that do not depend on the extra information which is only
there as an artifact of the encoding of the input. For example, a TM deleting the node
v1 (mentioned in the previous paragraph) from its input graph is not admissible. More
precisely, a TM is admissible if the partial recursive function from strings to strings it
computes, when decoded into a function from graphs to graphs, does not depend on the
particular encoding of nodes as strings that is used, and neither on the particular order-
ing in which the nodes and edges are listed in the input string. (A similar admissibility
criterion can be defined for RAMs.)

The output graph of a graph function computed by an admissible computation
device thus depends only on the input graph itself. This statement becomes even more
clear if we consider the following intrinsic characterization of the admissible TMs: a
graph function is computable by an admissible TM if and only if it preserves graph
isomorphisms. (This characterization is not difficult to prove.) The formal property of
preservation of isomorphisms, which is known asgenericity[12], indeed captures nicely
the informal property of depending only on the logical structure of the input graph.

A serious drawback of putting a genericity criterion on TMs, however, is that gener-
icity is not a syntactic notion (i.e., not recursively enumerable). What is therefore needed
are computation models specifically tuned for expressing graph functions, working di-
rectly on the logical structure of the graphs so that genericity is guaranteed. One such
generic computation model is the Generic Graph Machine (GGM), introduced by us in
[10]. A configuration of a GGM consists of an underlying graph and a number of ma-
chine instances, each having a local state and pointing to two nodes of this graph. During
the execution of a step, the machine instances perform in parallel a local transformation
on the graph and are each replaced by number of other machine instances. Since the
parallelism involved respects the symmetries of the graph, genericity is ensured.

The purpose of this paper is to further our understanding of generic computation
models by presenting a number of additional observations concerning the expressiveness
and complexity of GGMs.

Many of our results relate the GGM model with data manipulation languages for
object-oriented databases. Indeed, generic computation models have received consider-
able attention in database theory, in the form of database query and update languages.
Genericity is particularly important in that context, since it captures the principle of
physical data independence [4], [8], [12]. Initially, database languages, being used in the
context of relational database systems, were designed for the computation of domain-
preserving functions from relational structures to relations. However, later, the focus
shifted to the computation of graph functions, in the new context of object-oriented
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databases. Indeed, various manipulations of object databases can be modeled as graph
manipulations [1], [5].

Concretely, we analyze the relationship between the GGM model and the two object
database graph languages GOOD [11] and DMS [9]. GOOD is a graph transformation
language based on pattern matching, while DMS is an object-oriented language based on
the parallel invocation of methods. We prove that DMS, a restricted version of GOOD, and
a similarly restricted version of GGM, are equivalent to each other up to constant factors in
time and space complexity, and equivalent to Turing machines up to polynomial factors.
The interest in this result is that GOOD and DMS are not just arbitrarily chosen languages.
Indeed, GOOD is a yardstick for the computational completeness of formalisms for
computing generic graph functions: GOOD programs are known to be able to compute
precisely all “constructive” generic graph functions [16]. Moreover, DMS is a yardstick
for the complexity of such generic computations: it was designed to capture precisely
the generic complexity classes introduced by Abiteboul and Vianu [3].

Our second main result is a direct proof of the “BP-completeness” of the GGM
model. BP-completeness is an “intrinsic” property of the power of generic computation
models, originally introduced in the context of query languages for relational databases
by Chandra and Harel [8].1 In the context of the GGM model it means that a pair
(G,G′) of graphs is an input–output pair of some GGM if and only if the group of
automorphisms ofG can be homomorphically embedded in the group of automorphisms
of G′, i.e., if the symmetries inG are preserved inG′. Andries and Paredaens [6] already
proved the BP-completeness of GOOD; hence, the BP-completeness of the GGM model
follows indirectly from the equivalence between GOOD and GGM mentioned above.
The direct proof we give is an “intrinsic” argument providing additional insight in GGM
computations. We actually consider our argument to be clearer than the proof of BP-
completeness of GOOD presented in [6].

This paper is further organized as follows. In Section 2 we recall the definition of the
GGM model as introduced in [10]. In Section 3 we compare GGM complexity with TM
complexity. In Section 4 we relate GGM complexity to generic complexity by giving
mutual simulations between GGM, GOOD and DMS. Finally, in Section 5 we prove the
BP-completeness of the GGM model.

2. Generic Graph Machines

A GGM, as illustrated in Figure 1, consists of a finite state control, a finite number of
machine instances(MIs), and works on a labeled graph. Each MI is in some local state,
and has a head and a pointer, both of which point to a node of the graph. Initially, the
underlying graph is an arbitrary given input graph, and there is only one MI in a fixed
starting state with head and pointer pointing to a particular fixed node. In Figure 1 the
graph is enclosed in a rectangle, each MI is depicted as a gray circle labeled by its state,
and the head and pointer of each MI are indicated by a dotted line.

1 The BP is merely an abbreviation of Bancilhon–Paredaens [7], [14] and has nothing to do with NP or
other complexity classes.
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Fig. 1. A GGM working on a graph. The MIs are depicted as circles.

In one transition of the GGM, each MI can—depending on its state—do the follow-
ing:

1. Change state, or die.
2. Perform a simple action on the graph, such as the addition or deletion of a node

or edge.
3. Move its head and pointer to other nodes, possibly splitting up into several new

MIs.

The actions of the different MIs are performed in parallel.
To define the type of graph structures we will be working with, assume the existence

of pairwise disjoint, infinitely enumerable setsN of nodes, NL of node labels, andEL
of edge labels. We generally denote node labels by capital letters and edge labels by
lowercase letters.

Let NL andEL be finite subsets ofNL andEL , respectively. Agraph over(NL,EL)
is a tripleG = (N, E, λ), where

• N is a finite subset ofN;
• E is a subset ofN × EL× N; and
• λ is a total function fromN to NL.

For a noden ∈ N, λ(n) is called thelabel of n. An element(n,a,m) of E is called an
edge from n to m with label a. We extendλ to E by puttingλ(n,a,m) := a.

A GGM working on graphs over(NL,EL) now consists of

• a finite set of states, among which an initial state is designated;
• finite alphabetsNL′ andEL′ of node and edge labels, respectively, containing

NL and EL, respectively; nodes and edges created during an execution of the
GGM will be labeled with elements from these alphabets; an initial node label in
NL′ − NL is designated;
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• a transition function from the set of states to a finite set of operations, to be
specified shortly.

A configurationof a GGM as above is a pair(G, S), whereG is a graph over
(NL′,EL′), and S is a set of triples of the form(q, head, pointer), with q ∈ Q and
head, pointernodes inG. Each such triple is called amachine-instance(MI), consisting
of a stateq, a head placed on a nodehead, and a pointer placed on a nodepointer.

We define the transitions between configurations of a GGM in two steps. First, we
define “elementary” transitions from configurations consisting of a single MI. Transitions
from arbitrary configurations will then be parallel compositions of elementary ones.

Elementary Transitions. Consider a configurationC of a GGM M consisting of one
single MI only. This MI will transformC into another configurationC′, denoted by
C ⇒M C′, according to the operation associated byM ’s transition function to the state
the MI is in. The different possible operations are the following:

1. Die: the MI vanishes from the configuration.
2. Do nothing.
3. Test head and pointer for equality, changing to two different states depending on

the outcome.
4. Move pointer to head.
5. Add an edge, with a specified label, from head to pointer, or from pointer to head.
6. Remove, if existing, the edge with a specified label from head to pointer, or from

pointer to head.
7. Add a node, together with an edge to it from the head, with specified labels,

and move head to the new node. A variant of this operation adds the edge in the
reverse direction, i.e., from the new node to the head.

8. Delete the node under pointer, moving pointer to head; if head equals pointer
die.

9. Look for nodes in the graph with some specified label; split into many MIs, one
for each such node, with the head placed on that node. This is some kind of
“global search.” Alternatively, perform a “local search,” looking for edges with
some specified label going from the head to nodes with some specified label. In
both cases, if no nodes are found, change to a different state.

In all situations listed above, the MI can, in addition to performing the operation, change
to a new state. Note that global search is the only operation that is not “local,” in the
sense that it causes nodes of the graph to be visited that are not directly linked to the head
or pointer of the MI. If global search were not allowed, an MI would never be able to
leave a connected component; this would drastically diminish the computational power
of GGMs (for example, it would no longer be possible to test whether there exist two
nodes not linked by any edge).

General Transitions. Now letC = (G, S) be a general configuration of the GGMM ,
with G = (N, E, λ), and letI1, . . . , I` be the MIs inS. For eachj = 1, . . . , `, let Cj be
the configuration(G, {I j }). With C′ = (G′, S′) another configuration ofM , we say that
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M transforms C into C′ in one step, denotedC ⇒M C′, if the following conditions are
satisfied:

1. There exist configurationsC′1, . . . ,C
′
` such that, for eachj = 1, . . . , `, Cj ⇒M

C′j . Let C′j = (G′j , S′j ), with G′j = (N ′j , E′j , λ
′
j ). For any two differentj andk,

(N ′j − N) and(N ′k − N) must be disjoint; so the nodes added by the different
MIs are different.

2. Writing G′ = (N ′, E′, λ′), we have:
• N ′ =⋂`

j=1 N ′j ∪
⋃`

j=1(N
′
j − N);

• E′ = {(n,a,m) ∈ (⋂`
j=1 E′j ∪

⋃`
j=1(E

′
j \E)) | n,m ∈ N ′}; and

• λ′ =⋃`
j=1 λ

′
j .

3. S′ = {(q, head, pointer) ∈⋃`
j=1 S′j | head, pointer∈ N ′}.

The union definingλ′ yields a well-defined function, since the differentλ′j agree on the
intersections of their domains (these intersections will always consist of nodes inN).

It may be instructive to describe the formal definition of⇒M intuitively as follows. In
each step of the GGM, all MIs perform their operation on the graph in parallel. After each
step, MIs whose head and pointer no longer belong to the graph are killed, and identical
MIs merge into a single one. A GGM thus resembles a systolic automaton (see [13] for
definition), except that the MIs are not fixed and permanent like individual systolic nodes.
Various other computational models, which can be viewed as lying between GGMs and
systolic automata, have been proposed in the literature. A selection of these has been
reviewed in [10].

Duplicate Elimination. For the sake of clarity, in the preceding discussion we have left
out one operation in the GGM model, which we now present separately. Theduplicate
eliminationoperation is not performed by individual MIs, but by the GGM as a whole.
Informally, this operation replaces each equivalence class of “duplicate” nodes by a single
new node serving as a unique representative for the class. To this end, we specify a number
of states which we call “red.” Each time some MI is in a red state, duplicate elimination
if performed on the current configuration before moving to the next configuration.

Formally, letC = (G, S) be a GGM configuration, and letn1, n2 be two nodes in
G. We say thatn1 andn2 areduplicates with respect to Cif the transposition ofn1 and
n2, which can be applied toG and S in the canonical way, leavesG andC invariant.
Hence,n1 andn2 are logically interchangeable within the configuration.

The duplicate elimination now transforms configurationC into a new oneC′ =
(G′, S′) as follows. Call a node inG red if it is under the head of an MI in a red state.
Let Z be the partition of the nodes in equivalence classes according to the following
equivalence relation:

• If n1, n2 are red, thenn1 andn2 are equivalent iffn1 andn2 are duplicates.
• If n is not red, thenn is only equivalent to itself.

For each nonsingleton equivalence classZ, we take a new representative nodenZ ∈
U\N. We extend this to singleton equivalence classesZ = {n} by puttingnZ = n. Now
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in the new configuration, each representative replaces its equivalence class. Formally,
we have:

1. G′ = (N ′, E′, λ′), with
• N ′ =⋃Z∈Z{nZ};
• λ′(nZ) = λ(n) for n ∈ Z; and
• E′ =⋃Z,Z′∈Z{(nZ,a, nZ′) | ∃(n,a,m) in G, n ∈ Z, m ∈ Z′}.

2. S′ = {(q, nZ, nZ′) | ∃(q, n,m) ∈ S, n ∈ Z, m ∈ Z′}.

Computing Graph Functions. Now let C andC′ be configurations of the GGMM ,
and let⇒M be the transition relation between configurations ofM as defined above. We
sayM transforms C into C′, denotedC⇒∗M C′, if there exist configurationsC1, . . . ,Cn

such that

C⇒M C1⇒M · · · ⇒M Cn ⇒M C′,

and such that a node deleted in one of the transitions is not re-inserted in a later transition.
A graph functionis a function mapping graphs to graphs. A GGMM computes a

graph function as follows. LetA0 be the initial node label ofM , and letq0 be the initial
state. For a graphG, denote byḠ the graph obtained fromG by adding a new node with
label A0. This new node is denoted bynḠ. We define:

Definition 2.1. M computes the graph functionF if, for each graphG on whichF is
defined,

(Ḡ, {(q0, nḠ, nḠ)})⇒∗M (F(G), ∅).

So, whenM is started onG with one single MI, in the initial state, and with head and
pointer placed on an extra starting node, the final result graph when all MIs have died
yieldsF(G). The extra starting node is necessary to deal with the caseG = ∅; at the
same time, it provides a simple and uniform way to start up the computation. We say in
this case thatM transforms G intoF(G).

Example 2.2. We conclude this section by showing how a GGM can test whether a
tree is unbalanced, i.e., whether there are two paths from the root to a leaf with different
length. We start with an MI having head and pointer on the root. This MI initiates a
traversal of the tree, following every path by splitting in each internal node. Each MI that
arrives in a leaf creates a node with some special fixed label not occurring in the tree, say
B. Thus, if a MI arrives in a leaf and there is already aB-node, the tree is nonbalanced,
and the MI enters a special state to signal this.

3. Complexity

The time complexityof a GGM M can be naturally defined as the maximum number
of steps performed by any computation ofM on a graph withn nodes, and thespace
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complexitycan be defined as the maximal number of nodes in any intermediate config-
uration of any computation ofM on a graph withn nodes.

Since many different MIs work in parallel in one global GGM step, the time com-
plexity of a GGMM alone does not say much about the classical TM complexity of a
graph function computed byM . This point is illustrated by the following example.

Example 3.1. The powerset of the set of nodes of a graph (an inherently exponential
graph function) can be computed by a GGM with logarithmic time complexity as follows.
We will create nodes labeledS, each linked by edges to the nodes of some subset of
nodes of the input graph. We start by creating nodes for the empty set and the singleton
sets. We then enter a loop at each iteration of which we create for every pair ofS-nodes a
new one linked to the union of their associated sets. This is repeated as long as anS-node
linked to all nodes is not yet created. Since afteri iterations all sets containing at most
2i elements are represented, the time complexity of the computation isO(logn).

We can nevertheless give a (rough) upper bound on the number of nodes which can
be created by a GGM in a polynomial number of steps, as follows:

Proposition 3.2. No GGM can create more than O( f (n)) new nodes in a polynomial
number of steps, where

f (n) = 222n · n22n+1
.

Proof. The only operation which can create new nodes is the node addition operation.
The maximal number of new nodes that can be created in one step equals the number of
MIs in the configuration of that step. LetN(i ) (M(i )) be the number of nodes (MIs) in
the configuration afteri steps. Note thatN(0) = n andM(0) = 1. We thus have

N(i + 1) ≤ N(i )+ M(i ).

Moreover, by definition of MI, we have

M(i + 1) ≤ q(N(i + 1))2,

whereq is the number of states of the GGM. Solving for these two inequalities yields

N(i ) ≤ 22i−1 · q2i−1−1 · n2i−1
.

For sufficiently largen ≤ q, and bounding the number of stepsi from above by 2n, we
obtain the desired result.

The preceding discussion motivates us to look at thecombinedspace-time complex-
ity of a GGM computation as a more appropriate measure of its “cost.” Indeed, under
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this view we can show the following relationship between GGM complexity and TM
complexity:

Proposition 3.3. A GGM with time complexity T(n) and space complexity S(n) can
be simulated by a TM with time complexity polynomial in T(n) · S(n).

Proof. We use a 7-tape TM. Tape 1 is used for the generation of the new node identifiers.
Its maximum length isO(log(S(n)T(n))). Tape 2 holds the node identifiers with their
label. It contains a sequence of elements of the form(i, A, t), with i a node identifier,
A a label, andt a tag that can have a finite number of possible values and that is used
during the computation. The maximum length of Tape 2 isO(S(n) log(S(n)T(n))).
Tape 3 holds the new node identifiers created during the current step. It has the same
form and maximum length as Tape 2. Tape 4 holds the edges with their label. It contains
a sequence of elements of the form(i,a, j, t), with i and j node identifiers,a an edge
label, andt a tag. The maximum length of Tape 4 isO(S(n)2 log(S(n)T(n))). Tape 5
holds the new edges created during the current step. It has the same form and maximum
length as Tape 4. Tape 6 holds the MIs. It contains a sequence of elements of the form
(q, i, j, t), with i and j node identifiers,q a state, andt a tag. The maximum length of
Tape 6 is alsoO(S(n)2 log(S(n)T(n))). Tape 7, finally, holds the MIs after the current
step and has the same form and maximal length as Tape 6.

The Turing machine simulates each step of the GGM by first performing a duplicate
elimination (if in a “red” state) and then running through Tape 6, and simulating each
MI. The latter part is done inO(S(n)2F(n)) steps (F(n) is explained later). Afterward
Tapes 2 and 3 are adjusted (takingO(S(n) log(S(n)T(n))) steps), Tapes 4 and 5 are
adjusted (takingO(S(n)4 log(S(n)T(n))2) steps), and Tapes 6 and 7 are adjusted (also
taking O(S(n)4 log(S(n)T(n))2) steps).

A duplicate elimination takesO(S(n)6 log S(n)T(n)4) steps. For each pair of nodes,
one has to test whether they are duplicates. The number of steps needed to find all pairs of
nodes isO(S(n)2 log S(n)T(n)2). For each pair one has to compare the set of outgoing
edges; this takesO(S(n)4 log S(n)T(n)2) steps.

The value ofF(n) depends on the kind of step performed. The local search operation
is the most time-consuming case to simulate. This operation requires scanning Tape 4,
to find an edge starting in the given head and with labela, and then scanning Tape 2
to check whether the end node has labelA. This takesO(S(n)3 log S(n)T(n)2). So, in
total, the simulation of the effect of the MIs takesO(S(n)5 log S(n)T(n)2) steps.

Of the three parts, the simulation of the duplicate elimination is the most costly. So
in general the time complexity isO(S(n)6 · log S(n) · T(n)4).

A converse to the above simulation result is easily seen:

Proposition 3.4. Each TM can be simulated in real time by a GGM.

Proof. We encode the tape of the TM by a linked list of cell nodes. The cells are labeled
by the tape symbol they contain. Initially, only the part of the tape that contains the input
(i.e., the part that is nonblank) is represented. If more of the tape is needed, new cell
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nodes are created dynamically. It is now straightforward to simulate the configuration
transitions of the TM.

It may be interesting to note that in the above simulation, the global search operation
is not needed.

4. Generic Computation Models

As already mentioned in the Introduction, one of the main goals of the GGM model is
its genericity. This means that the computation of a GGM working on a graph happens
completely on the logical level. In other words, the computation depends exclusively on
the logical structure of the graph, not on the way the nodes and edges of a graph are
“physically” represented and stored in the computer. Conventional computation models
like the RAM or the Turing machine are not generic (they were of course not meant to
be). For example, a computation of a RAM on a graph can exploit the fact that the nodes
of the graph are really natural numbers. For another example, when providing a Turing
machine with a graph as input, one actually gives the graphplusan ordering of its nodes
(induced by the ordering of the input tape cells); this ordering is strictly not part of the
graph’s logical structure.

4.1. Generic Completeness

A natural question to ask is whether the GGM model is computationally complete in
some natural sense. The notion of completeness with respect to generic computations has
been addressed extensively in the literature on the theory of database queries (e.g., [2]
and [8]). Generic computations are particularly relevant to database applications, since
genericity is intimately connected to the fundamental notion ofdata independence[4].
Traditionally, the theory of database queries has focused on the computation of generic
functions on relational structures in general rather than graph structures in particular.
Moreover, attention is traditionally restricted todomain-preservingfunctions; as such,
the theory is not fully applicable to the particular case of graphs, as domain-preserving
graph functions would not be able to add new nodes to a graph.

However, motivated by recent applications of databases in object-oriented environ-
ments, the theory of database queries has recently been extended beyond domain-preser-
ving functions, allowing for the introduction of new domain elements in the result of a
query [1], [16]. This extended theory, needed to account for the creation of new objects
in an object-oriented database, is fully applicable to the particular case of graphs. A
powerful language for expressing object-creating queries is the language provided by
the GOOD model, a graph-oriented model for object databases [11]. It has been shown
that the GOOD language is computationally complete in that the language can express
precisely allconstructivecomputable generic graph functions [15], [16].

Hence, to assess the completeness of the GGM model, its expressive power must be
compared with that of the GOOD language. We have done this in a previous paper [10],
and were indeed able to prove that GGM is equivalent to GOOD, thereby establishing
its completeness. In order to recall this result in this paper, we first briefly introduce the
GOOD language itself, in a simplified form sufficient for our purposes.
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GOOD is a procedural programming language for working with graphs. It provides
five types of basic statements and is closed under composition and while-loops in the
usual way. The five types of basic statements are the following:

1. Edge addition. Let G be a graph, letP be another, fixed, graph (called the
pattern), let n,m be (not necessarily distinct) nodes inP, and lete be an edge
label. Applying the edge addition operation

EA[ P, n,m, e]

to G yields a graphG′, obtained fromG by adding, for each homomorphismf
from P intoG (called amatchingof the patternP in G), the edge( f (n), e, f (m)).

It is important to note that the pattern is a fixed part of the “syntax” of the
operation; different patterns give rise to different edge addition operations. As a
consequence, an edge addition is polynomial-time computable. The same holds
for the remaining four operations.

2. Node addition. Let n1, . . . ,nk be nodes inP, let e1, . . . ,ek be edge labels, and
let K be a node label. Applying the node addition operation

NA[ P, n1, . . . ,nk, e1, . . . ,ek, K ]

to G yields a graphG′, obtained fromG by adding, for each matchingf of P in
G, aK -labeled new node with anei -labeled edge tof (ni ) for eachi = 1, . . . , k,
provided such a node does not already exist inG′.

3. Edge deletion. Let(n, e,m)be an edge inP. Applying the edge deletion operation

ED[P, n, e,m]

to G yields a graphG′, obtained fromG by deleting, for each matchingf of P
in G, the edge( f (n), e, f (m)).

4. Node deletion. Let n be a node inP. Applying the node deletion operation

ND[ P, n]

to G yields a graphG′, obtained fromG by deleting, for each matchingf of P
in G, the nodef (n).

5. Abstraction. This operation is different in spirit from the other four and is used
for duplicate elimination. Letn be a node inP, let e, e′ be edge labels, and let
K be a node label. We can define the following equivalence relation among the
nodes ofG:

m≡e m′ ⇔ {m′′ | edge(m, e,m′′) in G} = {m′′ | edge(m′, e,m′′) in G}.
We say in this case thatm andm′ areduplicates with respect to e. Denote the
restriction of≡e to those nodes that equalf (n) for some matchingf of P in G
by≡e |P. Then applying the abstraction operation

AB[ P, n, e, e′, K ]

to G yields a graphG′, obtained fromG by adding, for each equivalence class
Z with respect to≡e |P, a K -labeled new node with ane′-labeled edge to each
m ∈ Z, provided such a node does not already exist inG′.
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GOOD programs can now be defined as follows. Each basic statement is a program.
If Q1 andQ2 are programs, then theircomposition Q1; Q2 is a program. Finally, ifQ
is a program andK is a node label, then thewhile-loopwhile K do Q od is a program.
The semantics of basic statements was defined above. The semantics of a composition
Q1; Q2 is the obvious one: ifG is a graph,G′ is a graph obtained from applyingQ1

to G, andG′′ is a graph obtained from applyingQ2 to G′, then applyingQ1; Q2 to G
yieldsG′′, on condition that a node which is deleted by a node deletion operation inQ1

is not added back by a node addition or abstraction operation inQ2. The semantics of
a while-loopwhile K do Q od is “repeatQ as long as there is aK -labeled node in the
graph.”

4.2. Generic Complexity

There is often a serious mismatch between the conventional Turing complexity of a
computational task and its complexity when performed in a generic computation model.
This phenomenon was studied in detail by Abiteboul and Vianu [3] in the context of
traditional domain-preserving relational queries. They introducedgeneric, rather than
classical TM, complexity classes, based on a generic computation model, called the
generic machine(GM). The GM model is an adaptation of the basic TM model to compute
generic functions on relational structures. A striking illustration of the difference between
classical and generic complexity classes is provided by the problem of parity checking:
Abiteboul and Vianu proved that the simple computational problem of determining
whether the total number of elements in a given structure is even, is not in generic
PSPACE.

Although GMs and the GGMs of the present paper, both being geared toward generic
computation, are very similar in spirit, a combination of formal differences makes it
awkward to compare them directly. It would therefore be useful if instead we could
compare the GGM model with an alternative model which yields essentially the same
generic complexity classes but is designed for computing object-creating graph functions.
Fortunately, such an alternative model already exists: thedatabase method scheme(DMS)
model proposed by Denninghoff and Vianu [9]. We now briefly introduce this graph-
based model, in a simplified form sufficient for the purpose of this paper.

In DMS, a graph is viewed as an object-oriented database: nodes are viewed as
database objects and edges between nodes are viewed as attribute relationships between
objects. Attention is restricted to graphs withsingle-valued edge labels; with this we
mean that for each edge labele, there are never two different edges labelede leaving the
same node. A DMS program consists of a number ofmethods: straight-line procedures
which are run local to some database object (called thereceiverof the method and
denoted by the wordself). Throughout the computation, several method invocations are
active, and they run synchronously in parallel. A method body has a number ofvariables
x1, . . . , xk holding nodes as values, some of which can be initialized as parameters, and
consists of a sequence ofstatements, each of one of the following types:

1. A variable assignmentof the formxi := r , wherer is either (i) an edge label
e; (ii) self; or (iii) a variable. In case (i),xi is assigned the target node of the
edge labelede leaving self, if existing; cases (ii) and (iii) have the obvious
semantics.
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2. An edge additionof the forme := xi , wheree is an edge label. An edge labeled
e is added betweenself andxi .

3. Anedge deletionof the formdeletee. The edge labelede leavingself is removed.
4. A node additionof the formxi := new : C(e1 : y1, . . . ,em : ym), whereC is a

node label, theej are edge labels, and theyj are variables. A new noden with
labelC is added and assigned toxi , and for everyj = 1, . . . ,m an edge labeled
ej is added fromn to yj . If several method invocations execute a node addition
in parallel, a distinct node is created for each invocation.

There is also a variant of the node addition, denoted bynewval. In this variant,
if several method invocations in parallel execute a node addition with exactly the
same parameters,at most onenew node is created, depending on whether or not
there is already a noden with labelC and, for each,j ej -labeled edges toyj in
the graph. In other words, no “duplicate” nodes are created.

5. A method invocationof the formsendM : C(y1, . . . , yp), whereM is the name
of a method,C is a node label, and theyj are variables. For each noden with
labelC, a new parallel process is started, executing methodM on receivern with
parametersy1, . . . , yp.

6. A node deletion: deleteself. This deletes the nodeself and the method invocation
executing this statement comes to an end.

7. Finally, a statement of the formif conditionthen statement, whereconditionis
a boolean combination of elementary conditions of the formxi = xj or xi 6= xj ,
andstatementis not anotherif statement, with the obvious semantics.

The DMS program is started by an external invocationsendM : C for some node label
C and some methodM without parameters. As already mentioned, the methods run
synchronously in parallel; at every global step of the computation, every active method
process executes one statement.2 Whenever there are conflicting parallel statement exe-
cutions (e.g., an edge addition and an edge deletion of the same edge, or two conflicting
parallel edge additions which would violate the single-valued edge label property of
the graph) the global result of the computation becomes undefined (the computation
“crashes”).

DMS programs compute graph functions in the obvious manner, and DMS compu-
tations are also clearly generic. Our main interest for the DMS model lies in the generic
complexity classes that can be defined in the context of this model [9]. Let DMS-PSPACE
be the family of graph functions computable by a DMS program which, at each point in
its computation on an input graphG, uses a number of nodes and method processes that
is at most polynomial in the size ofG. Let DMS-PTIME be the family of graph functions
in DMS-PSPACE computable by a DMS program whose computation on an input graph
G performs a number of global steps at most polynomial in the size ofG. Note that the
requirement that DMS-PTIME functions must be in DMS-PSPACE is necessary, since
DMS programs can generate a result of exponential size in a polynomial number of steps,
just as is the case for GGMs as we saw in Section 3.

2 Statements of the formif conditionthenstatementform the only exception: here,conditionis evaluated
in one step and, depending on the result of this evaluation, either thestatementor the next statement in the
sequence is executed in the following step.
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Denninghoff and Vianu [9] argued convincingly that the DMS-complexity classes
are the natural extensions of the aforementioned generic complexity classes of Abiteboul
and Vianu, from the domain-preserving relational queries to the object-creating generic
graph functions.

4.3. The Robustness of Generic Complexity for Graph Functions

Note that we now have three formalisms for expressing graph functions: GGM, GOOD,
and DMS. Analogously to the way DMS-PSPACE and DMS-PTIME have just been
defined, one can define GGM-PSPACE and GGM-PTIME. Namely, GGM-PSPACE
is the family of graph functions computable by a GGM which, at each point in its
computation on an input graphG, has a configuration of size at most polynomial in
the size ofG. GGM-PTIME then is the family of graph functions in GGM-PSPACE
computable by a GGM whose computation on an input graphG consists of a number
of transitions at most polynomial in the size ofG. We can also define GOOD-PSPACE
as the family of graph functions computable by a GOOD program for which, at each
point in its computation on an input graphG, the intermediate result graph has size at
most polynomial in the size ofG. GOOD-PTIME then is the family of graph functions
in GOOD-PSPACE computable by a GOOD program whose computation on an input
graphG executes a number of basic statements at most polynomial in the size ofG.

The basic DMS model as defined in [9] is restricted to single-valued edges and has no
duplicate elimination capability like that of GGMs.Correspondingly, for the remainder
of this section we restrict attention to GGMs without duplication elimination, to GOOD
programs without the abstraction operation, and to graphs with single-valued edge
labels. Under this restriction we establish the following result, evidencing the naturalness
and robustness of the proposed generic complexity classes for graph functions:

Theorem 4.1. GGM-PSPACE = GOOD-PSPACE = DMS-PSPACE,and GGM-PTIME
= GOOD-PTIME = DMS-PTIME.

Proof. One step of a GGM, a GOOD program, or a DMS program can increase the size
of the current configuration by at most a polynomial. The theorem is therefore proven
if we can establish mutual simulations in “lockstep,” meaning that for each machine or
programQ in one model there exist a machine or programQ′ in the other models such
that, for some constantc, every computation ofQ consisting ofn steps is simulated by
Q′ in c · n steps.

Lockstep simulations from GOOD to GGM and vice versa are already known from
our previous work [10]. To prove the theorem, we furthermore establish lockstep simu-
lations from DMS to GOOD and from GGM to DMS.

GOOD can simulate DMS in lockstep. We describe for a given DMS programQ a
GOOD programQ′ that simulatesQ. It will be clear that the simulation has only a
constant step-overhead.

An active method process is simulated by a node labeledMethod, with an edge
labeledself to the receiver node of the process. The process nodes are tagged with a
loop-edge labeled by the method name. The values of the variables of a process are
indicated by edges, labeled by variable names. A process node is also tagged with a
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loop-edge labeled by the statement number to be executed. Assuming the DMS program
Q is started up with the invocationsend M : C, we thus have the following overall
structure for GOOD programQ′:

NA[ P, n, self,Method];
(whereP is the pattern with one noden labeledC)

EA[ P, n, n,M ];
(whereP is the pattern with one noden labeledMethod)

EA[ P, n, n, 1];
(whereP is as in the previous statement)

while Methoddo
Simulate a global step ofQ;

od

The simulation of a global step ofQ in the body of the above loop begins by tagging
each process node with a loop-edge labeledone-step(using an edge addition operation).
Then follows, for each combination(M, i ) whereM is a method name ofQ andi is the
sequence number of some statement in the body ofM , a group of GOOD statements.
These GOOD statements perform three tasks. First comes the actual simulation of the
parallel execution of thei th statement ofM by all method processes which have name
M and which must indeed execute thei th statement. Denote the set of these processes
by active(M, i ). Second, theactive(M, i ) nodes are untagged by deleting theone-step
loop-edges. Third, the process node is tagged with the next statement number, if there is
one; if not, the process node is deleted. We focus on the first task; the second and third
tasks are straightforward and can be performed using edge deletion, edge addition, and
node deletion.

The process nodes ofactive(M, i ) can be detected by using GOOD patterns contain-
ing a node labeledMethodwhich is tagged three loop-edges: one labeledM , the second
labeledi , and the third labeledone-step. We now consider the different possibilities for
the i th statement. We will no longer spell out the GOOD constructions in detail; the
reader may wish to consult [11] for various examples on how to program in GOOD.

• The simulation of variable assignment, edge addition, and edge deletion state-
ments in DMS amounts to straightforward applications of the edge deletion and
edge addition operations of GOOD.
• The simulation of a DMS node addition statement is performed by a GOOD

node addition operation. If the basicnew is used, the node addition operation
must specify the created node to be connected to the method process node. If the
newval variant is used, this connection is omitted.
• DMS’s method invocation is also simulated using a GOOD node addition opera-

tion which creates the new process nodes.
• DMS’s node deletion is simulated using two GOOD node deletions: one to delete

the receiver node of the method, the other to terminate the process.
• Finally, a DMS statementif condition then statementis simulated by giving it

two sequence numbers: one for thecondition, and the other for thestatement. The
evaluation of theconditionis possible in GOOD (details omitted).
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DMS can simulate GGM in lockstep. We only sketch the simulation. GGM MIs are
simulated using DMS method processes. The head and pointer of an MI are simu-
lated using local variables. The simulation of the elementary actions performed by the
MIs (head-pointer assignments, edge additions and deletions, node creations, pointer
deletions) is straightforward. GGMs use flowchart-like program control (implicit in the
state-transition functionδ), while the control flow of DMS programs is expressed using
procedure calls; it is well known how the former mechanism can be simulated by the
latter. A global search operation looking forA-labeled nodes is simulated by a method
invocation of the formsendM : A(self). A local search operation looking forA-labeled
nodes linked to the head by ana-labeled edge is simulated similarly, but nowM must
check whether the desireda-edge is present.

5. BP-Completeness

Up to now in this paper we have investigated the expressiveness and complexity of GGMs
computing global graph functions. In this final section we characterize the expressiveness
of the GGM model in terms of individual transformations, i.e., of pairs of input–output
graphs. The same characterization in the context of the GOOD model (introduced in the
previous section) is already known [6]. Our contribution in what follows is to provide a
direct proof in terms of the GGM model, so as to further our understanding of generic
computation models.

We need the following notation and terminology. For a graphG, Aut(G) denotes
the set of automorphisms ofG.3 This set forms a group under composition. For two
graphsG and G′, an extension morphism from G to G′ is a group homomorphism
h: Aut(G)→ Aut(G′) such that, for eachf ∈ Aut(G), f andh( f ) coincide onG∩G′.

We have:

Theorem 5.1. The following are equivalent:

(1) There exists a GGM which transforms G into G′.
(2) There exists an extension morphism from G to G′.

Proof. For the implication from (1) to (2), letG⇒∗M G′ ⇒M G′′ for a GGM M , and
assume as inductive hypothesis that an extension morphismh′ from G to G′ exists. We
must show that an extension morphismh′′ exists fromG to G′′. This is readily verified by
case analysis on the different operations that can be performed by MIs in the transition
from G′ to G′′, adaptingh′ into the neededh′′. For instance, if a new noden is created
by an MI (q, n1, n2) executing a node addition operation, then by symmetry, for any
f ∈ Aut(G) the MI (q, h′( f )(n1), h′( f )(n2)) will also create a new nodem, and we
defineh′′( f )(n) := m.

The implication from (2) to (1) is the more difficult one to prove. Assume an ex-
tension morphismh exists fromG to G′. We have to show thatG can be transformed

3 An automorphism is a permutation of the set of nodes which leaves the graph invariant, i.e., preserves
edges and labels.
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into G′ by some GGM. Actually, we use an “extended GGM” as a technical convenience
for this proof. In an extended GGM the MIs do not consist of just one head and one
pointer, but instead they can keep an unbounded array of nodes in their private memory.
The extended GGM operations are like the normal GGM operations, except that they
are indexed by array positions, indicating the nodes in the memory of an MI executing
an operation that will be involved in the operation. The reader is invited to verify that
extended GGMs are no more powerful than ordinary GGMs: the former can be simulated
using the latter in lockstep (the array of nodes is simulated by a linked list of auxiliary
nodes serving as pointers to the array elements).

The algorithm executed by the extended GGM is the following:

1. Create an MI for every automorphism of G. First, we create one MI for each
permutation of the nodes ofG that preserves node labels. The permutations
are stored in the arrays of the MIs as listings of the nodes ofG. Thereto, fix
one arbitrary listingn1, n2, . . . of all nodes inG. AssumeAi is the label ofni .
Then for eachi = 1, 2, . . . in succession we look for all nodes with labelAi ,
splitting each current MI into one new MI for each node labeledAi , which is
appended to the array. After these steps we select those MIs whose arrays contain
no duplicate elements. This yields the needed permutations. Finally, to obtain the
automorphisms ofG, we select from these permutations those for which there
exists ana-labeled edge in the graph between thei th and j th node in the array,
whenever this is the case forni andnj .

2. At this point, thei th node in the array of the MI representing the automorphism
f equalsf (ni ). If ni is also inG′, then we know thatf (ni ) = h( f )(ni ).

3. Add all edges in G′ not in G between nodes in the current configuration. (The
first time this step is executed, the current configuration consists ofG, but later
new nodes will be added.) Whenever an edge exists inG′ betweenni andnj , we
let each MI add such an edge between thei th and j th node in its array. Note that
this will not only add the edge betweenni andnj , but also betweenh( f )(ni ) and
h( f )(nj ) for each automorphismf of G and some extension morphismh from
G to G′. However, we know these edges are also present inG′ sinceh( f ) is an
automorphism ofG′.

4. Choose an arbitrary node n in G′ not yet in the current configuration, add it
together with certain other nodes, as well as all edges in G′ linking these added
nodes to nodes in the current configuration. Consider the setO = {h( f )(n) |
f ∈ Aut(G)}. If the nodes in the current configuration are listed asn1, . . . ,nk,
list the nodes inO in some arbitrary but fixed order asnk+1, . . . , nk+`. Note that
not onlyn, butall nodes inO are not inG. If the label ofn (and all other nodes
in O) is A, let each MI add a newA-node (appending it to its array)̀times.
Next, add the edges inG′ between some nodeni with 1≤ i ≤ k and some node
nj with k + 1 ≤ j ≤ k + ` as in the previous Step 3, by letting each MI add
an edge between thei th and j th node in its array. Finally, perform a duplicate
elimination on the nodes occurring in array positionsk+1, . . . , k+` of the MIs.

The net effect of the above operations is that precisely the nodes inO have been
added to the current configuration together with the edges inG′ linking them to
nodes in the current configuration. We can see this formally by identifying the`
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nodes added by the MI representing the identity automorphism with the nodes
nk+1, . . . , nk+` of O. We must then verify that the duplicate elimination has the
desired effect, i.e., we must prove two things:
(a) Each node added by some MI is a duplicate of some element ofO.
(b) No two different elements ofO are duplicates.
The last item is clear, since the elements ofO occur in some fixed order and
thus cannot be swapped. For the first item, assumem is added as thej th node
added by the MI representing the automorphismf . Thenm is a duplicate of
h( f )(nk+ j ). Indeed, an edge(x, e, h( f )(nk+ j )) is present if and only if the edge
(h( f −1)(x), e, nk+ j ) is, and this edge in turn is added by the MI representing
the identity automorphism if and only the edge(x, e,m) is added by the MI
representingf .

5. At this point, the MI representing the identity has in its array a partial listing
n1, . . . ,nk+` of the nodes ofG′. Each other MI, representing an automorphism
f of G, has in its array the listingh( f )(n1), . . . , h( f )(nk+`). We can now repeat
the previous Steps 3 and 4 until all nodes and edges ofG′ have been added.

6. Finally, we need to remove the nodes and edges inG not in G′. For each such
nodeni we let each MI delete thei th node in its array, and for each such edge
(ni , e, nj )we let each MI delete thee-edge between thei th node and thej th node
in its array. This will not only remove the originally chosen nodes and edges but
also their images under all automorphisms ofG. However, we know that these
images and edges are not inG′ either because there is an extension morphism
from G to G′.
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