
ar
X

iv
:c

s.
D

B
/0

11
20

11
 v

2
 5

 F
eb

 2
00

3

Interactive Constrained Association Rule Mining∗

Bart Goethals†

Helsinki Institute for Information Technology

Jan Van den Bussche

University of Limburg

Abstract

We investigate ways to support interactive mining sessions, in the set-
ting of association rule mining. In such sessions, users specify conditions
(queries) on the associations to be generated. Our approach is a combina-
tion of the integration of querying conditions inside the mining phase, and
the incremental querying of already generated associations. We present
several concrete algorithms and compare their performance.

1 Introduction

The interactive nature of the mining process has been acknowledged from the
start [5]. It motivated the idea of a “data mining query language” [8, 9, 12, 13,
19] and was stressed again by Ng, Lakshmanan, Han and Pang [21]. A data
mining query language allows the user to ask for specific subsets of association
rules by specifying several constraints within each query.

In this paper, working in the concrete setting of association rule mining, we
consider a class of conditions on associations to be generated which should be
expressible in any reasonable data mining query language: Boolean combina-
tions of atomic conditions, where an atomic condition can either specify that
a certain item occurs in the body of the rule or the head of the rule, or set a
threshold on the support or on the confidence. A mining session then consists
of a sequence of such Boolean combinations (henceforth referred to as queries).
Efficiently supporting data mining query language environments is a challenging
task. Towards this goal, we present and compare three approaches. In the first
extreme, the integrated querying approach, every individual data mining query
will be answered by running an adaptation of the mining algorithm in which
the constraints on the rules and sets to be generated are directly incorporated.

∗A preliminary report on this work was presented at the Second International Conference
on Knowledge Discovery and Data Mining [16].

†This work was done while the author was employed by the University of Limburg

1

The second extreme, the post-processing approach, first mines as much asso-
ciations as possible, by performing one major, global mining operation. After
this relatively expensive operation, the actual data mining queries issued by the
user then amount to standard lookups in the set of materialized associations.
A third approach, the incremental querying approach, combines the advantages
of both previous approaches.

1.1 Our contributions

We present the first algorithm to support interactive mining sessions efficiently.
We measure efficiency in terms of the total number of itemsets that are gener-
ated, but do not satisfy the query, and the number of scans over the database
that have to be performed. Specifically, our results are the following:

1. Although our results show significant improvements of performance, we
will also show that exploiting constraints is not always the best solution.
More specifically, if mining without constraints is feasible to begin with,
then the presented post-processing approach will eventually outperform
integrated querying.

2. The querying achieved by exploiting the constraints is optimal, in the
sense that it never generates an itemset that could give rise to a rule that
does not satisfy the query, apart from the minimal support and confidence
thresholds. Therefore, the number of generated itemsets during the exe-
cution of a query, becomes proportional to the strength of the constraints
in the query: the more specific the query, the faster its execution.

3. Not only is the number of passes trough the database reduced, but also
the size of the database itself, again proportionally to the strength of the
constraints in the query.

4. A generated itemset will, within a session, never be regenerated as a can-
didate itemset: results of earlier queries are reused when answering a new
query.

This paper is further organized as follows. Section 2 gives an overview of
related work on constrained mining. In Section 4, we present a way of incorpo-
rating query-constraints inside a frequent set mining algorithm. In Section 5, we
discuss ways of supporting interactive mining sessions. We conclude the paper
in Section 6.

2 Related Work

The idea that queries can be integrated in the mining algorithm was initially
launched by Srikant, Vu, and Agrawal [25], who considered queries that are
Boolean expressions over the presence or absence of certain items in the rules.

2

Queries specifically as bodies or heads were not discussed. The authors con-
sidered three different approaches to the problem. The proposed algorithms
are not optimal: they generate and test several itemsets that do not satisfy the
query, and their optimizations also do not always become more efficient for more
specific queries.

Also Lakshmanan, Ng, Han and Pang worked on the integration of con-
straints on itemsets in mining, considering conjunctions of conditions on item-
sets such as those considered here, as well as others (arbitrary Boolean combi-
nations were not discussed) [18, 21]. Of the various strategies for the so-called
“CAP” algorithm they present, the one that can handle the queries considered
in the present paper is their “strategy II”. Again, this strategy generates and
tests itemsets that do not satisfy the query. Also, their algorithms implement
a rule-query by separately mining for possible heads and for possible bodies,
while we tightly couple the querying of rules with the querying of sets. This
work has also been further studied by Pei, Han and Lakshmanan [22, 23], and
employed within the FPgrowth algorithm.

Still other work focused on other kinds of constraints over association rules
and frequent sets, such as correlation [7], and improvement [15]. These and
other statistical measures of interestingness will not be discussed in this paper.

All previously mentioned works do not discuss the reuse of results acquired
from earlier queries within a session. Nag et al. proposed the use of a knowledge
cache for this purpose [20]. Several caching strategies were studied for different
cache sizes. However, their work only considers mining sessions of queries where
only constraints on the support of the itemsets are allowed. No solutions were
provided for other constraints like those studied in this paper. Also Jeudy and
Boulicaut have studied the use of a knowledge cache for finding a condensed
representation of all itemsets, based on the concept of free sets [14].

3 Review of the Apriori algorithm

As introduced by Agrawal et al. [1], the association rule mining problem can
be described as follows: we are given a set of items I and a database D of
subsets of I called transactions. An association rule is an expression of the
form B ⇒ H , where B and H are sets of items (itemsets). The support of an
itemset I is the number of transactions that include I. An itemset is called
frequent if its support is no less than a given minimal support threshold. An
association rule is called frequent if B ∪H is frequent and it is called confident
if the support of B ∪H divided by the support of B exceeds a given minimal
confidence threshold. The goal is now to find all association rules over D that
are frequent and confident.

The standard association rule mining algorithm Apriori [2] is divided in two
phases: phase 1 generates all frequent itemsets with respect to the given minimal
support threshold, and phase 2 generates all confident rules with respect to the
given minimal confidence threshold.

Phase 1 is performed based on the observation (also called the anti-monotonicity

3

property) that all supersets of an infrequent itemset are also infrequent. An
itemset is thus potentially frequent, also called a candidate itemset, if its sup-
port is unknown and all of its subsets are frequent. In every step of the algo-
rithm, all candidate itemsets are generated and their supports are then counted
by performing a complete scan of the transaction database. This is repeated
until no new candidate itemsets can be generated.

Phase 2 generates for every frequent itemset a set of rules by dividing the
itemset in potential bodies and heads. This can be done in a similar level-wise
manner as in phase 1, based on the observation that if a head-set represents a
confident rule for that itemset, then all of its subsets also represent confident
rules [24]. For example, if the itemset {1, 2, 3, 4} is a frequent set and {1, 2} ⇒
{3, 4} is a confident rule, then {1, 2, 3} ⇒ {4} and {1, 2, 4} ⇒ {3} must also be
confident. In every step within phase 2, all candidate head-sets are generated
and their confidences are computed, until no new candidate head-sets can be
generated. Because we do not need to access the database, phase 2 is much
faster in comparison with phase 1.

The performance of Apriori-like algorithms is highly dependent of three fac-
tors:

1. the number of candidate patterns increases exponentially with a decreasing
minimal support threshold,

2. the number of association rules can become very large for small confidence
thresholds, and

3. the size of the transaction database is typically very large, such that scan-
ning the database becomes a costly operation.

Also the length of the transactions (density of the database) plays an important
role, because large transactions can result in large frequent patterns, implying
a lot of candidate patterns and a lot of scans through the database. Since
the introduction of the Apriori algorithm, a lot of research has been done to
improve its performance by improving on one or more of these factors. Almost
all improvements rely on its levelwise, bottom-up, breadth-first nature and on
the anti-monotonicity property of the minimal support threshold.

Nevertheless, Han et al. presented the FPgrowth algorithm [10], which uses
a depth-first strategy. Although this algorithm has a very efficient counting
mechanism, it suffers from two major deficiencies:

1. it cannot exploit the anti-monotonicity property, resulting in a lot more
candidate patterns, and

2. although the used trie data structure somewhat compresses the transaction
database, the algorithm implicitly requires the database to reside in main-
memory.

Although recent improvements have increased the performance of Apriori
tremendously, the support and confidence thresholds can always be set low

4

enough, resulting in an exponential blowup of the number of patterns and rules.
Nevertheless, such low thresholds can still reveal interesting patterns and rules,
but one is not interested in all of the discovered patterns and rules, but queries
out the interesting ones according to some specified constraints. Pushing these
constraints as deep as possible into the mining algorithm, such that the amount
of computation is proportional to what the user gets, should improve its perfor-
mance and allow lower thresholds.

4 Exploiting Constraints

As already mentioned in the Introduction, the constraints we consider in this
paper are Boolean combinations of atomic conditions. An atomic condition can
either specify that a certain item i occurs in the body of the rule or the head of
the rule, denoted respectively by Body(i) or Head(i), or set a threshold on the
support or on the confidence.

In this section, we explain how we can incorporate these constraints in the
mining algorithm. We first consider the special case of constraints where only
conjunctions of atomic conditions or their negations are allowed.

4.1 Conjunctive Constraints

Let b1, . . . , bℓ be the items that must be in the body by the constraint; b′
1
, . . . ,

b′ℓ′ those that must not; h1, . . . , hm those that must be in the head; and h′
1
,

. . . , h′m′ those that must not.
Recall that an association ruleX ⇒ Y is only generated if X∪Y is a frequent

set. Hence, we only have to generate those frequent sets that contain every bi
and hi, plus some of the subsets of these frequent sets that can serve as bodies
or heads. Therefore we will create a set-query corresponding to the rule-query,
which is also a conjunctive expression, but now over the presence or absence of
an item i in a frequent set, denoted by Set(i) and ¬Set(i). We do this as follows:

1. For each positive literal Body(i) or Head(i) in the rule-query, add the
literal Set(i) in the set-query.

2. If for an item i both ¬Body(i) and ¬Head(i) are in the rule-query, add
the negated literal ¬Set(i) to the set-query.

3. Add the minimal support threshold to the set-query.

4. All other literals in the rule-query are ignored because they do not restrict
the frequent sets that must be generated.

Formally, the following is readily verified:

Lemma 1. An itemset Z satisfies the set-query if and only if there exists item-
sets X and Y such that X ∪Y = Z and the rule X ⇒ Y satisfies the rule-query,
apart from the confidence threshold.

5

So, once we have generated all sets Z satisfying the set-query, we can gen-
erate all rules satisfying the rule-query by splitting all these Z in all possible
ways in a body X and a head Y such that the rule-query is satisfied. Lemma 1
guarantees that this method is “sound and complete”.

So, we need to explain two things:

1. Finding all frequent Z satisfying the set-query.

2. Finding, for each such Z, the frequencies of all bodies and heads X and
Y such that X ∪ Y = Z and X ⇒ Y satisfies the rule-query.

Finding the frequent sets satisfying the set-query Let Pos := {i |
Set(i) in set-query} and Neg := {i | ¬Set(i) in set-query}. Note that Pos =
{b1, . . . , bℓ, h1, . . . , hm}. Denote the dataset of transactions by D. We define the
following derived dataset D0:

D0 := {t− (Pos ∪ Neg) | t ∈ D and Pos ⊆ t}

In other words, we ignore all transactions that are not supersets of Pos and
from all transactions that are not ignored, we remove all items in Pos plus all
items that are in Neg.

We observe:

Lemma 2. Let p be the support threshold defined in the query. Let S0 be the
set of itemsets over the new dataset D0, without any further conditions, except
that their support is at least p. Let S be the set of itemsets over the original
dataset D that satisfy the set-query, and whose support is also at least p. Then

S = {s ∪ Pos | s ∈ S0}.

Proof. To show the inclusion from left to right, consider Z ∈ S. We show that
s := Z − Pos is in S0. Thereto, it suffices to establish an injection t 7→ t0 from
the transactions t in the support set of Z in D (i.e., the set of all transactions
in D containing Z) into the transactions t0 in the support set of s in D0.

Let t be in D and containing Z. Since Z satisfies the set-query, Z contains
Pos , and hence t contains Pos as well. Thus, t0 := t−(Pos∪Neg) is in D0. Since
Z ∩Neg = ∅ (again because Z satisfies the set-query), t0 contains Z −Pos = s.
Hence, t0 is in the support set of s in D0, as desired.

To show the inclusion from right to left, consider s ∈ S0. We show that
Z := s ∪ Pos is in S. Thereto, it suffices to establish an injection t0 7→ t from
the transactions t0 in the support set of s in D0 into the transactions t in the
support set of Z in D.

Let t0 be in D0 and containing s. Obviously, a transaction t ∈ D exists, such
that t0 ∪Pos ⊆ t−Neg ⊆ t. Since t contains s∪Pos , it is in the support set of
Z in D, as desired.

We can thus perform any frequent set generation algorithm, using only D0

instead of D. Note that the number of transactions in D0 is exactly the support

6

of Pos in D. Also, the search space of all itemsets is halved for every item
in Pos ∪ Neg. In practice, the search space of all frequent itemsets is at least
halved for every item in Pos and at most halved for every item in Neg. Still
put differently: we are mining in a world where itemsets that do not satisfy the
query simply do not exist. The correctness and optimality of our method is thus
automatically guaranteed.

Note however that now an itemset I, actually represents the itemset I∪Pos !
We thus head-start with a lead of k, where k is the cardinality of Pos , in
comparison with standard, non-constrained mining.

Finding the frequencies of bodies and heads We now have all frequent
sets containing every bi and hi, from which rules that satisfy the rule-query can
be generated. Recall that in the standard association rule mining algorithm
rules are generated by taking every item in a frequent set as a head and the
others as body. All heads that result in a confident rule, with respect to the
minimal confidence threshold, can then be combined to generate more general
rules. But, because we now only want rules that satisfy the query, a head must
always be a superset of {h1, . . . , hm} and may not include any of the h′i and
bi (the latter because bodies and heads of rules are disjoint). In this way, we
head-start with a lead of m. Similarly, a body must always be a superset of
{b1, . . . , bℓ} and may not include any of the b′i and hi.

The following lemma (which follows immediately from Lemma 2) tells us
that these potential heads and bodies are already present, albeit implicitly, in
S0:

Lemma 3. Let S0 be as in Lemma 2. Let B (H) be the set of bodies (heads) of
those association rules over D that satisfy the rule-query. Then

B = {s ∪ {b1, . . . , bℓ} | s ∈ S0 and s ∩ {b′
1
, . . . , b′ℓ′ , h1, . . . , hm} = ∅}

and

H = {s ∪ {h1, . . . , hm} | s ∈ S0 and s ∩ {h′
1
, . . . , h′m′ b1, . . . , bℓ} = ∅}.

So, for the potential bodies (heads), we use, in S0, all sets that do not include
any of the b′i and hi (h′i and bi), and add all bi (hi). Hence, all we have to do is
to determine the frequencies of these subsets by performing one additional scan
trough the dataset. (We do not necessarily yet have these frequencies because
these sets do not contain either items bi or hi, while we ignored transactions
that did not contain all items bi and hi.)

Each generated itemset can thus have up to three different “personalities:”

1. A frequent set that satisfies the set-query;

2. A frequent set that can act as body of a rule that satisfies the rule-query;

3. A frequent set that can act as head of a rule that satisfies the rule-query.

7

Hence, we finally have at most three families of sets, i.e., those sets from
which rules must be generated, the rule-sets (S0 with all bi and hi added); a
family of possible bodies, the body-sets (S0 with all bi added, minus all those
sets that include any of the b′i and hi); and yet another family of possible heads,
the head-sets (S0 with all hi added, minus all those sets that include any of the
h′i and bi). Note that the frequencies of the body-sets and head-sets need not
necessarily to be recounted since their frequencies are equal to the frequencies
of their corresponding sets in S0 if the query consists of negated atoms only. We
finally generate the desired association rules from the rule-sets, by looking for
possible bodies and heads only within the body-sets and head-sets respectively,
on condition that they have enough confidence.

Optimality Note that every rule-set, body-set, and head-set is needed to
construct the rules potentially satisfying the rule-query so that these can be
tested for confidence, and moreover, no other sets are ever needed. In this
precise sense, our method is optimal.

Example 1. We illustrate our method with an example. Assume we are given
the rule-query

Body(1) ∧ ¬Body(2) ∧ Head(3) ∧ ¬Head(4)

∧ ¬Body(5) ∧ ¬Head(5) ∧ support ≥ 1 ∧ confidence ≥ 50%.

We begin by converting it to the set-query

Set(1) ∧ Set(3) ∧ ¬Set(5) ∧ support ≥ 1.

Hence Pos = {1, 3} and Neg = {5}. Consider a database consisting of the
three transactions {2, 3, 5, 6, 9}, {1, 2, 3, 5, 6} and {1, 3, 4, 8}. We ignore the first
transaction because it is not a superset of Pos. We remove items 1 and 3 from
the second transaction because they are in Pos, and we also remove 5 because it
is in Neg. We only remove items 1 and 3 from the third transaction. Table 1
shows the itemsets that result from the mining algorithm after reading, according
to Lemma 1 and 2, the two resulting transactions. For example, the itemset
{4, 8} actually represents the set {1, 3, 4, 8}. It also represents a potential body,
namely {1, 4, 8}, but it does not represent a head, because it includes item 4,
which must not be in the head according to the given rule-query. As another
example, the empty set now represents the set {1, 3} from which a rule can be
generated. It also represents a potential body and a potential head.

4.2 Boolean Queries

Assume now given a rule-query that is an arbitrary Boolean combination of
atomic conditions. We can put it in disjunctive normal form and then generate
all frequent itemsets for every disjunct (which is a conjunction) in parallel by

8

S0 S B H

{} {1, 3} {1} {3}
{2} {1, 2, 3} - {2, 3}
{4} {1, 3, 4} {1, 4} -
{6} {1, 3, 6} {1, 6} {3, 6}
{8} {1, 3, 8} {1, 8} {3, 8}
{2, 6} {1, 2, 3, 6} - {2, 3, 6}
{4, 8} {1, 3, 4, 8} {1, 4, 8} -

Table 1: An example of generated sets, which can represent a frequent set, as
well as a body, as well as a head

feeding every transaction of the database to every disjunct, and processing them
there as described in the previous subsection.

However, this approach is a bit simplistic, as it might generate some sets
and rules multiple times. For example, consider the following query: Body(1)∨
Body(2). If we convert it to its corresponding set-query (disjunct by disjunct),
we get Set(1)∨Set(2). Then, we would generate for both disjuncts all supersets
of {1, 2}. We can avoid this problem by putting the set-query to disjoint DNF.1

Then, no itemset can satisfy more than one set-disjunct. On the other hand this
does not solve the problem of generating some rules multiple times. Consider
the equivalent disjoint DNF of the above set-query: Set(1)∨ (Set(2)∧¬Set(1)).
The first disjunct thus contains the set {1, 2} and all of its supersets. If we
generate for every itemset all potential bodies and heads according to every
rule-disjunct, both rule-disjuncts will still generate all rules with the itemset
{1, 2} in the body. The easiest way to avoid this problem is to put already the
rule-query in disjoint DNF. Obviously, this does not mean its corresponding
set-query is also in disjoint DNF, and hence, we still have to put it in disjoint
DNF.

After all sets have been generated according to the set-query, we still have
to generate all rules according to the rule-query. This can be done for every
rule-disjunct (which is a conjunction) in parallel after some modifications to the
algorithm described in the previous subsection.

Indeed, a single set-disjunct can now contain sets from which rules can be
generated satisfying several rule-disjuncts. Hence, a set generated in one set-
disjunct has now possibly even more personalities. More specifically, it can
possibly represent for every rule disjunct a set from which rules can be generated,
a body of a such a rule and a head of such a rule. We illustrate this with the
rule-query given in the previous paragraph.

Example 2. Assume we are given the rule-query

Body(1) ∧ (Body(2) ∨ Head(2)).

1In disjoint DNF, the conjunction of any two disjuncts is unsatisfiable. Any boolean
expression has an equivalent disjoint DNF.

9

In disjoint DNF, this gives

(Body(1) ∧ Body(2)) ∨ (Body(1) ∧ Head(2)).

Converted to its corresponding set-query in disjoint DNF, we get

Set(1) ∧ Set(2).

Obviously, this single set-disjunct contains sets from which rules satisfying the
first rule-disjunct can be generated. Following the methodology described in the
previous subsection, this means we still have to count the frequencies of all these
sets without item 1 and item 2 included, since they will occur as heads in the
rules satisfying the first rule disjunct. But now, the set-disjunct also contains
sets from which rules satisfying the second rule-disjunct can be generated. Hence,
we still have to count the frequencies of the generated sets with item 1 included,
which can serve as bodies for the rules satisfying the second rule-disjunct, and
the sets with item 2 included, which can serve as heads.

Until now, we have disregarded the possible presence of negated thresholds
in the queries, which can come from the conversion to disjoint DNF, or from
the user himself. In the latter case, it would not be possible to exploit this
constraint in an Apriori-like algorithm, because it is an essentially bottom-up
algorithm. Algorithms that generate sets also in a top-down strategy could
exploit this constraint. Another source for negated thresholds is the conversion
from the user’s query to a Disjoint DNF formula. Before we discuss this, we
first have to explain how we are going to convert a given formula to disjoint
DNF.

We first put the Boolean expression φ in DNF, obtaining an expression of
the form φ1 ∨φ2 ∨ · · · ∨φn, in which φi is a conjunction of atomic conditions or
their negations. Of course, any two of these disjuncts may not be disjoint. A
good way to obtain a disjoint DNF is to add to every disjunct φi the negated
disjuncts φj with j < i. We thus become the equivalent formula φ1∨(φ2∧¬φ1)∨
· · · ∨ (φn ∧ ¬φn−1 ∧ · · · ∧ ¬φ1) in which all disjuncts are pairwise disjoint. Our
problem is not yet solved, because our formula is not even in DNF anymore.
We thus still will have to convert every disjunct on itself to disjoint DNF. For
example, take (φ2 ∧ ¬φ1) with φ1 ≡ p1 ∧ p2 ∧ · · · ∧ pℓ in which pi is an atomic
condition or its negation. The disjunct thus becomes (φ2 ∧ ¬p1) ∨ (φ2 ∧ p1 ∧
¬p2) ∨ · · · ∨ (φ2 ∧ p1 ∧ p2 ∧ · · · ∧ pℓ−1 ∧ ¬pℓ), which is in disjoint DNF.

An example showing that negated thresholds can be introduced in this pro-
cess, is the following.

Example 3. Assume we are given the rule-query

(Body(1) ∧ support ≥ 10) ∨ (Body(2) ∧ support ≥ 5).

As equivalent disjoint DNF, we obtain

(Body(1) ∧ support ≥ 10) ∨ (Body(2) ∧ support ≥ 5 ∧ ¬Body(1))

∨ (Body(2) ∧ support ≥ 5 ∧ Body(1) ∧ support < 10).

10

Data set #Items #Transactions MinSup It’s Time
T40I10D100K 1 000 100 000 700 18 1 700s
mushroom 120 8 124 813 16 663s
BMS-Webview-1 498 59 602 36 15 86s
basket 13 103 41 373 5 11 43s

Table 2: Data set Characteristics

Notice the maximal support threshold in the last disjunct, which is needed to
avoid generating itemsets satisfying Body(2) ∧ support ≥ 10 ∧ Body(1) which
are already generated by the first disjunct.

Negated support thresholds can be avoided however. After putting the user’s
formula in DNF, but before putting the DNF in disjoint DNF, we sort all dis-
juncts on their support threshold, in ascending order. This guarantees that the
conversion to disjoint DNF does not introduce any negated support thresholds.

Note that we cannot avoid negated confidence thresholds at the same time:
we have already sorted on support, and thus cannot sort anymore on confidence
at the same time. Since we are here already in phase 2, it is less of an efficiency
issue to just ignore maximal confidence thresholds.

Furthermore, if a set-disjunct (rule-disjunct) consists of nothing but a negated
support (confidence) threshold, we can of course easily switch the generation al-
gorithm and generate the candidate sets (heads) in a top-down manner.

4.3 Experiments

For our experiments, we have implemented an extensively optimized version of
the Apriori algorithm, equipped with the querying optimizations as described
in the previous sections.

We have experimented using three real data sets, of which two are pub-
licly available and one synthetic data set generated by the program provided
by the Quest research group at IBM Almaden [3]. The mushroom data set
contains characteristics of various species of mushrooms, and was originally
obtained from the UCI repository of machine learning databases [4]. The BMS-
WebView-1 data set contains several months worth of click-stream data from
an e-commerce web site, and is made publicly available by Blue Martini Soft-
ware [17]. The basket data set contains transactions from a Belgian retail store,
but can unfortunately not be made publicly available. Table 2 shows the number
of items and the number of transactions in each data set. The table additionally
shows the minimal support threshold we used in our experiments for each data
set, together with the resulting number of iterations and the time (in seconds)
which the Apriori algorithm needed to find all frequent patterns.

For each data set, we generated 100 random Boolean queries consisting of at
most three atomic conditions. Figure 1 shows the improvement on the perfor-
mance of the algorithm exploiting the constraints. The y-axis shows the time
needed for the algorithm exploiting our queries, relative to the time needed with-

11

0

20

40

60

80

100

0 20 40 60 80 100

tim
e

(%
)

patterns satisfying the query (%)

BMS-Webview-1

mushroom

T40I10D00K

basket

Figure 1: Improvement after exploiting constraints.

out exploiting the queries. The x-axis shows the number of patterns satisfying
the given query, relative to the total number of patterns. As can be seen, the
time needed to generate all frequent sets and association rules is proportional
to the restrictiveness of the constraints. Notice that the proportionality factor
is 1.

5 Interactive Mining

5.1 Integrated Querying or Post-Processing?

In the previous section, we have seen a way to integrate constraints tightly into
the mining of association rules. We call this integrated querying. At the other
end of the spectrum we have post-processing, where we perform standard, non-
constrained mining, save the resulting itemsets and rules, and then query those
results for the constraints.

Integrated querying has the following two obvious advantages over post-proc-
essing:

1. Answering one single data mining query using integrated querying is much
more efficient than answering it using post-processing.

2. It is well known that, by setting parameters such as minimal support
too low, or by the nature of the data, association rule mining can be
infeasible simply because of a combinatorial explosion involved in the gen-
eration of rules or frequent itemsets. Under such circumstances, of course,
post-processing is infeasible as well; yet, integrated querying can still be

12

executed, if the query conditions can be effectively exploited to reduce the
number of itemsets and rules from the outset.

However, as already mentioned in the Introduction, data mining query lan-
guage environments must support an interactive, iterative mining process, where
a user repeatedly issues new queries based on what he found in the answers of
his previous queries. Now consider a situation where minimal support require-
ments and data set particulars are favorable enough so that post-processing is
not infeasible to begin with. Then the global, non-constrained mining opera-
tion, on the result of which the querying will be performed by post-processing,
can be executed once and its result materialized for the remainder of the data
mining session.

In that case, if the session consists of, say, 20 data mining queries, these 20
queries amount to standard retrieval queries on the materialized mining results.
In contrast, answering every single of the 20 queries by integrated querying will
involve at least 20, and often many more, passes over the data, as each query
involves a separate mining operation. Also, several queries could have a non-
empty intersection, such that a lot of work is repeated several times. Hence,
the total time needed to answer the integrated queries is guaranteed to grow
beyond the post-processing total time.

The naively conceived advantages of integrated querying over post-processing
become much less clear now. Indeed, if the number of data mining queries is-
sued by the user is large enough, then the post-processing approach clearly
outperforms the integrated querying approach. We have performed several ex-
periments on the data sets described in the previous section which all confirmed
this predicted effect. However, for the post-processing approach, we only ma-
terialized all frequent itemsets since the time needed to generate all association
rules that satisfy the query turned out to be as fast as finding all such rules
from the materialized results. Figure 2 shows the total time needed for answer-
ing up to 20 different queries on the BMS-Webview-1 data set. Since the time
needed to generate all association rules is the same for both approaches, we
only recorded the time to generate all itemsets that were needed to generate all
association rules. The queries were randomly generated, only those queries with
an empty output were replaced, but all used the same support threshold as was
used for the initial mining operation of the post-processing approach. As can
be seen, the cut-off point from where the post-processing approach outperforms
the integrated querying approach occurs already after the eighth query.

5.2 Incremental Querying: Basic Approach

From the above discussion it is clear that we should try to combine the advan-
tages of integrated querying and post-processing. We now introduce such an
approach, which we call incremental querying.

In the incremental approach, all itemsets that result from every posed query,
as well as all intermediate generated itemsets, are stored into a cache. Initially,

13

0

50

100

150

200

250

300

0 2 4 6 8 10 12 14 16 18 20

to
ta

l t
im

e
(s

ec
on

ds
)

query number

post-processing

integrated

Figure 2: Integrated querying versus post-processing.

when the user issues his first query, nothing has been mined yet, and thus we
answer it using integrated querying.

Every subsequent query is first converted to its corresponding rule- and set-
query in disjoint DNF. For every disjunct in the set-query, the system adds all
currently cached itemsets that satisfy the disjunct to the data structure holding
itemsets, that is used for mining that disjunct, as well as all of its subsets that
satisfy the disjunct (note that these subsets may not all be cached; if they are
not, we have to count their supports during the first scan through the data set).
We also immediately add all candidate itemsets.

If no new candidate itemsets can be generated, which means that all neces-
sary itemsets were already cached, we are done. However, if this is not the case,
we can now begin our queried mining algorithm with the important generaliza-
tion that in each iteration, candidate itemsets of different cardinalities are now
generated. In order for this to work, candidate itemsets that turn out to be
infrequent must be kept such that they are not regenerated in later iterations.
This generalization was first used by Toivonen in his sampling algorithm [26].

Caching all generated itemsets gives us another advantage that can be ex-
ploited by the integrated querying algorithm. Consider a set-query stating that
items 1 and 2 must be in the itemsets. In the first iteration of the algorithm,
all single itemsets are generated as candidate sets over the new data set D0

(cf. Section 4.1). We explained that these single itemsets actually represent
supersets of {1, 2}. Normally, before we generate a candidate itemset, we check
if all of its subsets are frequent. Of course, this is impossible if these subsets
do not even exist in D0. Now, however, we can check in the cache for a subset
with too low support; if we find this, we avoid generating the candidate.

14

We thus obtain an algorithm which reuses previously generated itemsets as if
they had been generated in previous iterations of the algorithm. We are optimal
in the sense that we never generate and test itemsets that were generated before.
For rule generation, we again did not cache the results, but in stead generated all
association rules when needed for the same reasons as explained in the previous
section.

In the worst case, the cached results do not contain anything that can be
reused for answering a query, and hence the time needed to generate the itemsets
and rules that satisfy the query is equal to the time needed when answering that
query using the integrated querying approach. In the best case, all requested
itemsets are already cached, and hence the time needed to find all itemsets
and rules that satisfy the query is equal to the time needed for answering that
query using post-processing. In the average case, part of the needed itemsets
are cached and will then be used to speed up the integrated querying approach.
If the time gained by this speedup is more than the time needed to find the
reusable sets, then the incremental approach will always be faster than the
integrated querying approach. In the limit, all itemsets will be materialized,
and hence all subsequent queries will be answered using post-processing.

5.3 Incremental Querying: Overhead

Could it be that the time gained by the speedup in the integrated querying
approach is less than the time needed to find and reuse the reusable itemsets?
This could happen when a lot of itemsets are already cached, but almost none
of them satisfy the constraints. It is also possible that the reusable itemsets
give only a marginal improvement. We can however counter this phenomenon
by estimating what is currently cached, as follows.

We keep track of a set-query φsets which describes the stored sets. This
query is initially false. Given a new query (rule-query) ψ, the system now goes
through the following steps: (step 1 was described in Section 4.1)

1. Convert the rule-query ψ to the set-query φ

2. φmine := φ ∧ ¬φsets

3. φsets := φsets ∨ φ

After this, we perform:

1. Generate all frequent sets according to φmine , using the basic incremental
approach.

2. Retrieve all cached sets satisfying φ ∧ ¬φmine .

3. Add all needed subsets that can serve as bodies or heads.

4. Generate all rules satisfying ψ.

Note that the query φmine is much more specific than the original query φ.
We thus obtain a speedup, because we have shown in Section 4 that the speed
of integrated querying is proportional to the restrictiveness of the query.

15

5.4 Avoiding Exploding Queries

The improvement just described incurs a new problem. The formula φsets be-
comes longer with the session. When, given the next query φ, we mine for
φ ∧ ¬φsets , and convert this to disjoint DNF which could explode.

To avoid this, consider φsets in DNF: φ1 ∨ · · · ∨φn. Instead of the full query
φ∧¬φsets , we are going to use a query φ∧ ¬φ′

sets
, where φ′

sets
is obtained from

φsets by keeping only the least restrictive disjuncts φi (their negation will thus
be most restrictive). In this way φ ∧ ¬φ′

sets
is kept short.

But how do we measure restrictiveness of a φi? Several heuristics come to
mind. A simple one is to keep for each φi the number of cached sets that satisfy
it. These numbers can be maintained incrementally.

5.5 Experiments

For each data set described in Section 4 we experimented with a session of 100
queries using the integrated querying approach, the post-processing approach
and the incremental approach. Again, the queries used for the sessions where
randomly generated. Figure 3 shows the evolution of the sessions in time. For
all four sessions, the cut-off point where the integrated querying approach loses
against the post-processing approach is the same for the incremental querying
approach since not enough itemsets could be reused before that. Except for the
mushroom data set, the incremental approach starts paying off after the twen-
tieth query. Nevertheless, the reuse of previous results does not improve the
performance enough for the incremental approach. Indeed, the incremental ap-
proach will always need some time to fetch all pre-generated itemsets and it will
try to generate some more. However, as can be seen, the incremental approach
shows a significant improvement on the integrated querying approach. Only for
the mushroom data set, the cut-off point occurs at the fifth query, and almost
all itemsets have been generated after the eighteenth query. As can be seen,
the performance of the post-processing approach is very good compared to the
other approaches. Nevertheless, if we still lowered the support thresholds, the
post-processing approach becomes unfeasible to begin with, due to an overload
of frequent itemsets. In that case, the integrated and incremental approach are
still feasible and perform very similar as in the presented experiments.

6 Conclusions

This study revealed several insights into the association rule mining problem.
First, due to recent advances on association rule mining algorithms, the perfor-
mance has been significantly improved, such that the advantages of integrating
constraints into the mining algorithm suddenly become less clear. Indeed, we
showed that as long mining without any constraints is feasible, that is, if the
number of frequent itemsets does not reach a huge amount, the total time spent
to query the frequent itemsets and confident association rules becomes less after
a certain amount of queries, compared to integrated querying, in which every

16

0

200

400

600

800

1000

1200

0 20 40 60 80 100

to
ta

l t
im

e
(s

ec
on

ds
)

query number

post-processing

integrated

incremental

(a) basket

0

200

400

600

800

1000

1200

1400

1600

1800

0 20 40 60 80 100

to
ta

l t
im

e
(s

ec
on

ds
)

query number

post-processing

integrated

incremental

(b) BMS-Webview-1

Figure 3: Actual and estimated number of candidate patterns.

17

0

5000

10000

15000

20000

25000

0 20 40 60 80 100

to
ta

l t
im

e
(s

ec
on

ds
)

query number

post-processing

integrated

incremental

(c) T40I10D100K

0

5000

10000

15000

20000

25000

0 20 40 60 80 100

to
ta

l t
im

e
(s

ec
on

ds
)

query number

post-processing

integrated

incremental

(d) mushroom

Figure 3: Actual and estimated number of candidate patterns.

18

query is pushed into the mining algorithm. The incremental approach still im-
proves the integrated approach by reusing as much previously generated results
as possible. If the cut-off point would lie beyond the number of queries in which
the user is interested, the incremental approach is obviously the best choice to
use.

Of course, if the user is interested is some frequent itemsets and association
rules which have very low frequencies, and hence mining without any constraints
becomes infeasible, the incremental approach can still be performed.

Also note, that if a user is still interested in all frequent sets and association
rules, but mining without constraints is infeasible, our queries can be used
to divide the task over several runs, without spending much more time. For
example, one can ask different queries of which the disjunction still gives all
sets and rules. Essentially, this technique forms the basis of the well known
Eclat [27] and FP-growth algorithms [10].

Acknowledgement

We wish to thank Blue Martini Software for contributing the KDD Cup 2000
data, the machine learning repository librarians Catherine Blake and Chris
Mertz for providing access to the mushroom data, and Tom Brijs for providing
the Belgian retail market basket data.

References

[1] R. Agrawal, T. Imielinski, and A.N. Swami. Mining association rules be-
tween sets of items in large databases. In P. Buneman and S. Jajodia,
editors, Proceedings of the 1993 ACM SIGMOD International Conference
on Management of Data, volume 22:2 of SIGMOD Record, pages 207–216.
ACM Press, 1993.

[2] R. Agrawal, H. Mannila, R. Srikant, H. Toivonen, and A.I. Verkamo. Fast
discovery of association rules. In Fayyad et al. [6], pages 307–328.

[3] R. Agrawal and R. Srikant. Quest Synthetic
Data Generator. IBM Alamaden Research Center,
http://www.almaden.ibm.com/cs/quest/syndata.html.

[4] C.L. Blake and C.J. Merz. UCI Repository of machine learning databases.
University of California, Irvine, Dept. of Information and Computer Sci-
ences, http://www.ics.uci.edu/~mlearn/MLRepository.html, 1998.

[5] U.M. Fayyad, G. Piatetsky-Shapiro, and P. Smyth. From data mining to
knowledge discovery: An overview. In Fayyad et al. [6], pages 1–34.

[6] U.M. Fayyad, G. Piatetsky-Shapiro, P. Smyth, and R. Uthurusamy, editors.
Advances in Knowledge Discovery and Data Mining. MIT Press, 1996.

19

http://www.almaden.ibm.com/cs/quest/syndata.html
http://www.ics.uci.edu/~mlearn/MLRepository.html

[7] G. Grahne, L.V.S. Lakshmanan, and X. Wang. Efficient mining of con-
strained correlated sets. In Proceedings of the 16th International Confer-
ence on Data Engineering, pages 512–521. IEEE Computer Society, 2000.

[8] J. Han, Y. Fu, K. Koperski, W. Wang, and O. Zaiane. DMQL: A data
mining query language for relational databases. Presented at SIGMOD’96
Workshop on Research Issues on Data Mining and Knowledge Discovery,
1996.

[9] J. Han, Y. Fu, W. Wang, et al. DBMiner: A system for mining knowledge
in large relational databases. In E. Simoudis, J. Han, and U. Fayyad,
editors, Proceedings of the Second International Conference on Knowledge
Discovery and Data Mining, pages 250–255. AAAI Press, 1996.

[10] J. Han, J. Pei, and Y. Yin. Mining frequent patterns without candidate
generation. In W. Chen, J.F. Naughton, and P.A. Bernstein, editors, Pro-
ceedings of the 2000 ACM SIGMOD International Conference on Manage-
ment of Data, volume 29:2 of SIGMOD Record, pages 1–12. ACM Press,
2000.

[11] D. Heckerman, H. Mannila, and D. Pregibon, editors. Proceedings of the
Third International Conference on Knowledge Discovery and Data Mining.
AAAI Press, 1997.

[12] T. Imielinski and H. Mannila. A database perspective on knowledge dis-
covery. Communications of the ACM, 39(11):58–64, 1996.

[13] T. Imielinski and A. Virmani. MSQL: A query language for database min-
ing. Data Mining and Knowledge Discovery, 3(4):373–408, December 1999.

[14] B. Jeudy and J-F. Boulicaut. Using condensed representations for interac-
tive association rule mining. In T. Elomaa, H. Mannila, and H. Toivonen,
editors, Proceedings of the 6th European Conference on Principles of Data
Mining and Knowledge Discovery, volume 2431 of Lecture Notes in Com-
puter Science, pages 225–236. Springer, 2002.

[15] R.J. Bayardo Jr., R. Agrawal, and D. Gunopulos. Constraint-based rule
mining on large, dense data sets. In Proceedings of the 15th International
Conference on Data Engineering, pages 188–197. IEEE Computer Society,
1999.

[16] Y. Kambayashi, M.K. Mohania, and A.M. Tjoa, editors. Proceedings of
the Second International Conference on Data Warehousing and Knowledge
Discovery, volume 1874 of Lecture Notes in Computer Science. Springer,
2000.

[17] R. Kohavi, C. Brodley, B. Frasca, L. Mason, and Z. Zheng. KDD-Cup 2000
organizers’ report: Peeling the onion. SIGKDD Explorations, 2(2):86–98,
2000. http://www.ecn.purdue.edu/KDDCUP.

20

http://www.ecn.purdue.edu/KDDCUP

[18] L.V.S. Lakshmanan, R.T. Ng, J. Han, and A. Pang. Optimization of
constrained frequent set queries with 2-variable constraints. In A. Delis,
C. Faloutsos, and S. Ghandeharizadeh, editors, Proceedings of the 1999
ACM SIGMOD International Conference on Management of Data, volume
28:2 of SIGMOD Record, pages 157–168. ACM Press, 1999.

[19] R. Meo, G. Psaila, and S. Ceri. A new SQL-like operator for mining asso-
ciation rules. In T.M. Vijayaraman, A.P. Buchmann, C. Mohan, and N.L.
Sarda, editors, Proceedings 22nd International Conference on Very Large
Data Bases, pages 122–133. Morgan Kaufmann, 1996.

[20] Biswadeep Nag, Prasad Deshpande, and David J. DeWitt. Using a knowl-
edge cache for interactive discovery of association rules. In U. Fayyad,
S. Chaudhuri, and D. Madigan, editors, Proceedings of the Fifth ACM
SIGKDD International Conference on Knowledge Discovery and Data Min-
ing, pages 244–253. ACM Press, 1999.

[21] R.T. Ng, L.V.S. Lakshmanan, J. Han, and A. Pang. Exploratory min-
ing and pruning optimizations of constrained association rules. In L.M.
Haas and A. Tiwary, editors, Proceedings of the 1998 ACM SIGMOD In-
ternational Conference on Management of Data, volume 27:2 of SIGMOD
Record, pages 13–24. ACM Press, 1998.

[22] J. Pei and J. Han. Can we push more constraints into frequent pattern
mining? In R. Ramakrishnan, S. Stolfo, R. Bayardo, and I. Parsa, edi-
tors, Proceedings of the Sixth ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, pages 350–354. ACM Press, 2000.

[23] J. Pei, J. Han, and L.V.S. Lakshmanan. Mining frequent itemsets with
convertible constraints. In Proceedings of the 17th International Conference
on Data Engineering, pages 433–442. IEEE Computer Society, 2001.

[24] R. Srikant and R. Agrawal. Mining generalized association rules. In
U. Dayal, P.M.D. Gray, and S. Nishio, editors, Proceedings 21th Inter-
national Conference on Very Large Data Bases, pages 407–419. Morgan
Kaufmann, 1995.

[25] R. Srikant, Q. Vu, and R. Agrawal. Mining association rules with item
constraints. In Heckerman et al. [11], pages 66–73.

[26] H. Toivonen. Sampling large databases for association rules. In T. M. Vi-
jayaraman, Alejandro P. Buchmann, C. Mohan, and Nandlal L. Sarda, edi-
tors, Proceedings 22th International Conference on Very Large Data Bases,
pages 134–145. Kaufmann, 1996.

[27] M.J. Zaki, S. Parthasarathy, M. Ogihara, and W. Li. New algorithms for
fast discovery of association rules. In Heckerman et al. [11], pages 283–296.

21

	Introduction
	Our contributions

	Related Work
	Review of the Apriori algorithm
	Exploiting Constraints
	Conjunctive Constraints
	Boolean Queries
	Experiments

	Interactive Mining
	Integrated Querying or Post-Processing?
	Incremental Querying: Basic Approach
	Incremental Querying: Overhead
	Avoiding Exploding Queries
	Experiments

	Conclusions

