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ABSTRACT 
 

The following problem has never been studied : Given A, the total number of items (e.g. 

articles) and T, the total number of sources (e.g. journals that contain these articles) (hence 

), when is there a Lotka function A T>

 

 ( ) Df j
jα

=  

 

that represents this situation (i.e. where ( )f j  denotes the density of the sources in the item-

density j) ? And, if it exists, what are the formulae for D and α ? This problem is solved in 

both cases with [ ]j 1,ρ∈ : where (a) ρ=∞  and where (b) ρ<∞ . Note that the 

maximum density of the items. If 

ρ=

ρ=∞ , then A and T determine uniquely D and α . If 

                                                      
1 Permanent address. 

Key words and phrases : Lotka, source, item, existence theorem. 



 2

ρ<∞ , then we have, for every , a solution for D and 2α≤ ρ , hence for f. If ρ  and 

 then we show that a solution exists if and only if 

<∞

2α>

 

 A 1
T 2

α
µ

α
−= <
−

. 

 
 

This sheds some light on the source-item coverage power of Lotka’s law. 

 

 

I.  Introduction
 

Duality in informetrics is explicitely present in any “historical” informetric law such as these 

of Lotka, Mandelbrot, Zipf, Bradford and Leimkuhler (see e.g. Egghe and Rousseau (1990)).  

Basically, these laws all describe the source-item relationship such as journal-article, author-

publication, article-citation and so on. The dual formalism was mathematically described in 

Egghe (1989, 1990) - see also Egghe and Rousseau (1990) - in a continuous setting as 

follows. Let [ ]S 0,T=  be the source set and [ ]I 0,A=  be the item set. An “Information 

Production Process” (IPP) is the triple (S,I,V), where  is a strictly increasing 

differentiable function such that 

V : S→ I

( )V 0 0=  and ( )V T A= . The dual IPP of the IPP (S,I,V) is 

defined to be (I,S,U), where  is the function U : I S→

 

 ( ) ( )1U i T V A i−= − − , (1) 

 

,where  denotes the inverse function of V. Note that the dual IPP of (I,S,U) is (S,I,V), the 

original IPP. We define 

1V−

( ) ( ) ( )' dU i
i U i

di
σ = =  and ( ) ( ) ( )' dV r

r V r
dr

ρ = =  for every i  and 

. Also denote 

I∈

r S∈ ( ) ( )( )' 1i V V iρ −=  so that, with an abuse of notation, we have ( ) ( )i rρ ρ=  

if ( )i V r= . For example, ( ) ( )Aρ ρ= T  which we will denote simply by ρ . The following 

function, describing the relation between the density of the items and the density of the 

sources, is defined : 
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 [ ]f : 1,ρ +→  

 ( )j f j→  (2) 

 

where ( )f j  is the density function (w.r.t. the IPP (S,I,V)) of the sources as a function of 

[ ]j 1,ρ∈ , the density of the items. In other words, for every  i I∈

 

 ( )
( )i

1
f j dj

ρ

∫  (3) 

 

is the cumulative number of sources for which ( )j 1, iρ⎡ ⎤∈ ⎣ ⎦ . In Egghe (1989) one proves (the 

item-analogue of (3)) that 

 

 ( )
( )i

1
jf j dj i

ρ
=∫  (4) 

 

for every . This is the basis for (continuous) duality in informetrics. The function f is the 

size-frequency density function and is the continuous analogue of the frequency function 

i I∈

( )f n  representing the number of sources with  items.  n 1,2,3,...=

 

If f is a power function : 

 

 ( ) Df j
jα

=  (5) 

 

D,  constants, , then we say that we have the Lotka formalism (or “Lotkaian” 

informetrics). This is, of course, based on the historical paper, Lotka (1926), where Alfred 

Lotka describes his size-frequency distributions (functions) using power functions. 

α 1α>

 

Since A, T, ρ , f appear in any IPP but f not necessarily under the form (5) we hence 

formulate the following problem : 
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Problem : What are the conditions, given A and T ( )A T> , for the existence of a “Lotka” f 

as in (5) that yields A and T, i.e. for which (see (3), (4)) : 

 

 ( )
1

f j dj T
ρ

=∫  (6) 

 

 ( )
1

jf j dj A
ρ

=∫ . (7) 

 

In other words, which A and T yield which type(s) of Lotkaian informetrics. 

 

This problem will be solved in this paper. In the next section we will study the (limiting) case 

. Here we will show that A and T ρ=∞ ( )A T>  determine one α  and D in (5) for which 

formulae will be given. The third section is then devoted to the (more intricate) solution 

where ρ  is an extra parameter. Here we will show that any <∞ 2α≤  yields a solution to 

the above problem and, if , we show that there is a solution to the above problem if and 

only if 

2α>

 

 A
T 2

1α
µ

α
−= <
−

. (8) 

 

This gives a complete characterization of Lotkaian informetrics, its coverage and also its 

limitations. 

 

 

II.  The limiting case .ρ=∞  

 

Theorem II.1 : Given ,  then the function f of (5) yields A and T ((6) and 

(7) for ) if the following relations hold : 

A,T +∈ A T>

ρ=∞

 

 2A T
A T

α
−=
−

 (9) 
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 ATD
A T

=
−

 (10) 

 

Proof : The proof is easy and follows from the relations (cf. (6), (7)) 

 

 
1

D dj T
jα

∞
=∫  (11) 

 

 11

D dj A
jα

∞

− =∫  (12) 

 

Hence  (only in these cases can (12) be satisfied for ) and we have 2α> A<∞

 

 D T
1α
=

−
 (13) 

 

 D A
2α
=

−
 (14) 

 

from which (9) and (10) easily follow (note that (9) implies that 2α> ).         � 

 

Denoting A
T

µ= , the average number of items per source, formulae (9), (10) can also be read 

as 

 

 2
1
1µ

α
µ

−=
−

 (15) 

 

 AD
1µ

=
−

 (16) 

 

Note that α  only depends on  and not on A andµ  T but D depends on both. 
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II.2 A result on Type/Token-Taken informetrics. 

 

In Egghe (2003) we describe the so-called Type/Token-Taken informetrics where one, in 

addition to sources and items, also describes the use that is made of the items. Here “Taken” 

stands for this use ; Type/Token refers (as in linguistics, see Herdan (1960)) to the source-

item relationship. 

 

The use of items is referring to the occurrence of items as they are encountered by 

information professionals or other information users. Examples are given in Egghe (2003) but 

the general idea behind the description of use is the following : sources that have many items 

will be encountered (say in a database) more often than sources with few items. This use leads 

to higher averages, i.e. average number of used-items per source, denoted . In Egghe 

(2003) and with the notation of above, it is proved that 

*µ

 

 
( )

( )

2

* 1

1

j f j dj

jf j dj
µ

∞

∞= ∫
∫

 (17) 

 

 ( )* 2

1

1 j f j dj
A

µ
∞

= ∫ , (18) 

 

In Egghe (2003), other qualitative relations between µ  and *µ  are given such as  and 

the fact that  is an increasing (implicite) function of 

*µ ≥µ

*µ µ . 

 

However, the following result is new, not appearing in Egghe (2003) where only the case 

 is described. ρ<∞

 

Theorem II.2 :  if . If *µ =∞ 3α≤ 3α> , 

 

 * T
2T A 2

µ
1
µ

= =
− −

 (19) 
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Proof : We have that 

 

                               ( )2 2

1 1
j f j dj D j djα

∞ ∞
−=∫ ∫  

 

 
( )

] ( )

3

1

1

D j if
3

Dln j if 3

α α
α

α

∞
−

∞

⎧⎪ ⎤⎪ ⎥= ≠⎪⎪ ⎥− ⎦⎨⎪⎪⎪= =⎪⎩

3
  

 

So 

 

 ( )2

1
j f j dj

∞
=∞∫  

 

if  and that 3α≤

 

 ( )2

1

Dj f j dj
3α

∞
=

−∫  (20) 

 

if . 3α>

 

Hence  if . If  we have, combining (9), (10), (18) and (20) : *µ =∞ 3α≤ 3α>

 

 * 1 D T 1
A 3 2T A 2

µ
α µ

= = =
− − −

 

 

since A
T

µ= .                    � 

 

Note : We mentioned already that , a fact that is proven in Egghe (2003). Note also 

that, in (19), the fact that  implies, using (9), that 

*µ ≥µ

3α> 2µ< . Of course, since , also 

. So formula (19) only applies in the region 1

A T>

1µ> 2µ< < . Fig. 1 depicts this functional 

relation between  and . Note that the graph in (1,1) is tangent to the straight line  *µ µ y x=
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which visualizes the fact that  for *µ >µ 1µ> . Formula (19) expresses a new direct 

functional relation between  and µ . *µ

 

1

1 2 µ

µ∗

0
0

 

 

Fig. 1 : The function ( )*µ µ . 

 

We will now illustrate the construction of the “right” function f (as described in Theorem II.1) 
by giving some examples. 
 

II.3  Examples. 

 

1. , . Hence A 1,000= T 500= 2=µ  and, by (15), (16), 3α= , . We have 

the function 

D 1,000=

 

 ( ) 3

1,000f j
j

=  

 

2. , . Hence A 10,000= T 1,000= 10µ=  and 19 2.11
9

α= = , 10,000D 1,111.11
9

= =  

hence 
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 ( ) 2.11

1,111.11f j
j

=  

 

3. , . Hence A 100,000= T 2,000= 50µ=  and 99 2.02
49

α= = , 

100,000D 2,040.8
49

= =  hence 

 

 ( ) 2.02

2,040.8f j
j

= . 

 

4. , . Here  and A 1,000= T 750= 1.333µ= 5α= , , hence D 3,000=

 

 ( ) 5

3,000f j
j

=  

 

Note that here, the Type/Token-Taken average *µ  equals (by (19)) : 

 

  * 1.5µ =

 

(note that , in agreement with Fig.1). *µ µ>

 

In all these examples, of course, [ )j 1,∈ +∞ . Note that, always, 2α> , as required. 

 

 

III.  The general case ρ<∞  

 

III.1 The existence theorem for f 

We start with the main result of this paper : the existence theorem for the function f, given A, 

T, A . T>
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Theorem III.1 : Let ,  be given. Let A,T +∈ A T> 1α> . 

(i) If 2α , then  and  such that ≤ 1ρ∃ > D 0>

 

[ ]f : 1,ρ +→  

 ( ) Dj f j
jα

→ =  (21) 

 

yields A and T (i.e. (6) and (7)). 

 

(ii) If , then the conclusion of (i) is valid if and only if 2α>

 

 A
T 2

1α
µ

α
−= <
−

. (22) 

 

Proof : (i) and (ii) will be proved together. The proof takes two parts. 

 

1.  f as above, yielding A and T, exists if and only if 

 

 
( )

( )
1

1

jf j djA
T f j dj

µ

∞

∞= < ∫
∫

. (23) 

 

Proof :  

 Necessary condition. 

     If such an f exists, we need to show that (using (6) and (7)) 

 

 
( )

( )

( )

( )
1 1

1 1

jf j dj jf j dj

f j dj f j dj

ρ

ρ

∞

∞<∫ ∫
∫ ∫

 

 

which follows from the Lemma in the Appendix. 
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 Sufficient condition. 

     Consider the function (for ) x 1>

 

 
( )

( )

x

1
x

1

jf j dj
: x

f j dj
ϕ → ∫

∫
 (24) 

 

Since each integral is continuous in x, cf. Apostol (1957), the same is true for . Hence ϕ ϕ  

attains all values between its minimum and maximum (Apostol (1957)), being 

 

 ( ) ( )
( )x 1 x 1

xf x
lim x lim 1

f x
ϕ

→ →
= =  

 

, using de l’Hôspital’s rule (Apostol (1957)), and 

 

 ( )
( )

( )
1

x

1

jf j dj
lim x

f j dj
ϕ

∞

∞→∞
= ∫
∫

 

 

since  is increasing (by the Lemma in the Appendix). Hence, since we have (23), there is an ϕ

] [x 1,ρ= ∈ ∞  such that 

 

 
( )

( )
1

1

jf j dj

f j dj

ρ

ρµ= ∫
∫

. (25) 

 

Note that ρ  is a function of µ . Therefore we will denote it by ( )ρ µ . Since A
T

µ=  we have, 

up to a constant, that 

 

 ( )
( )

1
A jf j

ρ µ
= dj∫  (26) 
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 ( )
( )

1
T f

ρ µ
= j dj∫ , (27) 

 

which determines D. Hence, there is an 

 

       ( )f : 1,ρ µ +⎡ ⎤ →⎣ ⎦  

 ( ) Dj f j
jα

→ =  

 

that yields A and T, by (26) and (27). 

 

2.  We now show that, for f as in (21), we have that 

 

 
( )

( )
1

1

jf j dj

f j dj

∞

∞ =∞∫
∫

 (28a) 

 

if  and that 2α≤

 

 
( )

( )
1

1

jf j dj 1
2f j dj

α
α

∞

∞
−=
−

∫
∫

 (28b) 

 

if , which then proves (i) and (ii) at the same time. 2α>

 

Proof : it is easy to see that 

 

 ( )
1

Df j dj
1α

∞
=

−∫  

 

(for all ) and 1α>

 

 ( )
1

Djf j dj
2α

∞
=

−∫  
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for all . If  then 2α> 2α≤

 

 ( )
1

jf j dj
∞

=∞∫ . 

 

This proves part 2 and hence the theorem.                           � 

 

Corollary III.2 : The function 

 

 ( )ρ ρ µ=  

 

is strictly increasing in µ  

 

Proof : This follows from the Lemma in the Appendix and (25).                 � 

 

Note : The number ρ  that we found in the above theorem is the same as the one introduced in 

section I (by (6) and (7)). The duality theory described there defined ρ  as a function of A or 

of T. The above theorem shows that ρ  in fact is only dependent on A
T

µ= , which is a new 

result for the dual informetrics model. 

 

Now that the existence theorem for f is proved we can present the method to calculate f (i.e. D 

and ρ , given any ) that yields a given A and T, . This is done in the next 

subsection. 

1α> A T>

 

III.2 Construction of f. 

 

By (26) and (27) we have 

 

 
( )

1

D dj T
j

ρ µ

α =∫ . 
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Hence 

 

 ( )( )1D 1 T
1

αρ µ
α

− − =
−

 

 

for all  and also 1α>

 

 
( )

11

D dj A
j

ρ µ

α− =∫ . 

 

Hence 

 

 ( )( )2D 1 A
2

αρ µ
α

− − =
−

 (30) 

 

if . If  we have 2α≠ 2α=

 

 ( )Dln Aρ µ = . (31) 

 

To simplify the notation we denote ( )x ρ µ= . (29) and (30) yield A
T

µ
⎛ ⎞⎟⎜ = ⎟⎜ ⎟⎜⎝ ⎠

 

 

 
2

1

1 x 1
2 x 1

α

α

α
µ

α

−

−
− − =
− −

 

 

or 

 

 
( ) ( )

2 11 x x 1
2 2

α αα α
µ α µ α

− −− − + − =
− −

1 0−  (32) 

 

if . For  we have, using (29) and (31), the equation 2α≠ 2α=

 

 ln x 0
x
µ

µ+ − = . (33) 
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The equations (32) and (33) are the key equations that must be solved numerically (the same 

equations where already used in Egghe (2003)). Because of Theorem III.1 we have now that, 

under the conditions of this theorem, equations (32) and (33) always have a solution . 

Once 

x 1>

( )x ρ µ=  is determined, then (29) or (30) determine D, hence f. We will illustrate this 

with some examples. 

 
III.3 Examples 

 

Since now we can have solutions for every 1α> , we will use this as an extra parameter. 

 

1. , , , hence 1.5α= A 15,000= T 10,000= 1.5µ= . We have the equation (32) which 

takes the form 

 

 
0.5

0.5x 2.x 0
1.5 1.5

−− − + =5  

 

which can be solved for  (  is always an (imported) solution !) using e.g. the 

MATHCAD 4.0 software. We find 

x 1> x 1=

( )x 2.251 ρ µ= = ). From (30) (but (29) also yields 

this) we find . In conclusion, the Lotka function D 14,990=

 

 ( ) 1.5

14,990f j
j

=  

 

 for [ ]j 1,2.251∈  yields the given A and T (for 1.5α= ). 

 

2. , , , hence 2α= A 50,000= T 20,000= 2.5µ= . We have the equation (33) which 

takes the form 

 

 2.5ln x 2.5 0
x

+ − =  
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which is solved in MATHCAD 4.0 as ( )x 9.322 ρ µ= = . From (31) or (29) we now 

have . Hence the Lotka function D 22,398=

 

 ( ) 2

22,398f j
j

=  

 

For [ ]j 1,9.322∈  yields the given A and T (for 2α= ). 

 

3. , , , hence 2.5α= A 20,000= T 10,000= 2µ= . Note that the conditions 

12
2

α
µ

α
−= < =
−

3  is satisfied so that there is a solution. We have now (32) : 

 

 0.5 1.53 1x x
2 2

− −− − = 0  

 

yielding ( )x 7.464 ρ µ= = . From (30) or (29) we find . In conclusion, the 

Lotka function 

D 15,773=

 

 ( ) 2.5

15,773f j
j

=  

 

for [ ]j 1,7.464∈  yields the given A and T (for 2.5α= ). 

 

4. , , , hence 3.5α= A 20,000= T 10,000= 2µ=  (as above). Now 

 

 12 1.6667
2

α
µ

α
−= > =
−

. 

 

So, according to the theorem III.1 now there is no ( )x ρ µ=  and function 3.5

Df
j

=  that 

yields A and T. Equation (32) now has no solution in . x 1>
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Appendix 
 

 

 

Lemma : For any integrable positive function f we have that 1 x  implies y< < ≤∞

 

 ( ) ( ) ( ) ( )
y x y x

1 1 1 1
uf u f v dudv vf u f v dudv<∫ ∫ ∫ ∫  (A1) 

 

Proof : 

 

( ) ( ) ( )
y x

1 1
v u f u f v dudv−∫ ∫  

 

( ) ( ) ( ) ( ) ( ) ( )
x x y x

1 1 x 1
v u f u f v dudv v u f u f v dudv= − + −∫ ∫ ∫ ∫  

 

 

  ( ) ( ) ( ) ( ) ( ) ( ) ( )
x x x x y x

1 1 1 1 x 1
vf u f v dudv uf u f v dudv v u f u f v dudv= − + −∫ ∫ ∫ ∫ ∫ ∫

 

Since the first two terms are equal and since in the third term [ ]u 1,x∈  and [ ]v x, y∈ , the 

result follows from the fact that f is positive and that 1 x .                    � y< <

 

 

 

 

 

 

 

 

 

 

 



 18

References 
 

 

T.M. Apostol (1957). Mathematical Analysis. A modern Approach to advanced Calculus. 

Addison-Wesley, Reading, Massachusetts, 1957. 

L. Egghe (1989). The Duality of informetric Systems with Applications to the empirical 

Laws. Ph. D. Thesis, The City University, London (UK), 1989. 

L. Egghe (1990). The duality of informetric systems with applications to the empirical laws. 

Journal of Information Science, 16(1), 17-27, 1990. 

L. Egghe (2003). Type/Token-Taken informetrics. Journal of the American Society for 

Information Science and Technology, 54(7), 603-610, 2003. 

L. Egghe and R. Rousseau (1990). Introduction to Informetrics. Quantitative Methods in 

Library, Documentation and Information Science, Elsevier, Amsterdam, 1990. 

G. Herdan (1960). Type-Token Mathematics. A Textbook of mathematical Linguistics. 

Mouton, ‘s Gravenhage, 1960. 

A.J. Lotka (1926). The frequency distribution of scientific productivity. Journal of the 

Washington Academy of Sciences, 16, 317-323, 1926. 


