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ABSTRACT 

 

We study new and existing data sets which show that growth rates of sources usually are 

different from growth rates of items. Examples: references in publications grow with a rate 

that is different (usually higher) from the growth rate of the publications themselves; article 

growth rates are different from journal growth rates and so on. In this paper we interpret this 

phenomenon of  “disproportionate growth” in terms of Naranan’s growth model and in terms 

of the self-similar fractal dimension of such an information system, which follows from 

Naranan’s growth model. 
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The main part of the paper is devoted to explain disproportionate growth. We show that the 

“simple” 2-dimensional informetrics models of source-item relations are not able to explain 

this but we also show that linear 3-dimensional informetrics (i.e. adding a new source set) is 

capable to model disproportionate growth. Formulae of such different growth rates are 

presented using Lotkaian informetrics and new and existing data sets are presented and 

interpreted in terms of the used linear 3-dimensional model. 

 

 

I.  Introduction 

 

In the paper Persson, Glänzel and Danell (2003), the authors present interesting “universal” 

data (i.e. based on all papers indexed in the volumes 1980-2000 of the Science Citation 

Index
®
 (SCI)). One of the data they mention is that, between 1980 and 1998, the number of 

articles has increased by (roughly) one third whereas the number of citations received by them 

has increased by three quarters. In other words, denoting by ( )n t  (t = 1980 or 1998) the 

number of articles at time (year) t and by ( )c t  the number of citations at time t we have that 

 

 
( )

( )

n 1980 4

n 1998 3
=  (1) 

 

but 

 

 
( )

( )

c 1980 7

c 1998 4
=  (2) 

 

In more general notation we can state that for 1 2t t<  we have that 

 

 
( )

( )

( )

( )
2 2

1 1

n t c t

n t c t
¹  (3) 

 

where, in the above example, we can replace ¹  by  <. 
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How to explain this “disproportionate growth” as this phenomenon is (rightly) called in 

Persson, Glänzel and Danell (2003)? Also correct is their statement that if we would expect 

reference lists to become longer simply because there are more articles to cite, then we can 

only conclude an equality in (3), i.e. proportionate growth, hence no explanation for 

disproportionate growth. They further indicate that the only way to understand the phenomena 

described above is to consider – in addition to articles and citations – author activity, where 

activity can be expressed in different forms: papers per author, author collaboration, etc. This 

idea will be further developed in this article by considering linear 3-dimensional informetrics 

of the type discussed in Egghe (2003, 2004a), i.e. informetrics of the form (in the terminology 

of above): 

 

 authors articles citations® ®  

 

where “® ” means “produce”, i.e. the informetrics of positive reinforcement where we have 

authors writing articles and where articles have (or receive) citations. 

 

Before producing more (known and new) data sets, illustrating disproportionate growth, let us 

first make a remark on yearly growth (or growth per unit time period) versus cumulative 

growth. The numbers ( )n t  and ( )c t  above indicate, respectively, the number of articles with 

publication year t and the number of citations received (or given) in year t, of course all 

limited e.g. to a fixed field. We can, of course, also consider all articles published at t or 

before t and the same goes for the citations. In mathematical terminology and using time t as a 

continuous variable we can hence define cumulative growth of articles and citations as 

follows. Let ( )N t  denote the cumulative number of articles published up to time t (we 

suppose t = 0 to be early enough that no publications appeared before t = 0). It is clear that 

 

 ( ) ( )
t

0
N t n t ' dt '= ò  (4) 

 

for every t 0³ . In the same way we can define 
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 ( ) ( )
t

0
C t c t ' dt '= ò  (5) 

 

as the cumulative number of citations up to time t. 

 

It is clear that disproportionate growth, as expressed by (3) also leads to disproportionate 

growth when we use the functions N and C instead of n and c, but the proportions are 

different. Let us indicate, however, the following easy proposition. 

 

Proposition I.1 : 

Let the functions n and c be represented as increasing exponential functions, i.e. of the type 

 

 ( ) th t ca=  (6) 

 

where t 0, a 1, c 0³ > >  (c, a: parameters) 

Then, in the limit for 1t ® ¥ , growth rates 

 

 
( )

( )
2

1

h t

h t
 (7) 

 

(for 1 2t t< ), as in (3), are the same as cumulative growth rates 

 

 
( )

( )
2

1

H t

H t
 (8) 

 

where 

 

 ( ) ( )
t

0
H t h t ' dt '= ò  (9) 

 

as in (4) or (5). 
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Proof : We have 

 

 ( ) ( )
t

0
H t h t ' dt '= ò  

 

 ( )
t

t '

0
H t ca dt '= ò  

 

 ( ) ( )tc
H t a 1

lna
= -  

 

Hence, for 1 2t t< , 

 

 
( )

( )

2

1

t
2

t

1

H t a 1

H t a 1

-
=

-
 

 

So 

 

 

( )

( )

( )

( )

2

1

2 1

t
2

t
1

t t
2

1

H t a 1
H t a 1
h t a

h t

-

-

-=  

 

   
1 1 2

1

t t t

t

a a

a 1

--
=

-
 

 

    
2

1

t

t

1 a

1 a

-

-

-
=

-
 

 

which goes to 1 for 1t  (hence 2 1t t> ) going to ¥  (since a 1> ).               

 

In words, for 1t  large, i.e. far away from the starting point of the database under consideration 

and for any 2 1t t> , we have, by applying Proposition I.1 to h n=  and h c=  (hence H N=  

and H C=  respectively) 
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( )

( )

( )

( )
2 2

1 1

n t N t

n t N t
»  (10) 

 

and 

 

 
( )

( )

( )

( )
2 2

1 1

c t C t

c t C t
»  (11) 

 

showing that disproportionate (e.g.) yearly growth (as in (3)) implies disproportionate 

cumulative growth and the “degrees of disproportionality” are the same. Note that this is only 

a limiting result. In the other cases we will have clear differences between both growth types. 

 

In the sequel we will study both cases of growth: some results will be valid for both cases and 

some only for cumulative growth rates. 

 

In the next section we formally define “disproportionate growth” and indicate its relation with 

Naranan’s growth model (Naranan (1970), Egghe (2004b)). These results are only valid for 

cumulative growth data. We also indicate how one can calculate the fractal dimension of the 

system, given cumulative growth data, based on Egghe (2004b). New and existing examples 

are thus analyzed. 

 

In the third section we give a possible explanation of disproportionate growth, valid for 

cumulative and non-cumulative growth. This is done by using a new source set as will 

become clear in the following examples 

 

1. In the case of growth of articles and references (or citations) we also consider authors 

who publish these articles. Alternatively, one can also consider journals that publish 

these articles. 

2. In the case of growth of journals and articles, we can also consider publishers who 

produce these journals. 
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In each of these cases, to the classical informetric production process (IPP) in 2 dimensions, 

i.e. 

 

 sources items®  

 

(sources producing items) we add a new source set, i.e. 

 

 new source set sources items® ®  

 

The new sources produce the old sources which in turn produce the items (e.g. publishers 

produce journals and these journals produce articles). We hence have the framework of linear 

3-dimensional informetrics as developed in Egghe (2003, 2004a). We show that 

disproportionate growth of items with respect to the original sources is covered by linear 3-

dimensional informetrics (also called positive reinforcement) and is not covered by 2-

dimensional informetrics. Formulae are presented, yielding disproportionate growth rates in 

terms of the parameters appearing in linear 3-dimensional informetrics (we also briefly 

discuss the results of this theory, for the sake of completeness). 

 

 

II.  Disproportionate growth and its relation to 

Naranan’s growth model and to the theory of self-

similar fractals 

 

Let us consider an IPP, say at time 1t , where there are 1T  sources and 1A  items. Let us then 

take a second IPP, say at time 2 1t t> , where there are 2T  sources and 2A  items. This second 

IPP can be considered as “grown” out of the first one from 1t  to 2t . In this general setting we 

can consider cumulative or non-cumulative numbers. 
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Definition II.1: 

Define 

 

 2

1

T

T
 =  (12) 

 

and 

 

 2

1

A

A
=  (13) 

 

1. We say that we have disproportionate growth in the positive sense if 

 

  >  (14) 

 

2. We say that we have disproportionate growth in the negative sense if 

 

  <  (15) 

 

3. We say that we have proportionate growth if 

 

  =  (16) 

 

Of course, when using practical data, we will conclude that we have (approximately) 

proportional growth if  » , even if  ¹ . 

 

Examples II.2 

1. The following data set has been compiled by M. Goovaerts (LUC) on the topic 

“management” in Econlit, where we restricted ourselves, naturally, to journal articles. 

The data concern cumulative growth. The topic “management” was chosen because it 

yields a large (but still manageable) data set hence a stable growth profile. 
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 Table 1.  Cumulative growth in Econlit on the topic “management” 

 

 Articles Journals 

1990 

1991 

1992 

1993 

1994 

1995 

1996 

1997 

1998 

1999 

2000 

2001 

2002 

9,545 

10,688 

12,047 

13,534 

15,183 

17,347 

19,788 

22,262 

25,098 

28,175 

31,334 

34,636 

37,889 

402 

448 

499 

534 

576 

627 

693 

748 

794 

837 

880 

915 

946 

 

 

 If we compare the first line (1990) with the last one (2002) we see that 2.35=  while 

3.97= , a clear disproportionate growth in the positive sense. An explanation will be 

given in the next section. 

 

2. The following data set can be found in Wu et al. (2003) on scores of Chinese papers in 

the SCI (Science Citation Index). Here not only the growth of papers and citations 

received are presented but also the number of cited papers. In all cases the numbers 

refer to non-cumulative growth 

 

 Table 2.  Non-cumulative growth of Chinese SCI papers and their citations 

 

 Articles Citations Cited Articles 

1991 

1992 

1993 

1994 

1995 

1996 

1997 

1998 

1999 

2000 

6,630 

6,224 

9,617 

10,411 

13,134 

14,459 

16,883 

19,838 

24,476 

30,499 

6,771 

11,384 

12,896 

12,626 

14,000 

15,800 

18,434 

21,511 

25,173 

31,384 

3,608 

5,994 

7,060 

7,180 

7,869 

8,826 

9,952 

11,549 

13,024 

15,733 
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The comparison of the years 1991 and 2000 for Articles-Citations yields 

14.60 4.64 = » =  while the comparison Articles-Cited Articles (such a comparison is not 

made very often in the literature) we have 24.60 4.36 = » = . We can conclude that 

Articles-Citations shows a proportionate growth and the same can be said about the 

comparison Articles-Cited Articles although there is a slight disproportionate growth in the 

negative sense ( )2 4.36 4.60 = < = . 

 

However, in the same article, data on CSTPC papers (i.e. papers in the China Scientific and 

Technical Papers and Citation database) and their number of references shows a clear 

disproportionate growth in the positive sense (non-cumulative data). 

 

 Table  3.  Non-cumulative growth of CSTPC papers and their references 

 

 Papers References 

1994 

1995 

1996 

1997 

1998 

1999 

2000 

107,492 

107,991 

116,239 

120,851 

133,341 

162,779 

180,848 

100,748 

104,758 

172,385 

280,476 

335,314 

466,611 

554,324 

 

 

When we compare the first line (1994) with the last line (2000) we see that 1.68=  and 

5.50= , hence a clear disproportionate growth in the positive sense. Note that the data in 

Tables 2  and 3 can also be converted into cumulative data, yielding comparable conclusions. 

 

We now describe Naranan’s growth model of sources and items, cf. Naranan (1970), Egghe 

(2004b). In the evolution of an IPP over time t, there are two growth processes in Naranan’s 

model: one of number of sources and one of number of items in each source. Both are 

considered to be exponential growth models, the simplest but most basic growth model. 
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(i) The number of sources, ( )N t , at time t grows exponentially: 

 

 ( ) t

1 1N t c a=  (17) 

 

 1 1c 0, a 1> > , 

(ii) The number of items, ( )p t , in each source grows exponentially with the same 

parameters for every source: 

 

 ( ) t

2 2p t c a=  (18) 

 

 2 2c 0, a 1.> >  

 

We have the following easy theorem (extending Naranan’s model above to all values 2a 0> ): 

 

Theorem II.3: 

Adopting Naranan’s model, we have, in the notation of Definition II.1, for cumulative growth, 

and taking the time span between the two IPPs to be 1 (i.e. 2 1t t 1- = ) that 

 

 1a =  (19) 

 

 2a



=  (20) 

 

and hence we have disproportionate growth in the positive (resp. negative) sense iff 2a 1>  

(resp. 20 a 1< < ) and we have proportionate growth iff 2a 1=  (Note that only the second 

growth process is needed to characterise (dis)proportionate growth). 

 

Proof: 

By the very definition of 1a  and 2a  we have (since 2 1t t 1- =  and since we consider 

cumulative growth) that 
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( )

( )
2 2

1

1 1

N t T
a

N t T
= = =  

 

and 

 

 
( )

( )

2

2 2
2

11

1

A

p t T
a

Ap t

T

= =  

 

 2a



= . 

 

The rest follows from Definition II.1.                        

 

As proved in Egghe (2004b) the model of Naranan also describes such an IPP as a self-similar 

fractal (see Mandelbrot (1977), Falconer (1985) or Feder (1988) for a description of self-

similar fractals). Its fractal dimension SD  (i.e. its fractal complexity) is given by the formula 

(cf. Egghe (2004b, 2005)), valid for 1 2a ,a 1> : 

 

 1
S

2

lna
D

lna
=  (21) 

 

Formula (21) is obtained by considering an IPP, as described in (17) and (18), as a self-similar 

fractal. It is then well-known (see Feder (1988), Falconer (1985)) that (21) yields the fractal 

dimension of such a self-similar fractal. The link with self-similar fractals is explained, in full 

detail, in Egghe (2004b, 2005). 

 

Consequently, in terms of disproportionate growth in the positive sense, we have the 

following theorem. 
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Theorem II.4: 

In the notation of Definition II.1 we have that the fractal dimension SD  of such a growing 

system (where 2 1t t 1- = ) is given by 

 

 
S

ln
D

ln ln



 
=

-
 (22) 

 

where we consider cumulative disproportionate growth in the positive sense. 

 

Proof: 

This follows readily from Theorem II.3, (21), the fact that 2a 1>  (i.e. SD 0> ).       

 

In the above, we have supposed (for the interpretation of Naranan’s model in terms of 

(dis)proportionate growth) that the time period between the two systems equals 1: 2 1t t 1- = . 

For practical purposes, to derive the fractal dimension directly from practical data, involving 

more than one year, we need a formula for SD  in these (more general) cases. The next 

theorem shows that formula (22) can also be used for other time periods 2 1t t 1- ¹ . 

 

Theorem II.5: 

Suppose we have a cumulative growth system as in Definition II.1 with 2 1t t 1- ¹  (but 

2 1t t 0- > ). Then formula (22) is still valid for the fractal dimension of such a system in case 

of disproportionate growth in the positive sense. 

 

Proof: 

Considering the time period 2 1t t-  as unit time requires the transformation 

 

 '

2 1

t
t t

t t
® =

-
 (23) 

 

In Naranan’s model this has, as a consequence that 
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 ( ) ( )
'

2 1
t

t t'

1 1N t c a -=  (24) 

 

 ( ) ( )
'

2 1
t

t t'

2 2p t c a -=  (25) 

 

Hence 

 

 ( )
'' ' t

1 1N t c a=  (26) 

 

 ( )
'' ' t

2 2p t c a=  (27) 

 

where 2 1t t'

1 1a a 1-= >  and 2 1t t'

2 2a a 1-= >  and where the time span ' '

2 1t t-  between the two 

IPPs is 2 1

2 1 2 1

t t
1

t t t t
- =

- -
. According to Definition II.1 and Theorem II.3 we have that 

 

 '

1a =  (28) 

 

 '

2a



=  (29) 

 

and according to (21) we have that the fractal dimension of this system is (since ' '

1 2a ,a 1> ) 

 

 
'

' 1
S '

2

ln a
D

ln a
= . (30) 

 

Hence, formula (22) for 2 1t t 1- ¹  follows from (28), (29) and (30).                 

 

Another way to describe that the length of the time period is not involved in the calculation of 

the fractal dimension, as long as the same disproportionate growth is occurring is as follows. 

Let, in the first case, we have parameters   and   as in Definition II.1 with  > . Suppose 



 15 

we extend (or shorten) the growing period by a factor 1, 0 ¹ > . It is clear that the new 

growth parameters of the second system are (since the rates remain the same) 

 

 '  =  (31) 

 

 '  =  (32) 

 

and that ' ' > . By the above theorem we have that the fractal dimension of the second 

system is 

 

 
( )

( ) ( )
'

S

ln
D

ln ln



 



 
=

-
 

 

 '

S S

ln
D D

ln ln



 
= =

-
, (33) 

 

i.e. the fractal dimension of the original system. This also follows if we adapt the proof of 

Theorem II.3 to time periods 2 1t t 1- ¹ . 

 

Note II.6. 

The interpretation of disproportionate growth in terms of Naranan’s model could only be 

given for cumulative growth, by condition (i) in this model (N(t) denotes the total number of 

sources at time t). Because of (ii) in this model (i.e. 2a 1> ) we only have an interpretation of 

disproportionate growth in the positive sense. Note that this is the most important case: most 

examples show a faster growth of the items than the one of the sources. 

 

In case of cumulative disproportionate growth in the negative sense, we can reverse the roles 

of sources and items (and replace the verb “produce” by “is produced by”), i.e. the dual 

interpretation of the original IPP. For this dual IPP, the results above are valid since we now 

have disproportionate growth in the positive sense. 

 

We close this section with an example of the calculation of the fractal dimension. 
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Example II.7. 

We use the cumulative growth data of Table 1. In this table, each couple of 2 years can be 

used to calculate the fractal dimension. The most stable result is obtained when we use the 

first and the last line. We calculated already that 2.4=  and 3.97= . By theorems II.4 and 

II.5 we have that the fractal dimension is 

 

 
( )

S

ln 2.35
D 1.6295

3.97
ln

2.35

= =
æ ö

÷ç ÷ç ÷çè ø

 

 

Note (Egghe and Rousseau (1990), Egghe (2004 b, 2005)) that this theory is linked with 

Lotkaian informetrics, i.e. where the law of Lotka 

 

 ( )
C

f j
j

=  (34) 

 

is valid as size-frequency function. We have that 

 

 S1 D= +  (35) 

 

hence, for the above example we find the value 2.6295=  for Lotka’s exponent. 

 

The next section is devoted to explaining disproportionate growth. 
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III.  Explanation of disproportionate growth using 

linear 3-dimensional informetrics 

 

III.1.  Introduction 

 

The previous section linked disproportionate growth with the value of the second growth 

parameter 
2a  in Naranan’s model. The value of this approach lies in the link of 

disproportionate growth with fractal theory and Lotkaian informetrics. The theory developed 

in the previous section does not, however, explain the occurrence of disproportionate growth: 

disproportionate growth simply is equivalent – in Naranan’s model – with certain values of 

the parameter 2a  but, trying to consider this as an explanation leaves us with the explanation 

of the 2a -values themselves. 

 

Since, in the definition of disproportionate growth (Definition II.1), we only deal with sources 

and items (so-called 2-dimensional informetrics) one is inclined to think that an explanation 

of disproportionate growth follows from such a 2-dimensional theory. This is, however, not 

true. 

 

Indeed, just to keep things as simple as possible, let us repeat some elementary results from 2-

dimensional Lotkaian informetrics, i.e. a system where (34) is valid and let us suppose 2>  

and [ [j 1,Î + ¥ , the range of possible item per source densities (see Egghe and Rousseau 

(1990), Egghe (1989, 1990), Egghe (2005)). Then we have that 

 

 ( )
1

C
T f j dj

1

¥

= =
-ò  (36) 

 

and 

 

 ( )
1

C
A jf j dj

2

¥

= =
-ò  (37) 
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is the total number of sources (T) and the total number of items (A) in this system. Hence we 

have 

 

 
A 1

T 2





-
=

-
 (38) 

 

Suppose now this system grows from T to 'T  (number of sources) and from A to 'A  (number 

of items). Since we keep the subject fixed it is most natural to assume that, in the new system, 

we have (34) with the same  . Hence from (38) we have 

 

 
'

'

A 1 A

T 2 T





-
= =

-
 

 

hence (using the notation of Definition II.1) 

 

 
' 'A T

A T
 = = = . (39) 

 

Consequently, 2-dimensional informetrics, keeping   fixed, can only explain proportionate 

growth. But even if   changes, these changes need to be explained but there is no tool 

available (to the best of my knowledge) in 2-dimensional informetrics to accomplish this. 

 

The argument leading to formula (39) is an exact interpretation of the fact that growth of 

items, as a consequence of growth of sources only (as e.g. described in Persson, Glänzel and 

Danell (2003) in the case of articles and references), can only be proportionate. As indicated 

in Persson, Glänzel and Danell (2003), only the introduction of a “third party” (in their case 

“authors”) can explain disproportionate growth. This brings us to 3-dimensional informetrics 

which we will briefly describe in Subsection III.3 (for more details, we refer the reader to 

Egghe (2003, 2004a). In Subsection III.4 we will then show that this theory is capable of 

explaining the different growth rates   and   of Definition II.1, hence of explaining 

disproportionate growth. 
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III.2.  Elements of linear 3-dimensional informetrics 

 

Suppose we have a 2-dimensional IPP where there are T sources and A items. Now we 

consider the T sources as being produced by S new sources (i.e. “super sources”). 

 

Examples: 

1. Authors (super sources) write papers (sources) and these papers have references 

(items) (but, of course, given by these authors, i.e. these super sources). 

2. Publishers (super sources) produce journals (sources) and these journals contain 

articles (items) (being added to the journal volumes by these publishers, i.e. these 

super sources). 

 

These examples make it clear that the super sources are not only involved in producing the 

sources but also in the linking of the items to these sources. This remark will turn out to be 

basic for the explanation of disproportionate growth of sources and items. 

 

The formal description is as follows (continuous setting), see Egghe (2003, 2004a). Let our 

original source set be given by the interval [ ]0,T  and the original item set be given by [ ]0,A  

( )A T 0> > . The “addition” of a new “super source” set [ ]0,S  leads to the following two 

IPPs. First of all we have the one describing the 2-dimensional informetric theory between 

[ ]0,S  and [ ]0,T . Let us suppose that we have here a Lotkaian size-frequency function 

 

 ( )
B

f j
j

=  (40) 

 

with 2>  (for the sake of simplicity; extensions to 0 2< £  are possible). Next we also 

have the IPP describing the 2-dimensional informetric theory between [ ]0,S  and [ ]0,A . It is 

clear that here the size-frequency function, denoted f, is dependent on   and on how the 

super sources determine the items in the sources (i.e. a composite action, i.e. 3-dimensional 

informetrics). In the Lotkaian model it is shown in Egghe (2003, 2004a) that 
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 ( )*

1

C
f j

j

 



+ -
=  (41) 

 

where 0>  depends on this composite action (the   here is the 1  in Egghe (2003, 2004a)). 

 

III.3.  The modelling of disproportionate growth 

 

Let us now consider two of such models (indexed with 1 and 2). Schematically, we have a 

situation as in Fig. 1. 

 

 

 

Fig. 1.  Growth in 3 dimensions 

 

The second system is considered as a grown version of the first system (we do not specify 

how the growth process took place nor we need a time span specification between the two 

systems). 

 

Let us suppose that the size-frequency function 1f  satisfies (cf. (40)), for j 1³  

 

 ( )
1

1
1

B
f j

j
=  (42) 

[0, S1] [0, T1] [0, A1]

f*
1

f1

[0, S2
] [0, T2

] [0, A2
]

f*
2

f2
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and, according to (41), let the size-frequency function *

1f  be given by (for j 1³ ) 

 

 ( )
1 1

1

* 1
1 1

C
f j

j

 



+ -
=  (43) 

 

Since the second system has grown from the first one we can assume that 
2f  is a Lotka 

function with the same exponent 
1 , since we are still considering the same informational 

topic. Hence we have for j 1³  

 

 ( )
1

2
2

B
f j

j
=  (44) 

 

According to (41) we now have a second parameter 2  such that *

2f  satisfies, for j 1³  

 

 ( )
1 2

2

* 2
2 1

C
f j

j

 



+ -
=  (45) 

 

We further assume all exponents of j in formulae (42)-(45) to be superior to 2 (note that this 

requires 1  to be superior to max(2, 1+ 1 , 1+ 2 )). We have the following Theorem. 

 

Theorem III.1: 

Under the above assumptions we have that 

 

 2 1 1 2

1 1 2 1

A 1 T
.

A 1 T

 

 

- -
=

- -
. (46) 

 

We hence have disproportionate growth in the positive sense iff 1 2 < , disproportionate 

growth in the negative sense iff 1 2 >  and proportionate growth (also included in this 

model!) iff 1 2 = . 
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Proof: 

Since all exponents of j in formulae (42)-(45) are assumed to be superior to 2 we have, by the 

very definition of 1f , *

1f , 2f  and *

2f  that, using repeatedly (38) for the appropriate values of A 

and T, applicable to 1f , *

1f ,
2f , *

2f : 

 

 
( )

( )

1
1 11

1 1
1

1

jf j djT 1

S 2f j dj





¥

¥

-
= =

-

ò

ò
 (47) 

 

 
( )

( )

2
2 11

2 1
2

1

jf j djT 1

S 2f j dj





¥

¥

-
= =

-

ò

ò
 (48) 

 

 
( )

( )

1 1
*

1
1 11 1

* 1 11 1 1
1

1
1

1
1jf j djA 1

1S 1f j dj 2

 



   



¥

¥

+ -
-

-
= = =

+ - - --

ò

ò
 (49) 

 

 
( )

( )

1 2
*

2
2 11 2

* 1 22 1 2
2

1
2

1
1jf j djA 1

1S 1f j dj 2

 



   



¥

¥

+ -
-

-
= = =

+ - - --

ò

ò
 (50) 

 

Formulae (47) and (48) yield 

 

 1 2

1 2

T T

S S
=  

 

hence 

 

 2 2

1 1

S T

S T
=  (51) 

 

(in fact, we refind the result of Subsection III.1). Formulae (49) and (50) yield 
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2

1 12

1 1 2

1

A

1S

A 1

S

 

 

- -
=

- -
 

 

, so 

 

 2 1 1 2

1 1 2 1

A 1 S
.

A 1 S

 

 

- -
=

- -
 (52) 

 

Combining (51) and (52) yields formula (46). The rest of the assertions are trivial from this.             

 

 

Corollary III.2: 

In terms of Naranan’s growth model we find that 

 

 

1

t
1 1

2

1 2

1
a

1

 

 

æ ö- - ÷ç ÷= ç ÷ç ÷ç - -è ø
 (53) 

 

where t is the time span between both IPPs. 

 

Proof: 

Since 

 

 ( ) t

2 2p t c a=  

 

we have that 

 

 
( )

( )
t

2

p t
a

p 0
=  (54) 
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Taking 0 as the time of the first IPP (and hence t as the time of the second IPP) we have that, 

by definition of p, 

 

 
( )

( )

2

2

1

1

A

p t T

Ap 0

T

=  

 

 
( )

( )

2

1

2

1

A

p t A

Tp 0

T

=  

 

 
( )

( )
1 1

1 2

p t 1

p 0 1

 

 

- -
=

- -
 (55) 

 

by (46). Hence (53) follows from (54) and (55).               

 

Note III.2: 

Suppose we have that 1 2S S<  in the above model. From this, based on (43) and (45), there is 

no general relation between 1  and 2  possible. Indeed, as follows from Egghe (2004c) (see 

also Egghe (2005), Chapter II), we have that ( )
3

1,000
f j

j
=  is the size-frequency function, 

given 500 sources and 1,000 items while for 1,000 sources and 10,000 items we have the 

Lotka function ( )
2.11

1,111
f j

j
= , while for 2,000 sources and 4,000 items we have the function 

( )
3

4,000
f j

j
= . Interpreted for super sources and items, it follows from the above and from 

(43) and (45), that 1 2S S<  can imply 1 2 <  but also 1 2 > . 
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IV.  Conclusions 

 

In this paper we defined disproportionate growth (of items versus sources) in the positive 

sense (item growth is relatively faster than source growth) or in the negative sense (opposite 

effect)  or proportionate growth (both growth rates are the same). We showed the relation of 

these notions with Naranan’s growth model (Naranan (1970), see also Egghe (2004b)) and 

showed how one can calculate, from practical cumulative growth data, the fractal dimension 

of the system (independent of the time span). 

 

The paper further shows that an explanation of disproportionate growth of sources and items 

cannot be obtained from 2-dimensional informetrics involving these sources and items. This 

surprising result and a suggestion in Persson, Glänzel and Danell (2003) made us think of 

applying the 3-dimensional informetrics theory as developed in Egghe (2003, 2004a). The 

explanation consists of “defining” a set of “super sources” which produce the original sources 

but which also attach the items into the original sources. In this way, disproportionate  growth 

of references versus articles can be explained by looking at authors. In the same way, 

disproportionate growth of articles versus journals (a new dataset is compiled from the 

database Econlit) can be explained by considering journal publishers. 

 

Applying the mathematical theory of Lotkaian 3-dimensional informetrics, as developed in 

Egghe (2003, 2004a), yields a formula of the growth rate of items in function of the growth 

rate of sources, involving a parameter that is determined by the growth of super sources. This 

parameter explains both types of disproportionate growth and even proportionate growth. 
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