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ABSTRACT 

Lorenz curves were invented to model situations of inequality in real life and applied in 

econometrics (distribution of wealth or poverty), biometries (distribution of species 

richness), informetrics (distribution of literature over their producers). Different types of 

Lorenz curves are hereby found in the literature and in each case a theory of good 

concentration measures is presented. 

The present paper unifies these approaches by presenting one general model of 

concentration measure that applies to all these cases. Riemann-Stieltjes integrals are hereby 
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needed where the integrand is a convex function and the integrator a function that 

generalises the inverse of the derivative of the Lorenz function, in case this function is not 

everywhere differentiable. 

Calling this general measure C we prove that, if we have two Lorenz functions f, g such 

that f < g, then C(f) < C(g). This general proof contains the many partial results that are 

proved before in the literature in the respective special cases. 

I. Introduction 

The type of problem that we study in this paper can be introduced - in its most elementary 

form - as follows. Suppose we have a vector X=(x ,,..., x,), where xicN, Vi= 1 ,..., N and 

where we order X decreasingly. The numbers xi can represent incomes (econometrics), 

species richness (biometries), number of articles written by author i (or published in journal 

i) (informetrics). The Lorenz curve of X is formed as follows) cf. Lorenz (1905) : connect 

(by lines) the points 

[ i, a,) 
N j;l i = l ,  ..., N 

and (0,O) and (1, I), where 

Since the xi are decreasing we obtain a concave polygonal increasing curve. Let f denote the 

corresponding function. If we also have a second vector X'=(xl,, ..., x',) and apply the 

same construction on X' as in (1) and (2), we obtain a second Lorenz curve with 

corresponding function g. Suppose fsg. It is clear that this is equivalent with 



for all i = l N  It is well-known (cf. Sen (1973), Allison (1978)) that fsg and f+g 

represents a situation in which X' is more concentrated (more unequal) than X. In this case 

we say that any function C on these Lorenz curves such that C(f) < C(g) is a good measure 

of concentration. There exist many examples of good measures of concentration, say the 

coefficient of variation V, where V is the positive root of 

where o2 and p are the variance and the mean of X respectively, or Theil's measure (Theil 

(1967)) 

to mention just two of them. 

This theory can be extended in several ways. First of all one can replace the uniform 

distribution (-!-,,L) (N times) as abscissae in (I) by a weight vector W=(w,, ..., wN) 
N N  N 

( ~ $ 0 ,  Vi = 1,. . . ,N and wi = 1 ). Here the weighted Lmenz curve is constructed as follows 
i = l  

: rearrange the vector X=(x,,. . . ,x,) in such a way that 

and connect the points 

and (0,O) and (1,l). Also in this case one obtains a (weighted) Lorenz curve which is 

concavely increasing and polygonal. Let us again denote its corresponding function by f. If 

we have two such functions f,g then we say that C is a good measure of (weighted) 

concentration if fsg, f+g - C(f)<C(g). Applications of this are given at the end of the 

paper. 



We also refer to Rousseau (1992) and Egghe and Rousseau (2000), where, in the latter 

reference, a proof is given that (e.g.) the measures 

and 

are good measures in this case. 

The functions f and g mentioned so far all have the property that f(O)=g(O)=O and 

f(1) =g(l) = 1. One can also construct the Lorenz curve of the difference of two vectors X 

and X'. Here we order the numbers q-q' decreasingly (note that these numbers can be 

negative). If we form the Lorenz curve (weighted or not) based on the numbers (q- 

q')i=,,.,,,, we obtain a function f that still is 0 in 0 but for which we have f(l)=O. This has 

applications as we will see at the end of the paper. 

Another generalization is obtained by studying continuous processes (as e.g. in 

econometrics) hereby using functions f,g which are continuously differentiable (so-called C1 

functions). 

Definition 1.1 : A common generalization of all the above mentioned cases is given by 

functions f on [0,1] such that f(O)=O, which are concave and piecewise C1, i.e. 3 x,, ..., x, 

E ]0,1[ such that xl < x, < . . . < x, and such that 

is continuously differentiable, Vk=O, ... ,N where we put x,=O, x ~ + ~ =  1. 



For such general functions f,g such that f(O)=g(O)=O and f(l)=g(l), we will study the 

problem of finding measures C such that fsg, f+g - C(f) < C(g). A general solution will be 

given, using continuous convex functions cp as the integrand and an extension off'.' (which 

does not always exist) as the integrator of a Riemann-Stieltjes integral over the interval 

rf'(l), f'(0)I. 

For the many results on Riemann-Stieltjes integration we refer the reader to the classical 

hook Apostol (1957) or the more recent Douglas (1996). The following inequality of 

Hardy, Littlewood and Polya (1929) will be used (in its full - less known - generality using 

Riemann-Stieltjes integrals) - see also Brunk (1956) : 

Theorem 1.2 (Hardy, Littlewood and Polya) 

Let x:t-x(t) on the interval [a,b] and y:t-y(t) on the interval [c,d] he functions of bounded 

variation. Then we have 

for all cp : continuous convex function on a closed interval containing [a,b] and [c,d] iff 

(0 

(ii) 

(iii) 

VueR. Here we denote 
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In the next section we will present the general formula for a good concentration measure C 

which is defined on all functions f as given in definition I. 1. We also present some general 

properties. In section I1 we present then the main result : fsg and f+g =. C(f)<C(g). Also 

the direct proof for the special case of weighted polygonal Lorenz curves - which is far 

more elementary - is given, for those who want a direct proof in the discrete case. 

Section IV closes the paper by presenting applications. 

11. General form of a concentration measure on a piecewise smooth (i.e. 

C') function. 

11.1 Definitions 

Let f be a piecewise smooth function on [O, 11 as described in definition 1.1. In order to deal 

with the discrete and continuous cases as described in the introduction and in view of (10) 

in theorem 1.2, we are lead to the following definitions. 

Definition 11.1.1. 

We denote by D, the following function on [O, 11 : 

DXx) = lim f'(x) = f'(x,-). 
x-Xk < 

Since f is piecewise C', D, exists. Note that D, is not necessarily injective. We therefore 

define ( a kind of generalized inverse of DJ. 



Definition II.1.2. 

Denote by R(Df) the range of D,. Define 

if t€R(Df). If teR(Df), define 

with t,>t, t&R(D,) and t, is the smallest number with this property. By definition 11.1.1, 

D: exists on every tc[b,a] such that a=D,(O)=f'(O) and b=D,(l)=f'(l)<f'(O) since f is 

concave (we exclude the case f'(O)=f'(l) in which case f is the first bissectrice of the 

square [O, 11 x [O, 11 : f(x) =x). 

The function D: is nothing else than the cumulative distribution function of the given 

situation (on which one builds the Lorenz curve). Hence, here our approach is opposite to 

the ones adopted in Gastwirth (1971, 1972) or Thistle (1989) : they start from the 

cumulative distribution function and build the Lorenz curve ; we start from the Lorenz 

curve and construct the cumulative distribution function. Both approaches are equivalent but 

the latter one is more logical in our framework where the task is, eiven two Lorenz curves, 

based on functions f < g, to construct good concentration measures C such that C(f) < C(g). 

C will be constructed using D: (see (20) further on). 

Examoles II.1.3 

(1) The case of the weighted polygonal Lorenz curve as described by (7) : 

for 



I a~ a,*, ai (i= 1,. . . ,N-1) and D, (t) = 1 for t = - . Note that - < - since f is concave. 
W~ W i + ~  Wi 

(2) The case that f is C'. Hence D,=f' attains all values between f'(1) and f(0)  and is 

injective (again we exclude f(x)=x). Hence, by definition : D: = f'.'. 

Defition II. 1.4 

For f as in definition 1.1 and with D: as in definition 11.1.2 we define, for every 

continuous convex function cp on an interval that contains [f'(l), f'(O)] : 

in the Riemann-Stieltjes sense. 

Note that D: decreases and hence, if q > O ,  C(f)>O by the properties of Riemann-Stieltjes 

integrals (RSI). For ease of notation we write for f and g, piecewise C1 : 

11.2 Concrete exoressions of C(fl in classical cases. 

II.2.1 Weighted ~olveonal Lorenz curves 

Since the integrator is a step function with jumps wi (see example 11.1.3 (I)), the RSI 

reduces to 



This is a convex generalization of (8) and (9) (and hence also of (4) and (5) ) ,  where we use 

cp(t)=tZ and cp(t)=t In t respectively for V;+I and Th,. Alternatively one can use cp(t)= 

tz- I for V; . 

11.2.2 C' functions f. 

Using example 11.1.3 (2) and substitution we have 

Analogous to the discrete case we hence define 

(hence we obtain V: + 1 by using cp(t) =t2 in (22)) and 

(hence we obtain Th, by using cp(t)=t in t in (22)), showing that these measures can be 

treated by the general formula (22) or (20). 

With these expressions we feel that we are heading in the right direction in the construction 

of good concentration measures for piecewise C' functions. The general proof that indeed 

f ~ g ,  f t g  - C(Q<C(g) for C as in (20) will be given in section 111. We first continue 

section I1 by presenting an alternative form for formula (20) in the two special cases above. 



11.3 Other forms of Clf) 

Prooosition II.3.1. In case f is the function of a polygonal curve or in case f is C1 we have 

the following alternative formula for C(f) : 

Proof : That (26) equals (25) follows from partial integration on the RSI (25) and using that 

f(O)=O. 

(i) f is the function of a ~olveonal (i.e. weighted Lorenz) curve. 

cp(Dd . We use (26) and note that - 1s a stepfunction. Hence (26) can be evaluated as 
D f 

and 

(27) and (28) in (26) yield 



by (21) and the fact that ai = 1 . 
i -1 

Now we use (25), yielding (by 11.1.3 (2)) 



- - I' ~p(f'(y)) dy 

since f' is continuous. Hence this is C(f) by (22). 

111. General proof that C (formula (20)) is a good concentration measure. 

Theorem III.1. Let f and g be, as in definition 1.1, piecewise smooth functions such that 

f(O)=g(O)=O, f(l)=g(l), f,g : concave, fsg and f+g. Then we have that 

where C is given by (20). 

m 
We will check ( l l ) ,  (12), (13) for x = D:, y = D;, a = f'(O), b = f'(l), c = g'(O), d = 

g'(1). We have 

since D,' = g'.', D: = f'.' (cf. II.1.3(2)) 

Next : 



(substitute t=gi(s) and t = f  (s) respectively) 

It remains to show the non-trivial inequality (13). Now 

, using partial integration for RSI. The same is true for g. We have several cases for ucW. 

[i) uGb.alc[d.cl 

Note that the last inclusion is always valid since g i ( l )<f  (l)<f'(O)<g'(O). Now [b-u]+=O 

and [t-u]+ = 0 , u2t 
= t-u, u<t 

Hence 

Since also u~[d,c] ,  we have the same for g : 

(13) will be proved if we can show that 



or, using substitution and partial integration, 

To simplify the notation we put x,=S-'(u), x2=g1-'(u). Then (34) reduces to : 

(a) x , > x ,  Now 

3a~]x , ,x , [  by the mean value theorem and by the fact that a < x, implies 

gl(a)  > g1(x2) (g concave). 

(b) x, < x,. Now 



3a~]x,,x,[ by the mean value theorem and by the fact that a > x ,  implies 

g'(a) < g1(x2) and that x2-x, < 0. 

This proves (35) in case (i) 

[ii) d<u<b.  

Now we have 

= b-u- bf'-'(t)dt J, 
since t ~ & , a ]  - t>u.  Since u ~ [ d , c ]  we have (cf. (33)) : 

We hence have to show 

b-u- 'ff ll(t)dt r -Jcdgg.'(t)dt S, 

As in (i) we can deduce the condition : 

u(g"(u) - f'-'(b)) < g(g'-'(u)) - f(f'-'(b)) 

or, denoting x,=gl-'(u) and the fact that V1(b)=l : 



2 g(x,) - g(1) (even =) 

3ac]l,x2[ by the mean value theorem and a < x, =. g1(a) > gi(xJ 

3 a ~ ] x , ,  1 [ by the mean value theorem and a > x, =. gl(a)  < g1(x2) and 

x,-1 < O .  This proves (13) in case (ii). 

(iii) u < d < b 

Now we have the condition 

which is trivial. Hence (13) is checked. 



Now both sides in (13) are 0 and hence (13) is checked. 

Since (13) is now checked VUER we have, by (10) 

for every continuous convex function cp. It is clear that in this case, if fsg,  f+g that the 

above inequality is strict. 

2. General case : f and e are aiecewise C'. 

Let &,>O, Vn€N be such that lim &,=O. Since f is piecewise C' ,  we have a finite number of 
n-- 

points x,, ... x, as expressed in definition 1.1, where possible discontinuities of the tangent 
N 

line of f occur. Define a function f,, as follows : f,=f outside u ]xk-E,, xk+c,[, f,<f on 
k=l 

this set and such that f, is C1,  i.e. f, is tangent to f i n  the points xk-E,, xk+&,, k = l ,  ..., N - 

see Fig. 1 as an illustration in one point x,. 

X1  + En 

Fig. 1 : C1 approximation of a piecewise C1 function. 



We do the same for g and, since fsg  we can construct g, such that f,sg,, VndV. 

N 

Note that ~:(t)=D$t), Vt€[O, 1]\ v If l (~k+~,) , f ' (~k-~, , ) [ .  
k=l 

Further 

Vk= 1,. . . ,N and \Jn€N. Hence on such an interval we have 

and 

Hence, Vtc[b,a] = [f'(l), f'(O)] 

= [fn1(1). fnf(O)1 

V ~ E N ,  we have 

Hence lim D; = Dfl, uniformly on [b,a]. Hence, by the property of RSI on uniform 
n-- 

convergence and using partial integration, 



converges to 

On f,<g, we apply the C1-case, hence 

for all n€N. We hence can conclude that 

with strict inequality if f+g. This proves theorem 111.1. 13 

Notes 111.2 : 

1. As noted already, (38) reduces to the following in case of vectors X=(x,, ..., x,), 

weighted by W=(w ,,..., w,) and X'=(xr , , . . . ,  x',), weighted by W1=(w' ,,..., w',), 

such that the weighted Lorenz curve of Xi is above the one of X : then we have 

x.' 
, where a. = - J and ajf = - 

' k = l  exk 5 @ = I  xi 

In appendix A we present a direct proof of this, which is more elementary than the 

one of theorem 111.1. 



2. Also as noted already, (38) reduces to 

in the C1-case. 

3. In the general case that f and g are piecewise C1, (38) can be evaluated as follows 

(explained on f) : 

Vt~[f'(x,+),f' (xk-)], k=1, ..., N. On the other values of t~[b,a]  we have 

which exists there. So D: is a piecewise continuous function so that /ahq(t)dp:(t)] 

for continuous cp can be evaluated using the following result on RSI, derivable from 

the theorem 9-9 (p. 198-199) in Apostol (1957) (we omit the simple proof) : 

Pro~osition 111.3 : Let h be RS-integrable w.r.t. a on the interval [a,b] and that a is 

continuous on [a,b] except in the points cl < . . . < c, in ]a,b[. Then 

where c,=a, c,+,=b and a1 is defined on [a,cl] as 



IV. Applications. 

This section reviews some applications of concentration theory, known so far in the 

literature, where separate proofs have been given for the fact that the used concentration 

measures (all special cases of the ones given here) are good. Hence our present theory 

comprises all these theories. 

N.l Discrete non-weiehted Lorenz case. 

This is the "historical" case and it is impossible to mention all applications. They are found 

in econometrics, biometrics, informetrics and sociometrics or virtually in any situation 

where inequality, elitarism, ... occurs. We will suffice by giving some key references : 

Rothschild and Stiglitz (1973), Kanbur (1984) in econometrics, Allison (1978) in 

sociometrics, Patil and Taillie (1982) in biometrics, Egghe and Rousseau (1990a,b) in 

informetrics. 

IV.2 C1 case. 

This case is often used by econometricians in order to model experimental data. The main 

references here are Gastwirth (1971, 1972) and Atkinson (1970). In sociometrics we can 

refer to Lambert (1985). Also in information science this model is often used, mainly to 



describe the entropy measure H=-Th, (formula (24)). Here, entropy measures diversity, 

rather than concentration. We refer to Cover and Thomas (1991) and Ihara (1993) for a 

thorough study of the entropy (hence Th) measure. It is remarkable that in econometrics, 

one almost always uses the Gini index (which is twice the area between the Lorenz curve 

and the first bissectrice) or Theil's measure (formula (24)) rather than using the variation 

coefficient V or V2 ( formula (23)). 

IV.3 Discrete weighted Lorenz case. 

An application of this in econometrics is found in Kanbur (1984) p.428-430, were one 

works with grouped data : if one only has income data of a whole group or country (rather 

than individual income data) one has to weight each group or country, leading to weighted 

Lorenz curves. 

In Rousseau (1992) one uses weighted Lorenz curves in order to be able to deal with N- 

dependence, where N denotes the total number of items. 

In Egghe and Rousseau (2000) one applies weighted Lorenz curves (and corresponding 

concentration measures) to describe asymmetric relative concentration. Relative 

concentration intends to compare two vectors X =(x,, . . ,xN) and Y =(y,, . . . ,yN). A relative 

concentration measure gives zero if X=Y and the highest values for very different vectors 

X,Y (such as XIY for instance). Case IV.l is contained here by taking for Y a constant 

vector. In general asymmetric relative concentration compares many vectors X, with one 

"reference" vector Y (used as weight vector W in this article), such as in the case of the 

distribution of several topics over fixed sites (e.g. in distributed documentary systems, i.e. 

a set of autonomous distinct document collections (sites)). These sites form the fixed 

reference frame with which comparisons are made. This goes as follows : for an arbitrary 

topic one checks how many documents on this topic exist in the different sites. Then one 

compares these relative scores with the relative sizes of these sites. Using the model of 

weighted Lorenz curves, Egghe and Rousseau were able to improve an earlier solution of 

Viles and French (1999) for the problem of measuring content locality. 



In Rousseau (2000) weighted Lorenz curves are applied as follows : suppose one wants to 

compare two vectors X = (x,, . . . ,x,) and Y = (y,, . . . ,y,). One can then compare X w.r. t. Y, 

where Y is considered as the reference vector, leading to one weighted Lorenz curve, or, 

one can compare Y w.r.t. X, where now X is considered as the reference vector. Also here 

we have a weighted Lorenz curve. One then takes the minimum of both curves, leading to a 

kind of "symmetric" comparison of X and Y. It was this paper that presented the idea of 

studying the problem as done in the present paper. 

Another way to compare X and Y in a symmetric way is given in subsection IV.4. 

IV.4 An aodication of the case in which f(l)=O. 

So far all our applications were dealing with functions f such that f(0) =0, f(l)= 1. In Egghe 

and Rousseau (2000) an application is given to Lorenz curves such that f(O)=f(l)=O. It is 

an application on symmetric relative concentration theory. Here, as already described in 

IV.3, one wants to compare two vectors X =(x,, . . . ,x,) and Y = (y,, . . . ,y,) but now we want 

X and Y to play an equivalent role : there is no reference vector and the comparison of X 

with Y should be the same as the comparison of Y with X, hence the name symmetric 

relative concentration. 

If A,=(a ,,..., a,) with a, as in (2) and if A,=(b ,,..., b,) is defined in a similar way for Y, 

we now take A,-A, and construct the Lorenz curve based on this vector (as in (1) but 

replacing a, by $-b,). Hence we obain a Lorenz curve that ends in (1,O) rather than (1,l). In 

Egghe and Rousseau (2000) one develops the theory of symmetric relative concentration 

hereby also defining good concentration measures for it. An example is the measure 

which is contained in our model (20) and even in (21), where we take W =  - (N (I: k) 
coordinates), replace ai by ai-bi and use cp(x)=x2. It is contained there since in our general 

theorem 111.1 we only required f(O)=g(O)=O, f(l)=g(l) (any value allowed here). 



A concrete application of this is also given in Egghe and Rousseau (2000) were a good 

measure of symmetric relative concentration is used to compare two documents or a query 

and a document, using the vector model for queries and documents, hereby improving the 

classical "cosine" formula for comparison. (see Egghe (1990) or Salton and Mc Gill 

(1987)). 

In Egghe and Rousseau (2001) the theory of symmetric relative concentration is extended to 

vectors X=(x ,,... ,x,), Y =(y ,,.. .,y,), where possibly M+N.  Also in this case the general 

theory as developed in this paper is applied. This theory is then applied to truncation of 

bibliographies where vectors of the type (X ,,.... xi) and (x,,. . . ,xi,xi+,), i= 1 ,..., N are 

compared (the xi s represent the number of items in source j). 

IV.5 A new aoolication. 

As far as we are aware of it, we think the following application is new : in IV.4 one 

compares two vectors, unweighted and a good measure of symmetric relative concentration 

then compares two such situations. These relative differences might be related to a reference 

vector, which can be variable in time (as e.g. the relative sizes of sites in a documentary 

system). So here we want to compare a situation X-Y w.r.t. W (reference vector) at t=t, 

with the analogue situation XI-Y' w.r.t. W' (reference vector) at t=b. Also this is included 

in (21). We remind the reader that in appendix A a separate proof of the fact that C in (20) 

is a good measure is given. It is simpler than the general proof of theorem 111.1 and hence 

the reader who is only interested in the discrete case, can avoid the calculations with RSI ! 

: In Thistle (1989) one deals with general Lorenz curves but only the generalized Gini 

index is studied there. 



Appendix A 

Proof of theorem 111.1 in the case of the discrete weighted Lorenz curve. We give a 

formulation in this case. 

Theorem : 

Let X=(x ,,..., x,), weighted by W=(w ,,..., wJ and X1=(x' ,,..., x',), weighted by 

W' =(w' ,, . . . ,w',) such that the weighted Lorenz curve of X' is above (and not equal to) the 

one of X. Then we have 

for all convex functions cp and where 

x.' 
a '  = 1 

J M 

1. It suffices to prove (Al) for W = W'. Indeed, each break point of the Lorenz curve f 

of X (i.e. jump off ')  can be considered as one of the Lorenz curve g of X' and vice 

versa. In this way one subdivises the weights into several smaller ones. This has no 
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influence on the left or right hand side of (Al). Let us prove this for the left hand 
P 

side, by cutting wi into p pieces with weight ar ( r= l ,  ...,p, x a r= l )  - see Fig. A l ,  
r = l  

where p=2. 

Fig. A1 Cutting wi into two pieces 

In this transformation, cp - wi is replaced by [ :i) 

2. Given X, X' and W, W' as above we have to prove ( l l ) ,  (12) and (13) of theorem 

1.2. Now 



showing (11) and (12). For (13) we have 

% + I  ai (i) Let - 5 u < - 
W i t i  Wi 

a. 
Noting that the ' decrease, we have 

W. 
J 

Since 

(since f <g, f,g concave and polygonal) we have 3i1e{l ,... ,N} such that 



(a) Case i= i '  

Then 

(A4) = I d[t -u]' dy(t). 

(b) Case i' > i 

a, aj 
Now by (A6) and since also the - decrease we have u < -, 

W- 
J wi 

Vj=i+l , . . . , i f  and hence 

(c) Case i' < i 

a.' 
Now u I, V j = i l f  1 ,..., i ,  so 

W- 
J 

This shows (13) in case (i). 

aNr a~ (ii) Let - I U < - 
W~ W~ 

Now 



By (A5) we have : 3i i6{ l  ,..., N} such that 

a '  
Then I - u 5 0, Vj  =i' + 1 ,. . . ,N and hence 

wj 

aN1 (iii) Let u < - 
W~ 

'i a,' 
Hence u is smaller than all - and - ( i , j=l ,  ..., N). 

Wi wj 

Hence 



a1 ' (iv) Let - < u s - 
W1 W~ 

Now 

a1 ' (v) Let u > - 
W1 

ai a.' 
Now u is larger than all - , (i,j = 1,. . . ,N), hence both sides of (13) are 

Wi wj 
0. 

This concludes the proof of (13) and hence of this theorem. 0 
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