Made available by Hasselt University Library in https://documentserver.uhasselt.be

Middleware for ubiquitous service-oriented spaces on the Web

Non Peer-reviewed author version

VANDERHULST, Geert; LUYTEN, Kris & CONINX, Karin (2007) Middleware for
ubiquitous service-oriented spaces on the Web. In: 21ST INTERNATIONAL
CONFERENCE ON ADVANCED NETWORKING AND APPLICATIONS
WORKSHOPS/SYMPOSIA, VOL 2, PROCEEDINGS. p. 1001-1006..

Handle: http://hdl.handle.net/1942/7794

Middleware for Ubiquitous Service-oriented Spaces on the Web

Geert Vanderhulst, Kris Luyten, Karin Coninx
Hasselt University and transnationale Universiteit Limburg
Expertise Centre for Digital Media — Institute for BroadBand Technology
Wetenschapspark 2, 3590 Diepenbeek, Belgium
{geert.vanderhulst,kris.luyten karin.coninx } @uhasselt.be

Abstract

Web services are todays preferred vehicle for creating
service-oriented architectures (SOA). Due to the boom
of personal networked devices, the Web also found its
way to the mobile space. This gives rise to device hosted
mobile services that deliver functionality over a wireless
network. There is potential to unite these services in a
collaborative service space and exploit them as building
blocks for distributed applications. This paper concen-
trates on a light-weight middleware layer to facilitate
the integration, accessibility and orchestration of Web-
based services in heterogeneous environments. Lever-
aging Web technology, this layer allows to interconnect
serverless, peer-to-peer services deployed across feder-
ations of devices. We present its value in a ubiquitous
application.

1 Introduction

With the advent of affordable (portable) Internet-
enabled devices, new opportunities arise to allow de-
vices — and in particular the services that run on these
devices — to collaborate. When integrated in a ubiq-
uitous environment, collaborative interactive services
can help to accomplish the vision of ambient intelli-
gence (Aml), i.e. enable the environment to become
aware of the user(s) interacting with it [3].

A mobile Internet can play a pivotal role in the cre-
ation of such ambient service-rich environments. The
Web has already evolved to a natural habitat for in-
formation providing services and online businesses and
lately, ubiquitous services with small footprint are built
using Web technology as well [4, 5].

There are, however, some difficulties to overcome in
order to use and deploy interoperable services on het-
erogeneous devices. The variety of devices and their
capabilities manifests itself in different ways: wired

versus wireless connections, always versus temporary
connected, limited versus abundant processing power,
etc. This enforces service implementations to adapt to
a certain quality of service that can be delivered by the
devices and e.g. outweigh performance in favor of re-
liablity. Another issue is due to the explicit notion of
a client and server in most (Web-oriented) distributed
systems. Intelligent services and agents both consume
and produce information and act as peers that require
a many-to-many communication medium to interact
with each other.

The goal of the work postulated in this paper is to
facilitate the integration of interactive services in ubiq-
uitous environments. We want to support smooth col-
laboration with both co-located and remote services
that is transparant for the user. For this purpose, we
created a portable middleware layer that supports the
routing and exchange of arbitrary messages in a ubig-
uitous environment. This layer is designed as a generic
Web-based messaging framework that supports a high
degree of flexibility for developing and deploying Web-
accessible applications on heterogeneous devices.

The rest of the paper is organized as follows. Sec-
tion 2 provides a short background to existing work.
Next, section 3 discusses the major requirements to
enable interactive service spaces. In section 4, we mo-
tivate the need for light-weight mobile Web services
and section 5 presents the Web to Peer (W2P) middle-
ware framework to support these services. Section 6
presents a case study in which a W2P implemention
is used as service space glue. Finally, section 7 draws
conclusions and states some future work.

2 Related work

In [3], Kirste presents self-organizable device ensem-
bles (appliances) to enable smart user-aware environ-
ments. It is assumed that all devices employ event
pipelines with the environment. When elevated with

personal computing devices (PDAs, smartphones, ...),
we argue an ambient environment will impose on sim-
ilar P2P communication channels between heteroge-
neous ensembles of devices and their services.

The WSAMI middleware [4] proposes a solution for
the dynamic composition and deployment of WS on
both stationary and mobile devices. A Java-based pro-
totype implementation is available which consists of
a Naming&Discovery (ND) component and a WSAMI
core broker component with integrated compact SOAP
container (CSOAP). In contrast with WSAMI, our ap-
proach breaks with the tradition to embed Web services
(WS) inside a (SOAP) container backed by a server.
W2P middleware rather offers a light-weight scalable
library that can be used to turn code (Java, C++, ...)
into a Web-accessible service with minimal effort.

Several technologies have been proposed for creat-
ing device-level SOAs, most notably Jini [1] and UPnP
[2]. In these systems (mobile) devices are discovered
together with the services they offer. For example,
a DVD player can advertise itself as a UPnP device
on the local network (with its functions bundled as
a UPnP service). Opposed to these frameworks, the
W2P framework relies on a central registry to advertise
and query services independent of their physical loca-
tion and subnet (local or wide area). Recent research
depicts an emerge of WS technology to the embedded
device market as well [5].

[7] presents a Message-Oriented Middleware (MOM)
system (called WSMQ) to enhance the value of WS.
Some of the design concepts outlined in this work (e.g.
WS message queues) are also found in our implemen-
tation, yet refined for a mobile context of use.

3 Interactive service spaces

In a ubiquitous computing environment, services are
often distributed among computing resources that are
available in the environment. A service space virtu-
ally unites the services present in the environment:
it represents the environment as a software layer of
service objects. We distinguish between a local ser-
vice space where services are location-based w.r.t. the
user’s venue and a remote services space that unites
services published on a remote network.

As an example, figure 1 depicts an environment with
three services that run on different resources: a music
service, a VOIP service and the Aml service, that ob-
serves the (independent) services present in the envi-
ronment in order to let them operate as if they were
a logical whole. The Aml service reacts, for instance,
on an incoming VOIP call with a request to the music
service to pause the music during the call. Further-

more, the user can interact with the environment using
a distributed user interface. When the user starts an
application on her PDA, a presentation is displayed to
interact with individual services or with her surround-
ings in general. Both the services and Ul immediately
react on state changes. When provided with context
information (e.g. location of the user, preferences, etc),
the Aml service can make more profound decisions to
guide the behavior of the system, yet this is beyond the
scope of this paper.

Music AmI VOIP

service service service

resources ﬁ % 5 <: #} agents, Uls, ...
o & @ MU

Figure 1. An environment and its services.

services

The main requirements to enable interactive service-
rich environments as presented in this scenario can be
summarized as follows:

1. Smoothless integration of services in a space: Ser-
vices are implemented in different ways, for in-
stance as stand-alone processes, deployed inside a
runtime environment or embodied in appliances
and applications. To inject a service in the space
— independent of its implementation — a uniform
publish mechanism is required. It is also necessary
to annotate the service with a machine-processable
description of its features and/or API so that other
software components know how to interact with it.
Semantic annotations pave the way to intelligent
service lookup (e.g. find a service based on its
purpose) and dynamic service interfacing (i.e. dis-
cover how to interact with a service at runtime).

2. Uniform access to services: Being able to access
a service is a requisite for collaborating with it.
When the backend of the service space acts as a
registry service, entities can lookup services in the
space at runtime. Besides, a discovery mechanism
can enable entities to live discover distributed ser-
vices, though discovery solutions are merely based
on multicast and limited to the local subnet.

3. Flexible collaboration with services: In an inter-
active system, software entities exchange informa-
tion, monitor and query data, invoke actions, etc.
As such, services can share their features and col-
laborate with each other. However, tight-coupling

of services should be avoided because it under-
mines the robustness of a system. Especially in a
dynamic environment where services may join and
leave the service space all the time, it is hard to
enforce complex dependencies. An eventing mech-
anism can avoid this coupling by providing con-
structs to notify software components of certain
events that occur in a service. This permits to de-
sign the behavior of an interactive computing sys-
tem on a higher level: achieving a desired behavior
is mainly a manner of associating the right events
with the right actions. For instance, events yield
the decoupling of the VOIP and music service in
figure 1 whilst preserving the option to relate both
services through an independent software compo-
nent (i.e. the Aml service).

4 Mobile Web-based services

A Web service (WS) is deployed in a Web server
runtime environment (e.g. a servlet container such as
Tomcat!) which is responsible for dispatching messages
to the service. The runtime environment provides a
message processing facility (provider agent) that can
receive messages from a requestor agent. These agent
components may support one or more network trans-
port protocols, such as HTTP or SMTP. Messages are
commonly encoded in XML and binded to a concrete
transport protocol (usually SOAP) as defined in a WS’s
description (e.g. WSDL document). Service providers
can advertise the services they offer via the Universal
Description, Discovery and Integration (UDDI) proto-
col, allowing service consumers to discover services that
suit their requirements.

Because WS are independent of development
technology, they can basically be accessed from
any Internet-enabled device. The request/response
mechanism typical to Web-based communication al-
lows firewall-friendly execution of remote procedure
calls (RPC). Yet, recent WS specifications® (WS-
Addressing, WS-Transaction, ...) indicate an emerg-
ing trend towards asynchronous peer-to-peer messag-
ing. This type of interaction is very suitable for loosely
coupled distributed environments. Considering the
ubiquitous nature of the Web and its availability on a
wide range of devices, WS are a powerful tool for build-
ing interactive service spaces. Nevertheless, several is-
sues still prevent WS from becoming the preferred mid-
dleware in dynamic ubiquitous environments:

Ihttp://tomcat.apache.org/
2http://www.ibm.com/developerworks/webservices/
standards/

e The implementation of current WS toolkits is of-
ten constrained to a subset of WS specifications.
Besides, WS toolkits mutually diverge in features,
architecture and API which is a result of the fact
that protocols are standardized, not their imple-
mentations [8]. This makes it hard to leverage
knowledge from one toolkit to the other and im-
plement WS in a consistent way across platforms.

e WS highly depend on a runtime environment. The
runtime allows the service developer to focus on
the core functionality of the service instead of on
communication protocols etc, but it also restricts
the “mobility” of a service. The footprint and
server-oriented nature of WS runtimes makes it
rather awkward to publish (part of) a user appli-
cation as a WS or deploy a WS on an embedded
device such as a PDA.

e Most WS-specifications specifically target service-
to-service communication. Hence, these specifica-
tions ignore non-services settled at the client side
such as software agents and Ul components. For
example, the proposed WS-Eventing specification
allows WS to subscribe to event notification mes-
sages from other WS but requires entities to be
WS-addressable (i.e. run in a Web server).

To cope with these issues, we introduce a light-
weight variant of traditional WS: mobile Web services
(MWS). MWS share the core concepts of WS — they are
platform-independent, language-neutral, loosely cou-
pled and they leverage Web protocols — but they do
not run inside a containing runtime environment. In-
stead, they rely on a Portable Middleware library (PM)
for interacting with other MWS as shown in figure 2.
The PM can be used to implement a MWS as well
as to communicate with one. It provides MWS with
incoming and outgoing message channels. Messages
sent over these channels pass through a gateway (the
W2PS) that routes the messages to their destination.
This is discussed in detail in section 5. Conventional
WS initiate a connection with a remote Web server
and then exchange messages with a target WS over
this connection.

MWS are targeted to run anywhere, ranging from
mobile platforms to dedicated server platforms. They
can be encapsulated in user applications (e.g. as a
plugin) or run as stand-alone applications. As a con-
sequence MWS have to deal with the issues and limi-
tations inherent to the environment they are deployed
in. The PM tries to mask these by providing consistent
software interfaces for various platforms.

http://myhost1:8080

http://myhost:8080

W2PS

MWS

http://myhost2:8080

Figure 2. WS versus MWS interaction

5 Web To Peer middleware

The W2P (Web To Peer) middleware framework tar-
gets the creation of interactive service spaces. It is
built around a centralized WS runtime environment in
which a dedicated WS is deployed: the W2P service
(W2PS). The W2PS is layered on top of the core of
the framework and is accessible via a built-in proxy in
the PM (figure 2). The PM tries to maintain a per-
sistent or timed two-way connection with the W2PS
so that both components can contact each other. If a
connection is lost e.g. due to weak WiFi reception, the
PM will automatically try to reconnect. Likewise, an
entity is unregistered from the space when it remains
offline for a predefined period of time.

In the W2P framework, all entities are considered
as equal peers on the network. Entities rather differ in
the role they fulfil: a provider role (e.g. service) and/or
a consumer role (e.g. user agent).

5.1 Addressing

When a software entity registers with the W2PS, a
naming service provides it with a unique name w.r.t.
the service space. This is either a reserved name or
an enumerated name (e.g. guestO, guestl, ...) by
which entities can address each other. A reserved name
is statically appointed to one particular software en-
tity, often used for software entities that are known
to participate in the service space. An enumerated
name allows new software entities to join a service
space without interfering with existing software enti-
ties. In practice this has shown to be a simple but
effective approach: most distributed applications have
a predefined set of services that make up the core of
an application and live during the application’s life-
time. Other entities simply join the service space for

W2P headers

message bytes { <MyType>...</MyType>

attachment bytes { icen.png

interacting with particular services and are not directly
addressed by others (apart from the W2PS).

The W2PS also allows to address a group of entities
at once. Entities can join or leave groups which are cre-
ated on the fly. A group will typically contain similar
entities (e.g. MWS with matching descriptions) or en-
tities that have something in common (e.g. interested
in the same type of events). For instance, a number of
similar entities with assigned names guestO, guestl,

. can subscribe themselves to a guest group. Enti-
ties can then address a message to this group and use
the group name (/guest) as a multicast address to for-
ward the message to each member of the group. Groups
are hierarchically organized similar to a unix filesystem
tree: / is the root group, /guest and /music are child
groups of / and /guest/fun points to a child group of
/guest. When a message is addressed to a group, it is
sent to all entities in the group and to all entities in its
ancestor groups. Nested groups are particularly useful
for eventing, as outlined in section 5.3.

5.2 Messaging

Entities communicate with each other by exchanging
messages. A W2P message carries a number of headers
with meta-data (e.g. sender, recipients, parameters,

..) and a payload with the message’s content data
and possibly a number of attachments. The payload
can contain any kind of information: plain text, XML
data, binary image files, etc. Figure 3 lists the skeleton
of a W2P message when transmitted using the HT'TP
protocol.

M-Id: 000000000000000
M-From: £ ent

M-To: t_ent;/t_group
M-Params: type=Mylype

M-Attach: offset=30,name=icon.png HTTP headers

} HTTP body

To properly deal with messages, the W2P framework
depends on two layers: a transport layer is responsible
for the transfer of messages over the network and a
data binding layer is applied to efficiently build and
process raw messages (see figure 4). Besides, the PM
and W2PS are equipped with incoming and outgoing
message queues.

The W2PS has a shared message queue for incoming

Content-Type: text/xml

Figure 3. W2P message

messages and a per-entity queue for outgoing messages.
The queues implemented in the PM ressemble an en-
tity’s incoming and outgoing mailbox. An entity can
simply put a message in its outgoing queue and short
time later it will arive in the recipient’s incoming queue.
Under the hood, the message is sent to the W2PS (by
default over HTTP) as soon as a network connection
is available. Next, the W2PS routes the message to
the recipient’s outgoing queue (at the W2PS). When
the recipient is online, the message is transferred to its
incoming queue. Otherwise the message is kept at the
W2PS and the entity can pick it up later.

The W2P framework supports both one-way asyn-
chronous messaging and two-way (request/reply) syn-
chronous messaging. Entities can also engage in “per-
sistent” conversations by continuously replying each
other’s messages. The chain of messages in such con-
versation is linked together by their message identifiers.

entity
Y
handler data binding
[: E
dispatcher = ouT
= =
transport
PM

Figure 4. Messaging architecture

When W2P’s rule-based dispatch mechanism is en-
abled, incoming messages are automatically dispatched
to dedicated message handlers which is also illustrated
in figure 4. An incoming message is matched against
a set of dispatch rules that relate a number of mes-
sage properties (e.g. sender, recipient(s), type, ...)
with an handler. When a rule matches, the message
is passed as an argument to the handler defined in the
rule. The handler can appeal to a data binding layer
to map the data in a message to native software ob-
jects. An XML databinding layer relieves the devel-
oper of validating and parsing raw XML data, query-
ing DOM trees, converting extracted DOM data to
concrete datatypes (error-prone), etc. When elevated
with efficient parser techniques (such as presented in
XML Screamer [6]), this layer can reduce the over-
head inherent to data (de)serialization to a minimum
and boost the overal performance of the application.
Since data binding solutions are tightly-coupled with

programming languages, the data binding layer is not
completely integrated in the W2P framework. How-
ever, plenty of toolkits can be used in conjunction with
W2P to automate the mapping between XML docu-
ments and native objects (e.g. JAXB3, Liquid XML?).

5.3 Eventing

The propagation of events in the environment re-
lies on addressing and messaging techniques when
entities respect the following convention: an entity
should direct its event messages to a group with path
/[entity name]/[event name]. The VOIP service
in figure 1 sends its incoming call event messages to
/voip/incomingcall. When an entity is interested in
an incoming call event, it should subscribe to this group
and if an entity wants to receive all events of the VOIP
service, it can subscribe to /voip.

6 Case study and evaluation

As a proof of concept, we used the W2P framework
to design an interactive service space as outlined in sec-
tion 3. The music service is built as a (C++) plugin for
the XMMS?® media player. The Aml service is simu-
lated using Java technology and the VOIP service and
UI for the music service run as C# code on a Pocket PC
device. Due to the scalability of the W2P middleware,
the diversity of platforms and development technology
is not an issue. On the contrary, it promotes the design
of a distributed system where technology matches an
entity’s local software environment.

Figure 5 illustrates the sequence of actions that take
place to mute the music when a VOIP call comes in. It
shows that entities first register with the W2PS, sub-
scribe to the appropriate event groups and then can in-
teract with each other. To the developer it appears as if
native objects (IncomingCallEvent, PauseRequest) are
“emailed” through the service space. These messages
are transfered over the HTTP protocol and deserial-
ized in the middleware. In the data binding layer, we
used a simple XML data binding mechanism to map
XML documents to native objects and vice versa. In
summary, data is selected using XPATH expressions
and converted to native data types (e.g. an integer,
an array of floats, etc) according to information in the
XML schema. The data binding is managed by the de-
veloper, though for complex projects this process can
be automated as stated in section 5.2.

Shttp://java.sun.com/webservices/jaxb/
4http://www.liquid-technologies.com/
Shttp://wuw.xmms .org/

3>

VOIP Music W2PS8

‘

I I
name := register(name)
I

name := reglste r(name)

Y__¥Y___

1
I
I
I
T \
I .
| name := register(name)
I
I

J

subscribe(name, /voip)

i

I

I

L

I

I

I

I

I

I

i

I I
I I
i l 1 »
: subscribe(name, /music) :
! ! 1 »
I | I I
: : send(lncomingCallEvenl} :
I I >
| I M-From: vo;p\ I
: : M-To: /voup/mpommgcaﬂ :
: send(lncomlngCalIEvent) :
: sénd(PauseRequeét) :
| : | .
[| M-From: amj | |
: | M-To: music | |
: : send(PauseRequest)
I | S —|
] I

Figure 5. MWS handling of a VOIP mute call

7 Conclusions and future work

Mobile services can be carried on a personal device
and executed on an “as-needed” basis, enabling tomor-
row’s innovative applications. Web services are very
suited to publish widely accessible services on a net-
work, but still impose some scalability issues, in par-
ticular on mobile platforms. The W2P framework pre-
sented in this paper provides a light-weight middleware
solution to integrate services in a ubiquitous environ-
ment, while being completely independent of the un-
derlying platform. We believe a merit of W2P technol-
ogy is the ease of turning new or existant functionality
into a Web-accessible service and this in a consistent
way across platforms.

Further research should go into the description of
W2P-based services. The WSDL specification® can
serve for this purpose when extended with W2P bind-
ings. Another possibility is to use ontologies to de-
scribe a service along with its relations with the en-
vironment, e.g. the device it is deployed on. Besides,
an integration with SOAP-based WS specifications will
enhance WS compatibility. This mainly requires ex-
tensions to the W2PS (and its runtime environment).
For example, support for the WS-Addressing specifica-
tion can be obtained by assigning W2PS-encoded URIs

Shttp://wuw.w3.org/TR/wsdl

to entities and groups, e.g. http://host:8080/w2ps#
entity.

The source code of the current W2P implemen-
tion (LGPL) can be found on http://research.edn.
uhasselt.be/w2p.

Acknowledgments

Part of the research at EDM is funded by European
Fund for Regional Development (ERDF), the Flemish
Government and the Flemish Interdisciplinary institute
for Broadband technology (IBBT, iConnect project).

References

[1] Jini. http://java.sun.com/products/jini/.

[2] Universal Plug and Play (UPnP). http://www.
upnp.org/resources/.

[3] José L. Encarnagdo and Thomas Kirste. Ambi-
ent Intelligence: Towards Smart Appliance Ensem-
bles. In From Integrated Publication and Informa-
tion Systems to Virtual Information and Knowledge
FEnvironments, pages 261-270, 2005.

[4] V. Issarny, D. Sacchetti, F. Tartanoglou, F. Sail-
han, F. Chibout, R. Levy, N., and A. Talamona.
Developing Ambient Intelligence Systems: A Solu-
tion Based on Web Services. Journal of Automated
Software Engineering, 12:101-137, 2005.

[5] Francois Jammes, Antoine Mensch, and Harm
Smit. Service-Oriented Device Communications us-
ing the Devices Profile for Web Services. In Proc. of
the 3rd International Workshop on Middleware for
Pervasive and Ad-hoc Computing, pages 1-8, New
York, NY, USA, 2005. ACM Press.

[6] Margaret G. Kostoulas, Morris Matsa, Noah
Mendelsohn, Eric Perkins, Abraham Heifets, and
Martha Mercaldi. XML Screamer: an Integrated
Approach to High Performance XML Parsing, Val-
idation and Deserialization. In Proc. of the 15th In-
ternational Conference on World Wide Web, pages
93-102, New York, NY, USA, 2006. ACM Press.

[7] Piyush Maheshwari, Hua Tang, and Roger Liang.
Enhancing Web Services with Message-Oriented
Middleware. In Proc. of the IEEE International
Conference on Web Services, pages 524-531, San
Diego, CA, USA, 2004. IEEE Computer Society.

[8] Steve Vinoski. Integration with Web Services.
IEEF Internet Computing, 7(6):75-77, 2003.

