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ABSTRACT

A general method is presented to construct ordered similarity measures (OS-measures), i.e.
similarity measures for ordered sets of documents (as e.g. being the result of an IR-process),
based on classical, well-known similarity measures for ordinary sets (measures such as Jaccard,
Dice, Cosine or overlap measures). To this extent, we first present a review of these measures

and their relationships.

The method given here to construct OS-measures extends the one given by Michel in a
previous paper so that it becomes applicable on any pair of ordered sets. Concrete expressions

of this method, applied to the classical similarity measures, are given.
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Some of these measures are then tested in the IR-system Profil-Doc. The engine SPIRIT®
extracts ranked document sets in 3 different contexts, each for 550 requests. The practical

useability of the OS-measures is then discussed based on these experiments.

1. Introduction.

Similarity measures for sets of objects (such as documents} are well-known and well-used in
the IR literature. They have become standard tools, that are featuring in any good monograph
on IR. Relatively recent monographs dealing with these measures are Boyce, Meadow and
Kraft (1995), Tague-Sutcliffe (1995), Grossman and Frieder (1998) and Losee (1998). Of
course the “standard” books on IR, Salton and Mc Gill (1987) and van Rijsbergen (1979)

should also be mentioned here.

In general one has a “universe” Q from which subsets A,B, ... are generated. In IR, Q usually is
a database of documents and the subsets A B, ... are the result of an IR-process that started
after presenting a query to the system. For any AB c Q, a similarity measure D gives a
positive number D(A,B) that expresses the “degree” of similarity between the two sets. Further
on we will go into the properties that good similarity measures should have but we can already
understand that D(A,B) should reach its minimal value (usually 0) if AnB=2 and should reach
its maximal value if A=B=. This maximal value usually is 1 if D is normalised. If this is the
case then 1-D is a dissimilarity measure. In this paper we will restrict ourselves to the study of

similarity measures.

Examples of important similarity measures are (A,BcQ, A B+a, [A| denotes the cafdinality of
A).

Jaccard’s index J

|ANB|

J(AB) = \AGB| (1)




Recall R and Precision P
_ |AnB]
R(AB) = —= 2)
(A,B) B
_ |AnB|
P(AB) = 1 (3)
(A,B) A

Note that here the roles of A and B cannot be interchanged. In IR, A=ret, the set of retrieved
documents and B=rel, the set of relevant documents. For this reason, R and P are non-
symmetric (R(A,B)*R(B,A) and P(A,B)#P(B,A)). Note that J is symmetric. In most IR cases,
R and P are related : the R-P curves {cf. Van Rijsbergen (1979), Salton and Mc Gill (1987))
are decreasing. An ideal search, however should have high values of R and P. There is a

similarity measure that expresses this, namely the harmonic average of R and P :

2
E = . 4
T @
———
R P
It is readily seen that
2|AnB|
E(AB) = =——, (5)
|Al+[B|

which is also known as Dice’s index. Note that E is symmetric. (4) and (5) can be generalized.

(Generalized) Dice Index

For a€]0,1[, we define

E = ©

which reduces to (4) for a=%. Now
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[AnD ™

EAR) = Ao

Formula (6) appears in Salton and McGill (1987), Van Rijsbergen (1979) and Tague-Sutcliffe

(1995) but in the form 1-E,. It is not logical to mix similarity and dissimilarity measures ; SO we

use E, instead of 1-E,. In Tague, one also finds the (apparently) to (4) related

(8)

However, as is readily seen from (2) and (3), (8) is nothing else than J, the Jaccard index.

Cosine measure.

If we take the geometric average of R and P, we obtain another symmetric similarity measure:

_ |AnB|

VIAIB|

Cos = RP (%)

The name Cos comes from cosine and will be explained later, when applying (9) for vectors.

In Boyce, Meadow and Kraft (1995) one can find another measure that can be formulated (in

our notation as follows) :

|ANB|
Al +[BJ?

(10)

They call it the cosine coefficient. In view of the above (9) and the explanation with vectors (to
follow) we cannot accept this name for (10). In addition, all measures encountered so far are
normalized (i.e. their maximal value, obtained if A=B#o, is 1). This is not the case in (10). The

normalized form of (10) is

|ANB|

N(AB) = 2
VIA+[BP

(11
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We will investigate this measure further on (it will be shown that N has good qualities). Note

that N is symmetric.

Overlap measures O, and O,

In Boyce, Meadow and Kraft (1995) and Van Rijsbergen (1979) one finds the following

overlap measure

|AnB}

O,(AB) = — =L _ (12)
' min(|A[,[B])
We did not find a reference for the next measure :
AnB|
0,(AB) - —ATBL_ (13)
: max(]Al,|B[)

but O, will turn out to have better properties than O,. Furthermore, max is as good as min to

be used ; therefore O, is worth to be studied.
1t follows from elementary calculations that

J<0,<cE<N<Cos< O (14)
and

0,<R P, E <O ' (15)
In the next section we will study general properties of these measures, i.e. properties that
good similarity measures should have. This will lead to the definition of weak and strong
similarity measures.
The third section presents a general method of constructing similarity measures for ordered

sets (ordered similarity measures or OS-measures) from similarity measures for ordinary sets as

defined above. It turns out that the method can be applied to most of the measures defined
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above : J, E (in fact all E), Cos, N and O,. The problem of constructing OS-measures for the
other similarity measures (R, P, O,) is left as an open problem ; the authors intend to study this
in the near future. The obtained general method is then applied to concrete strong similarity

measures and concrete formulae are given.

The last section is then devoted to experiments. Using the IR-system Profil-Doc and the engine
SPIRIT®, we obtain ranked document sets for 550 requests in 3 different contexts, which are
then compared (using OS-measures) with a standard neutral ordered set. Graphs are

constructed and qualitative conclusions on the used OS-measures are given.

General note on the interpretation of these similarity measures for the

comparison of vectors.

All of the above measures compare couples of sets. As such this is very interesting and
applicable in IR. However, there is an important part of IR that considers documents and
queries as vectors ; each coordinate (which we will restrict here to have values 1 or 0)
expresses the fact that a certain key word does or does not belong to the document or the

query. Let us limit our attention to documents. In this setting a document is then “replaced” by

----------

follows : define

D = {ie{1,...,n}||d=1} (16)

D’ = {ie{1,...,n}||d'=1} (17)
Then

IDND'| = <d,d’>

= idid’i (18)



the classical inproduct of d and d’. Also

D{=Y" [d,2 = |Id| (19)
i=1

D =Y |d )2 =dIF, (20)
i=1

the squares of the norms of d and d’. Finally
[DUD'| = |{d]f* + [|d"|]* - <d,d"> (21)

as is readily seen. Since only (18), (19), (20) and (21) are needed in the formulae (1), (2), (3),
(5), (7), (9), (11), (12) and (13), we are able to interpret all of the above measures as similarity
measures for vectors. One example yields (9) :

<d,d">
IDND’| _

DID’ i
vIDID

(22)

WAL -
which is the well-known formula for cos(d,d’), the cosine of the angle between the vectors d

and d’. That is why in (9), we used the term cos for the geometric mean of R and P. Note that

this interpretation also shows that N (formula (11)) cannot be called a cosine function.

For the rest of this paper, however, we will limit ourselves to similarities for sets (and ordered

sets).

I1. General properties of similarity measures (on ordinary sets).

Let D be any real-valued function on 2%x2® (2% = the set of all subsets of Q), where D(A,B) is

defined for all A BcQ, A B#o. For normalization reasons we require

(D) O0<D@AB)<l. | (23)
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For the maximal value, D(A,B)=1, we require the highest possible similarity between A and B,

i.e. A=B+o (and vice-versa) :

(D,) D(AB)=1+< A=B+o (24)
Although this is true for most of the measures discussed in the previous section, some
measures do not satisfy it because they have a different purpose, e.g. measuring overlap. If we
look at R, P or O, we see that the following property is valid

(D, DAB)=1=AcBorBcA (24"
(D',) is the weaker one since (D,)=(D ,) obviously but, since it is a typical “overlap

property” and since overlap is an important topic, we will keep both properties (D,) and (D )

in our study.
For the minimal value D(A,B)=0, the situation is simpler :
D;) D(AB)=0-AnB=o. (25)

All of the measures defined in the previous section are of the form (+,, +, : functions)

D(AB) - #{|AnB|) 26)
+,(|AL[B},|AUBI) .

and satisfy

(D,)  +, is a strictly increasing function.

Optionally, one might also require symmetry :

(D;) D(A,B)=D(B,A). 27)



All measures of the previous section, except R and P, satisfy this.
In view of the above discussion we define

Definition IL1 : If D is a real-valued function on 2%x2® which satisfies (D,),(D,).(D,),(D,), we

say that D is a strong similarity measure.

Definition IL2 : If D is a real-valued function on 2%2® which satisfies (D,), (D ,),(D,),(D,),

we say that D is a weak similarity measure.

The measures I, E (in fact all E)), Cos, N, O, are strong similarity measures as is readily seen.
The measures R, P, O, are weak similarity measures. In this article O, is the only symmetric
weak similarity measure that is not strong, showing that {(D,),(D ,),(D;),(D,),(D;)} does not
imply (D).

Note also that strong similarity measures need not to be symmetric : the measures E, (a.# %)
are strong similarity measures that are non-symmetric. Hence {(D,),(D,),(Ds),(D,)} does not
imply (Ds).

Of course, if D is any of the above measures and if £:[0,1]-[0,1] is a strictly increasing function
such that f{0)=0 and f{1)=1, then the measure f ° D, defined as

(f° D)(A,B) = f(D(A,B)) (28)

has the same properties as D. This simple remark will play a crucial role in the construction of
similarity measures for ordered sets : in several cases it will only be possible to construct an
0OS-measure from a similarity measure D as above when using functions f as above - see the

next section !.

All definitions above are given for measures D:(A,B)~D(A,B) for A B+o. If A or B is @ we
will define D(A,B)=0, for all measures D.
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III. Ordered similarity measures (OS-measures)

I1.1 Statement of the problem.

An ordered set is (cf. Michel (2000)) an infinite chain C=(Cy),.y [where C,cQ for all i€eN and
where CNC;=o, Vi#j] such that the elements within one C; are unordered but for elements in
different C;s we have : deC, d’€C; then d<d’'=i<j. Such an ordered set can be depicted as in

Fig. 1

Fig. 1: Visualisation of an ordered set C = (C;)j¢ and where —<— symbolises
the order induced on the sets C; via the order < between the documents.

Possibly C=o. This will always be the case from a certain i on, if Q is finite. This is always so
in practise but, since || can be any high number (in other words, |Q| is unbounded), the set-up
with infinite chains will prove to be very useful. Let us denote by C the set of all possible

chains (ordered sets) as above.

This is a very general set-up, comprising the most general cases in IR : it comprises the
extremes
(1) The unordered case : C,#o, C=o, Viz2

(i1) The total linear case : all C;s are singletons (or are empty).

The unordered case refers to “classical” IR (e.g. Boolean retrieval) and the total linear case
refers to a ranked list of documents (as e.g. given by browsing machines in WWW). The
general situation is needed e.g. in the case where one gives, say 4, key words. C, is then the

unordered set of documents that contain all 4 of these key words. Every document in C, is
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ordered before any document in C, where C, contains the documents that have exactly 3 of the
4 key words in their indexing. These documents, in turn, are ranked before all documents in C;,
the unordered set of documents that have exactly 2 of the 4 key words in their indexing.
Documents in C, are ranked before all documents in C,, the unordered set of documents that
have exactly 1 of the 4 key words in their indexing. Finally, C, is ranked before C, containing
the documents in Q\ :J C., i.e. those with none of the 4 key words in their indexing (and C=e,
Vi>6). One could alsl:)l stop with C, (making C=e, Vi>5) since documents, not containing any

of the requested key words, should not occur in a ranked output.

Ordered similarity (OS) measures compare two such chains in such a way that some “natural”
properties are satisfied. We will formulate them as was done in Michel (2000), but will call
them (in view of the above discussions) : strong ordered similarity measures. Their properties
are : denote by Q the function, acting on couples (C,C"), C=(C);, C'=(C’ dien> GC'€C.Q

must satisfy

(Q,) If C and C’ reduce to the unordered case {cf. (i) above), Q must be a good strong
similarity measure for unordered sets (i.e. satisfy (D)), (D), (D;), (D,)).

(Q) 0<Q(C,C")<1 for all C,.C'eC.

(Q,) QCCH1=C=C'andnoC,or C 'j is empty : i.e. Vi, Vj, Ci#o, C'#e.

(Q) Q(C,C')=0 = CnC'=o. HereCr\C’=($Ci] N [Cc’j].

i-1 j=1

(Q) LetijeN, i#j. Let C®, C'9 be ordered sets in C such that CNC’, =a,Vk,leN except for
k=i and 1=j. If we let i and j vary (but not the unordered sets C; and C’) then
Q(C®,C'D) is strictly decreasing in j>i (i fixed) and in £>j (j fixed).

(Q;) The same as (Q,) but now for i=j : now Q(C®,C’®) strictly decreases in ieN.

The first four properties are clear from the unordered case ; the last two properties express the
fact that sets C;, C’; for i,j high have a smaller impact in the comparison of C and C’ than sets

C,C’, for i,j small

Of course, a strong OS-measure may or may not be symmetric. If so, we have the property
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Q) QEC.C)=QUC',C), VC.C'eC.

Michel (2000) was able to construct OS-measures as follows. Let D be any similarity measure

(for unordered sets). Then form

Q(C.CY) =i21: le: D(C,.Ce(L)), (29
where ¢ is a certain weighting function. The problem is to make sure that (29) satisfies the
properties (Q,) (i=0,...,5) above. The main problem here is the fact that (29) can have scores
beyond 1. To avoid this Michel (2000) has put a stringent condition on the type of ordered sets
that can be compared. For instance, in Michel (2000) one requires, given C=(C;) and C'=(C")),
that for every i, there exists a j such that CNC’;#¢. This condition is, however, not always
valid in practise. We therefore improve Michel’s method so as to be useable for comparing any
two C,C’eC. Point is that a solution in the form of (29) is not always possible anymore. The

OS-measure (29) is therefore modified so that we obtain a generally valid solution.

HL2. General theorem on the construction of strong OS-measures.

Theorem II1.2.1 : Let D be any strong similarity measure (on unordered sets). Define

Q(c,C')=_)°_°“T Z RD(C,C/)0G), (30)

where f is a strictly increasing function, f0)=0, f{1)=1, 0<f<1, such that

2 fiD(C,C')<1, VieN (31)
i
i fD(C,C'))<1, VjeN (32)

and where ¢ satisfies : ¢>0 and

(1) @(i,j) strictly decreases in j>i (i fixed),
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() () strictly decreases in i>j (j fixed),
(11) tpm(i,i) strictly decreases in i,

) X eGi=1,

® oG < min (9G),9G)), VijeN.

Then Q is a good strong OS-measure, i.e. satisfies (Q,), (Q,), (Q,), (Qs), (Qy). (Qs) (and, if D

is symmetric, then Q also satisfies (Q,) if ¢ is symmetric).

The proof is rather long and technical and is, therefore, given in the Appendix. This theorem
will only be important if functions @ and f can be found such that (31), (32), (1)-(v) are
satisfied. The construction of f is non-trivial and dependent on the concrete D (i.e. J, E, Cos,
...) and will be studied in subsection TIL.3. For @, there is no problem : take e.g.
. 1 1 1
Pi)N=3 = - — (33)
20 9i 2li-

This function is decreasing for high ranks i and j as well as for high differences between the
ranks i and j, a natural property. Note that (33} equals the easier

o) = (34)

as is readily seen. It is alo readily seen that this ¢ satisfies all five properties (i)-(v).

That ¢ is a decreasing power of the ranks i and j is good and better than e.g. a linear decrease.
Indeed, there should be a larger difference in comparing C, with C’, than e.g. C,, 'with C',g,
for C,;=C,, and C’,=C’,4,. This is also linked with the sensation law of Weber-Fechner stating
that the sensation is proportional to the logarithm of the stimulus (see also Egghe (1994),
Egghe and Rousseau (1990)).

We will now proceed by the construction of concrete strong OS-measures, given one of the
strong similarity measures (for unordered sets) J, E, general E,, Cos, N, O,. For the moment it

is not clear at all that a proper function {, satisfying the properties as described in the theorem,



14

can be constructed, for each of these strong similarity measures. Of course, any measure that

yields a good f will yield a good Q, i.e. a useable strong OS-measure.

1IL3. Strong OS-measures derived from strong similarity measures for ordinary sets.

II1.3.1. Jaccard.

In view of theorem III.2.1 we must find a suitable f which can be used for J. Let C, C'eC,

C~(Cdicn» C'=(C’);en. In view of (31) and (32) we estimate Vi, jeN :

IcnCy

J(Cisc'j) = CoC |
i

IC;nC Y
ICil

If we fix i and let j vary, we can write

ICNC'| = oy {Cyl
where 0 < oy; < 1 and

2 oy< L,

j=1

since the o;; s denote fractions of the C’; s in C; (fixed). (36) in (35) yields
JI(C,C') < w4

and hence (37) gives (31) for f the identical function : f(x)=x. In the same way we have

ICnC'| |CNC
J(Cisc:"j)= ! £ L=

I

o’
ICiUC‘j| |C’j| "

where 0 < a;; < 1 and

(33)

(36)

G7)

(38)

(39)
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E a’i‘j <1 (40)
i=1

since the a';; s denote fractions of the C;s in C'; (fixed). Hence also (32) is proved for f the
identical function. Of course f{x)=x also satisfies f{0)=0, f{1)=1, 0<f<1 and f strictly increasing.

Conclusion :

o

AUCC)= Y T KC,C)06) @1)

=1 j1

(with @ e.g. as in (33), (34)) is a good strong OS-measure.

I11.3.2. Dice

Now, for C,C’'eC, we investigate

_2lenC)

E(C,C')= .
( 1 J) |Cl|+|CI]|

(42)

With the same definition of «;; as above we have :

2ICnC | 2/CnCy
<
ICI+IC ~ ICJ+ICnC

20, |C|
|Cil +o;,IC|

_ 2¢q, § ‘ @3
1 o,

We are now in search for a strictly increasing function f, 0<f<1, f{0)=0, f(1)=1 such that (43)

transforms into oy, the numbers for which (37) is true. We hence have the equation

f(zy]=y=ﬁn

I+y

yielding
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y=f) = = (44)
2-x
which indeed satisfies all the requirements. Hence with this f and since it increases we have, by

(37) and (43) that (31) is valid for D=E. In the same way we obtain

2|ICnC|

HE )T e

2ICNC’y
cnC’ 4]

! i
N o
o JC'J+[C]

= L (45)

with a';; satisfying (40). Since (45) is the same expression as (43) we see that the same
function f as in (44) will yield (32). We are now running into a surprise concerning the OS-

measure derived from E in this way : indeed

N
IC{+IC’]
21C.AC|
2-— 1 1
C+IC)

RE(C, C')) =

e
ICuC|

=J(C, C j) (46)
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showing that, although we started from E, we refound the OS-measure derived from J
(subsection I11.3.1). In other words : Q;=Q,. Although we did not find a new OS-measure, we
consider this result as a remarkable link between E and J : by the properties of f (44), we can

say that E and J are very similar measures.

The most intricate case is the case of the generalized Dice indices E, (a# %). Note that these
measures are not symmetrical and this causes trouble in finding the right function f.

Nevertheless, we arrive at new strong OS-measures.

I11.3.3 Generalized Dice.
Let 2€]0, 1[\{ % } be fixed. We have

IC;nC’)
o|C;[+(1-)|C'}|

Eu.(cis C’j) =

[CnC’|
0iC[+(1-a)CnCj|

aiJ|Ci|
aIC+(1-0)oC]

S 47
a+(1—a)ai‘j’ “7)

with a;; as in (37). Transforming (47) into o;; gives the function

y=f(x) = T—_(;ﬂ—a; (48)

for which (31) is satisfied (for f = f}). Note indeed that 0<f <1, {,(0)=0, f;(1)=1 and f; is strictly

increasing.

Likewise we obtain
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i

o ..
E(C,C )= —"1— (49)
ao’; i +(1-a)

Transforming this into a’;; gives the function

y == L% (50)
1-ax
for which (32) is satisfied. Both functions f,, f, satisfy £(0)=0, f(1)=1, 0<fi<l, £ strictly
increasing (i=1,2) but we need one fin theorem II1.2.1.

Hence we take
£=min (f, ;) 1)

which satisfies all the requirements, notwithstanding the fact that the E s are non-symmetric
{a= %). In order to obtain workable expressions for our strong OS-measures that we obtained
we need to find a concrete expression for f. Note however that

£ <f, iﬂ‘0<a<%

£, <f iﬂ‘—;—<a<l

as is readily seen. So we obtain the following good strong OS-measures. Derived from E, with

0<a<% we have

Q) = T 3 6L, C)oti) ®

j=1
Here

olCNC
aC+(1-@)IC’|-(1-0)|C;nC’|

R(EL(C, C')) =

- ety (53)
alCi|+(1 *a)]C'j\Cil
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as is readily seen. If %<a<1 we have

Q; (C.C) = Y ) £(ELC, C')wG) (54)
sl j=1
where
) (1-a)|CnC ’j|
f2(Eu(Ci’ C j)) = P B
o|C,[+(1-a)|C j|—|:r,|Cir1C J.|
1-a)|C.NC".
__ (1-0[cnC) )
a|CAC J+(1-a)IC |
All these measures are new and non-trivial.
H1.3.4 Cosine,
We will now search for the OS-measure related to Cos via (30). Now
ICnC
Cos (C, C')= —L (36
YIGICl
Now we have
IC;nC’|| {ICnC’)|
P T L L —
ICICl IGICNC|
_ ai4|ci|
|Ci|ai,j|ci|
= Ja. (57)

L}

,where o; is as before. Now we have the requirement a;;*0 (in order to have the validity of
(57)) but if o;=0 then Cos (C,C’)=0 as is M So we can use (57) also for 0;=0.
Transforming (57) into o;; , yields the function



y=f0) = %

20

(38)

obviously. By symmetry (or an analogous argument) this function also works for a';;. Since

f{0)=0, f(1)=1, 0<f<1 and since f increases strictly on [0,1] we have that the next measure Q is

a good strong OS-measure (derived from Cos) :

= & ICnCP
QelC, CH=Y Y — o)),
c = =gy
a new measure.
II1.3.5 The measure N.
Here
C.nC’.
N(C, C'j) = \/5 —l"']‘—JL‘
CJ+IC P
Now
CnC’.
N(G, C) < V2 oty
CHICACTF
aiJ|Ci|

-

\Ilcil2 +(1i,j2|Ci|2

2
1o

with a; as before. Turning (61) into o; leads to the function

y=fx)= —=
2-x7

(59)

(60)

(61)

(62)
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which is strictly increasing, f(0)=0, f{1)=1, 0<f<1 on [0,1]. The same is true for a’;;. We have

now the good strong OS-measure

QUC. €)= T X ANC, )0t (63
where

e

f(N(Ci: C’j)) =
\/|Ci|2+|cfj|2 —ICiﬂC'jP

(64)

as is readily seen.

II1.3.6 The overlap measure Q,.

0,C, C') = [C;nC' ©
AG, €5 W,HC,D

ICnC)
ICil
= 0

and the same for o';;. Hence f can be taken f{x)=x. We have now the good strong OS-measure

A cnC’
QOZ(C,C’): Zl z l H Jl

. o
2 maxiciicy o (66

Since R,P and O, are not strong similarity measures, they cannot be treated here as above.

These weak similarity measures will be studied in another paper.
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Note : As follows from the above constructions, Q02 is the largest of all the OS-measures that

are constructed here. Indeed, denoting Q,, for any of the Q,;=Q;, QEa’ Qeosr Qu, We have that

fiD((C;, C')) < min(o5;,0.;)

S LA (67)
max(lcil,lc'jD ’

hence Qp< Q02 , for all the above D. Note the difference with (14).

The next section investigates some of these measures in a practical contexts.

IV. Experimentation

IV.1 Presentation of the context

The experimentation’s aim is to compare different OS-measures. In order to test it (as in
Michel (2000)), we have constructed a corpus of 550 queries and put them to the personalized
filtering information retrieval system, Profil-Doc, developed by the laboratory RECODOC -
see Michel (1999). Profil-Doc has the particularity of making a filtering of information
regarding the profile of the user (Lainé-Cruzel (1996)). SPIRIT®?, the motor used to extract
documents from the plain text data base, uses weights to present answer documents into

classes, theses classes being ranked in order of relevance to the user (see Fluhr (1997)).

Three different users profiles (called T1, T2 and T3) are tested with the 550 queries. In order

to measure profiles’ effectiveness we compare, for each query, the personalized answer with a

2 SPIRIT (Syntactic and Probabilistic Indexing and Retrieval Information System) is a
commercial product of T.GID. Searches about SPIRIT are made according to the CEA-DIST
(Atomic Energy Commission - Sientific and Technique Information Direction) -
http.//www.dist.cea.fr/
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neutral one, i.e. given by the system without any filtering. In the four following figures we can
see the number of documents (on the Y-axis) given by the system for each answer (number of
answer on the X-axis). For each curve, values are presented by decreasing number of

documents for T1. So query numbers cannot be directly compared.

neutral T1
E 400 E 300 ———
E g 250 e
2 30 Hir 2 200
J'ﬁ:l 200 - e g 150
@ @
£ 100 . I\ \ L - £ 100 e
3 3 5
2 I\ g 50
a8 o g o
teRYIenLY22R3 b eYIenE88ed
o ¥ o I ¥ o S Vo S~ S~ o T+ SN <o BT o B Vo BN Vo B ~— ) 0D T T W oM N -
Queries' number Queries' number
T2 T3
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2 300 ' 2 200 { e
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o \ 2 100 | by )
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tgﬁﬁﬁi%"m““éﬂgg&& PRI E2B8IRS
— D N N N T 0D MW W - ~ N 0 W0 T T WM N w0 e
Queries’ number Queries' number

Figure 2 : Number of documents per query

We can see that the neutral process, T2 filtering and T3 filtering give the same variety of
answers relating to the number of documents, indeed it varies in a regular way from 1 to
respectively 371, 366 and 276. T1 filtering gives more specialized answers (indeed none of
them have more than 40 documents) but as before, we can observe a regular distribution. So

the number of documents per answer is not a bias in the experimentation.

OS-measures, presented in the following section, will be used to calculate, query per query,

the similarity degree between neutral and personalized answers.
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IV.2 Tested OS-measures

We choose to compare the Jaccard and Cosine strong OS-measures defined previously in

equations (41) and (59) by (we used finite sums since this is always the case in practise) :

QUC.CH= Y i‘, HC,C' )i

i=1  j=1

LN ¥ (o L
Qe G, C) = — ()
¢ 121: 121: ICiC)

As we have said before, it is possible to choose for ¢ any function verifying the conditions (i),
(i), (iii), (1v), (v) of theorem II1.2. 1.

We have shown in Michel (2000) that the linear function @(i,j) defined as follows is correct.

@)L mI L’ ]R8 (i + 1) (it 1)) (68)

where §°:[1,m,?]-R*, m =max(m,m")

6m > _
57 (n) = Mo 1-n-t 69)
6m,*-6m;’ +8m*-3m, +1

We have seen in equation (33), that a power function like @(1,j)=— _3|_ '|
2024
normalization reasons with finite sum, we now apply a normalization constant equalling
trg
% So, the second weight function is defined by :
4™ -1

is good too. For

: LTt 4™ 3
@,:[1,mIx[1,m']-R*¢,(ij)= ——
gmo_y 2igigfil

(70)
We hence have now four strong concrete OS-measures defined as follows

7, )= 3 1C.C ) )

i=1 j=I1
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J(C, C) = f: i J(C,.C' ), (ii) (72)
i=l j=1
m m ICﬂC'-F N
Cos™(C,C') = r , 73
0s%(C, C') ZIZ sz e Y E) (73)
m m CCP
i i 7
Cos®(C, C") = g jz_; cic; ON(R) (74)

%G, -3 3 5% 06 s)

Recall has been found to be a weak similarity measure, hence not suited in our framework. But
it is sufficient for a “simple” OS-measure as defined in Michel (2000). We choose to test it

only for experimentation purpose. The corresponding formulae are :

RYC, €)= 3 3 L0 76)
1= j=1

R(C,C)= 3 3 RC.C)o, i) )
=] J:l

IV.3 Analysis

We will make three types of comparisons in order to estimate

- the impact of the weight function @,

- the impact of the similarity indicators (J, Cos and R) and

- the impact of the query type (specialized or general queries).

The impact of the weight function @ is estimated by comparing J% and Cos® with their

corresponding means Jmﬂ and Cos o, defined as :

Z
J = i=
o my,

J(C
=1

l_.

and
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The means are considered as measures with neutral weight function. In order to make the
curves readable, we have ranked the queries according to increasing values of J% and Cos®
(figures 3,4,5,6,7,8).

The impact of the similarity indicator J, Cos and R is estimated by comparing I, Cos", R?,
and J%, Cos®, R%, In order to make the curves readable, we have ranked the queries
according to the increasing values of I, (figures 9,10,11).

The impact of the query type (specialized or general queries) is estimated by the shape of the
curve when we rank the results of J% in function of the increasing number of documents per
answer (figure 12), the increasing number of classes per answer (figure 13) and the increasing

number of documents per class per answer (figure 14).

IV.4 Results

IV.4.1 Impact of weight function
For each user’s interrogation context T1, T2 and T3, we compare the OS J% and Cos® with

their corresponding non ordered rank measure Jmo and Cosmo. We have chosen not to present
the comparison of (J%, J,) and (Cos®, Cos,, ) because we compare (3%, Cos®) and (J°,
Cos®) in the following section. In all figures, the queries on the X-axis are represented

according to the increasing values of J% or Cos®,

Bold curves relate to the OS linear measures (J% and Cos®). Thin curves relate to the
corresponding mean (Jmu’ Cosmo). We notice very different shapes of curves between the T1,
T2 and T3 contexts. Indeed, when we rank the results of T1 by increasing values of J% we can
observe an exponential type function. The same operation in T2 results in a logarithmic type
function and on T3 results in an S-shaped function. These differences show that the systems to

be compared give really different and personalized results.

Globally, the bold and thin curves have the same shape. In all cases, generally, the thin curve is

above the bold one. The interpretation is the same as in Michel (2000) : “The Jma curve
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slightly above the OS curve is a consequence of the choice of the decreasing function 8.
Punctually, we can observe values of Jm,, below the curve. This phenomenon is explained by
the calculation of the average of the index of Jaccard on m,, the maximum of the classes of
the compared sets. If m and m’ are the numbers of classes of each compared answer and if
there is a strong difference between m and m’: then J g could be lower than the
corresponding OS value. The further the curves Jm,, and OS will move away, the more

important the filtering will be in the scheduling of the documents”.

By comparing the figures presented on the same line (figures 3 and 4, figures 5 and 6, figures 7

and 8), we can remark that the values of J and Cos look like very similar. There are 3 zones:

- Zone 1 (called head of the curve) is when Ton, and J? are identical to 0. This
phenomenon must have been visisble in the curves 3 and 6. It didn’t because for
technical reasons we have had to suppress some queries.

- Zone 2 (called heart of curve) is when Jmo (respectively Cosmo) takes extremely
variable values compared to J% (respectively Cos®)

- Zone 3 (called tail of the curve) is when T, and J (or Cosmo and Cos®) are identical

to 1.

We can observe that the tail of curve is unchanged from the Jaccard case (J%, , Jmu) to the
cosine case (Cos®, Cosmo). On the contrary, in the heart of the curve (zone 2) the thin curve of
Cos mg has much more amplitude than Jmo' We can say that, without any weight function, .

the cosine measure seems to be less stable than the Jaccard.
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1V.4.2 Impact of the classical similarity indicator
In the three following figures we compare, for T1, T2 and T3, the OS J%, Cos", R", and I,

Cos?,, R, In order to make the curves readable, we have ranked the queries according to

increasing values of J¥_ (figure 9,10,11).

In the three figures we can remark that for a given weight function and irrespective of the
indicator used (Cosine, Jaccard or Recall) the results of OS measures are strictly identical for
each of the 550 queries. Indeed, we have J%~Cos®~R? (represented by the thin curve) and

1% =Cos® =R, (bold curve).

This very remarkable result shows that the weight function suppresses the initial effect of the

Jaccard, Cosine or Recall measure.

Secondly, we can remark that, in each figure, thin and bold curves’ shapes are identical.
Indeed, as above, with T1 we can observe an exponential function (figure 9), with T2 there is a
logarithmic function (figure 10) and with T3 we have an S-shaped function (figure 11). This
regularity shows that the linear and power indicator act in the same way but not on the same

degree.

Finally we can say that in each system, the thin curve is always above the bold one in the
beginning, goes through it in a particular point and remains below until the end of the values.
When the answers are very different (similarity near 0), the power weight is more precise than
the linear one. On the contrary, when the answers are very similar, the linear function is more

precise. We did not find any interpretation of the intersection point.
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1V.4.3 Impact of the query type

We have some quantitative information about the answers, for example the number of

documents they have or the number of classes they have.

Let us suppose first that the query type is a function of the number of documents that the
corresponding answer gives : a lot of document means that the query is very general ; only
few documents means that the query is specialized. In order to observe if this fact as an
impact on the similarity measure, we rank the results of J% (thin curve) and J%, (bold curve) in
function of the increasing number of documents per answer. In figure 12, the curves are drawn
with results of user’s T2. We cannot observe any regularity. Some queries have very particular
results, giving abrupt decreasing values. There is nothing particular characterizing these
queries. For different reasons, linked with the particular profile T2 of the user, the personal
answers are very different to the neutral ones. In the case of T1 and T3 (not represented with

figures) the same phenomenon is observed for other queries.

0 Lo

% B % B % & F B ¥ &8 F

Query's number

r" Ji, Cosl, Rl —g—Jp.Cosp,Rp ]

Figure 12 : T2 - J%, and J°,, ranking by increasing number of
documents per answer

We know that in the answers, the documents are grouped into classes. The more the queries
have terms the more the answers may have classes. So, if we suppose that general queries
have few terms, answers with little number of classes must be supposed to be more general. In
order to test if the number of classes has an impact on the OS, we have ranked the answers in

function of the number of classes (figure 13). But, as before, there is no regularity.
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The last and final test is to rank the queries in function of the number of documents per class.

But in this case too, no regularity is observed (figure 14).
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Y. Conclusion

In Michel (2000) we have presented some first results on OS-measures. The present work
completes it by presenting a more general treatment of OS-measures. Indeed, in section Il we
make distinction between two types of OS-measures : strong and weak ones. In section III, a

method is proposed to construct strong OS-measures. It is usable in more general contexts
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than the one presented in Michel (2000) because it works for comparing any two ordered sets
whereas Michel (2000) needs some restrictive compatibility condition on them. We propose in
section ITI concrete good strong OS-measures derived from strong similarity measures of
Jaccard, Dice (from which we refind the strong OS-measures derived from Jaccard),
Generalized Dice, Cosine, N, Overlap O,  We remark that we did not have taken into account
the case of R, P and O, because they are not strong similarity measures. These weak similarity

measures will be studied in another paper.

We choose to test two strong OS-measures derived from Jaccard and Cosine, and one simple
0S-measure derived from Recall. The construction of concrete OS-measures is made with a
linear and a power weight function. We made no hypothesis upon the similarity indicator. We
made one hypothesis on the weight function : according to the law of Weber-Fechner, a power
weight finction is supposed to be better than a linear one to reflect the rank difference between

ordered sets.

First results show that without any weight function the Jaccard indicator seems to be more
stable than the Cosine one. This result is maybe linked with the fact that Spirit®, the software
use in the experimentation, is a weighted Boolean system. The second very remarkable result
is that the weight function (linear or power) suppresses, for both strong and simple OS results,
the initial effect of the Jaccard, Cosine or Recall indicator. Comparative tests on the linear and
power weight function show that they act in the same way but not on the same degree : there is
not one better than the other. Indeed, when the answers are very different (similarity near 0),
the power weight is more precise than the linear one. On the contrary, when the answers are
very similar, the linear function is more precise. Nothing has been remarked on a possible link

between the type of query (general or specialized query) and the OS characteristics.

Some complementary experimentations with the Overlap measure O, and the generalized Dice
could be interesting in order to know if these phenomenon are general to all strong OS-
measures. In this case, it would be interesting to know if it is really important to find some
“weakest” weight function, or if (and in this case why) in the ordered sets cases, the rank is the

more important criterion. These will be studied in another paper.
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Appendix

Proof of theorem II1.2.1

Qo)
If C=(C,,2,...,,...) and C'=(C’,,0,...,2,...), symbolising the unordered case, then (30) reduces

to

Q(C,.C) =1fD(C,,C,)),

hence the measure of f ° D. We noted already (in section ) that f ° D is a good strong

similarity measure if D is, because of the properties of f. We leave the easy proof to the reader.

Q)
forall C,C'eC:

0 < Q(C,C') = Z f} fiD(C,C')) o))

i=l  j=1

[

<

Y fD(C,C")) 96

i=1 =l

.

<) p@n=1,

i=1

using (31), (iv) and (v). Note that, instead of (31), we could have used (32) as well. For the
proof of (Q,) we will, however, need both (31) and (32).

(0,
Let Q(C,C")=1 for C=(C);.yeC and C'=(C’));.x¢C. Hence

): ﬁljftn(ci,cu)) 96 =1 (AD)
i=1 =
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Suppose Jj,>1, such that f(D(CiO,C' i»* 0
Then, by (i)

@ o

> ¥ L) 06 < 3 3 ADEC) o
i=l  §=

i=t -

< S ed=1,
i=1

by (31) and (iv), contradicting (A1). Suppose Ji;>j, such that f(D(Cio,C’ jn)) # 0.
Then, by (ii)

0 %

© ADC,C) 06 < 3 Y AD(C,C1) 9Gi)

i=1  j=1

>

i=1 =

[

oo

Y- fID(C,C')) (i)

j=1 i=1

<2061,
by (32) and (iv), again contradicting (A1).Hence
QCCY Y ADC,C) 06 = 1 (A2)
If there exists an i€N such that f{D(C,,C"))<1, then by (iv) and the fact that ¢>0 :
QACC)Y: o) =1,
again a contradiction. Hence f{D(C,C’))=1, VieN. By the proporties of f we have D(C,C’)=1
and since D is a strong similarity measure (hence satisfying (D,)) we have that C=C’,, VieN.

Hence C=C’. Conversely, if C=C’, we have that CnC'=o Vi}, i#j and C=C’;, VieN. Hence
(by the properties of D and f) :

QC,C) Zl fljf(D(ci,C',-)) (i)
i=1 =

It
.Mg

-
1
—

f(D(C,C')) 9(i.i)
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Y RD(C.C)) ¢Gii)

i=1

Il
Nk

@G, = 1.

I
—

QC,CY =3 ) fD(C,C)) ¢(ij)=0
=1 j=1
iff iD(C,C’)) = 0, Vi,jeN (since ¢>0). By the fact that f strictly decreases and f{0)=0 we see

that D(C,C’;) = 0. Hence (D,) implies CnC';=e Vi,jeN. Hence VieN : C; n ( U C’j] =p,
j=1

hence [ U Ci) N [-u C’j] = @, hence CnC’ = 2.

i=1 j=1

Q)

For C? C'9%( as in (Q,) we have

Q(CO,C'®) =f(D(C,C")) (). (A3)

As given, f{D(C,,C’))) is constant in i and j (the sets remain the same ; only their ranks are
variable). Hence (Q,) follows from (i) and (ii).

(Qq)

For C® C'%¢( as above we have
QCO,C'Y) = fID(C,C")) (i)
Again, f{lD(C,C’)) is independent of i. Hence (Q;) follows from (iii).

Of course, if D is symmetric and ¢ is too, then (30) implies that Q is symmetric too. [



