
Chapter 1

A GENERIC APPROACH FOR MULTI-DEVICE
USER INTERFACE RENDERING WITH UIML

Kris Luyten Kristof Thys Jo Vermeulen Karin Coninx
Hasselt University – transnationale Universiteit Limburg
Expertise Centre for Digital Media – IBBT
Wetenschapspark, 2
B3590 Diepenbeek (Belgium)
{Kris.Luyten,Kristof.Thys,Jo.Vermeulen,Karin.Coninx}@uhasselt.be

Abstract We present a rendering engine for displaying graphical user interfaces
on multiple devices. The renderer interprets a standardized XML-based
user interface description language: the User Interface Markup Lan-
guage (UIML). A generic architecture for the renderer is defined so that
deployment of the engine on different devices implies only little effort.
We show that our rendering engine can be used on iDTV set-top boxes,
mobile phones, PDAs and desktop PCs, and smoothly integrates with
both local and remote application logic. As a test bed for the UIML
specification we also explore support for extensions to UIML that enable
the user interface designer to maximize accessibility and target multiple
devices and different types of users at once.

1. Introduction and Motivation
There is a real need for user interface (UI) design tools to support

multi-device UI creation, even though there are many different existing
solutions for this purpose. Most solutions are limited however since they
specifically target a predefined range of platforms, e.g. a browser envi-
ronment like Mozilla XUL1, specific programming languages (e.g. bound
to Java like Jaxx2 or jXUL3) or a limited set of interaction modalities
(mostly graphical UIs). In contrast, UIML is a metalanguage that can

1http://developer.mozilla.org/en/docs/MDC:About
2http://www.jaxxframework.org
3http://jxul.sourceforge.net/



2

be used to specify the four different aspects of a UI (structure, style,
content and behavior) independently [2]. None of these parts contain in-
formation that is related to a specific platform, programming language
or modality. Although the language is syntactically generic, it allows
some semantic constructs that imply a dependency on a certain plat-
form, programming language or modality. In this paper we show how
these limitations can be overcome and we discuss the foundations of the
UIML rendering engine we provide to the community.

To our knowledge, only little has been published about the actual
architecture of similar rendering engines. Roughly, there are two ap-
proaches for XML-based UI specification languages: the language can
target a generic but limited set of widgets or the language is very close
to the final widget set and thus specific for a certain type of platform.
The former is often used for multi-device UI description languages (e.g.
[3] and [7]), while the latter often relies on a certain rendering platform
such as a browser. Most implementations that are publicly or commer-
cially available are also limited to use with one particular programming
language (or, in many cases, one virtual machine) and widget set.

Section 2 provides an introduction to UIML and explains the basic
structure and constructs of this XML-based language. Section 3 gives
a short introduction and overview of the UIML rendering engine ar-
chitecture. Next, sections 4 and 5 discuss the extensions we created to
enhance support for multiple devices and multiple users. Finally, section
6 provides the conclusions.

2. The User Interface Markup Language
(UIML)

UIML [1] is a high-level markup language to describe the structure,
style, content and behavior of a UI. For a thorough discussion of the
UIML language we refer to the specification [1]: we will limit the UIML
overview in this paper to the essential constructs. UIML offers a clear
separation of concerns which is reflected in the four different aspects of
a UI that can be specified in this metalanguage. Figure 1.1 shows a
skeleton of a UIML document at the top of the figure.

In the past there were attempts to create a generic vocabulary by
Abrams et. al [3]. In our approach we try to support a generic set of
interactors that can be used across vocabularies, but also allow to use
vocabulary specific interactors. If the designer wants to differentiate the
interface for a platform because of the availability of certain widgets,
she or he can do so with our implementation. The multi-vocabulary
approach that our implementation supports is described in [4].



A Generic Approach for Multi-Device User Interface Rendering with UIML 3

3. UIML-renderer Architecture

Multi-device Architecture
A prerequisite for the renderer to work is the availability of a .Net

or Java Virtual Machine on the target device. Most mobile and even
embedded devices support one of these two virtual machines. Our im-
plementation is built in such a way that there are no further dependencies
on exactly which version or type of virtual machine, it simply relies on
the virtual machine as a dynamic execution environment that allows to
load new functionality on demand while running the UI. This enables us
to support multiple mapping vocabularies on-the-fly.

Our UIML renderer consists of one rendering core and multiple render-
ing backends that contain code that is only used by a specific vocabulary.
A rendering core can process a UIML document and builds an internal
representation of the UIML document. Notice that the mappings from
abstract interactors to concrete widgets are defined in the peers section
(the vocabulary) of a UIML document. Since the mapping information
is provided from outside of the renderer, it can be loaded dynamically
and applied at runtime to the rendering core. The rendering backends
have a very limited responsibility: they process the parts of a UIML doc-
ument that can rely on widget-set specific knowledge. Notice that due
to the structure of a UIML vocabulary, most mappings can be executed
by the rendering core. The reflection mechanism allows to use the infor-
mation from the vocabulary to detect and load the required widgets at
runtime without any platform-specific code. This approach overcomes
the limitations of a generic vocabulary by allowing the designer to also
use widget-set specific parts.

To overcome the limitations of devices that have limited capabilities
and no means to use a reflection mechanism (for example the MIDP2.04

platform does not include a reflection API), the rendering core needs
to include ad-hoc mappings. This approach limits the extensibility of
the UIML vocabulary: if a new mapping is included in the vocabulary,
the rendering core should be updated while this is not necessary when
reflection can be used.

Multi-device Rendering Behavior
We define an internal representation of a UIML document as a set

of objects that represent an in-memory tree of the UIML document
which can be rendered at any time without further transformations.

4http://java.sun.com/products/midp/



4

Figure 1.1. An overview of the UIML rendering engine

This reflects step 1 in figure 1.1. We define a concrete instantiation of
a UIML document as a set of objects that represent an in-memory tree
of the UIML document where each object that represents a UIML part
has a reference to a final widget on the target platform. This reflects
step 2 in figure 1.1.

Figure 1.1 shows the overall behavior of a UIML-renderer. The ren-
derer uses several stages, where each stage processes a certain aspect of
the UIML document. We identified three different stages of processing
that are required for a flexible rendering engine:

pre-processing : during this stage a UIML document can be trans-
formed into another UIML document. Section 4 gives some exam-
ples of transformations that require a pre-processing stage.

main processing : during this stage a UIML document will be inter-
preted and a concrete instantiation of the document using the UI
toolkits that are available on the target platform will be generated.

post-processing : during this stage the runtime behavior strategies of
UI will be selected.



A Generic Approach for Multi-Device User Interface Rendering with UIML 5

The main processing stage is more specifically composed out of the
following steps, illustrated in figure 1.1;

1 The UIML-renderer takes an UIML document as input, and looks
up the rendering backend library that is referred to in the UIML
document.

2 An internal representation of the UIML document is built. Ev-
ery part element of the document is processed to create a tree of
abstract interface elements.

3 For every part element, its corresponding style is applied.

4 For every part element, the corresponding behavior is attached
and the required libraries to execute this behavior will be loaded
just-in-time.

5 The generated tree is handed over to the rendering module: for
every part tag, a corresponding concrete widget is loaded according
to the mappings defined in the vocabulary and linked with the
internal representation. For the generated concrete widget, the
related style properties are retrieved, mapped by the vocabulary
to concrete widget properties and applied on the concrete widget.

This section focused on the main processing stage of the rendering
engine. The next sections will discuss the pre-processing and post-
processing stages. Both are important not only to support multiple
devices, but also to be able to transform the UIML document according
to some parameters before rendering and to support a smooth integra-
tion with the target environment.

4. The Pre-processing Stage
In the pre-processing stage the renderer will apply transformations

on the UIML document before creating a concrete instantiation of the
user interface. The transformations will be applied on this input doc-
ument: this results in an intermediate document version that can be
pre-processed by other predefined transformations.

In this section we discuss two different pre-processing stages that are
supported by the UIML.net rendering engine: applying user profiles for
more accessible UIs and applying layout constraints to maximize UIML
document portability across platforms.

The support for more accessible user interfaces is accomplished by us-
ing an MPEG-21 description profile of the usage environment (a separate
part of the MPEG-21 part 7 specification). The usage environment can



6

describe the accessibility characteristics that the UI needs to take into
account for a particular user. A user agent reads the characteristics from
the MPEG-21 file and transforms the values found in the properties of
the internal representation of the UIML document so that they convey to
the required characteristics. For example; a MPEG-21 profile can define
the colour vision deficiency for the user and provide required values for
foreground and background colours. The user agent will transform the
matching properties that are found in the internal representation into
values that make sure the colours that cause the colour vision deficiency
are not used. A full description of this approach can be found in [5].

For the layout management preprocessor to act as a pre-processing
stage like described in this section, we consider the specification of the
layout constraints to be a part of the UIML specification [1]. We allow
the designer to use spatial layout constraints to specify the layout of
the UI. The layout management preprocessor will generate a platform
specific layout using absolute positioning that is consistent with the pre-
defined set of constraints. The usage of spatial layout constraints makes
a UIML document even more portable across platforms and adds a cer-
tain degree of plasticity to it. In the past, the layout specification in a
UIML document was embedded in the structure and style descriptions
and relied on platform specific constructs (e.g. the availability of the
Java GridBagLayout class). A full description of this approach can be
found in [6].

5. The Post-processing Stage
Once a concrete instantiation is created by the rendering engine, it

can still be further manipulated. The primary function of the post-
processing stage is to bind the UI with the application logic.

Our renderer allows the application logic to subscribe to events from
the UIML user interface. This is realized through reflection and aspect-
oriented programming techniques. Arbitrary object instances can be
connected to the UIML document after the main processing stage, and
it is possible to tag their methods with information declaring interest in
specific events from certain parts of the user interface. Upon connec-
tion, the renderer inspects the connected object to check whether any
of its methods are interested in user interface events, and if so, a hook
between that particular event and the object’s method will be dynami-
cally created, similar to a callback function. Furthermore, a method can
state that it wants to receive the internal representation of a part ele-
ment, when the event gets fired. The properties of this part element can
be queried or manipulated, and the application logic can even act upon



A Generic Approach for Multi-Device User Interface Rendering with UIML 7

the concrete widget instantiation. This mechanism allows for interesting
applications. For instance; suppose we have a UIML login form, which
connects to a database. When the authentication mechanism changes,
the developer can just replace the existing authentication library. Due
to the dynamic nature of this binding, nor the user interface, nor the
renderer has to be changed.

As an extension module we added support for adaptive navigation
through the UI. In implementing UIML renderers on resource-constrained
devices for different types of users, navigation through the UI should be
carefully defined. On devices with limited navigation input possibilities,
e.g. arrow-buttons only as found on the remote control of a television,
UI designers want to specify how users can navigate between differ-
ent interface elements. The post-processing stage to support adaptable
navigation uses a separate navigation specification that can be applied
on the final UI. Since the internal representation is still available during
the post-processing stage, this information can still be used. For ex-
ample, the hierarchy of parts from the UIML document indicates which
concrete widget is a container for other ones.

The navigation specification defines how the focus is handled, using
init and focus-transition rules similar to the working of a state transition
network. The init rule specifies the element that gets the focus when
the parent container is entered. A focus-transition specifies the element
that gets the focus when a navigation event is generated (e.g. left button
pressed). The UIML-renderer applies these rules by capturing the events
generated by the UI and checks whether the event is a navigation event
and can be processed. One of the benefits of this approach is that
navigation through the generated UI can be optimized for on the screen
sizes or user preferences.

6. Conclusions
Our demonstrator shows a functional UIML renderer on multiple de-

vices that is capable of generating personalized and platform-specific
user interfaces from a high-level user interface description. The renderer
will be demonstrated on a mobile phone, PDA, desktop PC and for a
set-top box. We provide a UIML renderer that processes the UIML doc-
ument on the client device. This approach results in greater flexibility
and better support for just-in-time render- and runtime adaptations of
the UI.

The .Net version of the UIML renderer presented in this paper is
available as free software at http://research.edm.uhasselt.be/uiml.
As far as we know it is the only free (as in freedom) implementation of



8

the UIML 3.0 standard that is available. It has been used and tested in
several projects, and we want to encourage everyone to use the rendering
software and contribute in any possible way. Although the renderer runs
on Java virtual machines as well as .Net virtual machines, only the latter
is publicly available.

Acknowledgments. Part of the research at EDM is funded by the
European Fund for Regional Development, the Interdisciplinary Insti-
tute for Broadband Technology (IBBT) and the Flemish Government.

References

[1] Marc Abrams and James Helms. User Interface Markup Language
(UIML) Specification version 3.1. Technical report, Oasis UIML TC,
2004.

[2] Marc Abrams, Constantinos Phanouriou, Alan L. Batongbacal,
Stephen M. Williams, and Jonathan E. Shuster. UIML: An
Appliance-Independent XML User Interface Language. WWW8 /
Computer Networks, 1999.

[3] Mir Farooq Ali, Manuel A. Pérez-Quiõnes, Marc Abrams, and Eric
Shell. Building Multi-Platform User Interfaces with UIML. In
Computer-Aided Design of User Interfaces, pages 255–266, 2002.

[4] Kris Luyten and Karin Coninx. Uiml.net: an Open Uiml Renderer for
the .Net Framework. In Computer-Aided Design of User Interfaces,
2004.

[5] Kris Luyten, Kristof Thys, and Karin Coninx. Profile-Aware Multi-
Device Interfaces: An MPEG-21-Based Approach for Accessible User
Interfaces. In Accessible Design in the Digital World, 2005.

[6] Kris Luyten, Jo Vermeulen, and Karin Coninx. Constraint Adapt-
ability for Multi-Device User Interfaces. In Workshop on The Many
Faces on Consistency, 2006.

[7] Roland A. Merrick, Brian Wood, and William Krebs. Abstract User
Interface Markup Language. In Developing User Interfaces with
XML: Advances on User Interface Description Languages, pages 39–
46, 2004.


