Expressiveness and Complexity of XML Publishing

Transducers
Wenfei Fan Floris Geerts Frank Neven
Univ. of Edinburgh &
Univ. of Edinburgh & Hasselt University & Hasselt University &
Bell Labs Transnational Univ. of Limburg Transnational Univ. of Limburg
wenfei@inf.ed.ac.uk fgeerts@inf.ed.ac.uk frank.neven@uhasselt.be
Abstract =
A number of languages have been developed for specifyinig ;/l\ db
publishing,i.e., transformations of relational data inxaiL trees. course course course
These languages generally describe the behaviors of a middleware M
controller that builds an output tree iteratively, issuing queries to cno title prereq course course course
a relational source and expanding the tree with the query results /l
at each step. To study the complexity and expressive power of course course prereq cno title
XML publishing languages, this paper proposes a notiopubf A\
lishing transducers Unlike automata for queryingkML data, a cno cno cno

publishing transducer generates a néMiL tree rather than per-
forming a query on an existing tree. We study a variety of pub-
lishing transducers based on what relational queries a transducer Figure 1: Example XML publishing

can issue, what temporary stores a transducer can use during tre% itis to define a mapping such that for any instandeof R, (1)
generation, and whether or not some tree nodes are allowed to bqs anxML tree.

virtual,i.e.,excluded from the output tree. We first show how exist- A number of languages have been developedkier. publish-
ing XML publishing languages can be characterized by such trans-ing’ including commercial products such as annotatsd of Mi-
ducers. We then study the membership, emptiness and eq“i"alenc%rosoftSQLServer 2005 [19]pAD of IBM DB2 XML Extender [15],
problems for various classes of transducers and existing publish- 5\« «micEN of Oracle 10gXML DB [23], and research proto-
ing languages. We establish lower and upper bounds, all matchingtypesxpERANTo [26], TreeQL [11, 2] andATG [5, 6]. These lan-

except one, ranging fromTIME to undecidable. Finally, we inves- — g,465 typically specify the behaviors of a middleware controller
tigate the expressive power of these transducers and existing Ian'with a limited query interface to relational sources. XL view

guages. We show that when treated as relational query languagesyefine in such a language builds an output tree top-down starting

different classes of transducers capture either complexity classesqom the root: at each node it issues queries to a relational source,

(e.g.,PSPACH or fragments of dataloge(g., linear datalog). For yonerates the children of the node using the query results, and it-
tree generation, we establish connections between publishing trans'eratively expands the subtrees of those children in the same way.

ducers and logical transductions. It may (implicitly) store intermediate query results in registers and

(a) XML view 1 (b) XML view 7,

Categories and Subject Descriptors: H.2.3 [Database Man- pass the information downward to control subtree generation [2, 5,
agement] Languages -Query LanguagesF.4.1 Mathematical 6, 15, 19, 23, 26]. It may also allowrtual tree nodes [2, 5, 6] that
Logic and Formal Languages] Mathematical Logic —Compu- will be removed from the output tree to expresg., XML entities.
tational Logic Given a variety oiXML publishing languages, a user may natu-
General Terms: Languages, Theory, Design. rally ask which language should be used to defin&ih view. Is

the view expressible in one language but not in another? How ex-
1. Introduction pensive is it to compute views defined in a language? Furthermore,

To exchange data residing in relational databases, one typica"yafterthe view is defiqed, isit possiblg to Qetermine, at compille time,

needs to export the data ®8IL documents. This is referred to as Whether or not the view makes sense,, it does not always yield

XML publishingin the literature [2, 5, 11, 16, 26], and is essentially &N €mpty tree? Is this view equivalent to another viesv, t_hey al-

to define arxML view for relational data: given a relational schema Ways produce the same output tree from the same relational source?
Example 1.1: Consider aregistrar databasel, of a rela-
tional schemaR, consisting of course(cno, title, dept), and
prereq(cnol, cno2) (with keys underlined). The database maintains

Permission to make digital or hard copies of all or part of this work for -ourse data and a relatioprereg, in which a tuple ¢, ¢») indicates

personal or classroom use is granted without fee provided that copies areyp, ot cs is a prerequisite of;. That is, relationprereq gives the
not made or distributed for profit or commercial advantage and that copies . .
prerequisite hierarchy of the courses.

bear this notice and the full citation on the first page. To copy otherwise, to .) . .
republish, to post on servers or to redistribute to lists, requires prior specific 1 he registrar office wants to export two/L views:

issi fee. . . .
ggrlgnslsos?logu?]g%i rlg 8807 Beijing, China. e XML view 71 contains the list of all thes courses extracted

Copyright 2007 ACM 978-1-59593-685-1/07/0006...$5.00. from the databasé&,. Under eaclrourse are thecno (num-

83

ber) andtitle of the course, as well as its prerequisite hierar-
chy. As shown in Fig. 1(a), the depth of theursesub-tree
is determined by its prerequisite hierarchy.

e View 73 is a tree of depth three. As depicted in Fig. 1(b), it
consists of the list of all thes courses. Below eaclrourse
c is the list of all thecno’s that appear in the prerequisite
hierarchyof ¢, followed by thecno andtitle of c.

normal), andsQuxmML of IBM [15] is a class of nonrecursive
PT(FO, tuple, normal). Moreover, relation stores and virtual nodes
are needed to characterizeeeQL [11, 2] andATG [5, 6]. Con-
versely, for most classesI(L, S, O) there are existing publishing
languages corresponding to them. For the few that do not find a
corresponding commercial system, we explain why it is the case.
For example, no commercial language correspondaT{6P, re-
lation, virtual) because it does not increase the expressive power

The user may ask the questions mentioned above regarding thes@verPT(FO, relation, virtual), and for the latter a running prototype

XML views. As will be seen shortly, not all commercial languages

system [5] has already been being used.

are capable of expressing these views due to the recursive nature oatic analysisWe investigate classical decision problems asso-
O

the prerequisite hierarchy.

Answering these questions calls for a full treatment of the ex-
pressive power and complexity ®ML publishing languages. The
increasing demand for data exchange aml publishing high-
lights the need for this study. Indeed, this is not only important for
the users by providing a guidance for how to choose a publishing

ciated with transducers: the membership, emptiness and equiva-
lence problems. The analyses of these problems may tell a user, at
compile time, whether or not a publishing transducer makes sense
(emptiness), whether &ML tree of particular interest can be gen-

erated from a publishing transducer (membership), and whether a
more efficient publishing transducer can in fact generate the same

language, but is also useful for database vendors in developing theset of XML trees as a more expensive transducer (equivalence).

next-generatiorXML publishing languages. Despite their impor-

We establish complexity bounds for these problems, ranging from

tance, to our knowledge no previous work has investigated thesePTIME to undecidable, for all the classe3(L, S, O) and for the

issues.

Publishing transducers. To examine the complexity and expres-
siveness oKML publishing languages in a comparative basis, we

need a uniform formalism to characterize these languages. To this

end, we introduce a formalism of transducers, referred tpuss
lishing transducers A publishing transducer is a top-down trans-

ducer that simultaneously issues queries to a relational database,
d

keeps intermediate results in its local stores (registers) associate
with each node, and iteratively expangsiL trees by using the
extracted data. As opposed to the automata for querying
data [21, 22], it generates a nex¥IL tree rather than evaluating

a query on an existing tree. In order to encompass existing publish-
e

ing languages, we parameterize publishing transducers using th
following parameters:

e L (logic): the relational query language in which queries

special cases that characterize existing publishing languages. All
these upper and lower bounds match, except one wit§j apper
bound and &I lower bound. We also provide data complexity for
evaluatingvarious publishing transducers.

Expressive powe¥e characterize the expressiveness of publishing
transducers in terms of both relational query languages and logical
transducers for tree generation.

We first treat a publishing transducer as a relational query that,
on an input relational database, evaluates to a relation which is the
union of the registers associated to nodes of the output tree with
a designated label. We show that each cREZ, S, O) captures
either a complexity class or a fragment of a well-studied relational
query language, except one for which we only show that it con-
tains a fragment of datalog. For example, the largest ¢tag=r,
relation, virtual) capturegesPAcCEand the smalleseT(CQ, tuple,
normal) captures linear datalog (seeg.,[14]). Along the same

on relational data are expressed; we consider conjunctive |ines we characterize the existing publishing languages. For exam-

queries with =" and ‘#’ (CQ), first-order queriesqO), and
(inflationary) fixpoint queriesAP);
S (store): registers that keep intermediate results; we

ple, we show thasQL/xmL of IBM [15] is in FOand annotatedsD
of Microsoft [19] is in union ofCQ queries.
For tree generation, we establish connections between certain

consider transducers in which each register stores a finite fragments ofPT(L, S, O) and logical interpretations [12] or trans-

relation versus those that store a singlple

O (output): the types of tree nodes; in addition normal
nodes that remain in the output tree, we may allovtual
nodes that will be removed from the output. We study trans-

ducers that only produce normal nodes versus those that may

also allow virtual nodes.

We denote byPT(L, S, O) various classes of publishing trans-
ducers, whereC, S, O are logic, store and output parameters as
specified above. As we will see later, different combinations of

ductions [8]. For example, we show that(L, tuple, virtual) con-
tain the£L-transducers fo£ ranging over CQ, FO and FP, and that
regular unranked tree languages are contain®d(rO, tuple, nor-
mal) but not inPT(CQ, relation, virtual).

In both settings we also provide separation and equivalence
results for various classes of publishing transducers. For example,
we show thaPT(FP, relation, normal) an&T(FO, relation, normal)
are equivalent in the relational setting, whereas for tree generation,
PT(FO, relation, normal) is properly contained RT(FP, relation,
normal) but in contrast,PT(FO, relation, virtual) andPT(FP,

these parameters yield a spectrum of transducers with quite differ- (g|ation virtual) have the same expressive power.

ent expressive power and complexity.

Main results. We present a comprehensive picture of the com-
plexity and expressiveness for all claseaél, S, O) as well as for
existingXML publishing languages.

Characterization of existingML publishing languagedie exam-

To our knowledge, this work is the first to provide a general the-
oretical framework to study the expressive power and complexity
of XML publishing languages. A variety of techniques are used to
prove the results, including finite model constructions and a wide
range of simulations and reductions.

ine several commercial languages and research proposals, and show

that each of these languages can be characterized as a special cagelated work. As remarked earlier, a number ®#ML publishing

of publishing transducers. For example, annotated of Mi- languages have been proposed (see [16] for a survey). However,
crosoft [19] is a class of “nonrecursive®T(CQ, tuple, normal), the complexity and expressiveness of these languages have not been
DBMS_XMLGEN of Oracle [23] can be expressed #T(FP, tuple, studied. There has also been recent work on data exchauggés,

10]. This work differs from [3, 10] in that we focus on (a) trans- a recursively enumerable infinite domdnof data valueswhich
formations from relational data toML defined in terms of trans- serves both as the domain of the relational databases and of the
ducers with embedded relational queries, rather than relation-to- local stores at nodes of the generated output tree.
relation [10] orXML -to-XML [3] mappings derived from source-to- A X-tree with local storageor simply a tree if it is clear from the
target constraints, and (b) complexity and expressiveness analysesontext, is a paift, Reg), wheret is aX-tree, andRegis a function
instead of consistent query answering. that associates each node dom(t) with a finite relation oveb.

A variety of tree automata and transducers have been developed/\e refer toRegv) as thelocal storeor theregisterof v, and use
(see [13] for a survey), some particularly faviL (e.g.,[18, 20, 21, Trees to denote the set of all-trees with local storage.
22]). As remarked earlier, tree recognizers [13] and the automata We consider two classes of trees: foralE dom(t), (a) either
for queryingXML [21, 22] operate on an existing tree, and either Regv) stores dinite relationover D, (b) or Reqv) is asingle tu-
accept the tree or select a set of nodes from the tree. In contrastpleoverD. These are referred to astrees withrelation stores and
a publishing transducer does not take a tree as input; instead, ittuplestores, respectively. Note that trees with tuple stores spea
builds a new tree by extracting data from a relational source. While cial caseof trees with relation stores. As will be seen shortly, the
the k-pebble transducers of [20] return ENIL tree as output, they content ofReqv) is computed via a relational query on a database
also operate on an inpMML tree rather than a relational database, overD, and it is used to control how the children©vill be gen-
and cannot handle data values. Similarly,>@swm of [18] takes erated.
XML data streams as input and produces one or gite streams.
Furthermore, the expressive power and complexity of these 3. Pub|ishing Transducers
tra?ﬁgfecﬁfslaeveennﬁggtegfﬁg?𝔢 the expressive power and com- We now qlefing publishing tran_sducers. Intuitively, a publishing
plexity of relational query languages (see [1, 9] for surveys). While t_ransducer is a flnlte-state machine that creates a tree from a rela-

. ; T : tional database in@p-down way It starts from an initial state that

those results are not directly applicable to publishing transducers,

some of our results are proved by capitalizing on related results on corresponds to the root node of the tree, and then foltstsrmin-
- P y cap 9 istically a transition based on the current state of the transducer and
relational query languages.

Logical interpretations or transductions define a mapping the tag of the curre_nt node in the tree created so far. The transition
from structures to structures through a collection of formulas d|rec_ts how the children of_a_node are generated _based on the un-
(seee.g..[8] for a survey of graph transductions). Recently logical derlying database, by providing the tags of the children as well as

N : : : . relational queries that extract data from the database. More specif-
tree-to-tree interpretations are used in [4] to charactetizeery.

. - - ically, for each child tag:, a relational query of the form(z; 7)
we em_plo_y transductions to characterize the wee generating POWETg specified, which generates a list of children labeledhe result
of publishing transducers.

of the query is partitioned using tlyggoup-byattributesz, yielding
Organization. Section 2 reviewsKML trees. Section 3 defines sets of tuples. For each set, a child labetdd spawned, carrying
publishing transducers. Section 4 characterizes existifig pub- the set in its local register, which will be used in queries in succes-
lishing languages in terms of these transducers. Section 5 studiessive transitions. As a result, the structure of the tree is dependent
decision problems for a variety of publishing transducers and ex- on the underlying database instance.

isting languages, and Section 6 investigates their expressive power. We next define publishing transducers more formally. In the fol-

Section 7 summarizes the main results of the paper. lowing, a relational schema is a finite collection of relation names
and associated arities.
2. XML Trees with Local Storage Definition 3.1: Let R be a relational schema antia relational
We first reviewXML trees and define trees with registers. query language. Aublishing transducefor R is defined to be

T=(Q,%,0,q0,0), whereQ is a finite set oftates X is a finite
alphabet otags © is a function from> to N associating tharity
of registersReg, to eachX taga; qo is thestart state andé is a
finite set oftransduction rulesuch that for eackg,a) € Q x %,

XML trees. An XML document is typically modeled as a node-
labeled tree. Assume a finite alphabebf tags A tree domain
domis a subset of Nsuch that forany € N* andi € N, if v.i is
in domthen so isv, and in addition, ifi > 1 thenv.(z — 1) is also

in dom A S-treet is defined to bedom(t), lab), wheredom(t) if ¢ # qo anda is not the root tag:, then there is a unique rule of
is a tree domain, anb is a function fromdom(t) to . the form:
Intuitively, dom(t) is the set of thenodesin ¢, while the empty (¢0) — (q1,01,61(F1;51))s - - - s (G ar, Sr (i i)

string e represents the root af denoted byroot(¢). Each node)
v € dom(t) is labeled by the functiofub with a taga of 3, called Herek > 0, and fori € [L, k], (gi,a:) € Q x %, and¢; €
ana-element Moreover,v has a (possibly empty) list of elements £ is @ query fromR andReg, to Reg, , whereReg, andReg,,

as its children, denoted ghildren(v). Herev.i € dom(t) isthe ~ are aO(a)- and aO(a;)-ary relation, respectively. To simplify
i-th child of v, andwv is called the parent ob.i. Note thatt is the discussion we assume that# a; if i # j. As mentioned
unrankedi.e., there is no fixed bound on the number of children of @bove, tuples in the result ¢f,(z; 7;) are grouped by; and are
a node int. distributed among different children labelegl as the content of
In particular we assume thatcontains a Speci%ot tagr’ such Regai of each child. Th|S will be explained in more detail pelOW.
thatlab() = r and moreover, for any € dom(t), lab(v) # r _ There are two special cases: (;a)and_r do not appear in the
if v # . To simplify the discussion we also assume a special tag, fight-hand side of any rule, and there is exactly one rulegfor
text, in 3. Any node labeledext carries a stringgCDATA) and is namely, the rule fofqo,), referred to as thetart rule; (b) if a is
referred to as aext node. text, thenk = 0 in the rule for(q, text), i.e., the right-hand side of
the rule is empty. O

Trees with local storage. We studyX.-trees generated from re-
lational data. To construct a tree in a context-dependent fashion,Example 3.1: The view shown in Fig. 1(a) can be defined by
one needs to pass information from a node to its children. To do a publishing transducer; = (Q1,%1, ©1, qo, 1), Where
this, we store data values in a local store at each node. We assum&): = {qo,q}, X1 = {db, course, prereq, cno, title, text}, and

85

the root tag isdb; we associate four sets of registéteg, Reg,,
Reg: andReg with course, prereq, cno andtitle nodes, to which
the arity-function©®,; assign2,1, 1, 1, respectively; finallyg, is
defined as follows:

51(qo, db) = (q, course, ¢1(cno, title;), where

¢1(cnotitle) = 3 dept (course(cno, title, dept) A dept = ‘CS”)
81(q, course) = (g, cno, ¢3(cno; M), (g, title, Pp3(title; 1)),

(q, prereq, #%(cno;0)), where
q%(cno) = T title Reg,.(cno, title), and
5 (title) = 3 cno Reg . (cno, title),

81(q, prereq) = (g, course, ¢3(cno, title; §)), where

#3(c,t) =3 ¢’ d (Reg,(c') A prereq(c’, c) A course(c, t, d))
d1(q, cno) = (g, text, ¢4(cno;B)), wheregy(c) = Reg,(c)
61(q, title) = (g, text, ¢5(title; D)), wheregs (t) = Reg (t)

Note that in each query(z; y) in the rules,|y| = 0, i.e., y is 0.
The semantics of; will be given in Example 3.2. a

A publishing transducer can be recursive. To illustrate this we
define thedependency graptr of . For each(q,a) € Q x X
there is a unique node(q, a) in G, and there is an edge from
v(g,a) towv(q',a) iff (¢’,a’) is on the right-hand side of the rule
for (¢,a). We say that the transduceris recursiveiff there is a
cycle inG,.

Transformations. In a nutshell;- generates a tree from a database
I of schemaR in a top-down fashion. Initiallyr constructs a tree

t consisting of a single node labelégh,) with an empty storage.
At each stepy expandg by simultaneouslyperating on the leaf
nodes oft. At each leafu labeled(q, a), 7 generates new nodes by
finding the rule for(q, a) from §, issuing queries embedded in the
rule to the relational databagend the registeReg,, (u) associated
with u, and spawning the children afbased on the query results.

associated with the-nodew and thea;-nodew;, respectively. If
all f;’s are empty¢’ is obtained front by labelingu with a.

If £ = 0, i.e.,the right-hand side of the rule is empty, th€ris
obtained front by changing the label af to a. In particular, if the
taga is text, then ing’, u carries a string representationRég,, (u)
(assuming a function that maps relations oleto strings, based
on the ordeK).

The first condition, referred to as tiséop-condition states that
the transformation stops at the leaif there is a node on the path
from the root tou such thatu repeatsthe stateg, taga, and the
content ofReg,, (v) of v. Since the subtree rootedais uniquely
determined by}, a, Reg, (u) andI, this asserts that the tree will not
expand at: if the expansiordoes not add new informatido the
tree. This stop condition is the same as the one usatds[6]. As
will be seen in the next section, most commercial systems support
only nonrecurisvepublishing transducers and thus do not necessar-
ily need a stop condition.

The second condition states how to generate the children of the
leaf u via a transduction rule. Observe that the children spawned
from u can be characterized by a regular expressipn . a,. For
eachj € [1, k], thea; children aregrouped bythe valuesd of the
parametef in the quenay; ¢, (;; §;). Thatis, for each distinat
such thaBy, ¢, (d; 7;) is nonempty, am; child w is spawned from
u, carrying the result od; (d; g;) in its local storeReg,, . (w).

The transformatiorstopsat the leafu, i.e., no children are
spawned at, if (a) the stop condition given above is satisfied; or
(b) the queryg;(Z;;§;) turns out to be empty for all € [1, k]
when it is evaluated ol andReg, (u); in this case all the forests
f; are empty; or (c) the right-hand side of the rule fqta) is
empty,i.e., k = 0 in condition (2) above; this is particularly the
case fora = text, as text nodes have no children. These conditions
ensure the termination of the computation. Note that transduction

The query results are kept in the registers of these children nodes at other leaf nodes may proceed after the transformation steps at

The transformation proceeds until a stop condition is satisfied at all

the leaf nodes (to be presented shortly). At the end, all registers Example 3.2: Given an instancd, of the schemak, described

and states are removed from the ttee obtain a>-tree, which is
the output ofr.

We now formally define the transformation inducedbjyrom
a databasé. As in [2], we assume an implicit ordering on D,

in Example 1.1, the publishing transdueergiven in Example 3.1
works as follows. It first generates the root of the tteéabeled
with (qo, db). It then evaluates the quety on I, and for each
distinct tuple in the result, it spawnscaurse child v carrying the

which is just used to order the nodes in the output tree and, hence {UPI€ in its registeReg, (v). At nodew it issues queries; and¢3

get a unique output. We dmtassume that the ordering is available
to the query languagé.

We extendX-trees with local storage by allowing nodes to be
labeled with symbols frolx U @ x . We use Tregx s to denote
the set of all such extendédttrees. Then, every step in the trans-
formation rewrites a tree in Treg s, starting with the single-node
tree(qo,).

More specifically, for two tree§, ¢’ € Treey s, we define the
step-relation=-, ; as follows: ¢ =, ; ¢ iff there is a leafu of £
labeled(q, a) and one of the following conditions holds:

(1) if there is an ancestar of u such that, v are labeled withthe
same state and tagindReg, (v) = Reg,(u), then¢’ is obtained
from & by changingab(u) to a. Otherwise,
(2) assume that the rule fdq,) is

(q,a) = (q1,a1,61(T1;91)), - - - (qk; Ak, Pk (Tw; Ur))-
If £ > 0, then¢’ is obtained fron€ by rooting the foresy; - - - fx
underu. For eachj € [1,k], f; is constructed as follows. Let
{dlv";vd"} = {d ‘ Iu Rega(u) ': 3§j¢j(d;ﬂj)} andd, <
-+ < d, with < extended to tuples in the canonical way. Thfen
is alist of nodegvy, - - - , vn|, Wherew; is labeled with(¢;, a;) and
its registerReg, (v;) stores the relatiofid; } x {& | TUReg, (u) =
#;(di; €)}; here we useReg, and Reg, to denote the registers

86

on Reg,(x), and spawns itsno, title andprereq children carrying
the corresponding tuple in their registers. At te child, it sim-
ply extracts the string value afio and the transformation stops;
similarly for title. At the prereq child u, it issues querys against
both Ip andReg, (u); i.e., it extracts all (immediate) prerequisites
of the coursev, for which the cno is stored iReg,(u). In other
words, thecno information passed down from nodés used to de-
termine the children of.. For each distinct tuple in the resultof,
it generates a course child of The transformation continues un-
til either it reaches some course for which there is no prerequisite,
i.e., ¢3 returns empty at itprereq child; or when a course requires
itself as a prerequisite (which does not happen in practice), and at
this point the stop condition terminates the transformation. The fi-
nal tree, after the local registers and states are stripped from it, is a
Y-tree of the form depicted in Fig. 1(a).

Note that the transformation data-driven the number of chil-
dren of a node and the depth of tkigiL tree are determined by the
relational databasé |

We denote by=7 ; the reflexive and transitive closure ef ;.
Theresultof the 7-transformationon I w.r.t. < is the tree¢ such
that (gqo,7) =" ¢ and all leaf nodes of carry a label from>.
This means thaf is final and cannot be expanded anymore. We
use7([) to denote theX-tree obtained front by striking out

the local storage and states frgm We denote byr(R) the set For each clasBT(L, S, O), we denote byT,(L, S, O) its sub-
{r(I) | I isaninstance of?}, i.e., the set of trees induced by class consisting of alionrecursiveransducers in it.
T-transformations od when! ranges over all instances of the re- For instance, the transducers and r» given in Examples 3.1
lational schemak. Note that for any order on the input instance, a an 3.3 are irPT(CQ, tuple, normal) andT(FO, relation, virtual),
transducer always terminates and produces a unique output tree. respectively f; is also definable iR T,(FP, tuple, normal); we omit

Virtual nodes. To cope withxML entities we also consider a class this definition for the lack of space).

of publishing transducers withirtual nodes Such a transducer is . . o

of the form7 = (Q, 3,0, 0,6, 3.), whereX, is a designated 4. Characterization of XML Publishing
subset oft, referred to as theirtual tagsof r; and@, X, ©, qo, ¢ Languages

are the same as described in Definition 3.1. We requirethdbes
not contain the root tag. On a relational databAske transducer
T behaves the same as a normal transducer, except thattitee
7(I) is obtained from the resuft of the 7-transformation ol as
follows. First, the local registers and states are removed §om
Second, for each nodein dom(&), if v is labeled with a tag in Microsoft SQL Server 2005[19].
Ee., we shortcutp by replacingv with children(fu),.i.e., treating methods are supported by Microsoft, nametgRr-xML expres-
children(v) as children pf the parent of and_ removnng;_from the _ sions and annotatedsb schema.

tree. The process continues until no node in the tree is labeled with 16 first method extracts data from a relational sourcesga

ataginXe. queries, and organizes the extracted dataXimb elements using a
Example 3.3: Suppose that we want to define a publishing trans- For-xML construct. HierarchicatML trees can be built top-down
ducer for theXML view shown in Fig. 1(b), and that the query by nestedrOR-xML expressions. While no explicit registers are
languageL is FO. One can show, via a simple argument using used, during tree generation information can be passed from a node
Ehrenfeucht-Frisse (EF)-style game, that this is not expressible as to its children along the same lines as the use of tuple variables in
a normal transducer of Definition 3.1 (seeg.,[17] for a discus- nestedsQL queries (e., correlation). The depth of a generated tree
sion of EF games). In contrast, this can be defined as a publishing is bounded by the nesting level BOR-XML expressions (although
transducerr; with virtual nodes. Indeed, capitalizing on a virtual user-defined functions can be recursive, Microsoft imposes a max-
tag/, we give some of the transduction rulisof 7> as follows: imum recursive depth, and thus a bounded tree depth). No virtual
nodes are allowed. ThusOR-XML expressions are definable in
PT.(FO, tuple, normal).
52(q, prerfq}%Z (q, l,\/(pal(@l; igog), (/q,/c;no, <p2(CI/70; 0)) The second method specifiesX@¥L view by annotating a (non-
i;gg _ (Pfg(fg)(cA) Vel (;e(g ‘Z‘Z?)(Q @f’ (rs,r)e)q(c <) recursive)xsb schema, which associates elements and attributes
P ' with relations and table columns, respectively. Given a relational

We examine publishing languages that are either supported
by commercial products or are representative research proposals
(see [16] for a survey). We classify these languages in terms of
publishing transducers with certain restrictions.

Two main XML publishing

02(qo, db) anddz (g, course) are as in Example 3.1

d2(q, 1) is @sda(g, prereq) with precreq =1 andReg,, = Reg;. source, the annotatedsb constructs arxML tree by populating
In 1, |Z| = 0 and thus the result af; is put in asingle relation elements with tuples from their corresponding tables, and instan-
stored in the registeReg, (v) of thel child v. In contrast/g| = 0 tiating attributes with values from the corresponding columns. In-

in o, and thus its query result igroupedby each distinct tuple. ~ formation is passed via parent-child key-based joins, specified in
Hence, if the query result is nonempty, then for each tuple in it, a terms of arelationship annotation. It only supports simple condi-

distinctcno child is generated. tion tests and does not allow virtual nodes. The depth of the tree is
Intuitively, for each course the transducer- recursively finds ~ bounded by the fixed “tree templateX¢p). Thus annotatedsp
cno’s in the prerequisite hierarchy efand adds theseno’s to the can be expressed R,(CQ, tuple, normal).

relationReg, (v) until it reaches a fixpoint, whereis labeled with
the virtual tagl. Only at this point, the query2(c) returns a non-
empty setReg, (v). For eachcno in the set, a distinctno node is
created. Then, all the nodes labeledre removed and thos&o

IBM DB2 XML Extender [15]. IBM also supports two main meth-
ods:sQU/xML and document access definitiamp).

The first method extend3QL by incorporatingKML constructs
nodes become the children @f Thusr: induces thexML view of (e'g'.’XMLAGG‘ XMLE"EME'\.'T)' It extracts rel_atlonal datain paral-
Fi lel with XML -element creation. Nested queries are used to generate

ig. 1(b). a - . . : : ;

a hierarchicakmL tree, during which a node can pass information

Fragments. We denote byT(L, S, O) various classes of publish- toits children via correlation. The tree has a fixed depth bounded by
ing transducers. Herd, indicates the relational query language in the level of query nesting, and has no virtual nodes. HgxML
which queries embedded in the transducers are defined. We conis essentiallyPT,(FO, tuple, normal).

sider £ ranging over conjunctive queries witk* (CQ), first-order The second method in turn has two flavors, namely,
logic (FO) and (inflationary) fixpoint logicP), all with equality SQL-MAPPING andRDB_MAPPING. The former extracts relational
‘=", StoreS is eitherrelation or tuple indicating that the:-trees data with a singlsQL query, and organizes the extracted tuples into

induced by the transducers are with relation or tuple stores, respec-a hierarchicakML tree by using a sequence gfoup_by, one for
tively. Observe that transducers with tuple stores are a special casesach tuple column and following a fixed order on the columns. The
of those with relation stores. For any transducerith tuplestores, depth of the tree is bounded by the arity of the tuples returned by the
|7:| = 0in each query;(Z;;7;) in 7, asillustrated in Example 3.1. query. The latter embeds nestenB_NODE expressions in @AD.
OutputO is eithemormalor virtual, indicating whether atransduc- The DAD is basically a tree template with a fixed depth, and those
ers allow virtual nodes or not. ThesI(FP, relation, virtual) is the embedded expressions are essenti@apgueries for populating el-
largest class considered in this paper, which consists of transducerements and attributes specified in thed. Neither of these two
that are defined with fixpoint-logic queries and generate trees with allows virtual nodes. One can expressD with SQLMAPPING
relation stores and virtual nodes. In contr&3(CQ, tuple, normal) in PT,(FO, tuple, normal), anckDB_MAPPING in PT,(CQ, tuple,

is the smallest. normal).

87

Microsoft SQL Server 2005
FOR XML | annotated XSO
PT.(FO, t, n)] PT.(CQ, t, n)

IBM DB2 XML Extender
SQL/XML | DAD (SQL/RDB)
PT.(FO, t, n)| PT,(FO, t, n) (SQL)
PT.(CQ, t, n) (RDB)

Oracle 10g XML DB XPERANTO ATG
SQL/XML |DBMS_XMLGEN

PTu(FO, t, n) PT(FP, t, n)

TreeQL

PTa(FO, t, n) | PT(CQ, t,v) | PT(FO, t, V) [5]

PT(CQ, r, v) [6]

Table 1: Characterization of existingXML publishing languages (t: tuple; r: relation; n: normal; v: virtual)

Oracle 10gXML DB [23]. Oracle supportsQU/xML as described
above, and #®L/SQL packageDBMS_XMLGEN. DBMS_XMLGEN
extendssQL/XML by supporting the linear recursion construct
connect-by (SQL'99), and is thus capable of defining recursive the same schem@, whether or not; (1) = 72 () for all instances

XML views. Given a relational source, aoML tree of an un- I of R, i.e.,the two transducers produce the sameees on all the
bounded depth is generated top-down, along the same lines asnstances ofR.

nestedsQU/xML queries. Information is passed from a node to We first establish upper and lower bounds for these problems, all
its children viaconnect-by joins. For each tuple resulted from the matching except one, for all classes of transducers defined in Sec-
joins, a child node is created, whose children are in turn created tion 3. We then revisit these issues for nonrecursive transducers that
in the next iteration of the recursive computation. Neither virtual characterize the existing publishing languages studied in Section 4.
nodes are allowed, nor an explicit stop condition is given. If the Our main conclusion for this section is that most of these problems

So, it is to decide whether can induce nontrivial treesiii() The
equivalence problerfor PT(L, S, O) is to determine, given two
transducers; andr; in the class defined for relational databases of

stop condition given in Section 3 is imposedjL views defined in
DBMS_XMLGEN are expressible iRT(FP, tuple, normal).

XPERANTO [26]. It supports essentially the sarR®IL views as
SQUXML, and thus irPT,(FO, tuple, normal).

TreeQL [11, 2]. TreeQL was proposed for theML publishing mid-

are beyond reach in practice for general publishing transducers, but
some problems become simpler for certain existing languages.

5.1 Decision Problems for Publishing Transducers

We first discuss the data complexity of computing the output of
a publishing transducer.

dleware SilkRoute [11]. Here we consider its abstraction developed proposition 5.1: For anyr in PT(Z, S, O), where£ is CQ, FO or

in [2]. It defines anXML view by annotating the nodes of a tree
template (of a fixed depth) withQ queries. It supports virtual tree

nodes and tuple-based information passing via free-variable bind-

ing (i.e., the free variables of the query for a nodere a subset
of the free variables of each query for a childwf ThusTreeQL
views are expressible ipT,(CQ, tuple, virtual).

ATG [5, 6]. Attribute transformation grammarsTG) were pro-
posed in [5] and revised in [6], fakML publishing middleware
PRATA. An ATG defines arXML view based on &TD, by associ-
ating each element type with an inherited attribute (register), and
annotating each productian — « in the DTD with a set of rela-
tional queries, one for each sub-element tyga the regular ex-
pressionx, specifying how to populate thesub-elements of an
element. It supports recursi@d Ds and thus recursivEML views,

as well as virtual nodes to cope witML entities. While the early
version of [5] employsO queries and tuple registers, the revised
ATGs [6] adoptCQ queries, relation registers and the stop condition
of Section 3.ATGs of [5, 6] are basicallyrT(FO, tuple, virtual) and
PT(CQ relation,virtual), respectively.

The characterization is summarized in Table 1. Except
DBMS_XMLGEN andATGs, these languages do not support recur-
sive XML views exported from relational data. Indeed, one can
verify, via a simpleEF-game argument, that thevL views of Ex-
ample 3.1 and 3.3 are expressibl®BMS_XMLGEN andATGs, but
not in the other languages.

5. Decision Problems and Complexity
In this section we first provide tight worst-case complexity for

evaluating various publishing transducers. We then focus on central

FP, andO is normal or virtual, and for any databagethe size of
7(I) is at most exponential and double exponential in the size of
I when S is tuple and relation, respectively. There are instances
for which this maximal size is reached whgnis CQ. Worst-case
data-complexity i€XPTIME and ZXPTIME when S is tuple and
relational, respectively. |

PrROOF It suffices to remark that the rank efI) is bounded
by a polynomial in the siz¢l| of I, its depth by a polynomial in
|I] if S is tuple, and by an exponential § is relation. To see
that the bounds are tight, for transducers with tuple stores consider
a databasd; encoding abAG of a certain shapee(g.,a chain of
diamonds), and a recursive transdueein PT(CQ, tuple, normal)
expanding theAG into a tree. Then the size of the outpu(l;)
is exponential inI|. For relation stores, considés encoding a
n-digit binary counter, and- in PT(CQ, relation, normal) that at
each node creates two branches, each incrementing the counter by
1. Then the size of,(I5) is 22" m

We now turn to the classical decision problems associated with
transducers.

Proposition 5.2: Membership, emptiness and equivalence are un-
decidable foPT(L, S, O) whenL isFOorFP, S is relation or tuple,
andO is virtual or normal. a

PrROOF It suffices to show that these problems are undecidable
for PT(FO, tuple, normal). This is verified by a reduction from the
satisfiability problem for relationa&0 queries, which is known to
be undecidable (see,g.,[1]). O

For £ equal toCQ, the situation gets slightly better.

decision problems associated with these transducers. Consider a heorem 5.3:ForPT(CQ, S, 0),

classPT(L, S, O) of publishing transducersi)(The membership
problemfor PT(L, S, O) is to determine, given &-treet and a
transducerr in this class, whether there is an instadoeith ¢t =
7(I), i.e., 7 on I computes the treeé (ii) The emptiness problem
for PT(L, S, O) is to determine, given in this class, whether there
is an instancd with 7(I) # r, i.e., the tree with the root only.

88

e the emptiness problem is decidablermiME for PT(CQ, .S,
normal), but becomesp-complete folPT(CQ, S, virtual);

e the equivalence problem is undecidable;

e the membership problem B5-complete forPT(CQ, tuple,
normal), but becomes undecidable when eitkiés relation
or O is virtual. 0

PROOF For the emptiness problem ferin PT(CQ, S, normal),
it is sufficient to test emptiness of tka® queries in the start rule of
7. The satisfiability of these queries can be checkedrime in the
size of the queries. Thep lower bound for the emptiness problem
for PT(CQ, tuple, virtual) is by a reduction fromst [24]. The up-
per bound for the emptiness problem fom PT(CQ, relation, vir-
tual) is proved by providing anp algorithm that (1) guesses a path
from the root of the dependency graph of 7 to a node labelled
with a non-virtual tag; (2) checks the satisfiability of the composi-
tion of theCQ queries along that path. The latter can be checked in
PTIME in the size of the originatQ queries.

For PT(CQ, tuple, normal) the undecidability of the equivalence
problem is by a reduction from the halting problem for 2-register
machines (sees.g.,[7]) which leads to the undecidability of the
problem forPT(CQ, S, O). We note that it remains undecidable for
PT(CQ, relation,O) without ‘£".

The X% lower bound for the membership problem #@T(CQ,
tuple, normal)n the absence of£’, is by a reduction fromd*Vv*-
3SAT [24]. The upper bound is proved by (1) establishing a small
model property: for any-treet andr in the class, it € 7(R),
then there exists ah such thatr(I) = ¢ and|I| is linear in|¢|;

(2) providing an algorithm for checking the existencd dify using

a nondeterministi®TIME Turing machine with avp oracle. For
PT(CQ, tuple, virtual), the undecidability is by a reduction from
the emptiness problem for deterministic finite 2-head automata
(seee.g.,[27]). ForPT(CQ, relation,O), the undecidability is by a
reduction from the satisfiability problem feo queries: given &0
queryq on databases of schenia, we define a new schenfa;
that subsumeg®; to encode the result of each sub-query;pénd

a transducer in the class that checks whethgon an instance

of R; yields the result coded in the corresponding instancB-of
Capitalizing on virtual nodes, we show th&tR.) contains a fixed
tree iff ¢ is not satisfiable. The proof does not make use#f ‘' O

5.2 Complexity of Existing Publishing Languages

The results of the previous section carry over immediately to the
existing publishing languages adopting recursion, whichPa¢ep,
tuple, normal) EBMS_XMLGEN), PT(FO, tuple, virtual) &TG [5])
and PT(CQ, relation, virtual) ATG [6]). Table 1 shows that, in
contrast, many of them are non-recursi#a;,(FO, tuple, normal)
(FOR-XML, SQL_mapping,sQL/XML), PT,(CQ, tuple, normal) (an-
notatedxsD, RDB_mapping), andT,(CQ, tuple, virtual) TreeQL).
Each of these nonrecursive classes is treated below.

We show that the absence of recursion for these publishing lan-
guages simplifies the analyses. Indeed, for ang one of these
nonrecursive classes, thetree induced by- on any database is
bounded byr. From this it follows:

Corollary 5.4: For publishing transducetsin PT,(FO, tuple, nor-
mal) (orPT.(CQ, tuple()), the worst-case data complexity for
transformations is imTIME (both forO normal or virtual). |

The decision problems also become simpler, to an extent.

Theorem 5.5: The emptiness, membership and equivalence prob-
lems are undecidable f&T,(FO, tuple, normal). The emptiness
problem forPT,(CQ, tuple, normal) is in PTIME; it issP-complete

for PT,./(CQ, tuple, virtual). The membership and equivalence prob-
lems forPT,(CQ, tuple, O) are¥%-complete, and idl5 andII}-
hard, respectively. O

PROOF The proof of Proposition 5.2 remains intact for,(FO,
tuple, normal). Similarly, theeTiME upper bound for emptiness
of Theorem 5.3 trivially holds foPT,(CQ, tuple, normal). Since
the NP lower bound proof of Theorem 5.3 for emptiness uses a
non-recursive transducer, the lower bound extendsTg(CQ, tu-

89

ple, virtual). Thenp upper bound of Theorem 5.3 trivially holds
for PT.(CQ, tuple, virtual). Similarly, forPT,(CQ, tuple,O), the

> upper-bound proof of Theorem 5.3 for membership extends to
PT.(CQ, tuple, virtual). For equivalence fa¥T,(CQ, tuple, nor-
mal), we prove thdI5 lower bound by reduction from the equiv-
alence problem fo€Q queries with %’ [28]. We give all}-time
checking algorithm folPT,(CQ, tuple, virtual), by characterizing
transducer equivalence in terms of (a) isomorphism between the
dependency graphs of transducarags), and (b) a form of equiv-
alence orcQ queries along the paths in the twaGs starting from

the root. O

6. Expressiveness of Publishing Transducers

In this section, we characterize the expressive power of pub-
lishing transducers in terms of relations-to-tree mappings (i.e., tree
generation) and relations-to-relation mappings (i.e, relational query
languages).

6.1 Tree Generation versus Relational Languages

Although publishing transducers define mappings from rela-
tional databases to trees, they can also be considered as a relational
query language mapping relational databases to relations. To this
end, we fix a designated output lalel For any instancé of R,
the r-transformation on/ yields a final tree with local storage
in Treep x 2, from which the outpuk-treer(I) is obtained by re-
moving local stores and transducer states (recall from Section 3).
Therelationinduced byr on I is then defined to be the union of all
the storesReg, (v) for all nodesv labeleda, in §. Therefore, we
refer tor as a relational query whenis viewed as a mapping from
instanced to the relation induced by on I. Whenr is viewed
as a relation-to-tree mapping, we refer#taas a tree generating
mapping.

We want to compare the expressive power of one class
PT(L1, S1, O1) with that of another clasBT(L2, S2, O2) both as
a tree generation and a relational query language. We say that
PT(L1, 51, 01) is contained inPT(L2, S2, O2) as a tree/relational
query language, denoted (L1, S1,01) C PT(L2, S2, 02), if
for any =1 in PT(L4,S1,01) defined for a relational schema,
there existg in PT(L2, S2, O2) for the sameR such that they de-
fine the same tree/relational query.

The two classes are said to bguivalentin expressive power,
denoted byPT(ﬁh S, 01) = PT(£2, Sa, 02), if F’T(,Cq7 51, 01)

- PT(£2, SQ, 02) and PT(£2, SQ, 02) C PT(£1, 51, 01) We say
that PT(L1, S1, O1) is properly contained irPT(L2, Sz, O2), de-
noted byPT(L1,S1,01) C PT(L2, S2, 02), if PT(L1,S1,01) C
PT(L2, S2,02) but PT(L1, S1,01) # PT(L2,S2,02). These no-
tions extend to comparingT(L, S, O) vs. other tree generating
formalisms, and to comparir®r(L, S, O) vs. relational query lan-
guages.

We also characteriz€T(L, S, O) with respect to complexity
classes. TreatingT(L, S, O) as a relational query language, for
example, we consider thecognition problenfor its transducers
7: given a tuplex and an instancé of the schema for which is
defined, it is to determine whetheris in the relationR,(a.) in-
duced byr on I. We say thaPT(L, S, O) capturesa complexity
clas<C if the recognition problem for all transducersAm(L, S, O)
is in C and moreover, for any quemgwhose recognition problem is
in C, there exists in PT(L, S, O) defined on the same scherRaas
q, such thay andr return the same output relation on all instances
of R.

Outline. We study the expressive power of all the classes
PT(L, S, O) defined in Section 3 with respect to relational query
and tree generation languages, in Sections 6.2 and 6.3, respectively.

We then investigate the expressive power of exiskint. publish-

ing languages in Section 6.4. The results in this section hold irre-
spectively of whether the queries ihhave explicit access to the
order< on the domairD, unless explicitly stated otherwise.

6.2 Expressiveness in Terms of Relational Queries

We start by treatingpT(L, S, O) as a relational query language.
We first review two fragments of datalog. One fragmenliris
ear datalog(seee.g., [1]), denoted by LNDATALOG. It con-
sists of datalog programs in which each rule is of fopz) —
p1(Z1), ..., pn(Zn), and moreover, at most opeis aniDB predi-
cate. We allow somg; to be. The other, referred to aketermin-
istic datalogand denoted bypDATALOG, is the class of programs
in which eachiDB predicate has only one rule of the form above
(its body may contain more than o8B predicate).

We useTCy[L] to denote a fragment of transitive closure logic:
the set of all formulagTCs 5 ¢](a,b), wherep € L. Follow-
ing [14] one can verify thal Co[CQ] = LINDATALOG.

The main result of Section 6.2 is given as follows.

Theorem 6.1: When treated as relational query languages,
1) PT(L, S, virtual) = PT(L, S, normal),

(2) PT(CQ, tuple,O) C PT(FO, tuple,O)
(3) C PT(FP, tuple,0)

4) C PT(FO, relation())
(%) = PT(FP, relation,0),
(6) PT(CQ, tuple,0) C PT(CQ, relation,0)

) C PT(FO, relation,0),

(8) PT(CQ, relation,0) Z PT(FO, tuple,O),
where O is either normal or virtual. The containment in state-
ment (3) is proper iINLOGSPACE## PTIME. Moreover,

(a) PT(FO, relation,O) capturePSPACE

(b) PT(FP, tuple, O) = (inflationary) FP on ordered databases
and thus capturesTIME.

(c) PT(FO, tuple, O) = TCy[FO] on ordered databases, and
thus capturesiLOGSPACE On unordered databas@s(FO,
tuple,O) C NLOGSPACE

(d) PT(CQ, relation,0) O DDATALOG.

(e) PT(CQ, tuple,O) = LINDATALOG. O

Among other things, this tells us the following in the relational

setting. Virtual nodes do not add expressive power (statement (1)) (4)

and thus we only need to consid®i(L, S, normal). In contrast, we

have to treat publishing transducers with relation stores and those(g)

with tuple stores separately (4, 6, 8). Whiledoes not add expres-
sive power oveFOin PT(L, relation,O), it does inPT(L, tuple,O)
(5, 3). Moreover, replacingQ with FO in PT(CQ, .S, O) leads to
increase in expressiveness whers either relation or tuple (2, 7).

The rest of the results position the expressive power of these trans

ducersw.r.t. complexity classes and datalog fragments.

PROOF To show thaPT(FO, relation,O) capturesPSPACE we
first show that for each in PT(FO, relation, O), its recognition
problem can be determined by using nondeterministieACETur-
ing machine. Conversely, we simulate every partial fixpoint query

(known to capture PSPACE on ordered instances) using a trans-lation, normal).
ducer and show that a total order is definable in this class. Sim-

ilarly, we simulate each in PT(FP, tuple, O) (resp.PT(FO, tu-

ple, 0)) in FP(resp. inTCy[FQ]), and vice versa. Thus on ordered
databasesPT(FP, tuple, O) and PT(FO, tuple, O) capturePTIME
andNLOGSPACE respectively. On unordered structures, since the
parity queryeven is not expressible irfFP, it is not definable in

0

PT(FP, tuple, O). We simulateDDATALOG and LINDATALOG in
PT(CQ, relation,O) and PT(CQ, tuple, O), respectively, and vice
versa for LNDATALOG.

Statement (1) holds because for any t¢ée@duced by a trans-
ducer inPT(L, S, virtual), and for any normak-elementw in &,
removing virtual nodes frond does not change the content of the
registerReg, (v). Statement (5) is verified by simulatig queries
in PT(FO, relation, normal). Statements (4, 6) follow from (5) and
the fact that each transducerrf(L, tuple,O) is a special case of
PT(L, relation,O) in which for any querys(z, 5), 7 is the empty
list. The containment in (4) is proper since on unordered structures,
even is expressible irPT(FO, relation,O) but not inFP. We show
that the containment of (6) is proper by defining a transdader
PT(CQ, relation, O) that takes a relation encoding the edges of a
rooted graphG as input, expand§' into a tree, and adds a certain
node to the tree iff the root off has two particular descendants
on different branches aff. One can verify that is not express-
ible even inPT(FO, tuple, O) (this requires alE~game argument
to show that the relational query defined bys not definable in
FO). From this also follows (8). To prove that the containments
in (2, 7) are proper, we give &0 queryq, which is clearly defin-
able inPT(FO, tuple,0), and show thag is not definable ifPT(CQ,
relation,O) due to the monotonicity afQ queries. a

6.3 Tree Generating Power

For tree generation, we provide separation and equivalence re-
sults for various classes of publishing transducers, and establish
their connection with logical transducers [8] and regular tree lan-
guages (specialize0TDs).

Equivalence and separation As opposed to Theorem 6.1, Propo-
sition 6.2 below shows that when it comes to tree generation, virtual
nodes do add expressive power to publishing transducers. More-
over, if £ C L', thenPT(£’, S, normal) properly containBT(Z,

S, normal) whereas in the relational query settingFP, relation,
normal) =PT(FO, relation, normal). The other results in Proposi-
tion 6.2 are comparable to their counterparts in Theorem 6.1.

Proposition 6.2: For tree generation,
(1) PT(L, S, normal)C PT(L, S, virtual),
(2) PT(L, S, normal)c PT(L', S, normal) if £ C £/,

(3) PT(CQ, tuple, virtual)C PT(FO, tuple, virtual)
C PT(FP, tuple, virtual)

(5) PT(CQ, relation, virtual)C PT(FO, relation, virtual)
= PT(FP, relation, virtual),

(7) PT(L, tuple,O) C PT(L, relation,O).
(8) PT(CQ, relation, normal}Z PT(FP, tuple, virtual),

where L, £1,L, areFP, FO or CQ, and O is normal or virtual.

The containment in (4) is properMTIME ANLOGSPACE O

PROOF We prove that the containments in (1-5) are proper
as follows. For (1), we define; in PT(CQ, tuple, virtual) that
can generate &-tree in which the root has exponentially many
children, which is not doable even by transducersPii(FP, re-

For (2-5), observe that by Theorem 6.1, there
exists a Boolean query in £’ not expressible irPT(L, S, O) if
PT(L, S, O) is considered as a relational query language (for (4)
if PTIME #NLOGSPACBH. We definers in PT(£’, S, normal) such
that > generates a nontrivial tree iff is satisfied. Statement (6)
holds since eachP query can be simulated ®T(FO, relation, vir-
tual) by using virtual nodes. The containment of (7) is proper since

transducers irPT(L, relation, O) can induce trees of exponential

moreover,t = g(t'). We denote byL(d) the set of allX-trees

depth, as opposed to trees of polynomial depth induced by those inconforming tod.

PT(L, tuple,O); similarly for (8). o
Logical transducers. For a logicL, anL-tree-transduction defines
a mapping from relations over a scheR#o a tree with a sequence
of L-formulasg., ¢< and(¢a.)a.cx such that on every-structure

I, ¢.(I), < (I) andg,(I) define the edge relation, the ordering on
the siblings, and the-labeled nodes of the tree, respectively. To ex-

A specializedDTD d is said to be definable iRrT(L, S, O) if
there exists a publishing transdueein the class defined for some
relational schema such thatL(d) = 7(R).

The next result tells us that whehis FO or FP, PT(L, S, virtual)
is capable of defining all specializ&Ds, and thus all regular un-
ranked trees an¥1SO definable trees. In contra®;T(CQ, S, O)
does not have sufficient expressive power to define ev@s. We

press transformations of exponential size increase (like publishing defer a full treatment of the connection between publishing trans-

transducers cand. (I) defines ebAG, and we consider its unfold-

ducers €.9.,PT(FP, S, normal) andPT(FO, S, normal)) and regular

ing as a tree when making a comparison with publishing transduc- {'é€ languages to the full version of the paper due to the space con-
ers. First-order (resp. second-order) transductions are those wher&traint.

nodes of the output tree akeary tuples (respk-ary relations) over
the input structure, for some fixéd An L-transductior” is fixed-
depthwhen there is aif such that for any inpuf, 7'(I) is a tree

of depth at most. In a similar way to logical transductions, we
can also defin€-transductions (both first and second order) for a
complexity clas<C where there ar€-Turing machines to decide
the relationsp., ¢« and(¢q)acs.

Theorem 6.3:

1. When/L ranges oveCQ, FO andFP, everyL-transduction is
definable inPT(L, tuple, virtual).

. When £ ranges overFO and FP, every transducer in
PT.(L, tuple, virtual) is definable as a fixed-depit-
transduction.

. There is a recursive transducePT(FO, tuple,O) that is not
definable as arO-transduction.

. When/L ranges oveccQ, FO andFP, over unordered trees,
fixed-depth £-transductions are equivalent ®r,(L, tu-
ple,O).

. Over ordered input structureBT(FO, relation, virtual) and
PT(FP, tuple, virtual) contain the@spAcEsecond-order and
PTIME first-order transductions. 0

PROOF (1) A direct simulation using virtual nodes to express
arbitrary sequences of labels shows thatL, tuple, virtual) are
at least as expressive @stransductions. (2) When transducers
are nonrecursive, there is no stop condition, am(, tuple, vir-
tual) corresponds precisely tbtransductions generating trees of a
fixed depth. (3) This statement holds because recupsiyeO, tu-
ple, O) can express graph-reachability known not definabledn
(4) When disregarding the order of siblings, virtual nodes are no
longer needed and fixed deptb-transductions become equivalent
to PT.(FO, tuple,0). (5) PT(FO, relation, virtual) andPT(FP, tuple,
virtual) are quite expressive as they contain all transformations in
PSPACEandPTIME, respectively, over ordered structures. Here the
correspondence betwe&® and PTIME, and between partial fix-
point andPsPACEON ordered structures, is exploited. m|

Regular tree languages.lt is known [22] that a set of unranked
trees is regular iff it isMSO definable, and that a set of trees is
MSO definable iff it is the set of trees recognized by a specialized
DTD [25]. Recall that DTD d’ overX: is defined by a set of rules of
the forma — «, wherea is a tag in¥ anda is a regular expression
overX. A X-treet conforms tod iff for eacha-elementv in ¢, the
list of labels ofchildren(v) is a string inc.

A specializedDTD d over X is a triple (X', d’, g), whereX C
Y/, g is a mappingt’ — X, andd’ is aDTD over¥'. A X-
treet conforms tod if there exists &'-treet’ that satisfies!’ and

91

Theorem 6.4:When L is FO or FP, every specialize®TD overX
is definable inPT(L, tuple, virtual). There exigbTDs that are not
definable inPT(CQ, relation, virtual). a

PROOF For each specializedTD d, we definer in PT(FO, tu-
ple, virtual) for a schem#& encoding a graph such that all trees in
7(R) conform tod, and for anyt € L(d), there is an instanceof
R such that = 7(I). We show thaDTDswith disjunctive rules are
not definable irPT(CQ, relation, virtual) due to the monotonicity of
CQqueries. a

6.4 Expressiveness of Existing Languages
We next study the expressiveness of existing publishing lan-
guages in the relational-query and tree generation settings.

Relational Query Languages.t can be verified that the results of
Theorem 6.1 folPT(FP, tuple, normal) PT(FO, tuple, virtual) and
PT(CQ, relation, virtual) also hold fobBMS_XMLGEN andATGs,
respectively. The theorem below settles the issueigi(FO, tu-
ple, normal) EOR-XML, SQL-mapping, XPERANTO, SQL/XML),
PT.(CQ, tuple,O) (annotatecksb, RDB_mapping,TreeL).

Theorem 6.5: When treated as relational query languages,
PT.(FO, tuple,O) = FO, andPT,(CQ, tuple,O) = UCQ (UCQ de-
notes union of conjunctive queries witk; £"). a

PrROOF Every UCQ query can be simulated iRT,(CQ, tu-
ple, O). Conversely, for each transducelin PT,(CQ, tuple, O)
and a designated output tag, the output relatiorR, (a,) of ar-
transformation is computed by the union ofgédith querieswhere
each path query is the compositions of t@queries on a path in
the dependency graph effrom the root to a leaf node labeled.
Similarly, PT.(FO, tuple,O) = FO can be verified. O

Tree generation. The proof for (1, 2) of Proposition 6.2 remains
intact for nonrecursive transducers. As an immediate corollary,
PT.(CQ, tuple, normal}C PT,(FO, tuple, normal) an®T,(CQ, tu-
ple, normal)C PT,(CQ, tuple, virtual). Theorem 6.3 has shown that
for unordered trees fixed-depko-transductions are equivalent to
PT.(FO, tuple,O).

Publishing languages characterized by nonrecursive publishing
transducers do not have sufficient expressive power to defibs,
due to the bound on the depth of the trees induced. From The-
orem 6.4 it follows that specializedTDs are definable imATGs
of [5].

7. Conclusion

We have proposed the notion of publishing transducers and
characterized several existigIL publishing languages in terms
of these transducers. For a variety of classes of publishing
transducers, including both genemT(L, S, O) and nonrecur-
sivePT.(L, S, O) characterizing existing publishing languages, we

)

Fragments Equivalence| Emptiness | Membership Fragments Complexity/Language
PT(FP,S,0) (Th.5.2) undecidable| undecidable| undecidable|| PT(FP, rl,O) (Th. 6.1) PSPACE
PT(FO,S,0) (Th.5.2) || undecidable| undecidable| undecidable|| PT(FO, rl,O) (Th. 6.1) PSPACE

PT(CQ, tp, nm) (Th. 5.3)| undecidable| PTIME YP-complete| | PT(FP, tp,0) (Th.6.1) | FP, PTIME (ordered database
PT(CQ, rl, nm) (Th. 5.3)|| undecidable] PTIME undecidable| | PT(FO, tp,0) (Th. 6.1) | TC,[FO], NLOGSPACE(ordered)
PT(CQ,S, vr) (Th.5.3) || undecidable| NP-complete| undecidable|| PT(CQ, rl,O) (Th. 6.1) O DDATALOG
PT.(FO, tp, nm) (Th. 5.5]] undecidable] undecidable| undecidable| | PT(CQ, tp,0) (Th.6.1) | TCo[CQ], LINDATALOG
PT./(CQ, tp, nm) (Th. 5.5 T4 /115 PTIME >.P-complete| | PT,(FO, tp,O) (Th. 6.5) FO

PT.(CQ, tp, vr) (Th. 5.5) Y NP-complete| >5-complete| | PT,(CQ, tp,0) (Th. 6.5) uCcQ

Table 2: Complexity of decision problems §: relation or tuple; O:
normal or virtual; tp: tuple; rl: relation; nm: normal; vr: virtual

)

Table 3: Expressive power characterized in terms of
relational query languages

have provided (a) a complete picture of the membership, equiva- [8] B. Courcelle. Monadic second-order definable graph trans-
lence and emptiness problems, (b) a comprehensive expressiveness
analysis in terms of both querying and tree generating power, as [9] E. Dantsin, T. Eiter, G. Gottlob, and A. Voronkov. Complexity
well as a number of separation and equivalence results. We expect
these results will help the users decide what publishing languages

to use, and database vendors develop or improve commagngial

publishing languages.

bles 2 and 3, respectively, annotated with their corresponding theo-

rems and conditiong(g.,ordered). These tables show that differ-

ent combinations of logi&, storeS and outputO, as well as the

presence of recursion, lead to a spectrum of publishing transducer

with quite different complexity and expressive power.

The study of publishing transducers is still preliminary. An
open issue is the exact complexity for the equivalence problem
for PT.(CQ, tuple, O), the only problem for which we do not

have matching upper and lower bounds. Another open question | /
concerns, when treated as a relational query language, whether of16] R. Krishnamurthy, R. Kaushik, and J. F. Naughton. XML-
not PT(CQ, relation,O) capturesDDATALOG? We only know that
DDATALOG is containedPT(CQ, relation,O). A third interesting
topic is the typechecking problem for publishing transducers. Our [17] L. Libkin. Elements of Finite Model Thear§pringer, 2004.

preliminary results (not included due to lack of space) show that [18] B. Ludascher, P. Mukhopadhyay, and Y. Papakonstantinou. A
while this is undecidable in general, there are interesting decidable
cases. This issue deserves a full treatment of its own. Finally, we [19] Microsoft. XML support in microsofSQL server 2005, 2005.
plan to investigate two-way and nondeterministic publishing trans-

ducers.

ductions: A surveyTCS 126(1):53-75, 1994.

and expressive power of logic programmifgcM Comput.
Sury, 33(3):374-425, 2001.

the coreTODS 30(1):174-210, 2005.

The main results for the static analyses and querying power (for [11] M. F. Fernandez, Y. Kadiyska, D. Suciu, A. Morishima, and
relational queries only due to lack of space) are summarized in Ta-

[10] R. Fagin, P. Kolaitis, and L. Popa. Data exchange: getting to

W. C. Tan. SilkRoute: A framework for publishing relational
data in XML.TODS 27(4):438—-493, 2002.

2nd edition, 1999.

Formal Languagesvolume 3. Springer, 1996.

[14] E. Gradel. On Transitive Closure Logic. BSL, 1992.
[15] IBM. DB2 XML Extender.

[12] J. Flum and H. Ebbinghau§inite Model Theory Springer,

S[13] F. Gecseg and M. Steinby. Tree languagesHemdbook of

http://www-3.ibm.com/software/data/db2/extended/xmlext/.

SQL query translation literature: The state of the art and open

problems. InXsym 2003.

transducer-based XML query processorVirDB, 2002.

msdn.microsoft.com/library/en- us/dnsql90/html/sql2k5xml.asp/.

[20] T. Milo, D. Suciu, and V. Vianu. Typechecking for XML
transformersJCS$66(1):66-97, 2003.

Acknowledgments We thank Michael Benedikt, Christoph Koch

and Leonid Libkin for helpful discussions. Wenfei Fan is sup-

ported in part byEPSRC GR/S63205/01, GR/T27433/ahd BBSRC
BB/D006473/1 Floris Geerts is a postdoctoral researcher of the [22] F. Neven and T. Schwentick. Query automata over finite trees.
FWO Vlaanderen and is supported in partdBSRC GR/S63205/01

8. References
[1] S. Abiteboul,

R. Hull,

DatabasesAddison-Wesley, 1995.
[2] N. Alon, T. Milo, F. Neven, D. Suciu, and V. Vianu. Type-

checkingxmL views of relational databaseBOCL, 4, 2003.

and V. Vianu.Foundations of

structured data. IRODS 2002.

TCS 275(1-2):633-674, 2002.
[23] Oracle. Oracle Database 10g Release 2 XML DB Whitepaper.

http://www.oracle.com/technology/tech/xml/ xmldb/index.html.
[24] C. H. PapadimitriouComputational ComplexityAW, 1994.

[21] F. Neven. On the power of walking for querying tree-

[25] Y. Papakonstantinou and V. Vianu. Type inference for views
of semistructured data. RODS 2000.

[3] M. Arenas and L. Libkin. XML data exchange: consistency
and query answering. IRODS 2005.
[4] M. Benedikt and C. Koch. Interpreting tree-to-tree queries. In
ICALP, pages 552-564, 2006.
[5] M. Benedikt, C. Chan, W. Fan, R. Rastogi, S. Zheng and

A. Zhou. DTD-directed publishing with attribute translation

grammars. In/LDB, 2002.

[6] P. Bohannon, B. Choi, and W. Fan. Incremental evaluation of [29] M. Y. Vardi. The complexity of relational query languages
(extended abstract). BTOC pages 137-146, 1982.

schema-directed XML publishing. BIGMOD, 2004.

[26] J. Shanmugasundaram, E. Shekita, R. Barr, M. Carey,

B. Lindsay, H. Pirahesh, and B. Reinwald. Efficiently pub-
lishing relational data as XML document¢LDB J, 10(2-

3):133-154, 2001.

[27] M. Spielmann.Abstract State Machines: Verification Prob-

[7] E. Borger, E. Gadel, and Y. Gurevichlhe Classical Decision
Problem Springer, 1997.

92

lems and Complexity?hD thesis, RWTH Aachen, 2000.
[28] R. van der Meyden. The complexity of querying indefinite
data about linearly ordered domaid€S$54(1), 1997.

