
Made available by Hasselt University Library in https://documentserver.uhasselt.be

Ad-hoc Co-located Collaborative Work with Mobile Devices

Non Peer-reviewed author version

LUYTEN, Kris; VERPOORTEN, Kristof & CONINX, Karin (2007) Ad-hoc Co-located

Collaborative Work with Mobile Devices. In: Human-Computer Interaction with

Mobile Devices and Services 2007 (MobileHCI 2007). p. 162-168..

Handle: http://hdl.handle.net/1942/8030

Ad-hoc Co-located Collaborative Work with Mobile Devices

Kris Luyten Kristof Verpoorten Karin Coninx
Hasselt University

Expertise Centre for Digital Media
and transnationale Universiteit Limburg

Wetenschapspark 2
3590 Diepenbeek (Belgium)

{kris.luyten,kristof.verpoorten,karin.coninx}@uhasselt.be

ABSTRACT
This paper presents how ad-hoc co-located collaborations
can be supported with an arbitrary number of users that
only have acces to small-size mobile displays. Our approach
is based on tracking of these personal displays that share
the same information space. All displays involved in the
collaboration act as autonomous windows on a set of data
items (the information space) positioned on a shared virtual
canvas. Data items are identified by their three-dimensional
location in physical space and can be manipulated through
the displays that serve as windows on the shared canvas.
Each display is tracked in physical space and is aware of its
own location. Since different mobile displays can access and
manipulate the same information space, a distributed lock-
ing mechanism makes sure the data stays consistent during
simultaneous access of data in this information space.

1. INTRODUCTION
The increasing mobility and design of computing devices

offers new ways to collaborate with others. Mobile collab-
oration is still not supported sufficiently to allow people to
have “on the spot” meetings where they cooperatively exe-
cute tasks and manipulate shared information spaces through
their mobile devices. First, the screen space available on
current (and probably future) mobile systems is too limited
to display large or complex information spaces for everyday
usage. Even if the mobile devices are able to provide a us-
able visualization of a large information space, current user
interaction techniques to navigate through this space are in-
sufficient (e.g. buttons on mobile phone or the stylus on a
touch screen). In particular current interaction techniques
for navigation and manipulation of a multi-dimensional in-
formation space on mobile devices are far from optimal.

The following scenario will give an overview of what type
of problems the system presented in this paper helps to over-
come. Suppose several persons working on an architectural

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 200X ACM X-XXXXX-XX-X/XX/XX ...$5.00.

project gather at the construction site to meet and discuss
the rough sketches for the building. The purpose of this
meeting is to establish a consensus about the final style of
the building for this construction site and collaboratively
edit and annotate the current draft sketches. The project
leader has already created a graphical presentation of the
most important parts of the building and has his sketches
stored on his laptop. He wants to show his ideas to all other
team members, and he also wants them to make annotations
and suggestions to improve the design of the sketches. Un-
fortunately only one person can control the laptop to change
parts of the drawing or to write down his/her suggestions
next to it. Because of this, either one person has to make
all the changes other people tell him/her, or everyone has to
wait their turn to work on the laptop. Furthermore, since
the meeting described here is a “mobile” meeting in the
sense that it is not held at a workplace but by people in an
arbitrary place, the limited resources that are available to
mobile users for collaboratively manipulating a digital rep-
resentation of any kind should be taken into account. The
only constraint for the system we present in this paper is
the requirement of co-located users.

In this paper we show that distributed mobile peephole
displays can be used to overcome the limitations imposed
by ad-hoc, “on-the-spot” or on-site meetings. Such a set
of displays allows every participant to share, view and ma-
nipulate data during the meeting. For this purpose, we de-
veloped the portable personal displays (PPDs) library pizu
(pronounced “paay tsu”) that enables developers to build
applications that go beyond the stationary desktop-based
systems for collaboration. When using PPDs in a meeting,
every participating member uses his or her own mobile de-
vice, given it has graphical capabilities that are sufficiently
powerful. PDAs, tablet PCs or modern mobile phones are
clients that can use pizu-based applications. Every one of
these devices has its own view on the shared information
space. For example, when the project leader from our pre-
vious scenario adds his drawing to the shared information
space, all other people in the meeting can study and manip-
ulate the shared drawing at once.

The remainder of this paper is structured as follows: Sec-
tion 2 describes some related work. Section 3 covers the
general hardware requirements of our system. Next, section
4 explains the software architecture. An important issue
when using a shared information space is data consistency,
our solution to this problem is discussed in section 5. We
also developed two example applications with pizu, which

are introduced in section 6. And finally section 7 contains a
discussion and section 8 provides the conclusion.

2. RELATED WORK
Several solutions to overcome the limited screenspace can

be found in literature. The Boom Chameleon [23], intro-
duced by Fitzmaurice and based on the Chameleon [10], is
a handheld display developed to browse large or complex
information spaces. This system uses a screen attached to
a tracking device commonly used for BOOM setups. The
objects contained in the information space have a location
in the physical environment. By moving the screen around
in physical space, a user can observe and interact with these
objects through the display. This has proved to be a very
natural way for navigating a large and complex information
space that does not scale well to the physical screen size,
since the virtual information itself gets a physical dimen-
sion by the use of screen tracking. The example provided
by Fitzmaurice et. al shows how a 3D model of a car can be
examined into detail by moving the display around as if the
car were parked right in front of the user. Unfortunately this
setup is not portable and the BOOM limits the freedom of
movement. The system is also intended for individual usage.
It is usable for professional applications inside a workplace
but hardly usable when a mobile group of users needs to use
a large and complex information space.

Ka-Ping Yee’s peephole display implementation combines
two-handed interaction with spatially aware portable dis-
plays [26]. It is an extension of the approach Fitzmaurice
proposed, but implemented on mobile devices. The physical
position of the display is tracked and used to navigate the in-
formation space. The usage of a mobile device in this setup
allows the user to navigate the information space using only
one hand, which leaves the other hand available for manip-
ulation of the information space through the display. Both
2D and 3D navigation are possible, 3D navigation includes
zooming by moving the display vertically. The applications
presented in [26] where developed with a single user in mind.
The work presented by Ka-Ping Yee has heavily influenced
the work presented in this paper. There is no support for
collaboration with other users sharing the same information
space however. Since this is a natural extension that is use-
ful in various situations we will explore the collaborative
aspect of such a system in this paper.

Following the generalized peephole metaphor introduced
by Butz and Krüger in [7], the displays in our system will
act as multiple peepholes that provide both input and out-
put capabilities on a continuous virtual surface. Different
from the generalization presented in this work where an in-
strumented environment equipped with steerable projectors
(“output peepholes”) and tracking cameras (“input peep-
holes”) are used, our work does not use such a heteroge-
neous ensemble of input/output devices. Although our sys-
tem provides opportunities to act as collaborative tools in
augmented reality environments, we explore its usage for ev-
eryday applications outside an instrumented room. Similar
with what is presented in [7] an infrastructure to track the
peephole displays is required. Section 3 provides more detail
of our setup.

3. HARDWARE SETUP
The system described in this paper relies on a set of hard-

ware components that need to be available. The following
three components make up all the required hardware to set
up a meeting:

• wireless 3-dimensional location tracking,

• small displays with a high update rate,

• wireless communication without the need for a wireless
access point

The first component is the most challenging one. The
handheld displays need to know their own position in physi-
cal space, therefor 3D tracking is required for our purposes.
During the last couple of years, many experimental systems
have been developed that support 3D tracking [4, 19, 21,
22, 24], but nearly all of them are static in the sense that
they require a fixed configuration that is far from mobile.
We used the V-scope system which is developed by Lip-
mann Electronic engineering. Figure 1 shows the system:
it is an acoustic “time-of-flight” system. Small buttons are
provided that are tracked by the V-scope and that can be
attached to physical objects. Figure 5 shows two PPDs that
each have a button attached on top of them. The V-scope
uses three towers that send infrared signals to the buttons,
and the buttons reply by sending an ultrasonic signal back
to the towers. Because the speed of sound is known before-
hand and the time in between sending the infrared signal
and the reception of the ultrasonic signal are known, each
tower can calculate how far away the button is located from
itself. Next, because the distance between the three towers
is known, triangulation can be used to calculate the position
of the buttons (figure 1).

The biggest advantage of the V-scope is that it is a wireless
system, with a reasonable large working range (up to five
meters). Futhermore, it can track up to four light-weight
buttons with great accuracy. The main disadvantage of the
V-scope is that there needs to be a line-of-sight between the
tracked button and the three towers. Another disadvantage
is that only the position of the button is tracked. If the
orientation in 3D space is also required, we need to attach
three buttons to one object and calculate the orientation of
the object from the positions of the three buttons in space.
An alternative approach is to use a set of sensors such as
the ones used for the Microsoft XWand [25]. Although the
V-Scope is clearly not mobile enough, it is the solution that
currently comes closest to a mobile 3D tracking system.

The remainder of the hardware that is used for the sys-
tem is made up of fairly standardized components. PDAs
with Bluetooth support and that can run the Microsoft .Net
Compact framework are sufficient to offer the user wire-
less communication without the need for a wireless access
point [6]. Most PDAs are nowadays equipped with a small
display with a fairly good response time. Since Bluetooth
enables communication of at least 10 metres (and up to 100
metres) this is sufficient for our purposes. In an ad-hoc mo-
bile meeting, supported by our system, users are in the same
physical space and there is rarely more than 5 metres in be-
tween them while they are working together on a shared
information space.

4. SOFTWARE ARCHITECTURE

4.1 Shared and Distributed Objects

Figure 1: The distances between the button and
each tower (A, B and C) are measured (dA, dB and
dC). With these three distances and triangulation
the position of the button can be calculated.

Different people have to be able to work simultaneously
with the same data, so all data has to be shared between
the PPDs that participate in the collaborative work session.
Because there is no personal computer that functions as a
central server, the shared information space has to be truly
distributed over the participating PPDs. This essentially
creates the possibility for ad-hoc collaboration between the
displays, which also brings along some problems regarding
data consistency and coordination of updates to maintain
the consistency.

The library we created to support ad-hoc collaboration
with mobile devices works on top of the Microsoft .Net Com-
pact Framework1. It makes extensive use of the .Net ver-
sion of the Piccolo toolkit2 for zoomable user interfaces [2,
3, 13, 14, 18] provided by the Human-Computer Interaction
Group of the University of Maryland. Because of this, all
applications developed for PPDs with our library can cre-
ate a rich graphical user interface with support for semantic
zooming. Figure 2 shows three pictures of a PPD’s view on a
shared information space that contains several images. The
main difference between the subfigures 2.1, 2.2 and 2.3 is
the zoom level which is obtained by moving the PPD closer
or farther away from the user. In figure 2.1, the PPD is
held closer to the user than in figure 2.2. Figure 2.3 shows
the view when the PPD is held even further away from the

1http://msdn.microsoft.com/netframework/
2http://www.cs.umd.edu/hcil/piccolo/index.shtml

Figure 2: This figure shows three pictures of a
PPD’s view on a shared information space. The in-
formation space contains several images. The main
difference in the PPD’s physical positions shown in
the figure are their heights. In subfigure 1, the PPD
is held higher than in subfigure 2. Subfigure 3 shows
the view when the PPD is held even lower. This
change in height has the effect of zooming in onto
the shared information space.

user. This change in distance with respect to the user has
the effect of a zooming operation on the visualization of the
shared information space.

The library contains a class SharedObject that represents
the base functionality of objects contained in the shared
information space. It is an abstract base class for all objects
that can be shared between different devices: it is essentially
an extension of a Piccolo Node with support for shared usage
in collaborative distributed systems. A Piccolo Node is the
central class of the Piccolo toolkit; all objects that need
to be visualized on screen are instances of this class. In
section 5 we will discuss the locking mechanism provided by
the library, which is essential for the correct execution of a
highly interactive distributed system.

The pizu library also contains the SharedImage (any im-
age file) and SharedPath (geometrical objects e.g. rectan-
gles, lines, . . .) classes that are derived from SharedObject.
These two classes have a graphical presentation in the user
interface of the application that is developed with pizu. They
are very useful for any kind of basic graphical interface. Any-
one can add new kinds of distributed objects by deriving
their class from the SharedObject class. It is possible to
compose different objects of type SharedObject in a hierar-
chy in a Composite pattern [11]. Every SharedObject can
have children of type SharedObject. A child will move the
same distance when its parent is moved, and will be removed
when the parent is removed. Locking a parent object does
not affect the child objects unless explicitly stated so; child
objects can still be moved or erased independently of the
state of the parent object, unless they are also locked.

All objects have a fixed position in space (unless they are
being moved by the user), and usable space is not limited
to the display of the user, but is constrained by the range
of the tracking technology. To see objects that are out of
reach of the current display position, the user can move their
display to another place in the physical space to see other
objects that are located there. Figure 3 shows this concept:
the information space contains a map in this example. Each
display shows a portion of the map and can be moved in

Figure 3: Two PPDs showing each a portion of a
shared information space.

physical space to show another portion of the map. This
is very similar with a toolglass [5]. Notice the display of
the mobile device is now acting as an output peephole on
the shared space. When a user adds a shared object to the
shared information space, all other users can see this object
by moving their display to that position.

It is also possible to move a shared object together with a
display. E.g. when a user holds the object with his/her sty-
lus, and moves the mobile device (and thus the display), the
object’s position will be fixed with respect to the display’s
position (figure 4). In this case the display acts as an input
peephole. Since our library is an extension of the Piccolo
library, the same functionality is supported but extended
with support for multiple input/output peepholes.

4.2 Networking
Mobile devices that want to join a collaborative session

and operate as a PPD can be discovered by using the Blue-
tooth device discovery mechanism. This relaxes the con-
straint to have a specific infrastructure for wireless network-
ing which is still often unavailable in the field as mentioned
in section 3. The PPDs will use a peer-to-peer network
topology and form a true distributed system this way. This
implies there is no central server required to start a collab-
orative meeting, which is one constraint that needs to be
full-filled if an ad-hoc collaborative session is set up. The
data contained in the shared information space is distributed
among the displays, and coordination is distributed among
the peers. This makes the system very flexible for new peers
that are joining the collaborative meetings or peers that
leave the meeting.

When one of the users wants to edit an object on the
shared canvas, his/her device will ask permission to all other
PPDs (explained in detail in section 5). Only when the de-
vice receives approval from all other displays will the user
be allowed to manipulate the object. When the user is
done working with the shared object, the PPD will send
all changes made by the user to the other PPDs before it
releases the mutex lock. This way all data in the shared
information space will remain consistent over all PPDs.

5. DISTRIBUTED LOCKING
All the objects used in the applications are shared between

Figure 4: When the user holds a shared object with
his or her stylus and moves the PPD at the same
time, the object’s position will be fixed with respect
to the display’s position. This enables the user to
easily move the object distances greater than the
width or height of the display.

the different devices. Therefore we need some kind of con-
trol mechanism to ensure that several users do not manipu-
late the same object at the same moment. This could lead
to an inconsistency in the shared information space. Such
an inconsistency would be reflected in a different presenta-
tion of the same data on devices involved in a collaborative
session. Although the users are co-located and verbal com-
munication can be used to coordinate the user’s actions on
the shared canvas, this could still result in an inconsistent
state of the distributed application. Especially objects that
appear on multiple screens at the same time are subject to
the automatic locking policy. We want to avoid the need for
explicit locking – though it is also supported as explained
in section 6 – and lower the amount of manual coordina-
tion necessary to collaborate on the same surface with two
peephole displays.

All displays contain their own version of the shared data.
Consistency between the different versions and consequently
the different displays has to be guaranteed during the whole
collaborative session. To achieve this we use a distributed
locking algorithm developed by Ricart and Agrawala [20,
9]. The algorithm uses Lamport clocks [17] since there is
no central clock in a distributed system that can be used
for synchronization purposes. The locking and unlocking of
critical sections works with unique IDs. It is the responsi-
bility of the software developer to assign IDs to all critical
sections in the application and to lock the sections before
entering them.

In the case of our program, every shared object on the
canvas can be treated as a critical section that requires lock-
ing. Manipulation of an object is restricted to the display
that has access to the critical section of that object. Us-
ing the Ricart-Agrawala algorithm we can make sure shared

objects stay in a consistent state when being manipulated
by several users. Changes in the state of an object result-
ing from manipulations by one user will be reflected on the
other displays before releasing the lock on the object. This
way all users have received the changes before they can edit
the shared object themselves.

A PPD can gain access to a critical section by asking per-
mission to all other participating displays as displayed in
listing 1. Only when all other displays have given permis-
sion to access the shared object(s) the critical section can be
entered, as shown in listing 2. When one of the other dis-
plays is already in the same critical section, this display will
not give permission until the user has finished interacting
with the object.

Listing 1: Request access to a critical section
WANT_MUTEX[id] := true;
Send request with timestamp T to all other PPDs;

Wait until (number of replies received == number of
other PPDs)

HAS_MUTEX[id] := true;
WANT_MUTEX[id] := false;

Listing 2: Reply to critical section request
When ((WANT_MUTEX[id] == false) and (HAS_MUTEX[id] ==

false))
Then

Send reply to allow the request;
Else if (WANT_MUTEX[id] == true)
Then

When (The senders timestamp Ts < my timestamp T)
Then

Send reply to allow the request;
Else if ((Ts == T) and (the senders ID < my ID))
Then

Send reply to allow the request;
Else

Add the request to request queue;
Else if (HAS_MUTEX[id] == true)
Then

Add the request to request queue;

The Ricart and Agrawala algorithm relies on a multicast-
based communication protocol. The algorithm can be im-
proved by using hardware-supported multicast or by only
requiring a subset of the votes to lock a critical section. The
algorithm is efficient enough to support a limited number
of PPDs (up to 4) that are involved in a co-located col-
laborative session, but we expect for a higher number of
PPDs further optimiziations are necessary. In our imple-
mentation, we work with shared objects on the information
space (section 4.1). Every object has its own ID, which is
unique across all PPDs. Therefore the easiest solution is
to use the object’s ID as distributed mutex ID. Every time
a user manipulates a shared object, the distributed mutex
with that object’s ID will be locked. This way it cannot
happen that several PPDs manipulate the same shared ob-
ject at once. When an object is locked or unlocked, the
object is animated to indicate the state change to the other
users who have the same object in their scope. Typically,
the animation depends on the application type and type of
information presented on the shared canvas.

6. EXAMPLE APPLICATIONS

6.1 GeoPlanner
GeoPlanner is a distributed program that can run on two

PPDs simultaneously. When the PPDs are connected, their
view on the shared information space will be aligned. This
way they will see the same part of the shared canvas when
their PPDs are at the same physical position. Once the
application is running, users can share images and drawings
with each other. Both the images and the drawings are
shared objects, distributed among the displays. When the
objects are added to the shared information space, users
can view and manipulate them (figure 5). An advanced
distributed locking mechanism (section 5) is used to ensure
the consistency of the shared information space.

Figure 5 shows two PPDs running the GeoPlanner appli-
cation. One of the users added an image, containing a map
of Europe to the shared information space. The image has a
fixed position with respect to the physical world. The users
can see different parts of the map by moving their PPD to
the desired position (figure 6). The position of the PPDs is
tracked with the V-scope button attached at the top of the
PPDs.

Because semantic zooming is supported by the Piccolo li-
brary, on which our library is built, all applications using
pizu support semantic zooming (so does GeoPlanner). Es-
pecially when working with large shared information spaces,
the ability to zoom can be very helpful. By zooming out, the
user will be able to get an overview of the entire workspace.
Moving the display up or down causes it to zoom in or out.

There is however a problem that arises when zooming is
used with PPDs. An important point of PPDs is that users
will see the same view when their PPDs are at the same
physical position. When we add zooming to the application,
this could result in a different behavior. Suppose one user
zooms out, moves a certain distance and zooms in again.
Next, the other user moves to the same place the first user
holds his/her PPD now, but without the zooming. Both
users will see a different part of the image. This happens
because the relative distance the view of the PPD moves,
depends on the zoom level. When zoomed out, one can
cover larger distances on the image with a small movement
of the PPD. To solve this problem we adapted the scroll
speed of the view to the zoom level. The scroll speed is
slowed down when the view is zoomed out, and accelerated
when zoomed in. This way, it is possible to combine the
advantages of zooming (overview of workspace) and the ad-
vantages of peephole displays (shared objects have a fixed
position in physical space).

PPDs are very well suited for two-handed interaction.
Several studies show that the non-dominant hand is pre-
ferred for non-precision tasks, like navigation [8, 15, 16].
Because the PPDs use their position in physical space for
navigation, one-handed navigation is possible. Most users
will want to use their non-dominant hand for this purpose,
leaving the dominant hand free to manipulate the visible
objects. The dominant hand will always use the position of
the non-dominant hand as a reference [12]. Therefore it is
very easy for the user to manipulate data with the domi-
nant hand, while the non-dominant hand moves the display
to navigate. Even without watching, a person knows the po-
sition of their hands [1], and thus can easily find the display
in his non-dominant hand with his other hand.

There are several manipulative actions possible on a shared
object. Users can move the object by dragging it with the

Figure 5: Two portable personal displays running
the GeoPlanner application. The V-scope sensors
attached on top of the PPDs are used to track them
in physical space. A map of Europe was added to
the shared information space. Both users can move
their PPD to see other places on the map. It is
also possible to zoom by moving the PPD up or
down. The drawing palette on the left side of the
screen offers the possibility to make annotations to
the image.

stylus or by holding it with the stylus and moving the dis-
play. Besides moving a shared object, it is also possible to
manually lock it. When a user locks an object, it cannot be
moved or removed without unlocking it first. When manu-
ally locked, a little figure of a lock will show up in the top
left corner of the shared object. If an object is protected
from simultaneous access (described in section 5), an ani-
mation of the object notifies the other users who have the
same object in their scope.

As explained in section 4.1, every shared object can have
other shared objects as its children. These children will
move when the parent is moved and will be erased when the
parent is erased. A newly created object will automatically
become a child of an existing object when it is created on
top of that existing object. This is very helpfull when anno-
tating an image on the shared information space (e.g. the
map of Europe). All annotations will automatically become
children of the image. If a user later on moves the map to
another location, the annotations will remain at the correct
position on the map.

The idea of PPDs is to enable ad-hoc collaboration among
multiple users. Therefore, it will happen at times that some
users want to view and/or manipulate the same data. Be-
cause the physical position of the display is used to navi-
gate, this can be a cumbersome operation. All users will
need to hold their display at the same physical position to
view and manipulate the same data, which is not very prac-
tical. For this purpose, we offer users the possibility to lock

Figure 6: The user can view different parts of the
shared information space by moving the PPD to the
desired position.

their view. When locked, their view on the shared canvas
will at all times remain focused at the locked position, no
matter where their PPD is moved to. This way all users can
view and/or manipulate the same area on the shared canvas
without disturbing eachother. Every change a user makes is
immediately visible on all other PPDs, so the users can in-
teract and cooperate on the same data. When done working
at the same area, it is possible to realign all displays so all
users will see the same data at the same physical position
again.

6.2 Us-Draw-It
Us-Draw-It is a distributed drawing program for PPDs

(figure 7). The underlying technology is the same as Geo-
Planner, it is also built upon the pizu PPD library. This
application allows users to draw objects (e.g. lines, rectan-
gles, free draw, . . .) on a shared information space. The
user doesn’t need to hold the display still while drawing.
Because of this, it is very easy to draw objects many times
larger than the PPD’s screen. All objects drawn on the
canvas are added and updated while they are being drawn.
Every user can in real-time see the changes other users make,
which enables intuitive ad-hoc collaboration between users.

Us-Draw-It has a number of features in common with
GeoPlanner, because they both use the pizu library. Simi-
lar to GeoPlanner, it is possible to move, erase or lock all
drawn objects on the shared information space. Every ob-
ject drawn on top of an already existing object becomes a
child of the existing object. This way it is possible to draw
large objects, consisting of many smaller building blocks. In
that case, moving or erasing the top parent object will have
the same effect on all of its children. Like in GeoPlanner,
users can also use zoom in this application. Moving the PPD
in the vertical direction causes the application to zoom in or
out. Furthermore, locking the PPD’s view is also allowed.
When locked, the view will not change, wherever the dis-
play is moved to and the reference point for tracking will

Figure 7: Us-Draw-It is a distributed drawing pro-
gram for portable personal displays. Every change
on one PPD is immediately visible on the other PPD
(e.g. moving the red rectangle). This encourages
ad-hoc collaboration among the users. The figure
shows the information space (semi-transparant) that
is spread over the physical space.

be moved together with the display. This allows users to
work at the same virtual position on the shared information
space without disturbing eachother by holding the PPDs at
the same physical position.

7. DISCUSSION
Both example applications were tested informally with a

group of four test participants. The participants were sub-
divided in two separate groups of two people. With “Us-
Draw-It”, each group had to make one integrated drawing (a
drawing of a house) and change some aspects of the drawing
afterward. The other test used the “GeoPlanner” applica-
tion and asked the participant to sort a set of images in a
collaborative fashion.

We observed how well the participants could collaborate
with the system and how simultaneous interaction is sup-
ported. Because of the co-located interaction there is an
interesting interaction between coordination by means of
verbal communication, automatic coordination (distributed
locking) and manual coordination (requesting a lock through
the user interface). Despite the possibility to use verbal
communication, both tests showed that users often try to
manipulate the same object simultaneously and automatic
distributed locking is required to preserve a consistent state.
We identified two different cases during the tests: one where
the virtual space can be shared among the peepholes, and

another where this is not possible. The latter is useful for ap-
plications that require an efficient locking mechanism: since
peepholes can not share the same physical location this also
means they can not show the same virtual area therefor this
area is only accessible for one user at a time.

However, the first test showed that different users also of-
ten need to manipulate the same area of the virtual canvas:
although both PDA’s are using a different physical position,
the same area on the canvas should be shown. For each
PDA, the virtual canvas can therefor be translated accord-
ing to the PDA’s position so the different peepholes can show
the same area, but the navigation and interaction with the
canvas does not change. This also increased efficiency (the
test took less time to complete) since there was a better mu-
tual understanding of what the different participants were
exactly doing. The automatic locking algorithm proved to
be very useful in this situation since it often happened that
different users tried to manipulate the same object without
manual or verbal coordination beforehand. The 3D naviga-
tion possibilities also proved to be an intuitive way to over-
come the limited screen space, which confirms the results of
[26].

One of the most important drawbacks of the system is
its lack of speed because of the delay caused by the track-
ing technology. We are optimizing different software compo-
nents of the system to reduce this delay: the network traffic,
the graphical user interface and the delay due to the tracking
technology. For the graphical user interface we are making
the trade-off between the functionality offered by the current
toolkit we are using or the speed of an alternative toolkit.
A better wireless tracking system (e.g. video tracking) can
improve the usability of the example applications a great
deal.

Since we did the evaluation inside of the lab (due to the
lack of portability of current tracking technologies), it is dif-
ficult to make assumptions about the usability of the system
in its target context: ad-hoc meetings “on the spot” with
only a mobile device that can be used by each participant.
We plan to extend the system so it can be used in a broader
context. This would allow us to conduct more extensive field
testing .

8. CONCLUSIONS
In this paper we introduced a system to support collab-

oration in mobile co-located meetings. With an increasing
amount of mobile devices being used our system offers new
possibilities to cope with a limited screen size, support col-
laboration and offer new ways to visualize and collabora-
tively interact with large information spaces. Based on the
ideas of the peephole displays, which was implemented for
individual usage on mobile devices by Ka-Ping Yee, our solu-
tion is simple and intuitive. Tests have shown that although
a location-aware display is not necessarily faster or more ef-
ficient for applications that can be shown within the limited
screen space, in a constrained environment they are more in-
tuitive and usable. In our implementation we extended the
Piccolo library and added support for multiple synchronized
input/output peepholes. This results in a library that can
be used to build custom applications suitable for collabora-
tive co-located interaction using multiple devices. Although
3D tracking technology which is precise enough for our goals
is not sufficiently compact and mobile yet, our experiments
show this is the only factor that prevents the applications

presented in this paper from being used in realistic mobile
settings. It does provide a usable framework to research
interaction techniques that can be used for co-located col-
laboration with multiple mobile devices, an area that is be-
coming increasingly important but has not been thoroughly
explored yet.

Acknowledgments
Part of the research at EDM is funded by EFRO (Euro-
pean Fund for Regional Development), the Flemish Govern-
ment and the Flemish Interdisciplinary institute for Broad-
band Technology (IBBT). Funding for this research was also
provided by the Research Foundation – Flanders (F.W.O.
Vlaanderen, project number G.0461.05).

9. REFERENCES
[1] Ravin Balakrishnan and Ken Hinckley. The role of

kinesthetic reference frames in two-handed input
performance. In ACM Symposium on User Interface
Software and Technology, pages 171–178, 1999.

[2] Benjamin B. Bederson, Jesse Grosjean, and Jon
Meyer. Toolkit design for interactive structured
graphics. 2003.

[3] Benjamin B. Bederson, Jon Meyer, and Lance Good.
Jazz: an extensible zoomable user interface graphics
toolkit in java. In UIST, pages 171–180, 2000.

[4] Devesh K Bhatnagar. Position trackers for head
mounted display systems: A survey. Technical report,
University of North Carolina, Chapel Hill, NC, USA,
1993.

[5] Eric A. Bier, Maureen C. Stone, Ken Pier, William
Buxton, and Tony D. DeRose. Toolglass and Magic
Lenses: The See-Through Interface. Computer
Graphics, 27:73–80, 1993.

[6] Official bluetooth site. World Wide Web.
http://www.bluetooth.com/.

[7] Andreas Butz and Antonio Krüger. A Generalized
Peephole Metaphor for Augmented Reality and
Instrumented Environments. In Proceedings of The
International Workshop on Software Technology for
Augmented Reality Systems (STARS), 2003.

[8] W. Buxton and B. Myers. A study in two-handed
input. In CHI ’86: Proceedings of the SIGCHI
conference on Human factors in computing systems,
pages 321–326, 1986.

[9] George Coulouris, Jean Dollimore, and Tim Kindberg.
Distributed systems (3rd ed.): concepts and design.
Addison-Wesley Longman Publishing Co., Inc.,
Boston, MA, USA, 2001.

[10] George W. Fitzmaurice. Situated information spaces
and spatially aware palmtop computers. Commun.
ACM, 36(7):39–49, 1993.

[11] Erich Gamma, Richard Helm, Ralph Johnson, and
John Vlissides. Design Patterns: Elements of Reusable
Object-Oriented Software. Addison Wesley,
Massachusetts, 1994.

[12] Yves Guiard. Asymmetric division of labor in human
skilled bimanual action: The kinematic chain as a
model. The Journal of Motor Behavior, 19(4):486–517,
1987.

[13] Kasper Hornbk, Benjamin B. Bederson, and Catherine
Plaisant. Navigation patterns and usability of
overview + detail and zoomable user interfaces for
maps. Technical report, University of Maryland,
Human-Computer Interaction Lab, College Park, MD,
USA, nov 2001.

[14] Kasper Hornbk, Benjamin B. Bederson, and Catherine
Plaisant. Navigation patterns and usability of
zoomable user interfaces with and without an
overview. ACM Trans. Comput.-Hum. Interact.,
9(4):362–389, 2002.

[15] Paul Kabbash, William Buxton, and Abigail Sellen.
Two-handed input in a compound task. In CHI ’94:
Proceedings of the SIGCHI conference on Human
factors in computing systems, pages 417–423, 1994.

[16] Paul Kabbash, I. Scott MacKenzie, and William
Buxton. Human performance using computer input
devices in the preferred and non-preferred hands. In
CHI ’93: Proceedings of the SIGCHI conference on
Human factors in computing systems, pages 474–481,
1993.

[17] Leslie Lamport. Time, clocks, and the ordering of
events in a distributed system. Commun. ACM,
21(7):558–565, 1978.

[18] Piccolo toolkit. World Wide Web.
http://www.cs.umd.edu/hcil/piccolo/learn/.

[19] A. Lastra R. Holloway. Virtual environments: A
survey of the technology. In SIGGRAPH’95 Course,
pages A.1–A.40, 1995.

[20] Glenn Ricart and Ashok K. Agrawala. An optimal
algorithm for mutual exclusion in computer networks.
Commun. ACM, 24(1):9–17, 1981.

[21] Baillot Y. Rolland, P.J. and Goon A. A survey of
tracking technology for virtual environments.
Technical report, University of Central Florida, Center
for research and education in optics lasers (CREOL),
Orlando FL 32816, 1999.

[22] Robert J. Stone. Position and orientation sensing in
virtual environments. Sensor Review, 16(1):40–46,
1996.

[23] Michael Tsang and George W. Fitzmaurice et al.
Boom Chameleon: Simultaneous Capture of 3D
Viewpoint, Voice and Gesture Annotations on a
Spatially-aware Display. In UIST ’02, pages 111–120,
2002.

[24] Greg Welch and Eric Foxlin. Motion tracking: No
silver bullet, but a respectable arsenal. IEEE
Computer Graphics and Applications, 22(6):24–38,
2002.

[25] Andrew Wilson and Steven Shafer. Xwand: Ui for
intelligent spaces. In CHI ’03: Proceedings of the
SIGCHI conference on Human factors in computing
systems, pages 545–552, 2003.

[26] Ka-Ping Yee. Peephole Displays: Pen Interaction on
Spatially Aware Handheld Computers. In Conference
on Human factors in computing systems, pages 1–8,
2003.

