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I. INTRODUCTION 

It is intuitively easy to understand what is meant by inequality measures. That 

is because applications occur in very sensitive situations : rich vs. poor persons or 

countries, high productivity vs. low productivity (in various aspects : economic, 

scientific, biological, ...). Inequality applies to virtually every aspect of human and non 

human life. It is, therefore, not surprising that one wishes to measure "degrees" of 

inequality. Such inequality measures (also called concentration measures) have the 

property that, the larger the value, the more unequal [uneven, concentrated) the 

situation is. Usually these measures are "normalized" so that they range between 0 

and 1, but this is not necessary. 

Sometimes one is not interested in the degree of inequality but in the opposite 

aspect : how even is a situation, e.g. in biology where one is interested in the diversity 

of species that are available. Large concentrations of some species imply the rare [or 

non) occurrence of other spaces and this is considered as an impoverishment of the 
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situation. However, a special theory on evenness measures or diversity measures is 

only needed of one wants to study specific problems in specific domains of the 

sciences (e.g. in biodiversity studies). General aspects of these evenness measures 

indeed follow immediately from the analogue ones of concentration measures. Indeed, 

let f be a concentration measure bounded by e.g. 0 and 1. Then it is intuitively clear 

that 

is an evenness measure (e.g. the most concentrated situation gives f = 1 and hence 

g = 0 and the most even situation gives f = 0 and hence g = 1). 

Therefore we will limit ourselves mainly to the study of concentration 

measures, also because in computer science and technology and in information theory, 

it is far more important to study inequality than to study equality. The intuitive 

reason for this is clear : the more unequal a situation is the better we can exploit this 

in order to optimise certain situations. Let us give an example : the more unequal 

symbols or words occur in a "text" the better this text can be compressed by giving 

the shorter codes (e.g. binary codes) to these symbols or words that occur most. An 

example of application is the Huffman compression technique, which we will discuss 

briefly in the context of entropy. 

Unequal situations are often encountered in information sciences : only a few 

scientists are prolific (publish a lot) but many publish little; a scientific discipline has 

only a few "top journals" while many journals occasionally publish in this direction. 

In linguistics, computer sciences and information sciences one has the law of Zipf 

stating that the occurrence of words in a text (the tokens as one says in linguistics) is 

inversely proportional to the rank of this word ("type" in linguistics) (rank according 

to the occurrence of this word in the text). 

Unequal situations can be explained by studying probabilistic properties such 

as the so-called "Success Breeds Success" principle that states (simplifying) that prolific 

sources have a higher probability to produce a new item than less prolific ones. In 
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this article we do not go into these probabilistic aspects : we limit our attention to the 

problem "how to measure inequality". 

For more on these probabilistic aspects of inequality we refer the reader to [I], 

[2] and references therein. 

11. PRINCIPLES OF INEQUALITY 

A. Basic Principles 

In the sequel we will use the terminology of sources that produce items (e.g. 

words and their uses in texts, authors producing publications, etc ...). We want to 

measure the degree of inequality i.e. the degree of the differences in production 

quantities of these sources. In this connection one could mention the so-called 80/20 

rule which states : 20 % of the most prolific sources produce 80 % of all items. Of 

course, in general other numbers might occur. It is clear that a 90/10 result gives a 

more concentrated situation than a 80/20 result while a 70/25 result is more even. 

Not directly comparable with 80/20 is e.g. a 90/30 result. We will go into this further 

on. 

These "generalized" 80/20 rules will be encountered in the sequel as an 

application of our more general framework in which we want to produce a single 

number that measures concentration (rather than two as above). 

Let us fix some notation. Let N be the total number of sources. For source 

i E (1, ..., N), denote by xi its production (xi E R'). It is clear that a concentration 

measure must be a function of the N-tuple (x,, ..., x,), preferably with positive values. 

f : (x ,,..., x,) - f(xl ,..., x,,) E W+ . 

We will assume [although it is not strictly necessary) that the values of fare bounded, 

i.e. min f and max f exist in R. Most commonly these are 0 and 1 and it will be clear 
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from the sequel that any good bounded concentration measure can be transformed 

into one where min f = 0 and max f = 1. These situations must occur in the following 

cases. Let X = (x,O, ..., 0), i.e. one source (here the first one) produces everything 

(x E B+), then f(X] = 1. In the other extreme, if Y = (y,y, ...,y) (y E B'), i.e. all sources 

produce the same quantity y, then f(Y) = 0. We will call this principle (2) : 

(or, more generally, max f(X),  where the maximum is taken over all X = (x,, ..., x,) 
N 

such that Xi = ) 
1-1 

and 

f(y,y,...,y) = 0 (31 

(or, more generally, min f(X),  where the minimum is taken over all X = (x,, ..., x,] 
N 

for which Xi = NY , hence X = y, where k denotes the average of the values 
i=1 

XI,...,XN) 

The next principle is called the "Permutation Invariance" and is denoted by 

(P). It states that concentration is not a labeled property, i.e. the concentration value 

is not changed if e.g. names of persons are interchanged. Formulated exactly we 

state : for every (x,, ..., x,] and every permutation x 

of the numbers 1, ..., N, we have that 

Concentration measures should be "normalized" w.r.t. the total production 
N 

xi . Indeed, we need e.g. to compare the concentration of words in texts and 
1.1 

this comparison may not be dependent on the size of the text : independent on the 

size of the database one should indeed be able to determine the optimal compression 

technique. It is even so that the size of a database is not always known or at least 



cannot be predicted e.g. when considering the growth of such databases. An example 

from econometrics also illustrates this principle very clearly : concentration must be 

independent from the units, e.g. when measuring wealth, the value of f must be 

independent of the used currency (U.S. Dollars, yen, Pound, Euro, ... ). This principle 

is called "Scale Invariance", (S) : for every (x,, ..., x,) and every c > 0, 

Last but not least, at the real heart of concentration theory, it should be a fact 

that "if one takes away from the poor and gives it to the rich, inequality (concentrati- 

on must increase". For evident reasons this principle is called the "Transfer Principle", 

(T) : for every (x, ,..., x,) and if i,j E (1 ,..., N) are such that xi I xi, and if 0 < h I xi then 

(h is the amount that is taken away from the "poorer" source i and given to the 

"richer" source j). This is a very natural principle. It also includes several other ones 

such as 

Principle (R) : if the richest gets richer, inequality increases : for every (x,, ..., x,), if 

xi = max {x,, ..., x,) and if there exists a k # i such that x, # 0 then, for every h > 0 

Principle (N) : the principle of the nominal increase : for every (x,, ..., x,) where not all 

xi are equal, and every h > 0 : 

All these principles are in accordance with our intuitive feeling about inequality. Of 

course, independent of all these priniciples, one is not yet sure that such functions f 

exist. That they exist (abundantly) will be clear in the sequel. As said (TI 3 (R) and 

(T) =, (N). Therefore we only consider the set of principles : 



and consider (B) as a minimum requirement for a good concentration measure. 

Further refinements of principle (T) will lead to finer requirements for concentratioin 

measures and hence to a reduction of their quantity. This will be the main purpose 

of this survey article : feeling the sensitivity of concentration measures w.r.t. diverse 

transfer principles such as (T). 

B. The Lorenz Curve and Lorenz Order 

The Lorenz curve and order are two of the most important findings in 

contemporary mathematics with basic applications in concentration theory. The 

concept is simple and beautiful. Let us consider one situation X = (x,, ..., x,) : N sources 

where source i has a production of xi items. Consider the "normalized" vector 

where, for every i = 1, ..., N 

Then consider the set of points 

[ 1-1 a,) 

i.e. the cumulative fraction of the items in the first i sources. Let us suppose that X 

is decreasing (if it is not a rearrangement of the coordinates in X will yield a 

decreasing vector, still called XI. In this case, by interconnecting the points in (111, and 

linking the first point with (0,O) yields a concavely increasing polygonal curve. For 

example, Fig.1 shows the Lorenz curve for the vector X = (1,4,3,10), rearranged as to 

yield a decreasing vector (10,4,3,1). We could, of course, also consider increasing 
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vectors. In this case our Lorenz curve is convexely increasing, being the mirror image 

of the first one over the diagonal (connecting (0,O) and (1,l)) of the unit square. 

I I I 
0.25 0.5 0.75 

Cumulative proportion of the sources 

Figure 1 : 

The Lorenz curve of the vector X = [1,4,3,10) 

That the Lorenz curve has something to offer to concentration theory is 

already clear from its very definition. It contains all applicable forms of the so-called 

80/20-rule. Indeed, every vertical line indicates an abscis x which corresponds with 

an ordinate y given by the Lorenz curve. Hence a 100 y/100 x-rule is obtained and 

this for every value of x E [0,1]. 
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In informetrics one has the so-called Bradford curves (d.[l]). They are nothing 

else than the Lorenz curves but where the fractions are replaced by their counts (i.e. 
I 

i versus xj ) and where the ordinates are given in a logarithmic scale. The use 
1'1 

of these so-called semi-logarithmic scales yielded additional information on the type 

of bibliography (here sources are journals and items are the articles in these journals) 

under study. For more on this we refer the reader to [I]. 

We are now in a position to introduce the Lorenz order between two vectors 

X = (x ,,..., x,) and X' = (x',, ..., x',). We suppose that both X and X' are decreasing and 

that 

Then we say that X' dominates X, in notation X -< X' or X' > X if 

for every j = 1, ..., N-1. Since 

(12) is also valid for j = N. Because of this equality and by (10) we have now that X 

-< X' if and only if the Lorenz curve of X is always below the one of X', i.e. the 

Lorenz curve of X never intersects the one of X'. The order expressed by + (a partial 

order) is called the Lorenz order. 

The Lorenz order is very important in mathematics e.g. in the study of convex 

function inequalities, geometric inequalities, combinatorial analysis and matrix theory. 

For more on this see [3]. The importance for the topic discussed in this article will 

become apparent from the next definition and theorem. 
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Let f be a function as above. We say that f satisfies principle (L) if it satisfies 

principles (Z), (P) and (S) and whenever X = (x,, ..., x,) < X' = (x',, ..., x',) and X # X' 

we have 

fo(l < f0(3 . (13) 

Functions for which X < X' implies f (X)  I f ( X f )  are sometimes called Schur convex 

functions. 

Theorem : (L) is equivalent with (B). 

In words, the preservation by f of the Lorenz dominance order is equivalent 

with the transfer principle. The transfer principle was hinted at by Pigou ([4]) in 1912 

but was first exactly described by Dalton in 1920 ([5]). The Lorenz curve was 

introduced in [6] in 1905. The Lorenz order was introduced (as notation and 

terminology) by Hardy, Littlewood and Polya in [7]. It is therefore a bit surprising to 

state that the above theorem was essentillay known (of course in other terminology) 

by Muirhead in 1903, see (81 and also [9]. 

The above theorem offers a geometric "visualisation" of what is required of 

a good concentration measure. It summarizes in one graph and one notation (+) of 

what more or less concentration is all about. 

Of course all the definitions and results mentioned so far are empty if we 

cannot give concrete examples of good inequality measures. 



111. CONCENTRATION MEASURES 

Let X = (X ,,..., x,) be an arbitrary vector. 

A. The coefficient of variation V 

This is the most well-known concentration measure. This measure V is 

defined as the quotient of the standard deviation o of X and of the average (mean) 

p o f X :  

Recall that 

and that 

N N 
,,2 = 1 2 -  1 z (x, - It) 

- - x - , ,  . 
N i=1 N i=l 

B. The Yule characteristic K 

This measure is derived from V : 

The measure is used in linguistics. 

C. Pratt's measure and the Gini index 

We suppose here that X is decreasing. 



Denote 

with a, as in (10). Then Preatt's measure C is defined as 

and Gini's index by 

It must, however, be remarked that Gini's index has been introduced in 1909 in 

econometrics (cf. [lo]), long before Pratt's measure was, namely in 1977 (cf. [Ill), the 

latter one in informetrics. Originally, the Gini index G is defined as twice the area 

between the Lorenz curve and the straight line joining (0,O) and (1,l) (i.e. the Lorenz 

curve of a uniform distribution). That they are essentially the same (6. (17) with N 

usually very high) was only seen in 1979 - see [12]. This is a typical example of "re- 

inventing the wheel", not so surprising with this highly interdisciplinary subject! 

The measures V, C and G are generalized as follows. Define, for r 2 1 

the so-called generalized Pratt measure, essentially introduced in [13]. It can be shown 

(6. [14]) that 



D. Theil's measures Th and L 

These measures were introduced in 1967 in [15] as follows 

and 

again with a, as in (10). 

We close this non-exhaustive list by 

E. The Atkinson Indices A(e) 

For 0 < e < 1, define 

and for e = 1 

cf. [16]. As is clear from the above, most of these measures originate from econome- 

trics or sociometrics. 

We refer to [14] for the proofs that all these measures satisfy principle (L), 

hence are to be considered as good concentration measures. 
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Note 1 : 

The Theil measures are also called Theil's entropy measures. Indeed they resemble 

the well-known average entropy formula - known in information theory - 

Stated in this form, fi is a valuable measure but is not a concentration measure but 

a measure of evenness. Of course, upon normalization and the application of the 

transformation (1) we obtain a concentration measure. Don't be mistaken : the 

measures Th and L concentration measures. 

Note 2 : 

So far we have always supposed that N is fixed. This, of course, excludes dynamic 

studies of concentration (or evenness or diversity) since, if time is variable, N is 

variable too in most cases. Especially in biology the variability of N has an implication 

on possibilities of studying diversity of species. We assume that the N-variability is 

less important in computer science and technology as well as in informetrics : there 

one can still compare concentration values of e.g. databases of different sizes and 

draw professional conclusions based on these comparisons. An example of this is 

given in the next section. 

N-dependent theories can be developed as follows. It is dear that it is possible 

to draw a Lorenz curve for any vector X = (x,, ..., x,] and any N. Now, we generalize 

the Lorenz order, introduced earlier, cf. (12) by stating that the N-vector X dominates 

the N'-vector X' if the Lorenz curve of X' lies never above the Lorenz curve of X. This 

will be denoted as X' << X. This requirement generalizes the partial order introduced 

for fixed N. 

A good concentration measure should respect this generalized Lorenz order. 

This means that such a concentration measure f should satisfy the following relation : 



Related to this, we introduce the cell-replication axiom (introduced by Dalton [5]). 

First, we define the mathematical operator REPEAT, with c a non-zero natural 

number, as 

where every xi is repeated c times. Then a function f satisfies the cell-replication 

axiom if 

Note that the Lorenz curve of X and of REPEAT,(x) coincide, so that this is a very 

natural requirement. 

It can be shown [17] that if a function is a good concentration measure for 

fixed N, and, moreover, satisfies the cell-replication axiom, then it satisfies relation 

(23). 

Now, the coefficient of variation, V, the Gini index, G, Theil's measures Th 

and L, and all Atkinson indices A(e] satisfy this additional requirement. Hence, they 

can be used to compare situations where the number of sources is different. The Yule 

characteristic, K and Pratt's measure, C, on the other hand, do not satisfy this 

additional axiom. 

Finally, we note that it is possible to introduce other requirements to compare 

situations with a different number of sources. These requirements take the number 

of sources explicitly into account (171. 
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IV. Some Applications in Computer Science, in Information Science and in 

Linguistics 

A. Huffman compression of codes 

It is an obvious fact that the occurrence of words in texts is very dependent 

on the words : some words occur very often [e.g. the, a, of, for, ...I for grammatical 

reasons and some only occur a few times. It is then logical (and it is so in most cases) 

that the words that occur more often should be the shortest ones. This is often the 

case in natural langauge, although not in an optimal way. It is for this reason that one 

often uses abbreviations, acronyms etc. We do not go further into this. 

In the same way, codes for symbols should be shorter if the symbols occur 

more often than others. Let us give an example with an alphabet of only eight 

symbols A, B, C, D, E, F, G, H. As is always the case in practise, we can also here 

suppose that these symbols do not occur the same number of times. Suppose we have 

already ordered the symbols in decreasing order of occurrence. Suppose their fraction 

of occurrence is as follows : A : 0.338, B : 0.203, C : 0.135, D : 0.088, E : 0.081, F : 0.061, 

G : 0.054, H : 0.040. 

For the sake of simplicity we only look at binary coding of these eight 

symbols but any n-ary coding can be studied in the same way. It is clear that binary 

codes of length 3 suffice, since 2' = 8. We could then code these eight symbols as 

follows : A = 444, B = $41, c = $14, D = $11, E = 144, F = 141, G = 114, H = 111. 

Hence the average length per symbol is 3. There is however the following theorem. 

Theorem (Huffman [18]) : 

There exists a non-fixed length decodable coding which is optimal in the sense that 

no shorter average length per symbol is possible. The average length per symbol of 

this coding is fi as given by formula (22). 



This coding is called the Huffman coding. In the above example one can - 
calculate (using a, = 0.338, a, = 0.203, and so on, and N = 8 of course) that H = 2.65 

< 3. One cannot give the "shortest" binary coding A = 4, B = 1, C = 44, D = 41, E = 

14, F = 11, G = 144, H = 141 since this coding is not decodable. The (up to a 

. permutation of 4 and 1) unique solution is A = 44, B = 14, C = 411, D = 111, E = 

4144, F = 4141, G = 1144, H = 1141, with average length per symbol equal to 2.7, 

very close to 2.65 and a serious improvement (i.e. compression] w.r.t. the fixed length 

coding with length 3. There is a simple algorithm to find this solution. The reader is 

referred to [I91 for this as well as for much more on compression of texts. Note that 

the Huffman coding is decodable since no code is the beginning of a larger code. So 

is it clear that the text ~ 1 1 1 1 1 1 1 1 ~ 1 1 ~ ~ ~ ~ 1 1 ~ 1 1 1 ~ ~  is uniquely decodable as 

CDDCAAHG. 

B. Zipf's law and Mandelbrot's law 

One can ask the question : how do we obtain the probabilities (fractions) for 

the occurrence of the symbols as in the above example. More generally, how can we 

know the fraction of occurrence of the different words or letters in a text? The general 

answer is that this can be done statistically by sampling and then calculate confidence 

intervals for these sampled fractions. We must warn the reader that calculating 

confidence intervals for a large number of fractions is requiring very high sample 

sizes (cf. [20]]. If this cannot be executed we can put all our hopes to known 

distributions of these multinomial fractions. They will give a good approximation of 

the concrete situation of the text and hence (also since the Huffman technique is very 

stable w.r.t. the initial input parameters, i.e. the fractions of occurrence) will yield an 

optimal or at least a quasi-optimal compression of the text. We will discuss two 

"classical" distributions. 

1. The law of Zipf 

The law of Zipf ([21], [22]) is a distribution that is encountered in linguistics. 

It states that if one orders the words in a text in decreasing order of their occurrence 



in this text, then the number of occurrence is inversely proportional to its rank. In 

mathematical notation, if r denotes the rank of the word and y(r] the fraction of the 

number of times this word occurs in the text, then 

where C is a constant for the text. It is clear that formula (261 expresses the unequal 

occurrence of words in the text. In 1231 I calculated the measure of Pratt, expressing 

the degree of concentration and found, e.g. for a text of 10,000 words a value of C = 

0.80. 

2. The law of Mandelbrot 

Even in linguistics it is clear that the law of Zipf is not always valid. Often 

one finds better approximations (of the data derived from the text) by using an extra 

parameter, e.g. P instead of r in formula (26). Of a different nature is the law of 

Mandelbrot ([24], [25]). Stated more generally in terms of sources and items it can be 

formulated as : if we rank the sources in decreasing order of the number of items they 

produce and if r denotes the rank of the source and y(r) its fraction of the total 

production, then 

where A and B are constants. This law is encountered very often in informetrics, e.g. 

when describing inequality in publication patterns by authors or journals in a certain 

field. For this law one finds the value C = 0.61 for Pratt's measure of inequality (again 

for 10,000 sources). 

We see that this value is much lower than the one found for Zipf's law. Hence 

Zipf's law expresses a more concentrated situation than Mandelbrot's. This result is 

somewhat surprising but can be explained - philosophically - as follows. In all 

situations where Zipf's or Mandelbrot's law applies we clearly deal with an unequal 

situation : few sources produce a lot of items and many sources produce not many 



items. But in cases where Mandelbrot's law applies, the most prolific sources refrain 

a bit their high production : this is so in the case of author-publication patterns - here 

the most prolific authors will only publish their best work; this is also the case in the 

journal-article pattern - the more important a journal becomes in a certain discipline 

the more strict (by applying heavy refereeing procedures) it will be in accepting 

papers for publication. This is not so in e.g. texts (where Zipf's law usually applies) : 

the most heavily used words are continued to be used in that pace, no matter how 

long the text is, due to grammatical reasons. This creates the more concentrated 

situation, which is not a bad result from the point of view of compression of the text : 

use of many small words and possibly of abbreviations (e.g. prof., Dr., ...) of heavily 

used words that are somewhat longer. 

In the same way one also finds the following result on the generalized 80/20 

rule : the higher the average number of items per source, the smaller fraction of the 

most prolific sources one needs in order to have a fixed cumulative fraction of the 

items. This has e.g. applications in libraries : the higher the average number of 

circulations per book [say per year) in a library, the smaller the fraction of the most 

heavily used books is needed to cover say 95 % of all circulations. In other words (as 

is the case in public libraries as compared to scientific libraries) the weeding problem 

is easier in such libraries since there a larger fraction (now of the least used books) 

can be taken that accounts for a very low fixed percentage of the circulations. In 

general one could also say that the higher the average number of items per source, 

the higher the Lorenz curve is situated in the unit square. 

In the next section we will study some refinements of the transfer principle 

(T) as it is the basis in concentration theory. Most of these refinements go in the 

direction of the study of sensitivity properties of concentration measures w.r.t. 

transfers. 



19. 

V. OTHER TRANSFER PRINCIPLES AND SENSITIVITY WITH RESPECT TO 

TRANSFERS 

The classical transfer principle [T) deals with "taking away from one poor and 

giving it to one rich". Of course, as is also reflected in the theorem in section KB, 

consecutive compositions of bilateral transfers are possible, yielding the same 

inequality for our concentration measure f .  But real life is more complicated! It can 

be that - to stay within the appealing econometric terminology - so many transfers 

happen, giving an overall bonus to the richer sources but in which there are also 

bonuses for some poor sources. The next transfer principle, stronger than [T) goes in 

this direction. 

A. The Transfer principles E(p) 

It is immediately verified that the change of X = [x ,,..., xi ,..., x j  ,..., x,) into 

X' = [x, ,..., xi-h ,..., x,+h ,..., x,), where xi 5 xi and where 0 < h I xi [as in the definition of 

the transfer principle [T)), implies that the variance of the vector X' is strictly larger 

than the variance of the vector X. Hence a good generalization of principle (T), hereby 

possibly affecting all sources, is as follows [cf. [9 ] ) .  

Let f be as always. We say that it satisfies the principle E[p) [p > 1) if for 

every X = [x, ,..., x,) and X' = (x', ,..., x',) such that 

and such that 

we have that 



Note that 

is the p-variance of the vector X and also that it is equal to d if p = 2. The above 

definition can even be extended by replacing the function x + lxl* by any convex 

function. In [9] it is shown that E[p) 3 [T) for every p 2 1, hence we have at our 

disposition a stronger transfer principle. Hence the concentration measures 

encountered so far, which also satisfy a principle E(p) (p 5 1) are stronger (better) 

measures than those which satisfy (T) but no E(p). 

Obviously V and K satisfy E(2) and in [14] it was shown that C and G satisfy 

E(1) (in essence because P(1) = C, with P(1) as in (18) with r = 1). Obviously P(r) 

satisfies E(r) for evey r 2 1. That any E(p) is strictly stronger than (T) follows from the 

fact that Th nor A(e) (0 < e < 1) satisfy any E(p), while they all satisfy (T). It is shown 

in [26] that the validity of one E[p) (p > 1) excludes the validity of any E[q) (q 2 1, q 

# p) at least if N > 3, which is always the case in practise. It is also so for N = 3 

except for p = 2, q = 4 since here E(2) = E(4). Since E[2) relates to the classical 

variance we could consider it to be the most important E[p) = principle and hence, 

we can consider V, K or other from V derived measures to be the most important 

concentration measures. Also its formulation V = o/p is very simple. The principle 

E(2) is equivalent with the following desirable transfer principle. Let X = (x,, ..., x,) and 

X' = (x',, ..., x',) be such that xti = xi + hi [i = 1 ,..., N) with 

and such that 



If X # X', then 

I I f(xl ,..., x,) < f(xl ,..., x,) . 

The proof can be found in [9], 

B. Sensitivity Aspects of Inequality Measures with respect to Transfers 

It is very difficult to express what is meant by "sensitivity" of inequality 

measures. It is a kind of "second order" aspect, describing how dependent a measure 

is w.r.t. a transfer (apart from the fact that we have a strict inequality)"'. Let us go 

back to the original definition of the transfer principle (T). It states that, when xi I xj 

and when 0 < h < xi, 

In this formulation it is in no way stated how the difference 

is dependent on xi or i or xj or j or even xj - xi or j - i, etc. (dependence on the indices 

presupposes, of course, a certain ordering of the xi's). Discussions around this theme 

in economemtrics can be found in [16] and for sociometrics in [13]. In [27], Allison 

pleads for measures that are sensitive for differences (such as xj - xi]. This plea is 

given in the context of publications and citations and indeed it is our feeling that 

sensitivity must be studied within the context of the application. 

In [14] one has found that AV' is linearly dependent on xj - xi but independent 

of i or j. Dependence of the latter is found for AG and AC, while, not surprisingly, 

ATh is dependent on Qn(xi) - Pn(x,). 

" We do not deal with statistical sensitivity [e.g. the dependence of the sensitivity 
of statistical methods w.r.t. the sample size). 



We will now look at (T) in another way. It is an easy consequence of (TI that 

(by applying (32) N-1 times) (supposing x, = max xi - using property (PI this can 
i=l, ... n 

always be realized) 

if 0 < h < min [N-1) xi. 
i=1, ..., N 

This principle is related to moonlighting : one source (here the first one] gets 

richer, e.g. by not paying taxes, which is detremental to all other citizens. In 

scientometrics we have an example whereby the most important research group in a 

certain domain is recognized by a subsidizing authority (such as a government) 

thereby donating an important amount of money to this group, which is then not 

available any more for all the other groups. 

Now it is clear that inequality (33) is rather artificial : what happens if the 

second largest source grows at the cost of all the others, and so on? It is an intuitive 

feeling that if x, is "above average production", then (33) should be valid. What 

average can we use? This will become clear in the sequel. Let us fix some notation. 

Let X = (x,,x,, ...; x,) rearranged in such a way that the transfer h occurs at the first 

source (not necessarily anymore the source with maximum production). Denote 

where there are N-1 coordinates with value - 1/(N-1). Then (33) is equivalent with 

This only compares two situations : X (before the transfer) and X' = X+hY (after the 

transfer). In these cases a total transfer of h > 0 is involved and inequalities should 

change if h < 0 and furthermore, any small lhl can be used. This boils down to 

calculate (for every "small" h) 
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f(X+hY) - fQ0 
h 

(36) 

and examining the sign of this number, now irrespective of the sign of h. This leads 

to the use of the directional derivative 

f ;  = lim f(X+hY) - f(X) 
h-0 h 

where Y = (y ,,..., y,) as in (34). Hence 

af fl(x;Y) = - (x) - - 
ax, N - 1 i-2 

This leads us to several new transfer principles [which will lead us to the 

notion of sensitivity) : Let M(X) denote any average [e.g. arithmetic, geometric, 

harmonic, median, ... ). We say that f satisfies transfer principle [T,) if x, > M(X) 

implies 

This transfer principle has been introduced in 1281. Also in 1281 it is noted that the 

value of f'(X;Y) is a measure for the sensitivity of f w.r.t. transfers. Note that the sign 

of f'[X;Y) changes for evenness measures and hence the value of f'[X;Y) (or rather 

lf'[X;Y)I) can also be used for evenness measures. Here, however, we restrict 

ourselves to concentration measures. 

Let us fix some notations for the different averages of a vector X = (x,, ..., x,). 



the arithmetic mean, 

the geometric mean, 

the harmonic mean, and by m the median, i.e. 

N + 1  @ a = - .  
2 

.& (421 
WJ 

v. < - (-a -cp, N L ~  i~ et k 1- i( 

In these cases we can talk of the transfer principles (T,), (T,), (T,) and (T,,,). 

In [28] the following theorem has been proved, based on (34) and (35). 

Theorem : 

Hence V satisfies (T,). Hence also K satisfies (T,). 

Hence Th satisfies (T,). 



Hence L satisfies (T,). Also A(1) satisfies (T,). 

Hence G satisfies (T,,,). Hence also C satisfies (T,,). 

The respective values of fl(X;Y) for f = V, Th, L or G give the sensitivity of 

these measures w.r.t. transfers. To the best of our knowledge, in [28] it is the first time 

that there has been found a connection between these classical measures of 

concentration and these different averages of a vector X = (x,, ..., x,). In [28] some other 

concentration measures have been linked with some other (T,) transfer properties (for 

generalized averages M). 

This theory of sensitivity w.r.t. transfers is exact in the sense that it uses a 

clear definition (f'(X;Y) > 0) involving a derivative, which is expected for the study 

of sensitivity. Yet it allows for differences in nature of the diverse concentration 

measures (w.r.t. the used average). The appearance of the four basic averages 

(arithmetic, geometric, harmonic and the median) is remarkable. Overall, this 

sensitivity theory can be considered as a mathematical solution to some problems 

raised (with partial solutions) in [13], 1161 and [27]. 



VI. SUMMARY AND CONCLUSION 

This review paper was dealing with various ways of describing inequality (or 

concentration) as is occurring in virtually every aspect of life. The emphasis here is 

on computer science, linguistics and information science. We underline the importance 

of unequal situations (as opposed to evenness studies as e.g. in biology) in these 

domains, e.g. in applications such as compression of databases and texts. 

The Lorenz curve is introduced that gives a visual method of studying 

concentration. The relation with the so-called 80/20-rule is given. We also give basic 

principles ("axioms") that good concentration measures should satisfy, amongst which 

the appealing transfer principle. The paper then continues by giving examples of good 

concentration measures such as V (the coefficient of variation), Pratt's measure C and 

the Gini index G and their generalizations, Theil's measures Th and L and, finally, the 

Atkinson indices A(e) (0 < e < 1). In this connection, the entropy formula from 

information theory is described and applied to aspects of compression (d. the 

Huffman compression of codes). Also the concentration aspects of the laws of Zipf 

and Mandelbrot are discussed. Some remarks are made about the N-dependence of 

these theories (i.e. the dependence on the number of sources). 

The rest of the paper deals with sensitivity of concentration measures, w.r.t. 

transfers. New transfer principles, stronger than the classical one are introduced and 

we indicate which concentration measures satisfy which generalized transfer 

principles. A nice class of transfer principles can be defined as follows. Let f be a 

concentration measure and denote by f'(X;Y)) the directional derivative in X (in the 

direction Y). Let 

Then x, > a certain average of X should lead to f'(X;Y) > 0. This is the case for V with 

the arithmetic average, for Th with the geometric average, for L with the harmonic 
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average and for G and C for the median of X. The values of f'(X;Y) can be used as a 

measure of sensitivity of the measure f w.r.t. transfers. 

The merit of this sensitivity theory for concentration measures is that it 

presents a clear and exact definition of what sensitivity means, yet it allows for 

differences in nature of the diverse concentration measures (as revealed by the use of 

four different averages of X). 
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