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Abstract. We investigate the Rouse dynamics of a flexible ring polymer with a prime

knot. Within a Monte Carlo approach, we locate the knot, follow its diffusion, and

observe the fluctuations of its length. A topological time scale that is slower then

the Rouse one, is found to determine the long time behaviour of several dynamical

quantities. The value of the associated dynamical exponent is zT = 2.32 ± .1.
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In the physics of polymers, mutual and self entanglements play an essential role [1].

A particularly relevant type of entanglement is associated with the presence of knots.

Indeed, it has been known for some time that long ring polymers inevitably contain

a knot [2]. Topology is also of much interest for biopolymers, where knots have been

found in the DNA of viruses and bacteria [3], and also in some proteins [4].

The recent experimental possibility to tie knots in DNA double strands or actin

filaments [5], and to study their diffusion in the presence of a stretching force [6],

has further increased the interest in topology related issues among polymer physicists

[7, 8, 9].

So far, the statistical physics of knotted polymers has focused mostly on static

properties [10]. For example, it was found that the presence of a knot does not alter the

exponent ν that relates the radius of gyration RG(N) to the length N of the polymer,

RG(N) ∼ Nν , but only influences scaling corrections [11, 12]. There have been fewer

studies of dynamical scaling properties of knotted polymers, even though the associated

time scales could be relevant to describe gel electrophoresis, folding of knotted proteins or

other dynamical processes. Simulations have given evidence that a peculiar, topological,

characteristic time τT determines the decay of the radius of gyration autocorrelation

function of such polymers [13, 14]. This decay time appears longer than that observed

for open or closed unknotted chains. As a function of chain length, it was found to scale

with a dynamical exponent zT , that could not be determined precisely but whose value

probably is bigger than the Rouse one. So far, the physical origin of this time was not

understood.

In this Letter, we investigate how a knot influences dynamical scaling properties of

flexible polymers in a good solvent within the framework of Rouse dynamics [1, 15]. In

a simulation, we directly follow the diffusion of the knotted region and determine the

fluctuations of its length (measured along the backbone). The present work is the first

one to apply a recently introduced technique to locate a knot in a polymer [12] in a

study of dynamical properties. On the basis of a diffusion picture, we conjecture a link

between zT and the exponent governing the equilibrium distribution of this length.

In Rouse dynamics, one models a polymer as a set of N + 1 beads (monomers)

that are connected by harmonic springs, and that are subjected to random thermal

forces exerted by the solvent. The motion of the monomers is described by a Langevin

equation, which for ideal chains can be solved using a transformation to normal

coordinates. If self-avoidance is taken into account, Rouse dynamics can no longer

be solved exactly, but scaling arguments together with numerical results [16], show that

the center of mass of the polymer, Rcm, performs ordinary diffusion, i.e.

g3(t, N) ≡ 〈(Rcm(t) − Rcm(0))2〉 ≃ 6Dcmt (1)

where the average is taken over realisations of the stochastic process. The diffusion

constant is inversely proportional to the length N of the polymer, i.e. Dcm ∼ N−1.

The autocorrelation function of the end-to-end vector decays exponentially with a time
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constant τR that grows as

τR ∼ N2ν+1 (2)

with N . In d = 3, 2ν + 1 ≃ 2.2 [16]. We will refer to τR as the Rouse time scale. It can

be interpreted as the time that the center of mass of the polymer needs to diffuse over

a length equal to its radius of gyration, τR ∼ R2
G(N)/Dcm ∼ N2ν+1.

The diffusion of one particular monomer, or of a segment of m + 1 monomers, is

described by the function

g1(t, N) =
1

m + 1

(N+m)/2∑

i=(N−m)/2

〈(Ri(t) − Ri(0))2〉. (3)

It is known [17] that g1(t) has a scaling form

g1(t, N) ≃ tβF (t/τR). (4)

The function F describes the crossover between an initial power law regime (F (x) →

constant, for x → 0) and a late time regime for which a monomer has to follow the

diffusion of the whole polymer as given by (1). This implies a power law form for F at

late times and β = 2ν/(2ν + 1), i.e. in the initial regime the movement of a segment

of the polymer is subdiffusive. Notice that g1(τR, N) ∼ R2
G(N), so that the Rouse time

scale also corresponds to the time for one monomer to diffuse over a distance equal to

RG(N). In the whole dynamics, it is the only relevant time.

Rouse dynamics neglects important physical effects such as hydrodynamic

interactions between the monomers. These are taken into account in the Zimm model

[1] for which it is found that the slowest relaxation time becomes proportional to N3ν .

In the present paper, we will concentrate on Rouse dynamics. Several experimental

situations are known by now for which it gives an adequate description. As an example,

we mention that current fluorescence techniques allow to follow the motion of individual

monomers in, e.g., DNA-chains and hence to directly determine a function such as

g1(t, N). Measurements of this type on double stranded DNA have recently seen diffusive

behaviour of individual monomers consistent with Rouse behaviour [18]. DNA adsorbed

on a lipid membrane is another system of current interest that can be understood in

terms of Rouse dynamics [19].

A crucial quantity to characterise the dynamics of a knotted polymer turns out

to be the length of the knot. A precise definition for this quantity can be given for

flat knots [20]. These are knots in a polymer that is strongly adsorbed to a plane or

constrained between two walls. In this context, it was found that the length lk of a

knot k is a fluctuating quantity, whose equilibrium distribution function is a power law,

p(lk) ∼ l−c
k G(lk/N) where G is a scaling function. It follows, that the average length of

the knot scales with N as 〈lk〉 ∼ Nσ, with σ = max[0, 2 − c]. In a good solvent, flat

knots were found to be strongly localised (σ = 0) [20], while below the θ-transition, they

delocalise (σ = 1) [21]. In order to extend these results to three dimensions, one needs a

good definition of the length of a knot. This should correspond to the intuitive idea that

it measures the portion of the polymer backbone which “hosts” the knot entanglement
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[22]. Recently, a powerful computational approach to determine such a length, and

its scaling properties, was introduced [12]. In this method, for a given knotted ring

polymer, various open portions are considered and for each of these a closure is made by

joining its ends with an off-lattice path. The length of the knot in a given configuration

can then be identified with the shortest portion still displaying the original knot. In

this way, it was found that in good solvent, three dimensional knots are weakly localised

with an exponent σ = .75 ± .05.

To simulate the dynamics of knotted polymers, we start from a simple self-avoiding

polygon (SAP) on a cubic lattice with a knot in it. Most of our calculations were done

with a trefoil (31) knot. We used the BFACF algorithm [23] to relax the configuration.

This algorithm works in the grand canonical ensemble, and is known to preserve

topology. The resulting SAP is then evolved according to a N -conserving Monte-

Carlo dynamics with local moves only. During the subsequent evolution, using the

computational techniques developed in [12], observables such as the length of the knot,

the radius of gyration of the whole polymer, the location of the center of mass of the

polygon and the location of the center of mass of the knot, Rcm,k, are computed. We

have performed calculations for various N ≤ 400.

It can be questioned whether the restriction to a lattice provides a correct

description of continuum dynamics. This problem has, amongst others, been studied

in [24] where it was found that in the presence of excluded volume effects, the N -

dependence of the relaxation times of the first three Rouse modes is consistent with the

prediction from scaling theory. In order to verify our results we have also performed a

simulation of the dynamics of a knotted polymer (of 100 monomers) using a Langevin

method [25]. The results agree both qualitatively and quantitatively with those coming

form the simpler, and faster, lattice algorithm used in the present work.

From the data on the knot length as a function of time, we can construct the

knot length autocorrelation function 〈lk(t)lk(0)〉c (where the subscript ’c’ indicates the

properly normalised connected autocorrelation). In figure 1, the top (red) line shows

our results for this quantity for N = 400. This autocorrelation function has a simple

exponential decay. Similar behaviour is found for other N values. Figure 2 presents

our data for the decay time constants as a function of N . The behaviour is power law,

and the exponent is 2.33 ± 0.08. The value of this exponent is higher than that of

Rouse dynamics. Further evidence that this presents a new time scale comes from an

investigation of the autocorrelation function of the radius of gyration of the polymer.

In figure 1 we also plotted our results for this quantity (bottom line). Clearly, it has a

double exponential decay. In comparison, for an unknot, we observe a pure exponential

decay. A careful analysis shows that the time constant of the unknot, together with the

fast one of the knotted polymer, are proportional to τR (figure 2). On the other hand,

as can be seen in figure 1, the late time decay of the radius of gyration autocorrelation

occurs with the same time constant as that of the length autocorrelation. A quantitative

analysis of its N -dependence supports this conclusion (see figure 2). Indeed, the value

of the associated exponent equals 2.31± 0.08, consistent within the numerical accuracy
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Figure 1. (Color online) Semilogarithmic plot of the autocorrelation functions versus

time for a SAP with N = 400. Shown are results for the radius of gyration (black,

below) and the knot length (red, above). The blue line was obtained by shifting the

red one vertically.

with that determined from the length autocorrelation. Together, these data therefore

provide strong evidence for the presence of a new, slow time scale τT ∼ N zT , with

zT = 2.32 ± .1, in the dynamics of knotted polymers. The data on the knot length

autocorrelation show that this scale corresponds to the time over which the knot length

decorrelates.

To check if the results are influenced by the topology of the knot, we have performed

a completely similar study for the figure-eight (41) knot. Again the radius of gyration

autocorrelation function decays as a double exponential, with a fast time scale that can

be identified with τR. The slower time scale grows with N with an exponent whose

numerical value, 2.33 ± .08 is consistent with that found for the trefoil. Moreover, the

same exponent was found to govern the decay of the 41 length autocorrelation function.

In order to determine whether the topological time also influences other dynamical

properties, we have investigated the diffusion of the center of mass of the whole polymer

and of the knotted region. From our data, we determine g3(t, N) and a similar quantity

for the knotted part of the polymer

g3,k(t, N) = 〈(Rcm,k(t) − Rcm,k(0))2〉 (5)

This function has some similarity to g1(t, N) since it describes the motion of a segment

of the polymer. Hence we can expect it to have a scaling behaviour similar to (4). There

are however differences since the number of monomers in the knot increases with Nσ on
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Figure 2. (Color online) Log-log plot of the topological time scale versus N as

determined from the radius of gyration autocorrelation function (black circles) and

from the knot length autocorrelation (red squares). Also shown are the time constants

associated with the early time decay of the radius of gyration autocorrelation (...).

The fitted lines have slopes −2.31 ± 0.08 (black dashed line) and −2.33 ± 0.08 (blue

full line) respectively.

average, and, at fixed N , fluctuates in time.

In figure 3, we show a typical result (N = 250) for the functions g3(t, N) and

g3,k(t, N). Our data for the diffusion of the center of mass of the whole polymer are

fully consistent with Eq. (1) and with the relation Dcm ∼ N−1, a strong indication that

the diffusion of the polymer as a whole is not changed by the presence of the knot [14].

More interesting is the diffusion of the knot itself. As can be seen in figure 3, g3,k

shows several distinct power law regimes. The value of the estimated exponent for the

early time region fluctuates with N , but a good average is 0.27±0.1. This initial regime

ends after a time τ1, which grows as a power of N , τ1 ∼ N z1 , where z1 = 1.97 ± .1.

After a short crossover, in an intermediate time regime, the behaviour is again power

law, g3,k ∼ tγ . The value of γ decreases from ≈ .81 for N = 100 to a value close to .66

at N = 400. An extrapolation gives the asymptotic value γ = .6 ± .03. Finally, and in

analogy to the behaviour of g1, we expect a crossover of g3,k to linear behaviour, since

the knot eventually has to follow the whole polymer. This crossover has not happened

yet for the times we were able to simulate. In figure 3 the vertical dashed line indicates

the Rouse time, which we have estimated from the relation g3(τR, N) = R2
G(N). We

checked that the Rouse time calculated in this way indeed grows as N2.2. We thus see

that, as was the case for the length autocorrelation, τR doesn’t play a special role for

g3,k, and moreover, it seems that the second crossover occurs on a much slower time
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Figure 3. (Color online) The function g3 of the whole polymer (lower curve) and of

the knot (upper curve) (N = 250). The straight lines are best fits through the initial

(blue) and intermediate (red) time regime of the knot. Their slopes are .29 and .78,

respectively. The dashed vertical line correspond to τR.

scale, which we expect to be τT . In analogy with (4), we therefore propose this second

crossover to be of the form

g3,k(t, N) ≃ tγH(t/τT ) t > τ1 (6)

where H(x) becomes constant for small x. Since for t > τT , the behaviour of (6) must

cross over into that of (1), we obtain the relation (1 − γ)zT = 1. Using the estimate

zT = 2.32 ± .1, this leads to γ = .57 ± .02 consistent with our estimate. In figure 4,

we show a scaling plot of our data for g3,k(t, N) for various N -values (leaving out the

initial power law regime) and using the values zT = 2.35, γ = .57. The scaling is rather

well satisfied. So, the available numerical evidence is consistent with the identification

of the second crossover time with τT .

The Rouse time scale gives the time for the polymer to diffuse over its radius of

gyration. We here propose a similar simple interpretation of τT . Indeed, the presence

of the knot introduces a new timescale that is related to its diffusion along the polymer

backbone. We assume that this diffusion is normal and that the associated diffusion

constant DK is inversely proportional to the knot length, i.e. DK ∼ N−σ (see [7] for

a similar assumption). We then identify τT as the time it takes for this diffusion to

move over the length of the knotted region. This gives τT ∼ N2σ/DK ∼ N3σ. Taking
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Figure 4. (Color online) Scaling plot of our results for g3,k/NzT γ versus t/NzT for

various N -values using zT = 2.35, γ = .57. Different colors correspond to different N

values, red: N =150, blue: 200, dark green: 250, yellow: 300 and light green: 350.

the estimate of σ from [12], we find 3σ = 2.25 ± .15, which is consistent with the

identification zT = 3σ. This agreement supports the plausibility of our argument.

The same result would be obtained by assuming that the knotted region moves

by reptation. Indeed, reptation of a polymer in a melt introduces a slow time scale

τd ∼ N3 [26]. Physically τd corresponds to the time needed to change the shape of the

tube that confines the movement of the polymer. Since the knot length distribution is

a fastly decaying power law distribution, the knot will be rather tight for a considerable

fraction of time. One can imagine that for these tight conformations, the shape of the

knotted region decorrelates by a self-reptation mechanism on a time scale 〈lk〉
3 ∼ N3σ.

When the knot is looser, its length decorrelates faster. The long time dynamics is then

determined by the slowest, self-reptation, mode. We conjecture that the combination

of slow, reptative and faster, Rouse-like movement gives rise to a net diffusion with

DK ∼ N−σ.

In conclusion, by the first calculation in which dynamical information on the knot

itself was monitored, we provided convincing evidence, that the presence of a knot in a

ring polymer introduces a new slow topological time scale. This scale can be understood

in terms of a diffusion of the knotted region along the polymer backbone.
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