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SUMMARY

Estimation in generalized linear mixed models is often based on maximum likelihood theory, assuming

that the underlying probability model is correctly specified. However, the validity of this assumption is

sometimes difficult to verify. In this paper we study, through simulations, the impact of misspecifying

the random-effects distribution on the estimation and hypothesis testing in generalized linear mixed

models. It is shown that the maximum likelihood estimators are inconsistent in the presence of

misspecification. The bias induced in the mean structure parameters is generally small, as far as

the variability of the underlying random-effects distribution is small as well. However, the estimates

of this variability are always severely biased. Given that the variance components are the only tool to

study the variability of the true distribution, it is difficult to assess whether problems in the estimation

of the mean structure occur. The Type I error rate and the power of the commonly used inferential

procedures are also severely affected. The situation is aggravated if more than one random effect is
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included in the model. Further, we propose to deal with possible misspecification by way of sensitivity

analysis, considering several random-effects distributions. All the results are illustrated using data

from a clinical trial in schizophrenia.

KEY WORDS: consistency; heterogeneity model; Kullback-Leibler Information Criterion; non-

normal random effects; power; type I error. Copyright c© 2000 John Wiley & Sons, Ltd.

1. INTRODUCTION

When dealing with non-Gaussian data with multiple sources of variation, a commonly used

subject-specific model is the generalized linear mixed model (GLMM; [1, 2]). In this framework,

the (vector-valued) outcome variable Yi for a subject i is assumed to satisfy Yi|bi ∼ Fi(yi|ϕ, bi),

i.e., conditionally on random effects bi, Yi follows a pre-specified distribution Fi, parameterized

through a vector ϕ of unknown parameters, common to all subjects. The vector of subject-

specific parameters bi is assumed to follow a distribution G which may also depend on

a vector δ of unknown parameters. The parameter estimates are commonly calculated by

maximizing the marginal likelihood, obtained by integrating out the random effects. Due to

software limitations, the analysis is often restricted to the setting in which the random-effects

distribution is normal with mean zero and variance-covariance matrix D. Since random effects

are non-measurable, the validity of this assumption is difficult to check. The question naturally

arising is what the impact is of misspecifying the random-effects distribution on the maximum

likelihood estimators.

For linear mixed models (LMM; [3, 4]), it has been shown that the maximum likelihood

estimators, obtained under the assumption of normally distributed random effects, are

consistent and asymptotically normally distributed, even when the true random-effects
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IMPACT OF MISSPECIFIED RANDOM-EFFECTS DISTRIBUTION IN GLMM 3

distribution is not normal [5]. Nevertheless, research carried out in recent years illustrates

that similar results do not hold for GLMM. For instance, Neuhaus et al. [6] showed that the

maximum likelihood estimators of a logistic–normal model with misspecified random-effect

distribution are inconsistent but that the magnitude of the bias is typically small. Simulations

by Chen et al. [7] also indicate that the estimation of the regression coefficients may be subject

to only negligible bias under misspecification of the random-effects distribution. According to

Agresti et al. [8] the choice of the random-effects distribution seems to have, in most situations,

little effect on the maximum likelihood estimators. However, when there is a severe polarization

of subjects, e.g., by omitting an influential binary covariate, this can affect the predictive

quality for characteristics involving the random effects as well as the fixed effects. Similarly,

Heagerty and Kurland [9] found substantial bias while using a random-intercept model when

the random-effects distribution depends on measured covariates.

These results clearly illustrate the wide range of opinions which can be found in the literature

regarding the impact of misspecifying the random-effects distribution on the maximum

likelihood estimators in GLMM. However, it is important to note that all these simulation

studies were performed using a limited number of distributions and, in all of them, only

small variances for the random-effects were considered. As we will show in the subsequent

sections, the magnitude of this variance can have an important effect on the bias induced by

the misspecification, where larger biases associate with larger variances. Moreover, as will be

seen from the case study, small variances may not be realistic in some important practical

settings. Further, we will illustrate that the situation worsens when more than one random

effect is included in the model. Another issue which has not received attention in the previous

studies concerns the impact of the misspecification on commonly used inferential procedures
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4 S. LITIÈRE, A. ALONSO AND G. MOLENBERGHS

such as the Wald test. We will study the impact of such misspecification on the power and

Type I error rate of frequently used tests for the mean-structure parameters. Therefore, the

first main objective of the present work is to use a wide set of simulations so as to formulate

some practical guidelines for handling random-effects misspecification in GLMM.

It is also important to point out that some alternative approaches have been suggested

to deal with this misspecification. For instance, one could replace the normal random-effects

distribution by a non-parametric distribution [10, 11, 12, 13, 14]. Although it is an appealing

approach in many settings, there can be some loss of efficiency when using a non-parametric

approach, compared to parametric assumptions close to the true distribution [8]. Additionally,

model comparison can be difficult as standard asymptotic theory does not apply. Finally, a

non-parametric approach is definitely not appropriate when the distribution of the random

effects is of primary interest like, for example, in surrogate marker evaluation, the evaluation

of the psychometric properties of rating scales, or when one wants to predict individual profiles

or evolutions. Chen et al. [7] suggested a semi-parametric random-effects distribution, allowing

the random-effects density to be skewed, multi-modal, fat- or thin-tailed, and including the

normal as a special case. Lee and Thompson [15] used Markov Chain Monte Carlo methods

to fit models with random effects following a t distribution, and skew extensions to the

normal and the t distribution. In the present work, we will study another approach which

consists in replacing the normal random-effects distribution by a finite mixture of normals

[16, 17, 18, 2]. This allows one to cover a wide range of shapes for the random-effects density,

including unimodal as well as multimodal, and symmetric as well as very skewed distributions.

Our simulation studies with this model show that although using more flexible families of

distributions can be a valid strategy in some settings, these more general families are not fully
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robust either.

Therefore, we propose to incorporate the previous approach into a more general sensitivity

analysis framework. In this scenario, different distributions are considered for the random

effects. If the estimates of the parameters of interest and the associated inferential procedures

are similar, irrespective of the distribution used to obtain them, the user can feel relatively

confident about his/her results. On the other hand, if the results vary considerably, then they

are obviously sensitive to the distributional assumptions for the random effects, and caution is

needed. One could also use some known model selection criteria to select the distribution that

fits the data best. Note that a sensitivity analysis is, perhaps, the most appropriate approach

to deal with a missing data problem, whereby random effects can essentially be seen as missing

observations. We start by introducing, in Section 2, the case study that motivated the present

work. In Section 3, various aspects of the maximum likelihood estimators are investigated

through extensive simulations. Next, in Section 4 some alternative approaches are suggested

and applied to the case study.

2. CASE STUDY - THE SCHIZOPHRENIA DATA

The case study comprises of individual patient data from a randomized clinical trial, comparing

the effect of risperidone to conventional antipsychotic agents for the treatment of chronic

schizophrenia [19]. Several measures can be used to assess a patient’s global condition. The

Clinical Global Impression (CGI) is generally accepted as a subjective but useful clinical

measure of change. It is a 7-grade scale used to characterize a subject’s mental condition. Our

binary response variable y is a dichotomous version of this scale which equals 1 for patients

classified as normal to mildly ill, and 0 for patients classified as moderately to severely ill.

Copyright c© 2000 John Wiley & Sons, Ltd. Statist. Med. 2000; 00:1–6
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6 S. LITIÈRE, A. ALONSO AND G. MOLENBERGHS

Treatment was administered for 8 weeks and the outcome was measured at 6 fixed time points:

at the beginning of the study and after 1, 2, 4, 6 and 8 weeks. In total, 128 patients were

included in the trial, from which 64 were randomly assigned to receive risperidone and the

rest to an active control. Figure 1 summarizes the probability of being classified as normal to

mildly ill (P (Y = 1)) by time point and treatment group.

FIGURE 1 – About here

We analyzed these data using a random-intercept model, considering different link functions

and mean structures. The random intercept was always assumed to follow a normal distribution

with mean zero and variance σ2

b . In the model building exercise, a total of nine models were

fitted. These were constructed as combinations of three link functions, the logit, complementary

log-log, and probit links, and three different mean structures: i) intercept, treatment, time,

and treatment-by-time interaction, ii) as in (i) but without treatment-by-time interaction, and

iii) as in (i) but without treatment. The AIC criterion was used to select the best fitting

combination. Our final model takes the form

logit{P (yij = 1|bi)} = β0 + β1zi + β2tj + bi, (1)

where zi = 1 (0) denotes the treatment (control) group, tj denotes the occasion of measurement

and bi refers to the random intercept. Adding a random slope to Model (1) did not improve

the fit. All the previous models were fitted using the SAS procedure NLMIXED with

adaptive Gaussian quadrature and 20 quadrature points. The maximum likelihood estimates

for Model (1) are given in the first part of Table I.

Table I – About here
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Figure 1 also displays the plot of the fitted values obtained from our final model against

the observed probability of being classified as normal to mildly ill (P (Y = 1)) by time point

and treatment group. The fitted probabilities are calculated by numerically integrating out

the random effect for each subject. Note that in Figure 1 the two groups seem to be equal at

the start of the study, but a very rapid onset of the treatment is observed at week 1, and this

difference remains constant throughout the rest of the study. Our final model, which includes

treatment as an additive constant, seems to have some problems in describing this very rapid

manifestation of the treatment during the first week. However, it does capture the general

general trend in the data afterwards. Arguably, this capacity of the model to describe the long

term evolution over time is very desirable and relevant from a clinical point of view. Indeed,

until week 4 there seems to be a reasonable agreement between the fitted and the observed

values. Nevertheless, some discrepancy is also observed in the last two measurement occasions.

It is important to point out that the proportion of dropouts is significantly high for these

two measurements, specially in week 8 for the control group (50%). In presence of missing

data such a discrepancy is not necessarily an evidence of lack of fit [2]. However, we prefer

not want to enter here in a comprehensive discussion of the missing data problem; so we will

assume that the missing data generating mechanism is missing at random (MAR), rendering

our likelihood approach a valid option [20, 4, 2, 21].

Note that, even though Model (1) emerged as the best fitting model among all those

considered, it produces relatively extreme estimates for the intercept and the variance

component. We believe this is the result of some extreme response pattern in the data. For

example, in the control group, a high proportion of the patients (75%) have a response pattern

of nothing but zeros whereas in the treatment group a more variable pattern of responses

Copyright c© 2000 John Wiley & Sons, Ltd. Statist. Med. 2000; 00:1–6
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8 S. LITIÈRE, A. ALONSO AND G. MOLENBERGHS

is observed. There, only 56% of the patients have a response pattern of all zeros. Therefore,

the large estimate for the variance of the random component could be explained by the high

within-subject correlation that these data carry. Allowing the random-effect variance to vary

among treatment groups did not improve the fit. Indeed, this analysis resulted in a random-

effect variance of 20.00 (s.e. 7.93) for the treatment group and 22.61 (s.e. 10.69) for the control

group. These high variances hint on a very strong and similar within-subject correlation, in

each treatment group.

Arguably, these circumstances could render the assumption of a normal distribution for

the random effects questionable. However, this situation should not be considered exceptional

or infrequent. Indeed, in a typical placebo-controlled clinical trial such an extreme pattern

of all zeros could be expected in the placebo group, whereas a more variable pattern would

be expected in the responses of the treated group. The problem is aggravated by the random

effects being unobserved latent variables, which renders difficult the evaluation of the associated

distributional assumptions. Nevertheless, the conventional belief among data analysts seems

to be that the choice of the random-effects distribution is not crucial for the quality of the

inferences related to the regression coefficients, even though, as will be shown in what follows,

this does not always hold.

3. RANDOM-EFFECTS MISSPECIFICATION IN GENERALIZED LINEAR MIXED

MODELS

Let us consider a random variable Y that follows a distribution h. In practice, we assume

that h belongs to a family of densities F = {f(y; γ) : γ ∈ Γ}, indexed by a parameter γ. If

there exists a γ0 ∈ Γ such that F contains the true distribution (i.e. h(y) = f(y, γ0)), then the

Copyright c© 2000 John Wiley & Sons, Ltd. Statist. Med. 2000; 00:1–6
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IMPACT OF MISSPECIFIED RANDOM-EFFECTS DISTRIBUTION IN GLMM 9

maximum likelihood estimator γ̂n of γ0 is consistent and asymptotically normal. Note that in

the GLMM, γ would correspond to the vector containing the parameters ϕ and δ.

Since h is unknown, it is difficult to check whether it belongs to F or not. White [22] derived

that, under general regularity conditions, the maximum likelihood estimator γ̂n will (strongly)

converge to the value of γ, denoted by γ∗, which minimizes the so-called Kullback-Leibler

Information Criterion (KLIC):

I(h : f, γ) = E

{
log

h(Y )

f(Y, γ)

}
, (2)

where the expectation in (2) is taken with respect to the true distribution. Additionally, he

showed that γ̂n is asymptotically normal with mean γ∗. If the model for Y is correctly specified,

then the information criterion will attain its unique minimum at γ∗ = γ0. Of interest now is

whether γ∗ still equals γ0 when the random-effects distribution is misspecified and, if not, it is

relevant to know the magnitude of the difference between γ∗ and γ0. We further study these

issues via simulation.

3.1. Consistency of the ML estimators

In this first simulation study, binary response data were generated using Model (1). This model

includes a binary covariate, zi, denoting the treatment (randomly assigned to 0 or 1 with equal

probability) and a within-cluster covariate tj , with values 0, 1, 2, 4, 6, and 8. For the mean

structure, values close to the estimates in Table I were chosen: β0
0 = −8, β0

1 = 2, and β0
2 = 1.

Further, 9 different random-effects distributions, each with variances σ2

0b = 1, 4, 16, and 32,

were included in the study. These distributions were a mean-zero normal density, a uniform

distribution, an exponential distribution, a chi-square distribution, a lognormal distribution,

a power function distribution, a discrete distribution with equal probability at two support

Copyright c© 2000 John Wiley & Sons, Ltd. Statist. Med. 2000; 00:1–6
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10 S. LITIÈRE, A. ALONSO AND G. MOLENBERGHS

points, and finally both a symmetric and an asymmetric mixture of two normal densities. In

some cases, the distributions were transformed such that the zero mean condition was satisfied,

and the corresponding variances equaled the prespecified value σ2

0b.

The distributions considered here cover a wide range of densities varying from very

symmetric to very skewed; with potentially very heavy tails. Note that on the one hand,

the variances σ2

0b = 16 and 32 of the random effects will help us to investigate scenarios with

variances in the same order of magnitude as the one observed in the case study. On the other

hand, the smaller values considered for σ2

0b should allow us to study the performance of the

maximum likelihood estimators in less extreme settings. In this way, we cover a wide range of

practically relevant situations.

The simulations were performed with 7 different sample sizes of 25, 50, 100, 200, 400, 800,

and 1600 subjects. For each setting, 500 data sets were generated and Model (1) was then

fitted to the generated data assuming normally distributed random effects. All analyses were

carried out using the SAS procedure NLMIXED with adaptive Gaussian quadrature.

Consistency was studied through the evolution of the median maximum likelihood estimates,

over increasing sample sizes. Table II displays the results for σ2

b .

Table II – About here

Table II, as well as all other tables discussed in this manuscript, displays only the results from

the converging analyses. A lack of convergence occurred mainly for small σ2

0b, in combination

with small sample sizes. The proportion of non-converging analyses could be as high as 30%,

when the data were generated using a power function distribution with σ2

0b = 1 and only 25

subjects. However, this rate quickly drops to 7% and less, as of 100 subjects, or when σ2

0b

increased to 4.

Copyright c© 2000 John Wiley & Sons, Ltd. Statist. Med. 2000; 00:1–6
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The results displayed in Table II show that the estimates of the variance component are

severely affected by the misspecification in most settings. In general, substantial bias can occur

even for small variance of the random effects, especially for the power function distribution

and the asymmetric mixture of two normals. Additionally, the direction of the bias can

change depending on the true underlying distribution. For most of the distributions considered

here, the variance component is overestimated. However, in the case of the power function

distribution and the asymmetric mixture, we observe serious underestimation of the variance

of the random effects.

The parameters of the mean structure seem to be less affected by the misspecification. The

median estimates of, for example, the treatment effect are shown in Table III.

Table III – About here

From this table it can be seen that the bias related to the estimation of β1 is generally small

when the variance of the random effects is small. However, as of σ2

0b = 16, bias of 20% and

more can occur, even for relatively big sample sizes of 400 subjects. Given that the estimate

of the variance component is the only tool to study the variability of the true random-effects

distribution, this highly biased estimate makes it difficult to evaluate whether or not problems

can occur in the mean structure as well.

The relative bias of the within-cluster coefficient, i.e., the time effect, remained under 5%

in all scenarios considered (results not shown here). This concurs with results obtained by

Heagerty and Kurland [9] and Chen et al. [7]. The latter argue that, since the estimation of

the treatment effect and the random intercept are subject to between-individual variation, we

could expect misspecification of the random-effects distribution to affect the quality of these

estimates. However, a covariate which changes within subjects, would be roughly orthogonal

Copyright c© 2000 John Wiley & Sons, Ltd. Statist. Med. 2000; 00:1–6
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12 S. LITIÈRE, A. ALONSO AND G. MOLENBERGHS

to between-individual effects and therefore less affected by the misspecification.

Further, to study the extent to which the results obtained from a logistic-normal model

generalize to wider scenarios, we also generated binary responses using the model given by

logit{P (yij = 1|bi)} = β0 + β1zi + β2tj + b0i + b1itj , (3)

which now includes a random slope for time. For the mean structure parameters, we considered

β0
0 = −6, β0

1 = 2, and β0
2 = 1. The random effects were generated from two multivariate

distributions, including a multivariate normal bi ∼ N(0, V ) and a symmetric mixture of two

multivariate normals bi ∼
1

2
N(µ, D) + 1

2
N(−µ, D), where

D =




d d12

d12 d



 .

In the case of the mixture, µ = (4, 4)T , d = 1, 4 and d12 was chosen such that ρ =

corr(b0i, b1i) = 0.5, 0.9. This results in the following overall covariance matrices V =

{σij}i,j=1,2 for bi

V1 =




5 4.5

4.5 5



 , V2 =




5 4.9

4.9 5



 , V3 =




8 6

6 8



 , V4 =




8 7.6

7.6 8



 .

These same covariance matrices were also used to generate the multivariate normal random

effects. The simulations were performed with 50 and 100 subjects. For each setting, 500 data

sets were generated and the model given by (3) was fitted to the generated data under

the assumption of normally distributed random effects. The medians of the corresponding

maximum likelihood estimates are shown in Table IV.

Table IV – About here

Clearly, including a further random effect increased the impact of the misspecification. Even

though the variances used for the random effects in this setting were small, considerable bias
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is observed for all parameters in the mean structure. Interestingly and unlike the results

previously obtained, now the time effect is severely underestimated. Obviously, adding a

random time effect induced a bias in the corresponding fixed effect under misspecification.

Like before, the estimates of the variance components were most affected in this scenario,

where a large bias was observed for all elements of the variance covariance matrix.

We should note that, when the random effects were generated from a mixture, we observed a

high proportion of non-converging analyses (ranging between 57% and 72% of the total of 500

runs). It is also possible that, as a result of the misspecification, in some of the simulations the

procedure to maximize the likelihood had converged to an ill-conditioned maximum, leading

to some extreme estimates. In any case, these results illustrate that the impact of the random-

effects misspecification is even worse in the presence of complicated covariance structures.

3.2. Hypothesis testing

In many situations, data analysts consider test statistics and corresponding p-values to

evaluate, for example, whether or not a drug has a significant influence. Even though

consistency has been studied to some extent in the literature, there does not seem to be much

research done on the behaviour of the test statistics. Therefore, additional simulations with the

logistic-normal model given by (1) were carried out for different values of the treatment effect

β0
1 to investigate the robustness of the inferential procedures. These simulations were performed

for 3 different sample sizes (25, 100, and 400 subjects) and a total of 5 different β0

1
values (0,

0.5, 1, 2, and 5). For each setting, 500 data sets were generated and the proportion of cases

in which the procedure detected a treatment effect different from zero (on a 5% significance

level) was determined. When there is no treatment effect, this proportion corresponds to the

Copyright c© 2000 John Wiley & Sons, Ltd. Statist. Med. 2000; 00:1–6
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14 S. LITIÈRE, A. ALONSO AND G. MOLENBERGHS

type I error; for the other values of β0

1
, this proportion represents the power of the analysis.

The results of these simulations are summarized in Figure 2.

Figure 2 – About here

The display is limited to a few distributions, including the normal, the power function, the

discrete, and the asymmetric mixture of two normals. It is clear from these graphs that

misspecification can severely affect the power of the analysis, depending on the shape and

the variance of the real random-effects distribution. Actually, the power can be seriously

affected even in settings where the random intercept accounts for a small variability. For

example, let us consider in Figure 2 the graphs corresponding to a sample of 100 patients,

where β0
1 = 1. Even with σ2

0b = 1, the power to detect a significant treatment effect can drop

as low as 20% for the power function distribution, whereas for the correctly specified model,

we observed a value around 70%. On the other hand, in some cases, like the power function

distribution and the asymmetric mixture, the misspecification can lead to an increase of the

test’s power. A closer analysis of this issue shows that this phenomenon is associated with

underestimation of the parameter estimators’ variability. Note that both the power function

distribution and the asymmetric mixture considered in our simulations are severely skewed,

which makes us speculate that this increase of power could be related to the skewness of the

underlying random-effects distribution and/or apply to specific alternatives only. Obviously,

this idea is based on empirical evidence only, and further research will be necessary before a

more founded conclusion can be reached.

Interestingly, the Type I error rate (presented in the first panel of Table V) rarely exceeded

the specified 5% level of significance in all the scenarios displayed in Figure 2.

Table V – About here

Copyright c© 2000 John Wiley & Sons, Ltd. Statist. Med. 2000; 00:1–6
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These findings concur with results obtained in Neuhaus et al. [6]. Indeed, these authors showed

for a similar logistic-normal model that when β0

1
= 0, the corresponding maximum likelihood

estimator consistently estimates zero. It is possible to prove that in this situation the type I

error rate will be preserved and therefore, a significant treatment effect could be considered

reliable even though caution may be needed in the interpretation of the point estimates. As

a consequence, we could be fairly confident about the borderline significant treatment effect

observed in the analysis of the schizophrenia data.

However, this does not hold for all parameters in the model. For instance, in an additional

simulation study the binary response variable was generated using Model (1), now with β0

0
= 0

(and β0
1 = 2, β0

2 = 1). The findings of this study can be seen in the second panel of Table V.

Here, we analyze the performance of the Wald test associated with the intercept parameter

β0. The results illustrate that the Type I error rate is severely affected by the misspecification.

Even when the variance of the random intercept is small, e.g., when σ2

0b = 1, the Type I error

rate can be dramatically inflated, up to 16% in one scenario. This suggests that the Type I

error rate could be robust for those parameters in the fixed effect structure which do not have

an associated random effect, and severely affected for the others.

4. ALTERNATIVE APPROACHES

The simulation studies presented in the previous section clearly show the need for alternative

approaches when facing possible random-effects misspecification. In the introduction some

of these approaches were already mentioned. In what follows we introduce and study the

performance of another plausible alternative, the heterogeneity model, which consists of

Copyright c© 2000 John Wiley & Sons, Ltd. Statist. Med. 2000; 00:1–6
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16 S. LITIÈRE, A. ALONSO AND G. MOLENBERGHS

replacing the normal random-effects distribution by a finite mixture of normals.

4.1. The heterogeneity model

The heterogeneity model is an extension of the GLMM, obtained by sampling the random

effects bi from a mixture of k normal distributions with mean vectors µr and covariance

matrix D, i.e., bi ∼
∑k

r=1
πrN(µr, D). The probability for a subject to belong to component

r is πr, with
∑k

r=1
πr = 1. Note that each component has the same covariance matrix D. This

constraint is necessary to avoid unbounded likelihoods [23].

Let π′ = (π1, ..., πk) and γ be the vector containing the remaining parameters, i.e., the

vector ϕ of unknown parameters common to all subjects, as well as all parameters in µr and

D. The joint density function of yi can then be written as fi(yi) =
∑k

r=1
πrfir(yi|γ) where

fir(yi|γ) =

∫
fi(yi|ϕ, bi)φr(bi)dbi.

Note that φr(bi) refers to the multivariate normal with mean µr and covariance matrix D.

Estimation is now based on the maximization of

ℓ(θ|y) =

N∑

i=1

ln

{
k∑

r=1

πrfir(yi|γ)

}
,

where θ′ = (γ′, π′), using the Expectation-Maximization (EM) algorithm described in Laird

(1978).

In principle many distributions can be approximated with high precision by finite mixtures

of normal densities what makes this approach theoretically appealing. Still, little research has

been done to explore the actual performance of this model in practice.
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4.2. The heterogeneity model: a simulation study

To further explore the potential of this model we consider again the generated data, described

in Section 3.1, when the random intercept was sampled from a mean zero normal density,

a uniform distribution, a lognormal distribution, a power function distribution and an

asymmetric mixture of two normal densities. We limited this study to 50, 100 and 200 subjects,

and to 100 data sets per setting. Now, Model (1) was fitted to the generated data but assuming

a mixture of two normals for the random effects.

The first panel of Table VI shows the median maximum likelihood estimates β̂1 obtained

from fitting a two-component mixture.

Table VI – About here

When comparing these estimates with the estimates of the GLMM displayed in Table III,

we observe that the difference between the two models is negligible when the variance of the

random effect is small. However, as the variance increases, the heterogeneity model seems to

perform better in the estimation of this parameter, especially when the sample size is small.

Also in these simulations (results not included here) we found that the heterogeneity model is

robust to the random-effects misspecification when estimating the time effect. The relative bias

remained under 5% in all scenarios considered, even for σ2

0b = 32. However, we still observed

substantial bias when estimating the variance of the random effects, especially for the lognormal

and the power function distribution (see the second panel in Table VI). As expected, using the

heterogeneity model considerably improved the bias in the case of the asymmetric mixture of

normals. Nevertheless, the variance of the random effects is still considerably underestimated.

Further, observe that the model appears to be less efficient than the GLMM when the random
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effects are generated from a normal distribution.

Additional simulations have shown that, as in the classical GLMM, the Type I error

rate associated with the treatment effect is not affected by the choice of the random-effects

distribution. To study whether the Type I error rate associated with β0 improves using the

heterogeneity model, we repeated the simulations described in Section 3.2, with random effects

generated from a mean zero normal density, a uniform distribution, a lognormal distribution, a

power function distribution and an asymmetric mixture of two normal densities. We considered

50, 100 and 200 subjects, and for each of these settings 100 data sets were generated. The results

of these analyses are shown in Table VII.

Table VII – About here

In this table we study the performance of the Wald test associated with β0. The results clearly

illustrate that here, like before, the Type I error rate is severely affected by the random-effects

misspecification when GLMM are used, however, it remains below the specified significance

level when the data are analyzed using the heterogeneity model.

Although we cannot provide a clear indication that the model is fully robust against

misspecification, we have seen from the simulations that the heterogeneity model tends to

perform slightly or considerably better, depending on the setting, than the generalized linear

mixed model, especially for small sample sizes. Further, due to computational and time

constraints, it is difficult to assess the full power of the heterogeneity model. For instance,

we have limited the simulations to two components with different means but equal variances.

One could wonder if considering two or more components with equal means and different

variances for the random effects could significantly improve the performance in some cases.

Therefore, we believe the heterogeneity model is indeed worthy of consideration.
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4.3. A sensitivity analysis

The previous studies seem to lead to two relevant remarks: i) misspecification of the random

effects distribution can induce a large bias in the estimation of the variance components as well

as a severe bias in the estimation of the mean structure in GLMM, ii) more robust alternatives

like the heterogeneity model can represent a significant improvement in some scenarios but

can still suffer from severe bias in others. Therefore, in this section we propose to include these

alternatives within a sensitivity analysis framework, considering different distributions for the

random effects. In the case of our example, this means that we will extend the analysis with

some of the distributions used in the simulations, including the exponential, the chi-square,

the uniform and the lognormal. It is important to point out that recent research has shown

that such analysis can easily be carried out in standard statistical packages like SAS procedure

NLMIXED using probability integral transformations [24]. We further consider a heterogeneity

model with two and three components and a nonparametric approach using two and three

support points. The corresponding parameter estimates are displayed in Table I. Note that the

points estimates obtained from the models, considering unimodal non-normal random-effects

distributions, are similar, especially if we exclude the ones that used the uniform and lognormal

distributions and produced the highest AIC values. The inferential results were similar in all

the cases as well. For instance, the treatment effect was significant in all the models except

for the ones with the lognormal and exponential random effects which produced borderline p-

values of 0.054 and 0.094 respectively. The variance of the random effect was rather large in all

the scenarios considered, with a median value around 19. Therefore, all the models consistently

hint on a very strong within-subject association. We could use the AIC to find the best fitting

model, which in this case is the logistic-normal model.
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Further, the task of choosing the number of components k in the heterogeneity model

is not an easy one. One approach consists in fitting models with increasing numbers of

components, and comparing them using likelihood ratio tests. For instance, we can consider

testing H0 : k = 1 versus HA : k = 2. However, this null hypothesis can also be expressed as

H0 : π2 = 0, which is clearly on the boundary of the parameter space. In this case, bootstrap

simulations are required to derive the distribution of the likelihood ratio test statistic under

the null [23]. An alternative ad-hoc approach consists in increasing the number of components

k until some of the subpopulations reflect very small weights πr, or until some subpopulations

coincide [4]. In this manuscript, we have opted for the AIC to select the best fitting model.

This resulted, again, in a preference for the one-component logistic-normal model.

As stated before, when the random-effects distribution is not of primarily interest, one

can resort to a nonparametric approach. In this case the random-effects distribution can be

approximated by a discrete distribution with a finite number of support points. The results of

this analysis are shown in the final part of Table I. The estimates stabilized with 3 support

points, and with this model we obtained values very close to the ones from the classical

GLMM. For instance, the estimate of the treatment effect was close to the one obtained with

the logistic-normal model and it was significantly different from zero. As a conclusion of this

analysis, we can be rather confident about the results obtained from the logistic-normal model,

and about the presence of a moderate treatment effect on the CGI scores of the schizophrenic

patients.

Copyright c© 2000 John Wiley & Sons, Ltd. Statist. Med. 2000; 00:1–6

Prepared using simauth.cls



IMPACT OF MISSPECIFIED RANDOM-EFFECTS DISTRIBUTION IN GLMM 21

5. CONCLUDING REMARKS

A commonly encountered perception among data analysts is that the choice of the random-

effects distribution is not crucial for the quality of the inferences related with model parameters

in GLMM. However, this is not a generally valid truth. Using a logistic-normal model we

found that, the maximum likelihood estimators are no longer consistent. The bias is generally

negligible for the mean-structure parameters, as far as the variance of the random effects is

sufficiently small. This was the case for σ2

0b = 1 and 4 in our simulations. However, caution is

necessary when variances of 16 or higher are obtained. Note that large random-effects variances

are not exceptional in clinical trials where little variability in the response is expected, for

instance, when a placebo control group is used, whereas a more variable outcome pattern is

expected in the treated group. In such a scenario, the mean parameters, including the treatment

effect parameters, could be subject to considerable bias under misspecification. When more

than one random effect is considered serious bias can appear even in the small variance settings.

A cautionary remark is in place regarding the magnitude of the variances. While one might

want to consider these in relative terms, against the background of measurement error, the

presence of a mean-variance link, and hence a measurement error function that varies with

covariate values, renders such a relative presentation cumbersome. Moreover, since the residual

variance function is bounded between 0 and 0.25 in the binary case, we prefer to retain an

absolute presentation.

On the other hand, the power and Type I error rate can be affected in important ways by

such misspecification, regardless the variance of the random effects. We did, however, observe

that the type I error seems to be maintained for some parameters in the mean structure like,

for example, the treatment effect in the schizophrenia data. This would imply that we could be
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confident about the presence of the treatment effect in this case, however, we should be careful

not to put too much emphasis on the estimated size of the effect. We speculate that in general

the Type I error rate could be maintained for those parameters in the mean structure that

do not have an associated random effect. However, additional research is needed to determine

whether this robustness holds.

Finally, note that the estimates of the variance components are always heavily biased, even

for small variances of the underlying random-effects distribution. Given that these estimates

are the only available tool to study the variability of the true distribution, the observed

bias can make it difficult to evaluate whether problems in the mean structure occur. This

bias in the variance components can also have severe consequences in applications in which

the main interest is in the association structure. This is the case, for instance, in fields like

surrogate marker validation, evaluation of the reliability of rating scales, or studies to analyze

the criterion and predictive validity of psychiatric scales. It could also provoke misleading

results when we want to predict the subject-specific trajectories or use the subject-specific

parameters for classification.

In the light of our findings, it is therefore clear that research efforts should be geared towards

models robust against this type of misspecification. The heterogeneity model could be, in

certain circumstances, a plausible choice, especially when dealing with small sample sizes.

However, our simulations showed that the model can be unstable and convergency can heavily

depend on initial values. Even though the heterogeneity model performs slightly better than

the GLMM, we still observed serious bias under certain model misspecifications.

Alternatively, we proposed to incorporate the heterogeneity model into a more general

sensitivity analysis, considering different random-effects distributions and comparing the point
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estimates and inferences obtained. Note that our sensitivity analysis is not a robust alternative

to the classical GLMM, but rather an alternative to the lack of robustness of the GLMM.

Indeed, given that we consider different choices for the random-effects distribution, one would

expect the outcome to be optimal when the true random-effects distribution is very similar

to one of these distributions. The idea is then to see how sensitive are our conclusions with

respect to the distributional assumptions for the random effects. Similar results obtained under

different assumptions will increase our confidence, different ones will increase our caution.

Therefore, simulation studies are not of great value to evaluate the performance of such an

approach.

In this work we have confined attention to the impact of misspecifying the random-effects

distribution. However, misspecifications of other model aspects, such as the choice of link

function, omitting an important covariate in the mean structure, using a random-intercept

model when the random-effects distribution depends on measured covariates, and so forth,

deserve a great deal of research attention too. It is becoming clear that there probably will not

be a general easy answer on how to deal with model misspecification. Perhaps in some specific

situations, good alternative models can be found by using e.g., random-effects distributions

conjugate to the distribution of the outcome [25]. Still, an important topic for future research

will be the development of diagnostic tools for detecting the lack of consistency. These tools,

together with the ability to consider several random-effects distributions, would allow for a

useful and, arguably, necessary sensitivity analysis.
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Table I. Case study - parameter estimates and standard errors using a logistic random-intercept model
with the random effect (RE) assumed to follow a normal distribution, a mixture of 2 or 3 normals,
a chi-square, an exponential, a uniform, a lognormal, and finally a nonparametric (NP) distribution

with 2 or 3 support points.

Model bβ0 (s.e.) bβ1 (s.e.) bβ2 (s.e.) bσ2

b (s.e.) AIC

GLMM -7.37 (1.18) 2.14 (1.08) 0.65 (0.096) 21.01 (6.81) 391.9

RE, χ2 -6.99 (1.18) 1.92 (0.88) 0.66 (0.096) 18.20 (6.07) 392.5
RE, exp. -6.35 (1.00) 1.70 (0.88) 0.64 (0.098) 10.71 (2.76) 397.3
RE, uni. -5.47 (0.75) 1.38 (0.64) 0.56 (0.082) 9.54 (1.93) 408.3
RE, logn. -5.17 (0.78) 1.20 (0.71) 0.57 (0.086) 19.34 (7.52) 409.6

Mixture, k = 2 -7.88 (1.23) 1.99 (0.94) 0.67 (0.096) 28.03 (8.66) 395.1
Mixture, k = 3 -7.77 (4.28) 2.70 (0.85) 0.68 (0.094) 20.20 (31.6) 396.0

NP, k = 2 -4.84 (0.59) 1.28 (0.33) 0.52 (0.085) - -
NP, k = 3 -5.67 (0.72) 2.06 (0.54) 0.59 (0.097) - -



Table II. Median of the maximum likelihood estimates bσ2

b obtained from fitting Model (1) to the data
generated using the different random-effects distributions, sample sizes and values for σ2

0b.

n σ2

0b = 1 σ2

0b = 4 σ2

0b = 16 σ2

0b = 32 σ2

0b = 1 σ2

0b = 4 σ2

0b = 16 σ2

0b = 32

Normal distribution Uniform distribution

25 1.34 3.43 14.70 30.38 1.38 3.86 16.51 39.84
50 1.05 3.85 15.68 31.99 1.02 4.12 16.79 41.61
100 1.01 3.74 15.65 32.52 0.98 4.36 17.16 41.66
200 0.98 3.98 15.72 31.45 0.91 4.25 17.29 41.37
400 1.00 3.89 15.83 32.38 0.94 4.21 17.12 42.06
800 1.00 4.03 15.76 32.11 0.97 4.21 17.19 40.95
1600 0.99 3.98 15.93 32.41 0.96 4.22 17.05 40.62

Exponential distribution Chi-square distribution

25 1.77 5.19 20.36 46.93 1.85 5.01 18.18 37.48
50 1.22 5.12 21.20 46.75 1.42 5.18 19.01 37.88
100 1.33 5.28 21.78 45.45 1.36 5.26 20.12 38.54
200 1.21 5.39 21.53 45.08 1.36 5.39 20.60 37.27
400 1.29 5.44 21.69 46.25 1.45 5.53 20.20 38.39
800 1.32 5.50 21.44 45.25 1.46 5.50 20.38 38.17
1600 1.30 5.47 21.67 44.62 1.46 5.47 20.43 37.90

Lognormal distribution Power function distribution

25 1.39 3.80 9.34 14.11 1.03 2.33 6.27 10.96
50 1.31 4.22 9.36 13.85 0.75 2.03 6.15 11.21
100 1.29 4.07 10.00 13.91 0.68 1.90 6.22 11.93
200 1.28 4.30 9.56 13.85 0.69 1.97 6.18 11.58
400 1.30 4.25 9.69 14.23 0.66 1.98 6.18 11.50
800 1.32 4.40 9.83 14.15 0.67 2.01 6.22 11.61
1600 1.34 4.35 9.81 14.04 0.66 1.99 6.21 11.55

Discrete distribution Symmetric mixture of two normals

25 1.10 4.17 19.94 37.16 1.23 3.89 17.66 41.80
50 1.03 4.27 19.40 38.61 0.96 4.34 18.22 41.06
100 1.04 4.31 20.08 39.34 0.92 4.00 18.86 40.09
200 0.98 4.33 19.79 39.22 0.99 4.22 18.44 40.85
400 0.98 4.33 19.87 40.16 1.00 4.23 18.91 40.71
800 1.00 4.40 19.81 39.88 0.98 4.22 18.50 40.46
1600 1.01 4.39 19.82 39.61 1.01 4.19 18.62 40.46

Asymmetric mixture of two normals

25 1.14 2.17 5.99 8.00
50 1.00 2.16 5.93 8.36
100 0.81 2.10 6.10 8.39
200 0.80 2.11 6.31 8.43
400 0.79 2.12 6.24 8.32
800 0.81 2.16 6.32 8.35
1600 0.79 2.16 6.26 8.36



Table III. Median of the maximum likelihood estimates bβ1 obtained from fitting Model (1) to the data
generated using the different random-effects distributions, sample sizes and values for σ2

0b (note that
β0

1 = 2).

n σ2

0b = 1 σ2

0b = 4 σ2

0b = 16 σ2

0b = 32 σ2

0b = 1 σ2

0b = 4 σ2

0b = 16 σ2

0b = 32

Normal distribution Uniform distribution

25 2.15 2.04 2.10 2.11 2.43 2.32 2.92 0.79
50 2.12 2.06 2.10 2.11 2.05 1.91 1.96 2.57
100 2.01 2.03 2.04 2.04 1.93 1.79 1.76 2.33
200 2.02 2.05 2.03 1.98 1.98 1.90 1.95 2.38
400 2.01 1.97 1.98 2.02 1.99 1.90 1.87 1.86
800 2.01 2.01 1.98 2.02 1.99 1.97 1.92 1.85
1600 1.99 1.99 1.99 2.02 1.98 1.93 1.86 1.83

Exponential distribution Chi-square distribution

25 2.33 2.47 2.65 4.36 2.40 2.66 1.96 2.31
50 2.05 2.07 1.97 2.96 2.17 2.26 2.17 2.43
100 2.04 2.14 2.29 2.64 2.13 2.21 2.08 2.09
200 2.06 2.20 2.42 2.15 2.10 2.21 2.16 2.11
400 2.12 2.23 2.53 2.89 2.09 2.24 2.12 2.05
800 2.06 2.20 2.36 2.61 2.09 2.22 2.10 2.09
1600 2.05 2.19 2.47 2.60 2.10 2.25 2.13 2.08

Lognormal distribution Power function distribution

25 2.24 2.34 2.48 2.57 2.12 1.89 1.58 1.34
50 2.07 2.26 2.46 2.64 2.04 1.95 1.77 1.93
100 2.10 2.20 2.46 2.60 2.00 1.91 1.74 1.81
200 2.05 2.20 2.37 2.60 1.97 1.90 1.75 1.97
400 2.06 2.20 2.38 2.56 1.95 1.84 1.64 1.63
800 2.08 2.23 2.42 2.55 1.95 1.86 1.73 1.71
1600 2.08 2.21 2.39 2.55 1.94 1.84 1.68 1.70

Discrete distribution Symmetric mixture of two normals

25 2.25 2.18 1.81 2.88 2.19 1.86 1.98 1.93
50 2.09 1.94 1.55 1.36 2.05 2.00 1.82 1.90
100 2.07 1.98 1.64 1.69 2.02 1.99 1.73 2.01
200 2.03 2.03 1.75 1.34 2.03 1.96 1.72 1.91
400 2.07 2.12 1.99 2.04 2.02 1.95 1.72 1.93
800 2.04 2.04 1.79 1.90 1.98 1.96 1.79 1.89
1600 2.07 2.07 1.89 1.52 2.00 1.96 1.76 1.92

Asymmetric mixture of two normals

25 2.09 2.11 1.78 1.67
50 2.10 1.92 1.79 1.78
100 1.97 1.94 1.72 1.78
200 1.97 1.92 1.80 1.70
400 1.97 1.92 1.80 1.70
800 1.97 1.92 1.76 1.72
1600 1.96 1.93 1.76 1.70



Table IV. Median of the maximum likelihood estimates obtained from fitting Model (3) to the data
with random effects generated from a multivariate normal and a symmetric mixture of two multivariate

normal distributions.

Real Normal Mixture

value V n = 50 n = 100 n = 50 n = 100

Fixed effects

β0 -6 V1 -6.45 -6.14 -10.34 -10.52
V2 -6.34 -6.33 -9.76 -9.28
V3 -6.46 -6.19 -9.65 -9.37
V4 -6.71 -6.37 -10.06 -9.49

β1 2 V1 2.09 2.04 3.27 2.52
V2 2.10 2.09 3.19 2.43
V3 2.03 2.10 3.17 2.04
V4 2.11 2.01 3.69 2.73

β2 1 V1 1.04 1.04 -0.63 -0.13
V2 0.99 1.02 -0.14 -0.25
V3 0.98 0.88 -0.09 0.15
V4 0.99 0.94 -0.23 0.03

Variance structure

σ11 5 V1 4.98 5.00 48.60 57.38
V2 5.32 5.89 45.43 49.18

8 V3 8.63 8.12 41.97 49.32
V4 8.87 8.32 49.16 59.76

σ22 5 V1 6.84 5.84 967.80 500.26
V2 6.41 6.37 969.68 597.18

8 V3 9.23 8.21 912.06 415.04
V4 11.17 10.20 962.09 453.80

σ12 4.5 V1 4.20 3.64 189.05 125.19
4.9 V2 4.10 4.82 174.16 134.14
6 V3 6.15 5.60 167.51 115.42

7.6 V4 7.76 7.36 176.39 131.02



Table V. Type I error for detecting a significant treatment effect when β0

1 = 0, and a significant
intercept when β0

0 = 0 in the logistic random-intercept Model (1). Values for which the lower bound
of the corresponding 95% confidence interval was larger than 0.05 are highlighted.

β0

1 = 0 β0

0 = 0

Distribution n σ2

0b = 1 σ2

0b = 4 σ2

0b = 16 σ2

0b = 32 σ2

0b = 1 σ2

0b = 4 σ2

0b = 16 σ2

0b = 32

Normal 25 0.012 0.025 0.029 0.025 0.014 0.035 0.016 0.023
100 0.041 0.052 0.050 0.026 0.042 0.048 0.040 0.034
400 0.050 0.046 0.052 0.058 0.060 0.046 0.054 0.050

Power 25 0.008 0.023 0.036 0.016 0.019 0.031 0.028 0.022
function 100 0.041 0.040 0.050 0.028 0.043 0.164 0.320 0.370

400 0.046 0.064 0.076 0.050 0.158 0.682 0.946 0.962

Discrete 25 0.023 0.012 0.014 0.004 0.021 0.046 0.087 0.073
100 0.032 0.016 0.084 0.018 0.040 0.060 0.136 0.156

400 0.048 0.080 0.024 0.088 0.080 0.252 0.594 0.604

Asymmetric 25 0.014 0.014 0.018 0.038 0.015 0.025 0.011 0.045
mixture 100 0.053 0.066 0.036 0.038 0.030 0.328 0.408 0.886

400 0.053 0.057 0.036 0.032 0.076 0.924 0.986 1.000



Table VI. Median of the maximum likelihood estimates bβ1 and bσ2

b obtained from fitting Model (1) with
the random intercept assumed to follow a mixture of two normal distributions, to the data generated

using the different random-effects distributions, sample sizes and values for σ2

0b.bβ1 bσ2

b

n σ2

0b = 4 σ2

0b = 16 σ2

0b = 32 σ2

0b = 4 σ2

0b = 16 σ2

0b = 32

Normal 50 2.02 2.06 1.56 3.92 14.93 24.50
100 1.97 1.94 1.72 3.80 12.96 25.27
200 2.02 1.86 1.95 3.68 14.32 27.17

Uniform 50 2.20 1.99 2.64 4.98 15.65 38.26
100 2.21 2.16 2.36 4.02 15.12 33.92
200 2.15 1.99 2.38 4.50 14.53 35.53

Lognormal 50 2.19 2.29 2.03 3.53 7.15 9.87
100 2.15 2.16 2.11 3.50 6.89 9.21
200 2.13 1.98 2.13 3.91 6.70 9.45

Power 50 2.21 2.33 2.55 3.33 8.49 13.91
function 100 2.13 2.08 2.17 3.16 6.92 12.07

200 1.99 2.00 2.17 2.79 7.46 13.60

Asymmetric 50 2.16 2.09 1.92 3.50 11.51 14.96
mixture 100 2.15 2.05 2.05 3.04 12.36 21.08

200 1.99 1.94 2.05 2.64 11.92 21.24



Table VII. Type I error of the heterogeneity and the GLMM for detecting a significant intercept when
β0

0 = 0. Values for which the lower bound of the corresponding 95% confidence interval was larger than
0.05 are highlighted.

Heterogeneity model GLMM

Distribution n σ2

0b = 4 σ2

0b = 16 σ2

0b = 32 σ2

0b = 4 σ2

0b = 16 σ2

0b = 32

Normal 50 0.000 0.021 0.095 0.040 0.000 0.070
100 0.000 0.020 0.030 0.080 0.040 0.040
200 0.000 0.000 0.010 0.060 0.030 0.040

Uniform 50 0.000 0.011 0.079 0.000 0.030 0.020
100 0.000 0.010 0.020 0.060 0.030 0.080
200 0.000 0.030 0.040 0.050 0.040 0.060

Lognormal 50 0.000 0.000 0.019 0.160 0.440 0.620

100 0.000 0.000 0.028 0.180 0.540 0.880

200 0.000 0.000 0.039 0.360 0.930 1.000

Power 50 0.000 0.000 0.084 0.050 0.160 0.120

function 100 0.033 0.010 0.010 0.060 0.250 0.320

200 0.010 0.000 0.000 0.290 0.580 0.760

Asymmetric 50 0.000 0.000 0.000 0.160 0.113 0.429

mixture 100 0.026 0.010 0.025 0.370 0.370 0.910

200 0.000 0.040 0.011 0.660 0.790 1.000
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Figure 1. Evolution of the observed and fitted (using Model (1)) probabilities to be classified as a
normal to mildly ill patient by treatment group. Here Z = 1 (0) denotes the treatment (control)

group.
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Figure 2. Power of the analysis of the logistic random-effects Model (1) to detect a significant treatment
effect over a range of possible β0

1 values, for 4 random-effects distributions: normal (solid line), power
function (dotted line), discrete (dash-dotted line) and asymmetric mixture (dashed line).


