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Abstract 

Traffic accident data are often heterogeneous, which can cause certain relationships to remain 

hidden. Therefore, traffic accident analysis is often performed on a small subset of traffic 

accidents or several models are built for various traffic accident types. In this paper, we 

examine the effectiveness of a clustering technique, i.e. latent class clustering, for identifying 

homogenous traffic accident types. Firstly, a heterogeneous traffic accident data set is 

segmented in seven clusters, which are translated into seven traffic accident types. Secondly, 

injury analysis is performed for each cluster. The results of these cluster-based analyses are 

compared with the results of a full-data analysis. This shows that applying latent class 

clustering as a preliminary analysis can reveal hidden relationships and can help the domain 

expert or traffic safety researcher to segment traffic accidents.  
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1. Introduction 

In order to improve traffic safety, traffic accidents need to be analyzed to identify possible 

risk factors and their effects on injury severity levels. Because in general traffic accident data 

are heterogeneous, researchers often try to reduce this heterogeneity. A common approach is 

to focus on a very specific traffic accident type. Examples are Bédard et al. (2002) who focus 

on single-vehicle crashes with fixed objects in their analysis, Zhang et al. (2000) investigating 

older drivers involved in injury motor vehicle crashes on public roads, Zajac and Ivan’s 

research (2003) which focuses on pedestrians and several other studies which focus on a 

specific vehicle type such as sport utility vehicles (Ulfarsson and Mannering, 2004) or 

motorcycles (Shankar and Mannering, 1996; Quddus et al., 2002).  

Other authors build separate models per traffic accident type (Valent et al., 2002; Yau, 2004; 

Chang and Mannering, 1999; Lee and Mannering; 2000; Ulfarsson and Mannering, 2004; 

Islam and Mannering, 2006; Carson and Mannering, 2001; Savolainen and Mannering, 2007). 

Analyzing the results of these separate models, we can discern three different situations where 

data heterogeneity can produce incorrect conclusions. Firstly, data heterogeneity can cause 

certain accident factors to remain hidden. Valent et al. (2002) found that Sundays and 

holidays have an increased injury risk for truck accidents. However, analyzing all traffic 

accidents together, Sundays and holidays remained hidden as an increased risk factor. 

Furthermore, Yau (2004) confirmed that the effects of risk factors may be obscured when 

combining the accident data from various vehicle categories and suggested to segment traffic 

accident data on vehicle type. Secondly, building separate models for different traffic accident 

types sometimes show how the effect of a risk factor on the injury outcome differs in 

magnitude between different traffic accident types. Islam and Mannering (2006) found that 

“driving without restraints, falling asleep, and overturned/rollover all resulted in an increased 

likelihood of injury for older females – more so than their male counterparts”. Ulfarsson and 
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Mannering (2004) concluded in their work that there are significant differences in magnitude 

between males and females with regard to how various factors affect injury severity. Thirdly, 

factors affecting injury severity can differ in direction between different traffic accident types. 

Ulfarsson and Mannering (2004) found that male drivers of vehicles striking a barrier or 

guardrail experienced an increase in probability of less severity while female drivers 

experienced an increase in probability of greater severity. Sometimes building separate 

models for different traffic accident types shows that certain risk factors are not statistically 

significant for all traffic accident types. However, as Ulfarsson and Mannering (2004) 

mentioned, an insignificant variable in one model can simply be caused by a lack of 

observations. Therefore, one has to be careful to conclude that a factor has no significant 

influence on the injury outcome for a specific traffic accident type.  

Most often, the segmentation of traffic accident data is based on expert domain knowledge, 

methodological decisions or the wish to study a specific problem. Although expert knowledge 

can lead to a workable segmentation of traffic accident data, it does not guarantee that each 

segment consists of a homogenous group of traffic accidents. Therefore, traffic accident 

analysis could benefit from a data analysis technique which aids in the process of traffic 

accident segmentation. 

Such techniques can be found within the domain of data mining, which can be defined as the 

nontrivial process of identifying valid, novel, potentially useful, and ultimately 

understandable patterns in large amounts of data (Fayyad et al., 1996). From a statistical point 

of view, data mining can also be considered as a computer automated exploratory data 

analysis of (usually) large complex data sets (Friedman, 1997). However, in contrast with 

statistics, data mining pays less attention to the large-scale asymptotic properties of its 

inferences and more to the general philosophy of “learning”, including consideration of the 

complexity of models and the computations they require (Hosking et al., 1997). Recently, 
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several data mining techniques have found their way into traffic safety research, such as rule 

induction (Kavsek et al., 2002), frequent item sets (Geurts et al., 2005), artificial neural 

networks (Mussone et al., 1999) and CART, i.e. classification and regression trees (Chang 

and Wang, 2006). 

Depending on the objectives of the research, two major categories of data mining can be 

discerned (Berry and Linoff, 1997): predictive and descriptive techniques. For traffic accident 

segmentation, we opted for the descriptive data mining technique of cluster analysis, which 

divides heterogeneous data into several homogenous classes or clusters. The objective of this 

study is to examine the effectiveness of cluster analysis as a technique for identifying 

homogenous traffic accident types and to evaluate if it allows subsequent traffic accident 

analysis to reveal new information. 

 

2. Methodology 

Cluster analysis seeks to separate data elements into groups or clusters such that both the 

homogeneity of elements within the clusters and the heterogeneity between clusters are 

maximized (Hair et al., 1998). This technique is an unsupervised learning algorithm because 

the true number of clusters as well as their form are unknown (Vermunt and Magidson, 2002). 

As Xu and Wunsch (2005) mention in their review paper on clustering algorithms, cluster 

analysis has been applied in a wide variety of fields, ranging from engineering (machine 

learning, artificial intelligence, pattern recognition, mechanical engineering, electrical 

engineering), computer sciences (web mining, spatial database analysis, textual document 

collection, image segmentation), life and medical sciences (genetics, biology, microbiology, 

paleontology, psychiatry, clinic, pathology), to earth sciences (geography, geology, remote 

sensing), social sciences (sociology, psychology, archeology, education), and economics 

 4



(marketing, business) (Everitt et al., 2001, Hartigan, 1975, Green, 2004; Arabie, 1994; 

Moustaki and Papageorgiou, 2005; Jiang et al., 2004).  

In its most common form, cluster analysis is based on heuristics which try to maximize the 

similarity between in-cluster elements and the dissimilarity between inter-cluster elements 

(Fraley and Raftery, 2002). These similarity-based clustering techniques use a specific 

distance function for elements with continuous features and similarity measures for elements 

with qualitative features. For elements consisting of both continuous and qualitative features, 

a mapping into the interval (0,1) can be applied such that a distance measure can be used. 

Among the similarity-based techniques, two major approaches can be discerned, i.e. the 

hierarchical approach (e.g. Ward’s method, single linkage method) and the partitional 

approach (e.g. K-means). Although extensive research has been done in this field of heuristic-

based cluster analysis, the statistical properties of these methods are generally unknown 

(Fraley and Raftery, 2002), whereas the statistical properties of probability model based 

clustering techniques (Bock, 1996; Fraley and Raftery, 2002) are better understood.  

This second type of clustering is sometimes called mixture densities-based clustering (Xu and 

Wunsch, 2005), finite mixture models (Fraley and Raftery, 2002) or latent class models 

(Moustaki and Papageorgiou, 2005; Vermunt and Magidson, 2002). In this probabilistic point 

of view, every cluster has a different underlying probability distribution from which its data 

elements are generated. When the distribution functions are known, the problem of finding 

the clusters reduces to a parameter estimation problem. Given the data elements Y1, … , Yn, 

each described by a set of features (y1, … , ym), the prior probability P(z) for cluster Cz with z 

= 1 , … , K and the conditional multivariate probability density ),( zzCYp θ , where zθ  is the 

unknown parameter vector, the mixture probability density for the whole data set can be 

expressed as 
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Following the maximum likelihood approach, the unknown parameter vector is often 

estimated by means of the expectation-maximization algorithm. Outliers are handled by 

adding one or more classes, representing a different multivariate distribution for outliers 

(Fraley and Raftery, 2002). Typically if a small cluster appears which is hard to profile by 

means of the cluster-dependent distributions, one has found a group of outliers. Other 

possibilities to handle outliers are by using exploratory analysis in advance (Moustaki and 

Papageorgiou, 2005). 

Finite mixture models have been implemented in different software packages, such as 

MCLUST, GMDD, AutoClass, Multimix, EMMX, SNOB (Xu and Wunsch, 2005) and Latent 

Gold. All these software packages use the finite mixture model expressed by equation 1, but 

differ in regard to the implemented algorithm and probability distributions for ),( zzCYp θ . 

For this research, we selected the model-based clustering technique implemented by the 

software package Latent Gold. The remainder of this section will focus on the model-based 

clustering algorithm as implemented by this particular piece of software. For a more complete 

discussion and review of existing clustering techniques, the interested reader is referred to 

some classical texts as Gordon (1999) or Kaufman and Rousseeuw (2005) and the elaborated 

survey paper by Xu and Wunsch (2005). It should be noted that the goal of this paper is to 

investigate whether clustering techniques can be used to reduce traffic accident heterogeneity. 

Our choice for LCC is merely based on advantages held by this technique which will be 

discussed infra and which makes it an appropriate clustering method for this type of research. 
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Latent Gold implements the aforementioned finite mixture model, but allows the user to make 

the assumption that the variables yj, describing the data elements Yi are independent within 

each clusters. This assumption greatly reduces the parametric complexity of the model and 

allows mixing descriptive variables yj of different types (e.g. categorical and continuous) 

easily. We can now rewrite the mixture probability density for the whole data set as 
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Different probability density functions can be used in Latent Gold. If the descriptive feature is 

continuous, a normal Gaussian distribution is used, if the descriptive variable is nominal, a 

multinomial distribution is selected, for an ordinal variable,  an adjacent-category ordinal 

logistic regression model is applied, while the Poisson distribution is used for count variables 

(Vermunt and Magidson, 2005). After estimation of the parameter vector θ , the underlying 

statistical model assigns a set of posterior probabilities pik of belonging to cluster Ck to each 

data element Yi. This implies that a traffic accident can belong to a cluster of traffic accidents 

with pedestrians involved with 40% probability and to a cluster of traffic accidents on a 

crossroad with 60% probability. In this regard, LCC resembles fuzzy clustering (Höppner et 

al., 1999). The estimated underlying statistical model also allows calculating the cluster 

probabilities for new cases. 

Furthermore, compared with traditional distance-based clustering techniques, LCC holds 

other advantages which makes it appropriate for clustering traffic accident data. Firstly, 

contrary to techniques such as K-means or hierarchical clustering algorithms, no distance 

measure has to be selected and normalization of the data doesn’t have any effect on the final 
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clusters (Vermunt and Magidson, 2002; Hair et al., 1998). Secondly, in contrast to 

hierarchical clustering techniques, LCC doesn’t have large memory demands, allowing it to 

build models from large datasets (Hair et al., 1998, Brijs, 2002). Thirdly, unlike K-means 

algorithms, the LCC technique provides several statistical criteria to choose the number of 

clusters, such as the information criteria BIC, AIC and CAIC, which take the model’s 

parsimony into account and are based on the model’s likelihood (Vermunt and Magidson, 

2002). Finally , LCC allows the researcher to easily include variables of different scales 

(nominal, ordinal, count, continuous) (Vermunt and Magidson, 2002, Brijs, 2002).  

3. Data 

Belgium is a small and mainly urbanized country with 10.3 million inhabitants on 30 528km². 

Because large disparities exist in terms of urbanization and population distribution within the 

country (Mérenne et al., 1997), our analysis was limited to the Brussels Capital region. This 

administrative region, which comprises nineteen cities and municipalities, among which the 

Belgian capital city, covers an area of 161.4km² and counts almost one million inhabitants. 

Furthermore, the Brussels Capital region covers 1 881 kilometers road which accounted for 

3.18 billion vehicle kilometers traveled in 2005 (FPS Economy – Directorate-general 

Statistics Belgium; FEBIAC). 

In Belgium, every traffic accident with casualties is officially registered by a police officer at 

the traffic accident site by means of the “Analysis Form for Traffic Accidents with 

casualties”. These data are collected, digitized and made public by the Directorate-general 

Statistics Belgium. From these data, we retrieved all two road users traffic accidents for the 

period between 1997 and 1999. This period should be short enough to embank structural 

changes in road and traffic conditions, but still long enough to limit any biased effects for 

random fluctuations.  

 8



The final dataset contains 29 variables, describing  accident, vehicle, road user and 

environmental related aspects of the traffic accident. Table 1 gives an overview of all traffic 

accident variables. Some of these variables were measured at the traffic accident level, while 

others were measured at the road user level (both first and second). Traffic accidents with 

pedestrian or motorcyclists/bicyclists involved were recoded, such that the pedestrian or 

motorcyclists/bicyclists were always coded as the first road user. In total, the final dataset 

contains 4028 traffic accidents. 

4. Results 

4.1 Cluster analysis 

In this study, we entered all variables mentioned in table 1 into the cluster analysis, except for 

the variables consequence and detrimcounts. These were excluded because LCC creates 

clusters such that all variables are independent from each other within each cluster. However, 

we do not want consequence or detrimcount to be locally independent because they are 

possible dependent variables in subsequent injury risk analysis. 

The BIC, AIC and CAIC were used to choose the number of clusters in the final model. These 

statistical figures measure the model fit and simultaneously correct for the model’s 

complexity (a more parsimonious model is better). Based on figure 1 ( a lower score is better), 

the seven cluster model was selected as our final model. From seven clusters on, BIC and 

CAIC hardly show any additional improvement. Furthermore, in order to assess the quality of 

the clustering solution we calculated the entropy criterion (McLachlan and Peel, 2000) as in 

equation ( 3 ) where  denotes the posterior probability that case i belongs to cluster k and 

with the convention that  if 

ikp

0)ln( =ikik pp 0=ikp . 
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In case of perfect classification the criterion equals to 1 and for the worst case clustering the 

value of the criterion is 0. For our data, we found that I(7) = 0.92, which indicates a very 

good separation between the clusters. 

The seven cluster model provides cluster-dependent univariate distributions for each variable 

which allow us to identify each cluster as a specific traffic accident type. In order to describe 

each cluster concisely, we focus on the skewed feature distributions which differ between the 

clusters. For example, if one cluster contains 99% weekend accidents, while the other clusters 

have more balanced distributions for the feature “weekend”, one can identify this cluster as 

the “weekend traffic accident” cluster. It should be noted that this analysis merely tries to 

identify various traffic accident types within our data which can be overlapping. Assignment 

of the traffic accidents to the various clusters are based on the cluster probabilities. As a 

result, some clusters are described by means of road user characteristics, while other traffic 

accident types are described by means of road characteristics. The final set of features used 

for profiling the seven clusters found, is shown in table 2. Additional results are available 

from the author.  

In cluster 1, 95% of all traffic accidents occur on crossroads and more specifically 74% of all 

traffic accidents occur on crossroads with no traffic lights and no priority roads. We will refer 

to this cluster as “traffic accidents on crossroads with no traffic lights and no priority roads”.  

Furthermore, table 2 reveals that 99% of all accidents within cluster 2 concern a collision with 

a pedestrian, who is older than 18 in 94% of all cases. We describe this cluster as the “traffic 

accidents with adult pedestrians”. 
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Cluster 3 overlaps with cluster 1 because almost all traffic accidents occur on a crossroad 

(99%). However, compared with cluster 1, the accidents of cluster 3 predominantly occur on 

crossroads with traffic lights (47% versus 9% for cluster 1). We refer to this cluster as “traffic 

accidents on crossroads with predominantly traffic lights”. 

The best way to discriminate cluster 4 from the other clusters is by means of the second road 

user’s behavior. In 79% of all traffic accidents within cluster 4, the second road user was not 

moving. Furthermore, this cluster differs from cluster 5 by the fact that the vehicle of the first 

road user was predominantly a car. We refer to this cluster as “traffic accidents between a car 

and a non-moving second road user”. 

The fifth cluster discriminates itself from other clusters by means of the vehicle type of the 

first road user, which is a motorcycle or bicycle in 90% of all cases. We conclude that these 

are “traffic accidents with a motorcycle or bicycle”. 

Cluster 6, contains traffic accidents with pedestrians (99%) who are predominantly younger 

than 19 (96%). We will refer to this cluster as “traffic accidents with non-adult pedestrians”. 

Finally, cluster 7 can be described as the cluster with “traffic accidents on highways, national, 

regional or provincial roads” (99%).  

An overview of all clusters and their sizes is given in table 3. Our results seem to confirm 

Yau’s suggestion that traffic accident data should be segmented on vehicle type (Yau, 2004). 

Our cluster analysis makes a distinction between traffic accidents with cars, motorcycles or 

bicycles, or with pedestrians involved. But our analysis also shows that other type of features 

can be used to segment data, such as type of crossroad or road type. 

Finally, it should be noted that the descriptive cluster analysis in this study focuses on finding 

a concise description for each traffic accident type, which can be useful during the 

interpretation of our subsequent analyses. However, the results of our cluster analysis also 
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contain other useful information which can provide interesting insights into the various traffic 

accident types, which are lost when reducing each cluster to a short one-sentence description. 

For example, it seems that traffic accidents with motorcyclists or bicyclists largely occur 

among people younger than 19, i.e. 42% of all traffic accidents in cluster 5 concerns a non-

adult motorcyclist or bicyclist, which is relatively high compared to most other clusters. 

Secondly, when comparing traffic accidents with adult versus non-adult pedestrians, it seems 

that only 13% of the adult pedestrians were hidden from the second road user compared to 

49% in case of non-adult pedestrians. This indicates that the danger of hidden pedestrians 

mainly relates to young pedestrians, which can be explained by their height and their 

inexperience in identifying dangerous situations. 

4.2 Injury analysis 

4.2.1 Statistical approach 
 
The previous section showed that LCC succeeds in identifying different traffic accident types 

with good separation and allows us to describe them easily. However, this is only useful if the 

detected clusters reduce heterogeneity in a way that new information and insights are gained 

when performing explanatory traffic accident analysis. To test this, we will perform traffic 

injury analysis for each traffic accident. We will apply the multinomial logit model, which is 

the most widely applied discrete-outcome modeling approach for accident-severity analysis 

(Zhang et al., 2000; Bédard et al., 2002; Al-Ghamdi, 2002; Islam and Mannering, 2006; 

Ulfarsson and Mannering, 2004; Kim et al., 2007, Carson and Mannering, 2001; Shankhar 

and Mannering, 1996; Valent et al., 2002; Yau, 2004). Our injury risk analysis mainly follows 

the work of Ulfarsson and Mannering (2004), Islam and Mannering (2001) and Kim et al. 

(2007). 

This approach models the injury severity as, 
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where Sin is the function that determines the probability of discrete outcome i for accident 

observation n, Xin is the vector of accident features that determine the injury severity for 

accident n, iβ  is a vector of estimable coefficients, and inε  is an error term accounting for 

unobserved effects influencing the injury severity of accident n. It can be shown that if inε  are 

assumed to be extreme value distributed (cf. McFadden, 1981), then a standard multinomial 

logit model results. 
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)(iPn  is the probability that accident n will result in injury outcome i and I is the set of 

possible accident-severity outcomes. 

In addition to the model’s coefficient vector iβ , we also calculate the average direct pseudo-

elasticity, which captures the percentage change in probability when the kth accident feature is 

changed from 0 to 1. The elasticity is necessary to correctly judge the relative impact of an 

explanatory variable, because the sign of a coefficient does not always equal the sign on the 

change in probability (Greene, 1997). The direct pseudo-elasticity , of the kni
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P
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from the vector xn, with respect to the probability Pn(i), is computed as 
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Although the accident injury outcome is an ordinal variable, a multinomial logit model was 

preferred over an ordered logit or probit model. Many researchers apply a multinomial logit 

model for this type of research because MNL models allow a variable to have a convex (or 

concave) effect which pushes away from (towards) the middle injury severity levels and 

towards (away from) the high and low injury severity levels (Kim et al., 2007; Ulfarsson and 

Mannering, 2004; Islam and Mannering, 2006; Savolainen and Mannering, 2007). 

A problem with the estimates of the MNL model occurs when the independence of irrelevant 

alternatives (IIA) is violated, i.e. the outcomes share unobserved effects. A possible remedy 

for this problem, which received attention in traffic research recently, is the nested 

multinomial logit model, which nests the outcomes that share unobserved effects (Savolainen 

and Mannering, 2007; Lee and Mannering, 2002; Chang and Mannering, 1999). However, 

Saccomanno et al. (1996) tested the reliability of different nesting structures for injury 

severity models and found little difference in predictive power. Whenever the Small and 

Hsiao (1985) test, which verifies the IIA assumption, indicated that a nested multinomial logit 

model might be more appropriate, we built all possible nested models and verified if the 

structure was warranted with the data available (Washington et al., 2003; Savolainen and 

Mannering, 2007). For all clusters, the ordinary multinomial logit model was the preferred 

model. 

Since the estimated models are conditional on accident occurrence, they do not have an 

accident-risk interpretation. Rather, the models show which explanatory factors are associated 
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with increasing probability of particular injury severity categories given that an accident 

occurred. This approach, which is often applied in injury outcome analysis, avoids the need to 

know or measure exposure (Kim et al., 2007; Ulfarsson and Mannering, 2004; Lee and 

Mannering, 2002; Savolainen and Mannering, 2007). 

To verify the quality of the models, we calculated  which compares the log-likelihood of a 

model with only constants to the log-likelihood at convergence for the full specification. 

Furthermore, as recommended by Cox (1961,1962), we tested whether the union of all cluster 

models differ significantly from the full data model by calculating the test statistic  
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number of coefficients in the model for respectively cluster Cz and the full data model) and 

)( zLL β  and )( FLL β  are the log-likelihoods at convergence for the cluster models and the 

full data model, respectively. 

4.2.2 Statistical model 
 
As dependent variable for our injury outcome analysis, we selected the consequence for the 

first road user, which has three categories, i.e. “Killed or Seriously Injured” (KSI), “Slightly 

Injured” (SI) and “Not injured” (NI). In all models, NI was selected as the base outcome. 

Originally, sixteen explanatory variables were entered into the model, which were age, 

gender, number of passengers for both road users, vehicle type for the first road user (this 

variable had too many missing values for the second road user) and season, weekend, hour, 
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road sort, road type, road surface, crossroad, speed limit, accident type. To prevent zero-cell 

problems in the MNL regression, some of the explanatory variables had to be recoded into a 

smaller number of categories. Grouping categories together is an acceptable solution for the 

zero-cell problem if these categories make sense together (Menard, 2001). Furthermore, all 

explanatory variables are categorical and were recoded into dummy variables. For all sets of 

dummy variables, one dummy variable was removed from the model to avoid perfect 

colinearity. In total, eight models were built, one for the full data set and one for each cluster. 

Traffic accidents were assigned to a cluster if the posterior probability for that cluster was at 

least 90%. We selected a probability of 90%, which is high enough to have a correct 

assignment but does not result in too small sample sizes.  

In correspondence with Kim et al. (2007), we restricted coefficients to zero which were 

originally not found significantly different from zero at the 90% level as indicated by an 

asymptotic t-test. Furthermore, we tested differences between coefficients on one variable 

across injury severity categories. When there were no statistically significant differences at a 

95% level, as indicated by a likelihood ratio test, the coefficients were constrained to be 

equal. This is done to avoid keeping artificial accuracy in the model. 

4.2.3 Results 
 
Rather than performing a complete injury risk analysis for the Brussels Capital region, the 

objective of these MNL models is to evaluate the usefulness of cluster based traffic accident 

segmentation. Therefore, we shall focus the discussion on the differences between the various 

models and are particularly interested to see if the cluster models reveal new information. The 

estimation results of the eight models can be found in table 4. To conserve space, coefficients 

statistically insignificant at a 10% confidence level were omitted from the table. All eight 

models were statistically significant at a 0.1% confidence level, except for clusters 2, 5 and 6 

which were still respectively statistically significant at a 6%, 7% and 2% confidence level. 
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The ρ² of the models vary between 3% and 14%, which are reasonable values given the 

amount of variation in the data. The test if all cluster models together differ from the full data 

model was significant at 0.1%.  

Turning to table 5, which presents the corresponding elasticities, we will study the added 

value of a clustering analysis preceding the injury-outcome analysis. Firstly, these results 

confirm the assumption that performing traffic accident analysis on a large heterogeneous 

data set can obscure significant relations, which was also found by other researchers as 

mentioned in the introduction. For example, a normal road surface (as opposed to a wet or 

snowy) was not statistically significant in the full data model. However, according to table 5, 

a normal road surface lowers the probability of getting slightly injured in a traffic accident on 

a crossroad with traffic lights with 19%. Furthermore, the average probability of getting killed 

or seriously injured in a traffic accident on a crossroad with no priority road and no traffic 

lights decreases with 90% if the first road user drives a car, but increases with 131% and 

210% if the first road users drives respectively a motorcycle or a bicycle. None of these 

results were found with the full data model. 

Secondly, the cluster models reveal variation of a variable’s effect on the injury outcome 

probability between different traffic accident types. Table 5 shows that according to the full 

data model, the probability for the first road user of getting slightly injured in a traffic 

accident in which the second road user has no passengers increases with 65%. However, the 

cluster models show that this probability increases with 64% in a traffic accident on a 

crossroad with no priority road and no traffic lights, with only 54% in a traffic accident on a 

crossroad with traffic lights, but with no less than 170% in a traffic accident with an adult 

pedestrian. Furthermore, when the first road user rides a bicycle, the probability of getting 

slightly injured increases with 210% if he is involved in a traffic accident on a crossroad with 

no priority road and no traffic lights, but only with 91% if he is involved in a traffic accident 
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on a crossroad with traffic lights. Note that the full data model did not only hide this 

difference, it hid this variable completely. In both examples, the cluster-based models reveal a 

more complete interpretation. 

Thirdly, our cluster based models even reveals a different direction of the effect for some 

features in one or two clusters. While the full data model suggests that being a female first 

road user increases the probability of getting slightly injured when involved in a traffic 

accident, cluster models 5 and 6 show that this probability decreases for traffic accidents with 

motorcycles and bicycles or for traffic accidents with a non-adult pedestrian. Furthermore, the 

cluster models also show that if a traffic accident with an adult pedestrian occurs on a 

national, regional or provincial road, the probability of the pedestrian getting slightly injured 

increases with 74%. On the other hand, if a traffic accident on a crossroad with traffic lights 

occurs on a national, regional or provincial road, the probability of the first road user getting 

slightly injured decreases with 23%. 

5. Limitations and directions for future research 

There are several considerations in order in interpreting the results of our study. First, with 

regard to the clustering technique, finite mixture modeling or latent class clustering is based 

on the maximization of a likelihood function. Because the likelihood function is not 

guaranteed to be concave, the found solution might be a local rather than the global 

maximum. In this regard, the found solution is dependent on the initial parameter values. To 

prevent ending up with a local solution, the Latent GOLD program uses 10 sets of random 

start values (Vermunt and Magidson, 2005). A second consideration relates to the finite 

mixture model in this study. Our cluster model assumes local independence between the 

traffic accident variables. This restriction on the cluster-specific covariance matrix can be 

removed from the model, but comes at a high cost of parametric complexity and computing 

time.   
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Future research can study the impact of this limitation on this traffic injury study for the 

Brussels Capital region. One can for example allow for class-specific covariance between 

some variables, model-specific covariance between all variables or even class-specific 

covariance between all variables. One could also build models with different software, 

allowing for different distributions. For ordinal variables, one could use the cumulative logit 

model which has the advantage of having effect estimates which are approximate invariant to 

the choice and number of response categories (Agresti, 2002). 

On a more conceptual level, future research could also focus on finding typical groupings in 

the data, i.e. to identify clusters which can be transferred to other data sets. In such research, it 

is important to validate the cluster results to provide a degree of confidence (Xu and Wunsch, 

2005). One could even try to find a generic list of traffic accident types which can be used to 

reduce heterogeneity in general, although it is not certain such list exists. One could also try to 

develop quality checks to validate the cluster descriptions. Thirdly, other ways to dissect the 

data are possible. For example, the posterior probabilities could be used as weights in 

subsequent analysis, although one has to be careful with the correct interpretation of these 

weights. 

6. Conclusions 

In this paper we examined whether cluster analysis could be used as a traffic accident 

segmentation technique. We selected latent class clustering as the applied cluster analysis and 

found that it succeeds in finding various clusters in a heterogeneous traffic accident data set. 

Furthermore, our research indicated that the traffic accident types, identified by the seven 

clusters, make sense and add value to subsequent injury analyses. In agreement with the work 

of Yau (2004), the cluster analysis uses vehicle type as a basis for the segmentation. However, 

it also finds less trivial variables to segment the data, such as road type and age. The injury 

analysis performed for each traffic accident type or cluster clearly illustrates the added value 
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of the cluster-based segmentation. Firstly, the cluster models reveal new variables influencing 

the injury outcome. Secondly, the results illustrate that cluster models can sometimes provide 

a more complete interpretation of the effect of an independent variable on the injury outcome, 

by showing different magnitudes among different traffic accident types. Thirdly, the cluster 

models also reveal that the effect of a single independent variable can differ in direction 

between different traffic accidents.  These results confirm the existence of three types of 

information which can remain hidden due to data heterogeneity, which was already illustrated 

by the results of other authors.  
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Table 1: Traffic accident variables 

Variable Aspect Level Values 

Vehicle type Vehicle Road user car; medium sized vehicle; large truck; large bus; 

motorcycle;  bicycle;  pedestrian;  other 

Gender Road user Road user female; male 

Age Road user Road user 0-15; 16-17; 18-21; 22-29; 30-39; 40-49; 50-59; 60-65; 

65+ 

Crossroad Environmental Accident crossroad with traffic lights; crossroad with priority 

road; crossroad with right of way or a police officer; no 

crossroad 

Built-up area Environmental Accident inside built-up area; outside built-up area 

Road type Environmental Accident highway; national, regional or provincial road; local 

road 

Road sort Environmental Accident single roadway; divided roadway 

Speed limit Environmental Accident 30km/h; 50km/h; 60km/h; 90km/h; 120km/h 

Speed limit diff. Environmental Accident whether or not there is a difference between the speed 

limits on roads intersecting at a crossroad (yes/no) 

Black zone Environmental Accident yes; no 

Road structure Environmental Accident roundabout; bridge or viaduct; tunnel; level crossing; 

sharp bend; school, recreation centre or bus stop; 

signalization on the road; steep descent 

Weekend Traffic accident Accident yes (Monday 2h – Friday 21h); no (Friday 21h – 

Monday 2h) 

Hour Traffic accident Accident morning (7h-9h); early afternoon (10h-12h); afternoon 

(13h-15h); evening rush (16h-18h); evening (19h-21h); 

night (22h-6h) 

Season Traffic accident Accident winter; spring; summer; fall 

Hidden Pedestrian Traffic accident  Accident whether or not the pedestrian was visible for the other 

road user (yes/no) 

Missing Safety Traffic Accident Accident whether or not some safety measures were missing, 

such as wearing a safety belt or helmet (yes/no) 

Rain Traffic Accident Accident no rain; rain 

Road surface Traffic Accident Accident normal road surface; wet or snowy road surface 

Accident type Traffic Accident Accident frontal collision; collision from behind; lateral 

collision; collision with a pedestrian; collision with an 

obstacle on the road; collision with an obstacle next to 

the road 

Passenger positions Traffic Accident Accident at least one of the road users had passengers in front 

and in the back of the vehicle; there were passengers 
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involved, but no car had passengers in the front and in 

the back; there were no passengers in the vehicles of 

both road users 

Detrimcounts Traffic Accident Accident measures the severity of the traffic accident by 

summing the number of slightly injured, the number of 

seriously injured multiplied by three and the number of 

deadly injured multiplied by five 

Number passengers Traffic Accident Road user 0; 1; 2; 3+ 

Behavior Traffic Accident Road user ignores red light; fails to give right of way; crosses a 

full white line; passes incorrectly; makes an evasive 

maneuver; incorrect location on the road; loss of 

control; not enough distance kept; fall; normal behavior 

Dynamics Traffic Accident Road user road user travels at constant speed; road user brakes in 

order to stop; road user accelerates or starts; road user 

is not moving 

Consequence Traffic Accident Road user deceased; seriously injured; slightly injured; no injuries 
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Figure 1: Evolution of BIC, AIC, CAIC when adding clusters to the model 
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Table 2: Features and their probability in each cluster 
Variable – value Clu1 Clu2 Clu3 Clu4 Clu5 Clu6 Clu7 

Accident type: collision with a pedestrian 0% 99% 0% 0% 0% 99% 6% 

Crossroad: crossroad without traffic lights or 

priority road 
74% 26% 40% 21% 40% 15% 5% 

Crossroad: no crossroad 5% 48% 1% 56% 33% 76% 42% 

Built-up area: Outside built-up area 1% 1% 1% 1% 1% 0% 47% 

Road type: Highway, national, regional or 

provincial road 
25% 25% 55% 23% 24% 7% 99% 

Age road user 1: 0-18 years old 14% 11% 16% 16% 42% 96% 11% 

Dynamics road user 2: Road user is not moving 0% 11% 0% 79% 74% 35% 0% 

Vehicle type road user 1: Motorcycle or bicycle 8% 0% 12% 17% 90% 0% 7% 

Vehicle type road user 1: Car 85% 0% 81% 76% 9% 0% 82% 
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Table 3: Traffic accident types 
Cluster Traffic accident type Size 

1 traffic accidents on crossroads with no traffic lights and no priority road 23% 

2 traffic accidents with an adult pedestrian 19% 

3 traffic accidents on crossroads with predominantly traffic lights 15% 

4 traffic accidents between a car and a non-moving second road user 15% 

5 traffic accidents with a motorcycle or bicycle 14% 

6 traffic accidents with a non-adult pedestrians 10% 

7 traffic accidents on highways, national, regional or provincial roads 4% 

 



Table 4: Multinomial logit estimation results for first road user crash-injury severity 

Model: F 1 2 3 4 5 6 7 
Variable Coef. S.E.. Coef. S.E. Coef. S.E. Coef. S.E. Coef. S.E. Coef. S.E. Coef. S.E. Coef. S.E. 
age road user 1: <30 [KSI] -0.61 0.27               
age road user 2: <30 [KSI] 1.77 1.03               
age road user 2: 30-60 [KSI] 1.85 1.02               
collision from behind [KSI]         -1.93 1.17       
collision with pedestrian [KSI] -0.57 0.30               
collision with obstacle [KSI] 0.53 0.25 1.04 0.45     2.33 1.06       
crossroad with a priority road [KSI] -1.32 0.72               
crossroad with no priority road and no traffic lights [KSI] -0.27 0.08               
afternoon [KSI] -0.29 0.11               
road user 2 had no passengers [KSI]         0.71 0.27       
winter  [KSI]   -1.41 0.82             
spring [KSI] -0.71 0.35 -2.52 1.09             
road user 1 drove a car [KSI]   -2.35 0.61             
road user 1 drove a motorcycle [KSI]   1.77 0.37             
road user 1 drove a bicycle [KSI]   3.41 1.05             
highway [KSI]     2.44 1.16           
constant [KSI] -4.43 1.02 -1.85 0.66 -4.08 0.51 -3.38 0.59 -4.26 0.99 -4.80 0.71 -4.92 0.71 -2.71 0.46 
age road user 1: 30-60 [SI]   -0.35 0.16             
female road user 1 [SI] 0.61 0.10 1.08 0.19   1.21 0.30 0.71 0.27 -1.26 0.75 -2.40 1.04 1.86 0.45 
female road user 2 [SI] -0.45 0.10 -0.88 0.19   -0.79 0.28 -0.80 0.27 0.57 0.34   -0.86 0.41 
collision from pedestrian [SI] -1.50 0.19             -1.39 0.85 
collision with obstacle [SI] 0.53 0.25 1.04 0.45             
crossroad with no priority road and no traffic lights  [SI] -0.27 0.08               
afternoon  [SI] -0.29 0.11               
evening  [SI] -0.17 0.09       -0.72 0.30       
road user 2 had no passengers  [SI] 0.68 0.10 0.73 0.18 1.06 0.63   0.71 0.27       
winter  [SI] 0.17 0.10               
summer  [SI] 0.27 0.10   0.66 0.37           
road user 1 drove a car  [SI] 0.97 0.15     0.94 0.39 1.46 0.52       
road user 1 drove a motorcycle  [SI] 0.47 0.17 1.77 0.37     2.69 0.79       
road user 1 drove a bicycle  [SI]   3.41 1.04   1.52 0.93         
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national, regional or provincial road  [SI]     0.61 0.35 -0.49 0.25         
normal roadsurface  [SI]       -0.40 0.24         
constant [SI] -1.66 0.18 -1.06 0.18 -3.24 0.68   -1.81 0.57 -2.23 1.14 -1.59 0.57   
                 
Number of observations 3282 799 535 376 333 296 297 142 
Log Likelihood at zero -2529.18 -675.92 -214.53 -318.25 -303.16 -151.19 -91.56 -129.18 
Log Likelihood at convergence -2006.40 -507.27 -202.35 -265.81 -236.37 -140.91 -78.70 -102.80 
ρ² 0.12 0.14 0.03 0.09 0.12 0.04 0.08 0.11 
Coefficients that were not significant at the 90% level were omitted from the table. “No injury” is the base outcome with coefficients restricted at zero. “F” represents the full data model and models 1 
until 7 respectively represent cluster model 1 until 7. 
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Table 5: Elasticities in percent 

Model: F 1 2 3 4 5 6 7 
Variables         
KSI Elasticities         
age road user 1: <30 -45%        
age road user 2: <30 455%        
age road user 2: 30-60 506%        
collision from behind     -85%    
collision with pedestrian -21%        
collision with obstacle 41% 74%   750%    
crossroad with a priority road -73%        
crossroad with no priority road and no traffic lights -17%        
afternoon -18%        
road user 2 had no passengers     54%    
winter  -75%       
spring -50% -92%       
road user 1 drove a car  -90%       
road user 1 drove a motorcycle  131%       
road user 1 drove a bicycle  210%       
highway   846%      
         
SI Elasticities         
age road user 1: 30-60  -20%       
female road user 1 52% 88%  79% 51% -67% -90% 144% 
female road user 2 -28% -44%  -37% -39% 59%  -39% 
collision from pedestrian -68%       -60% 
collision with obstacle 41% 74%       
crossroad with no priority road and no traffic lights -17%        
afternoon -18%        
evening -12%    -36%    
road user 2 had no passengers 65% 64% 170%  54%    
winter 13%        
summer 21%  82%      
road user 1 drove a car 104%   83% 185%    
road user 1 drove a motorcycle 38% 131%   186%    
road user 1 drove a bicycle  210%  91%     
national, regional or provincial road   74% -23%     
normal roadsurface    -19%     
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