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Fitting Conditional Survival Models to Meta-Analytic Data
by Using a Transformation Toward Mixed-Effects Models

Goele Massonnet,∗ Paul Janssen, and Tomasz Burzykowski

Hasselt University, Center for Statistics, Agoralaan, Building D, B-3590 Diepenbeek, Belgium
∗email: goele.massonnet@uhasselt.be

Summary. Frailty models are widely used to model clustered survival data. Classical ways to fit frailty
models are likelihood based. We propose an alternative approach in which the original problem of “fitting
a frailty model” is reformulated into the problem of “fitting a linear mixed model” using model transfor-
mation. We show that the transformation idea also works for multivariate proportional odds models and
for multivariate additive risks models. It therefore bridges segregated methodologies as it provides a general
way to fit conditional models for multivariate survival data by using mixed models methodology. To study
the specific features of the proposed method we focus on frailty models. Based on a simulation study, we
show that the proposed method provides a good and simple alternative for fitting frailty models for data
sets with a sufficiently large number of clusters and moderate to large sample sizes within covariate-level
subgroups in the clusters. The proposed method is applied to data from 27 randomized trials in advanced
colorectal cancer, which are available through the Meta-Analysis Group in Cancer.

Key words: Frailty model; Linear mixed model; Model transformation; Random treatment effect.

1. Introduction
Frailty models are widely used to fit clustered survival data.
Data from multicenter clinical trials are a typical example
of clustered data; data within the same center all share the
same random cluster effect. The shared frailty model pro-
vides an appropriate way to describe the within-cluster de-
pendence of outcomes. Classical ways to fit frailty models
are likelihood based. Likelihood methods to fit shared frailty
models include expectation maximization (EM) algorithm
(Klein, 1992), penalized partial likelihood (McGilchrist, 1993;
Therneau and Grambsch, 2000), and Bayesian analysis
(Ducrocq and Casella, 1996). In recent papers more complex
frailty models have been studied. Within the clinical trials
context typical examples are frailty models with a random
cluster effect and a random treatment effect. To fit such frailty
models, the likelihood-based methods mentioned above have
been adapted to cover this extra complexity in the data: EM
algorithm (Vaida and Xu, 2000; Cortiñas and Burzykowski,
2005), penalized partial likelihood (Ripatti and Palmgren,
2000), and Bayesian approach (Legrand et al., 2005).

In this article we propose an alternative way to fit frailty
models. We start from the following observation: the integral
of the weighted (over time) conditional cumulative log hazard
depends in a linear way on the random effects describing the
cluster and/or the treatment effect over clusters. Using the
data within a cluster we can estimate the integral using non-
parametric estimation techniques. Considering the estimated
integral as a response we can reformulate the original problem
of “fitting a frailty model” into a standard problem of “fitting
a linear mixed-effects model.” We can summarize the idea
as follows: based on the original data we obtain pseudodata

(the estimated integrals) on which we can apply mixed models
methodology. Model transformation also works for multivari-
ate proportional odds models and multivariate additive risks,
models. A related reference dealing with model transforma-
tion in the classical context of proportional hazards, additive
risks, and proportional odds models is Grigoletto and Akritas
(1999) and Cao and Gonzalez-Manteiga (2007).

Section 2 introduces the data from 27 randomized trials in
advanced colorectal cancer. In Sections 3 and 4 we give, for
right censored clustered survival data, the details on how mul-
tivariate proportional hazards models (frailty models), mul-
tivariate proportional odds models, and multivariate additive
risks models can be transformed into mixed-effects models.
The finding that parameters of interest of a multivariate sur-
vival model become parameters of interest of a related mixed-
effects model, provides an interesting link between two seem-
ingly segregated fields. In Sections 5 and 6, we focus on frailty
models to study the performance of the proposed method.
The simulation study in Section 5 illustrates that, compared
to the classical likelihood-based approaches, the transforma-
tion method provides a good and simple alternative for fitting
frailty models for data sets with a sufficiently large number of
clusters and moderate to large sample sizes within covariate-
level subgroups in the clusters. In Section 6 we discuss the
performance of the method for the colorectal cancer data. We
finally present some remarks and discuss possible further ex-
tensions in Section 7.

2. Advanced Colorectal Cancer Data
The study we consider is described in Burzykowski, Molen-
berghs, and Buyse (2004) and is typical for data encountered
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2 Biometrics

in this research field. The data come from 27 advanced
colorectal cancer trials (Advanced Colorectal Cancer Meta-
Analysis Project, 1992, 1994; Meta-Analysis Group in Cancer,
1996, 1998). In the four meta-analyses, the comparison was
between an experimental treatment and a control treatment.
In total there are 4007 patients, 1871 (46.7%) in the control
group and 2136 (53.3%) in the experimental group. The num-
ber of patients per trial varies from 15 to 382 patients (the
mean [median] number of patients per trial is 149 [148]). Our
analysis will be based on the survival time, defined as the
time from randomization to death from any cause. Most pa-
tients have died (3591 out of 4007 patients, that is, 89.6%).
We will investigate the between-trial variation (heterogeneity)
in both the baseline risk and the effectiveness of the exper-
imental treatment. For this purpose, we use a frailty model
including a fixed treatment effect, a random trial effect, and
a random treatment effect.

3. From Frailty Model to Linear Mixed-Effects Model
3.1 Model Formulation
Assume we have a total of N patients that come from K differ-
ent clusters, cluster i having ni patients (N =

∑K

i=1 ni). Each
patient is observed from a time zero to a failure time T0

ij or
to a potential right censoring time Cij independent of T0

ij . Let
Tij = min(T 0

ij , Cij) be the observed time and δij be the cen-
soring indicator that is equal to 1 if T ij = T 0

ij and 0 otherwise.
For each patient, we also have the binary variable xij repre-
senting the treatment to which the patient has been random-
ized, with xij = −1 if the patient is in the control group and
xij = 1 if the patient is in the experimental group.

We consider a Cox proportional hazards model including a
fixed treatment effect, a random cluster effect, and a random
treatment effect: the conditional hazard for the jth patient in
the ith cluster is then given by

λij(t) = λ0(t) exp {b0i + (β + b1i)xij} , (1)

where λ0(t) represents the unspecified baseline hazard at
time t, β is the fixed overall treatment effect, b0i is the
random cluster effect (contributing the factor exp(b0i ) to
the hazard), and b1i is the random treatment effect pro-
viding information on how the treatment effect within clus-
ter i deviates from the overall treatment effect captured by
the regression coefficient β. The random effects b0i and b1i

are assumed to follow zero-mean normal distributions. The
variance–covariance matrix of the vector of random effects
bT = (b01, b11, . . . , b0i, b1i, . . . , b0K , b1K) takes the form

G = IK ⊗
(

σ2
0 σ01

σ01 σ2
1

)
, (2)

where ⊗ is the Kronecker product. The variance components
σ2

0 and σ2
1 are a measure of the heterogeneity of the hazard

due to the random cluster, with respect to random treatment
effect; σ01 is the covariance between the two random effects
within a cluster.

In absence of a random treatment effect, model (1) reduces
to the shared frailty model:

λij(t) = λ0(t) exp(b0i + βxij) = λ0(t)ui exp(βxij), (3)

where ui = exp(b0i) is termed the frailty for cluster i. In ab-
sence of covariates this model further simplifies to

λi(t) = λ0(t) exp(b0i) = λ0(t)ui. (4)

In (3) and (4) b0i, i = 1, . . . , K, is a sample from a zero-mean
normal density with variance σ2

0, describing the heterogeneity
between clusters.

3.2 The Transformation
With Λij(t) =

∫ t

0 λij(s) ds the cumulative hazard for the jth
patient in cluster i, j = 1, . . . , ni and i = 1, . . . ,K, and Λ0(t) =∫ t

0 λ0(s) ds, we easily obtain from (1) that

lnΛij(t) = lnΛ0(t) + b0i + (β + b1i)xij . (5)

Let w(·) be a weight function (W (t) =
∫ t

0 w(s) ds) satisfy-

ing w(s) � 0, s ∈ [0,∞),
∫ ∞

0 w(s) ds = 1, and assigning zero
weight to regions where the logarithm of the cumulative haz-
ard function cannot be estimated due to censoring. The choice
of the weight function is discussed in Section 3.3. Integrating
both sides in (5) with respect to the weight function we obtain∫ ∞

0

lnΛij(t) dW (t) = α + b0i + (β + b1i)xij ,

with α =
∫ ∞

0 lnΛ0(t) dW (t). The patients in cluster i are di-
vided, by the binary covariate xij , in a control and a treatment

group. Let Λ
(0)
i (.), respectively Λ

(1)
i (·), be the cumulative haz-

ard function shared by all control, with respect to treated,
patients in cluster i. Define, for k = 0, 1,

Ωik =

∫ ∞

0

lnΛ
(k)
i (t) dW (t).

Then Ωi0 = α + b0i − (β + b1i) (control) and Ωi1 = α + b0i +
(β + b1i) (treated). Following the ideas of Grigoletto and Akri-
tas (1999), pseudoobservations for the Ωik’s can be obtained
as

Ω̂ik =

∫ ∞

0

ln Λ̂
(k)
i (t) dW (t),

where Λ̂
(k)
i (.) is the estimated cumulative hazard based on

the observations (Tij , δij ) for all patients in cluster i with, for
k = 0, xij = −1, and for k = 1, xij = 1. As concrete estima-

tor we use Λ̂
(k)
i (t) = − ln Ŝ

(k)
i (t) with Ŝ

(0)
i (t) the Kaplan–Meier

estimator for the control group (xij = −1):

Ŝ
(0)
i (t) =

∏
j:Tij�t,xij=−1

{
r(Tij) − d(Tij)

r(Tij)

}
,

with r(v) the number still at risk at time v and d(v) the num-

ber of events at time v and with Ŝ
(1)
i (t) the Kaplan–Meier

estimator for the experimental group (xij = 1).
In terms of the pseudo observations we now can propose

the model

Ω̂ik = α + b0i + (β + b1i)xik + (Ω̂ik − Ωik)

= α + b0i + (β + b1i)xik + eik, (6)

with xi0 = −1 and xi1 = 1. This is a linear mixed model
with a random intercept and a random treatment effect. Note
that the error terms eik = Ω̂ik − Ωik correct for the fact that
the mixed model is applied to the pseudodata because the
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Fitting Conditional Survival Models 3

transformed cumulative hazard function cannot directly be
observed. As eik = Ω̂ik − Ωik it is clear that the random error
terms do not satisfy the homogeneity assumption (because dif-
ferent subclusters have different sample sizes). In Section 3.3
we explain how to account for this heterogeneity when mixed
models software is used to fit the model. A further remark
is that for the special case (4) we obtain the following model
after transformation:

Ω̂i = α + b0i +
(
Ω̂i − Ωi

)
= α + b0i + ei. (7)

For this one-way random effects model we only have one ob-
servation per cluster. At first glance this leads to identifiability
problems. We, however, do have estimators of the variances
of the error terms so that estimation of the variance compo-
nents associated with the random cluster effect is possible.
More details on this are given in Section 3.3.

3.3 The Error Variance
To apply the methods proposed in Section 3.2, we need es-
timates for the error variances σ2

e,ik , with respect to σ2
e,i , of

the random error terms in model (6), with respect to (7).
We consider the general model (6). The patients of cluster i
are divided in two groups: the control group (k = 0) and the
treatment group (k = 1). Let nik be the number of patients

in group k of cluster i. Note that, with F
(k)
i (t) = 1 − S

(k)
i (t),

eik = Ω̂ik − Ωik =

∫ ∞

0

{
ln Λ̂

(k)
i (t) − lnΛ

(k)
i (t)

}
dW (t)

∼=
∫ ∞

0

1

Λ
(k)
i (t)

1

S
(k)
i (t)

{
F̂

(k)
i (t) − F

(k)
i (t)

}
dW (t). (8)

Using the independent and identically distributed (i.i.d.) rep-

resentation for F̂
(k)
i (t) − F

(k)
i (t) proposed by Lo and Singh

(1986), we easily obtain an i.i.d. representation of eik . Based
on this representation and given an appropriate weight func-
tion, an approximation for the (estimated) variance of eik is
obtained through (8). In the sequel we have chosen a uniform
weight function W on the interval (A, B), where A and B
are chosen such that the logarithm of the cumulative hazard
can be estimated for t ∈ (A, B) for the control and the treat-
ment group in each cluster. The variance of the error term
Ω̂ik − Ωik (i = 1, . . . ,K, k = 0, 1) can then be estimated by

σ̂2
e,ik =

1
n2
ik

1
(B −A)2

∫ B

A

1

Λ̂(k)
i (s)

∫ s

A

1

Λ̂(k)
i (t)

×
∑

j: xij=k

I (0 � tij � t, δij = 1)⎧⎨
⎩1 − 1

nik

∑
j: xij=k

I (Tij < tij)

⎫⎬
⎭

2 dt ds

+
1

n2
ik

1
(B −A)2

∫ B

A

1

Λ̂(k)
i (s)

∫ B

s

1

Λ̂(k)
i (t)

×
∑

j: xij=k

I (0 � tij � s, δij = 1)⎧⎨
⎩1 − 1

nik

∑
j: xij=k

I (Tij < tij)

⎫⎬
⎭

2 dt ds. (9)

The technical details of the derivation of (9) are presented in
Web Appendix A.

For model (7), we obtain in a similar way the estimated
variance of the error term Ω̂i − Ωi (i = 1, . . . ,K):

σ̂2
e,i =

1

n2
i

1

(B −A)2

∫ B

A

1

Λ̂i(s)

∫ s

A

1

Λ̂i(t)

×
ni∑
j=1

I (0 � tij � t, δij = 1){
1 − 1

ni

ni∑
j=1

I (Tij < tij)

}2 dt ds

+
1

n2
i

1

(B −A)2

∫ B

A

1

Λ̂i(s)

∫ B

s

1

Λ̂i(t)

×
ni∑
j=1

I (0 � tij � s, δij = 1){
1 − 1

ni

ni∑
j=1

I (Tij < tij)

}2 dt ds.

4. Other Conditional Survival Models
As mentioned in Section 1, model transformation also works
for conditional survival models that are different from frailty
models. We give two examples.

The multivariate proportional odds model is given by

ln

{
Fij(t)

1 − Fij(t)

}
= h0(t) + b0i + (β + b1i)xij ,

where Fij (.) is the conditional distribution function for the
jth patient in the ith cluster and h0(.) is the baseline log odds
function. Integrating out with respect to the weight function
w(.), we obtain∫ ∞

0

ln

{
Fij(t)

1 − Fij(t)

}
dW (t) = αPO + b0i + (β + b1i)xij ,

(10)

with αPO =
∫ ∞

0 h0(t) dW (t).
Using a marginal likelihood approach, multivariate propor-

tional odds models are studied by Lam, Lee, and Leung (2002)
and Lam and Lee (2004).

The multivariate additive risks model is given by

λij(t) = λ0(t) + b0i + (β + b1i)xij .

Integrating out the corresponding cumulative hazard
function with respect to the weight function W̃ (t) =
W (t)/

∫ ∞
0 s dW (s), we obtain∫ ∞

0

Λij(t) dW̃ (t) = αAR + b0i + (β + b1i)xij , (11)

with αAR =
∫ ∞

0 Λ0(t) dW̃ (t). The additive risks model in the
classical survival setting was first studied by Aalen (1980)
and is also discussed in Martinussen and Scheike (2006). Yin
and Cai (2004) and Martinussen and Scheike (2006) consider
marginal additive risks models for multivariate survival data.
The study of conditional additive risks models for multivariate
survival data seems open.

Starting from (10) and (11), transformations to mixed-
effects models are obtained along the lines of the discussion
given for the frailty models. The technical details on the esti-
mation of the error variance are given in Web Appendix A.
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4 Biometrics

In the rest of the article we focus on frailty models, as de-
scribed in Sections 3.1–3.3, to compare the results obtained by
the proposed method with the results obtained by a classical
likelihood-based approach.

5. Simulations
We study the performance of the proposed method in the
context of frailty models by using a simulation study. As sim-
ulation model we consider the setting of a multicenter clin-
ical trial. First, we consider the special case of the shared
frailty model (4) including only a random center effect. We
compare the results obtained by the proposed method with
those obtained by the penalized partial likelihood approach
(Therneau and Grambsch, 2000). We use “coxph” in S-Plus
7.0.6 for the penalized partial likelihood inference. The preci-Q1
sion of the parameter estimates is investigated for a varying
number of clusters and number of observations per cluster,
the percentage of censored observations, the size of σ2

0, and
the value of the baseline event rate λ0(t) (which we assume
constant in time for simplicity). We also discuss the robust-
ness of the proposed method against misspecification of the
frailty density. Next, we consider the general frailty model
(1), including a fixed treatment effect, a random center effect,
and a random treatment effect. For this model, we allow for
correlation between b0i and b1i . Also here we compare the re-
sults obtained by the proposed method with those based on
the penalized partial likelihood approach (Ripatti and Palm-
gren, 2000) using “coxme” in S-Plus 7.0.6 for the likelihood
inference. We further study the effect of the size of σ2

0 and σ2
1

on the precision of the parameter estimates.

5.1 Description of the Simulations
We assume a constant sample size per cluster ni = n, for
i = 1, . . . , K. For each parameter setting (K, n, λ0, σ

2
0, σ01,

σ2
1), 500 data sets are generated from model (1), assuming a

constant baseline hazard. Given a particular parameter set-
ting, observations for a particular data set are generated in
the following way. First, K random center effects b01, b02, . . . ,
b0K and K random treatment effects b11, b12, . . . , b1K are gen-
erated from a normal distribution with mean 0 and variance–
covariance matrix G, as in (2). The time to event for each pa-
tient is randomly generated from an exponential distribution
with parameter λij(t) = λ0 exp(b0i + (β + b1i)xij), where xij

is generated from a Bernoulli distribution with success prob-
ability 0.5. The censoring time for each patient is randomly
generated from a uniform distribution, so that approximately
30% censoring is obtained. For each data set, pseudodata Ω̂ik

are generated through the model transformation described in
Section 3 by using a uniform weight function w(.) on the inter-

val (A, B), chosen so that 0 < Ŝ
(k)
i (t) < 1 for t ∈ (A, B). For

each cluster i, the estimated variance of Ω̂ik − Ωik is computed
as explained in Section 3.3. To fit model (6), we use the SASQ2
procedure PROC MIXED (see Web Appendix B for details
on PROC MIXED). For each data set we obtain estimates for
β, σ2

0, σ
2
1, and σ01.

For the special case of model (4), the data are generated as
explained above with β = 0, σ2

1 = 0, and σ01 = 0. Here, we
consider moderate censoring (around 30%) and heavy cen-
soring (around 60%). To study the robustness of the pro-
posed method against frailty misspecification, the data are

generated assuming that the frailties u1 = exp(b01), . . . ,uK =

exp(b0K ) are gamma distributed with mean E(Ui) = eσ
2
0/2 and

variance var(Ui) = θ = eσ
2
0 (eσ

2
0 − 1). This corresponds to ran-

dom effects b0i with mean 0 and variance σ2
0. For each data

set, pseudodata Ω̂i are generated as explained above. We fit
model (4) assuming, incorrectly, that the random effects b0i

are normally distributed with mean 0 and variance σ2
0.

5.2 The Choice of the Parameters
5.2.1 Frailty model with a random center effect. For the con-

crete simulation, we take 20, 50, and 100 centers with 50
or 100 patients per center. The parameter values λ0 and σ2

0
in both settings are chosen in such a way that a different
magnitude of spread in the median time to event from cen-
ter to center is induced. The median time to event TM is
the solution of exp{−λ0 exp(b0)TM} = 0.5, with b0 zero-mean
normally distributed, that is, TM = log 2

λ0 exp(b0) . The magnitude
of spread in the median time to event from center to cen-
ter was determined by computing the density function of TM

(Figure 1). It is easy to show that the density function fTM
(t)

is given by

fTM
(t) =

1

t
√

2πσ2
0

exp

⎡
⎢⎢⎢⎣−

{
log

(
log 2

λ0t

)}2

2σ2
0

⎤
⎥⎥⎥⎦ .

As true values for the event rate, we take λ0 = 0.1 and
0.5. The heterogeneity parameter is set at σ2

0 = 0.08765 and
0.1577. To obtain these values, we use the relation between
σ2

0 and the frailty variance: var(Ui) = θ = eσ
2
0 (eσ

2
0 − 1). The

values of σ2
0 correspond to a frailty variance of θ = 0.1, with

respect to 0.2.
For the settings (σ2

0, λ0) = (0.08765, 0.1) and (0.1577, 0.1),
there is much spread in the median time to event over the
centers. For the settings (σ2

0, λ0) = (0.08765, 0.5) and (0.1577,
0.5), there is little spread in the median time to event over
the centers, with a bigger spread for σ2

0 = 0.1577. To study
the robustness of the proposed method, we take σ2

0 = 0.3520
(θ = 0.6) and λ0 = 0.1. The motivation for choosing θ = 0.6
is that the gamma and the lognormal density functions are
close for θ = 0.1, whereas for θ = 0.6 these densities are more
apart.

5.2.2 Frailty model with random center and treatment effects.
We consider a situation with 50 centers that have 100 or 200
patients per center. The baseline hazard is assumed constant
and equal to λ0 = 0.3. For the treatment effect, we use β =
−0.2. These parameter values are chosen so that the bladder
cancer data considered in Legrand et al. (2005) can serve as
a reference. This study investigates heterogeneity in disease-
free intervals due to center and treatment effect over centers
in a large bladder cancer database including data from seven
randomized clinical trials. We simulate data using different
combinations of values of σ2

0 and σ2
1, varying from 0 to 0.08

(σ2
0, σ

2
1 = 0, 0.04, or 0.08). The covariance parameter σ01 is

chosen such that the correlation between b0 and b1 is equal
to 0.5. This value mimics the correlation between the random
effects observed in the bladder cancer data (Legrand et al.,
2005).
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Figure 1. Density function of the median time to event over centers.

Table 1
Relative bias, mean, and empirical standard deviation of the estimated values σ̂2

0 over the 500 simulations; true σ2
0 =

0.08765 (θ = 0.1), λ0 = 0.5; first line for coxph, second line for PROC MIXED; left part 30% censoring, right part
60% censoring.

Relative Empirical Relative Empirical
(K, n) bias standard deviation bias Mean standard deviation

(100, 100) −0.0314 0.0849 0.0152 −0.0143 0.0864 0.0169
−0.0257 0.0854 0.0148 −0.0177 0.0861 0.0162

(100, 50) −0.0382 0.0843 0.0174 −0.0280 0.0852 0.0198
−0.0975 0.0791 0.0168 −0.1135 0.0777 0.0197

(50, 100) −0.0097 0.0868 0.0227 −0.0234 0.0856 0.0223
0.0029 0.0879 0.0223 −0.0177 0.0861 0.0225

(50, 50) −0.0188 0.0860 0.0240 −0.0462 0.0836 0.0277
−0.0667 0.0818 0.0248 −0.1204 0.0771 0.0274

(20, 100) −0.0439 0.0838 0.0327 −0.0747 0.0811 0.0339
−0.0154 0.0863 0.0347 −0.0382 0.0843 0.0355

(20, 50) −0.0690 0.0816 0.0343 −0.0451 0.0837 0.0434
−0.1010 0.0788 0.0365 −0.1067 0.0783 0.0436

5.3 Simulation Results
5.3.1 Frailty model with a random center effect. Table 1

presents, for the setting (σ2
0, λ0) = (0.08765, 0.1), the rel-

ative bias, the mean, and the empirical standard deviation
computed for the 500 estimates of the variance of the random
center effect. The results for the settings (σ2

0, λ0) = (0.08765,

0.5), (0.1577, 0.1), and (0.1577, 0.5) were not substantially
different (tables not shown).

The general conclusion for all parameter settings is that
σ2

0 is estimated well by the proposed method if the cluster
size is large enough (i.e., n = ni = 100). Both for the pe-
nalized partial likelihood approach (coxph in S-Plus 7.0.6)
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Table 2
Relative bias, mean, and empirical standard deviation of the
estimated values σ̂2

0 over the 500 simulations; “True” gamma
frailties, σ2

0 = 0.3520 (θ = 0.6), λ0 = 0.1; first line for coxph,
second line for PROC MIXED; 30% censoring.

Relative Emppirical
(K, n) bias Mean standard deviation

(100, 100) 0.4102 0.4964 0.0862
0.3226 0.4656 0.0740

(50, 100) 0.3989 0.4925 0.1190
0.3142 0.4626 0.1047

(20, 100) 0.3563 0.4774 0.1825
0.3422 0.4725 0.1714

and the proposed method, the absolute relative bias decreases
with the increasing cluster size, and is not substantially in-
fluenced by the number of clusters. In general, the estimates
obtained by the proposed approach are on average closer to
the true value σ2

0 if the cluster size is large enough (i.e.,
n = ni = 100). For a smaller cluster size (n = ni = 50),
the estimates obtained by the penalized partial likelihood are
more precise. In general, the absolute relative bias increases
if the amount of censoring increases. However, if the cluster

Table 3
Mean, empirical standard deviation, and average of the model-based standard deviations of the estimated values

over the 500 simulations; 50 centers, 200 patients per center (100 patients in control and treatment group);
λ0 = 0.3, β = −0.2.

PROC MIXED coxme

Empirical Model Mean Empirical
True Mean standard deviation standard standard deviation

β −0.20 −0.2010 0.0124 0.0133 −0.2001 0.0120
σ2

0 0 0.0005 0.0009 0.0008 0.0017 0.0011
σ2

1 0 0.0006 0.0009 0.0008 0.0075 0.0062
σ01 0 0.0002 0.0014 0.0014 0.0027 0.0024

β −0.20 −0.1998 0.0423 0.0420 −0.2005 0.0422
σ2

0 0 0.0006 0.0011 0.0009 0.0007 0.0010
σ2

1 0.08 0.0801 0.0177 0.0182 0.0790 0.0127
σ01 0 −0.0003 0.0047 0.0047 0.0011 0.0016

β −0.20 −0.1997 0.0407 0.0418 −0.2001 0.0404
σ2

0 0.04 0.0393 0.0102 0.0100 0.0394 0.0096
σ2

1 0.08 0.0788 0.0179 0.0180 0.0777 0.0168
σ01 0.0283 0.0277 0.0102 0.0104 0.0276 0.0097

β −0.20 −0.1993 0.0135 0.0139 −0.1995 0.0123
σ2

0 0.08 0.0794 0.0181 0.0181 0.0797 0.0124
σ2

1 0 0.0005 0.0010 0.0008 0.0006 0.0009
σ01 0 0.0000 0.0047 0.0046 0.0016 0.0014

β −0.20 −0.2009 0.0331 0.0313 −0.2006 0.0321
σ2

0 0.08 0.0805 0.0182 0.0184 0.0799 0.0179
σ2

1 0.04 0.0399 0.0096 0.0101 0.0397 0.0092
σ01 0.0283 0.0290 0.0105 0.0107 0.0287 0.0102

β −0.20 −0.1986 0.0430 0.0421 −0.1996 0.0433
σ2

0 0.08 0.0776 0.0173 0.0180 0.0776 0.0169
σ2

1 0.08 0.0794 0.0174 0.0183 0.0790 0.0168
σ01 0.04 0.0393 0.0142 0.0142 0.0394 0.0139

size is large enough, σ2
0 is estimated well by the proposed

method.
Table 2 shows the results obtained by the penalized partial

likelihood approach and the proposed method if the “true”
frailties are gamma distributed with variance 0.6. The results
illustrate that, for both methods, the point estimates of σ2

0
are biased if the model is misspecified. This lack of robust-
ness is also discussed in the bootstrap context by Massonnet,
Burzykowski, and Janssen (2006). It clearly shows the need
for lack-of-fit measures for frailty models.

5.3.2 Frailty model with random center and treatment effects.
In Table 3 we report, for the parameter choice described in
Section 5.2.2 and for 50 centers with 200 patients per center,
the mean, the empirical standard deviation, and the average
of the model-based standard deviations computed over the
500 estimates of the fixed treatment effect and the variance–
covariance components of the random effects. We compare
the results obtained by the proposed method with those ob-
tained by coxme in S-Plus 7.0.6. There is no reliable software
available to compute the standard errors for the variance–
covariance parameters for the penalized partial likelihood ap-
proach. The parameter β is in general estimated well by
both methods. The bias of the fixed effect estimates obtained
by coxme is in general a bit smaller than for the proposed
method. The empirical variability of estimates of β is similar
for both methods. The estimates of σ2

0, σ
2
1, and σ01 for both
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Table 4
Results of the analysis of the survival time of the patients included in the colorectal cancer trials

(standard error in parentheses)

Method β σ2
0 σ2

1 σ01

PROC MIXED −0.0458 (0.0219) 0.0476 (0.0187) 0.0000 (−) −0.0084 (0.0056)
coxme −0.0534 (0.0169) 0.0355 3.34 × 10−10 1.78 × 10−11

PROC MIXED −0.0558 (0.0225) 0.0461 (0.0172)
coxph −0.0534 (0.0169) 0.0376

methods are on average comparable. The estimates produced
by coxme have in general the smallest empirical variability.
The average of the model-based standard deviations for the
fixed effect and for the variance components gives an ade-
quate estimate of the empirical variability for the proposed
method.

For situations with 50 centers that have 100 patients per
center (50 in the control group and 50 in the treatment group),
the proposed method still gives reasonable estimates for β, σ2

0,
σ2

1, and σ01 (table not shown). However, compared to the sit-
uation with 50 centers and 200 patients per center, we obtain
estimates of a somewhat lower quality. This illustrates that
the proposed method needs large enough samples sizes within
the control group and the treatment group; this confirms our
finding in Section 5.3.1

6. Analysis of Colorectal Cancer Data
To investigate the between-trial variation (heterogeneity) in
both the baseline risk and the effectiveness of the therapy, we
fit the frailty model (1) including a fixed treatment effect, a
random trial effect, and a random treatment effect. In this
model, we also take into account a possible correlation be-
tween the two random effects within a trial. The parameter
estimates and the corresponding standard errors, obtained by
the proposed method and by the penalized partial likelihood
approach (coxme in S-Plus 7.0.6), are presented in Table 4.
The point estimates for σ2

1 and σ01 are very small (almost
zero). For this reason we fit the shared frailty model (3), in-
cluding a fixed treatment effect and a random trial effect. The
results are shown in Table 4.

The estimates obtained by the penalized partial likelihood
and the transformation method are a bit different. However,
the difference has only a low impact on important medical
quantities, for example, on the density of the median time
to event in the control group over trials (Figure 2). So both
methods provide similar medical conclusions.

A possible explanation for the difference between the esti-
mates obtained by both methods, is that only 16 out of 27
trials have sample sizes of both the treatment and the control
group larger than 50 patients. From the simulations we know
that the accuracy of the transformation method is compara-
ble with the penalized partial likelihood if the cluster sizes are
large enough.

The use of frailty models or linear mixed-effects models (for
the pseudodata) raises questions on diagnostics. In the con-
text of the method proposed here, we focus on model diag-
nostics for the linear mixed-effects model for the pseudodata
(see, e.g., West, Welch, and Ga�lecki, 2007). If the diagnostic
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Figure 2. Density function of the median time to event over
clusters for the colorectal cancer data.

plots show that the linear mixed-effects model is not appro-
priate for the pseudodata, it indicates that the corresponding
frailty model is not valid for the individual data. However, if
the results of the mixed model diagnostics are good, there is
no guarantee that the frailty model is the correct model for
the individual data. It is indeed possible that other models
lead to the same linear mixed-effects model using an appro-
priate model transformation. To check the fit of the linear
mixed-effects model obtained from the shared frailty model
using the model transformation, we considered a plot of the
studentized conditional residuals, versus the predicted values,
a normal QQ plot of the studentized conditional residuals,
and a normal QQ plot of the EBLUPs of the random trial Q3
effect (figures not shown). These diagnostic plots show that
the pseudo-values, obtained from the colorectal cancer data,
can be analyzed using the linear mixed-effects model that cor-
responds to the shared frailty model.

7. Conclusions
In this article, an alternative approach to fit frailty mod-
els is proposed. The original problem of “fitting a frailty
model” is reformulated into a standard problem of “fitting a
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linear mixed-effects model.” We show that the integral of the
weighted (over time) conditional cumulative log hazard de-
pends in a linear way on the random effects describing the
cluster and/or the treatment effect over clusters. Using the
data within a cluster, the integral can be estimated using
nonparametric estimation techniques. Considering the esti-
mated integrals as a response, linear mixed models method-
ology can be applied. We illustrate that this transformation
idea can also be used to fit multivariate proportional odds
models and multivariate additive risks models. Most standard
statistical packages contain procedures to fit complex linear
mixed-effects models but offer only a limited number of proce-
dures to fit conditional (random effects) survival models. The
proposed model transformation is therefore a useful practical
way to get an insight on heterogeneity in clustered data. The
performance of the proposed method was studied by simula-
tion in the context of frailty models. The results indicate a
good performance of the proposed method for data sets with
a sufficiently large number of clusters (i.e., K = 20) and mod-
erate to large sample sizes within covariate-level subgroups in
the clusters (i.e., at least nik = 50).

We considered a frailty model with a binary covariate and
we therefore could use the Kaplan–Meier estimator for the
survival function. It would be of interest to extend the trans-
formation idea to frailty models with a continuous covariate.
We then need the Beran estimator to estimate the survival
function (Beran, 1981). An asymptotic representation for the
Beran estimator is proposed by Van Keilegom and Veraver-
beke (1997). Such a representation is necessary to estimate
the variance of the error terms in the mixed-effects model.
From the above discussion it is also clear that the transforma-
tion method is useful for censoring schemes that are different
from the right censoring scheme discussed so far. Indeed, the
transformation idea readily extends to any censoring scheme
for which an i.i.d. representation for a nonparametric esti-
mator for the cumulative hazard or the survival function is
available (e.g., for interval-censored data, Lindsey and Ryan
(1998), or for left truncated and right censored data, Gijbels
and Wang (1993) and Zhou and Yip (1999)).

The performance of the transformation method for multi-
variate proportional odds models and multivariate additive
risks models will be a subject for further study.

8. Supplementary Materials
The R-code to compute the pseudodata, a SAS-macro to fit
the linear mixed-effects model to the pseudodata, and the
Web Appendices referenced in Sections 3.3 and 5.1 are avail-
able under the Paper Information link at the Biometrics web-
site http://www.biometrics.tibs.org.
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