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ABSTRACT 

 

Lotka’s law was formulated to describe the number of authors with a certain number of 

publications. Empirical results [S.A. Morris and M.L. Goldstein. JASIST 58(12), 1764-1782, 

2007] indicate that Lotka’s law is also valid if one counts the number of publications of co-

author pairs. 

 

This paper gives a simple model proving this to be true with the same Lotka exponent if the 

number of co-authored papers is proportional to the number of papers of the individual co-

authors. Under the assumption that this number of co-authored papers is more than 

proportional to the number of papers of the individual authors (to be explained in the paper), 

we can prove that the size-frequency function of co-author pairs is Lotkaian with an exponent 

that is higher than the one of the Lotka function of individual authors, a fact that is confirmed 

in experimental results. 
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I.  Introduction 

 

The law of Lotka is the celebrated decreasing power law introduced in Lotka (1926) to 

describe the number of authors (in a certain field) with 
maxn 1,2,3,...,n=  publications (

maxn  is 

the highest number of publications of an author). The simple function is 

 

 ( )
C

f n
n

=  (1) 

 

where C 0> , 1> . The exponent   is the most important one (the parameter C is only used 

to make sure that the summation of (1) for all n 1,2,3,...=  gives the total number T of 

authors). Usually 1 3< <  with 2=  as a classical midpoint. It is well-known that 2=  is a 

turning point in informetrics in the sense that derived functions change forms at 2= , e.g. in 

case of the semi-logarithmic Leimkuhler curve (Groos droop or not) or the cumulative first-

citation distribution, cf. Egghe (2005), Rousseau (1988), Groos (1967), Egghe (2000). 

 

The simple function (1) was found to be valid by Lotka in case of senior author counts (i.e. 

where in co-authored papers only one author (the senior) receives a credit of one and the other 

authors receive a credit of zero). This way, Lotka circumvented the problem of fractional 

counting (i.e. where in co-authored papers, each author receives a credit of one divided by the 

total number of authors), cf. Egghe, Rousseau and Van Hooydonk (2000), in which case (1) is 

not valid – cf. Egghe (1993), Kretschmer and Rousseau (2001) and Egghe and Rao (2002). 

 

Yet, if total counting is applied (i.e. where in co-authored papers, each author receives a credit 

of one, cf. Egghe, Rousseau and Van Hooydonk (2000)) one still has the validity of (1) for the 

size-frequency function of author production, cf. Egghe (1994). 

 

Another way of looking at author production is by studying co-author pairs and the number of 

their (joint) publications. This topic is becoming more and more important since collaboration 

increases in time, cf. Lipetz (1999), Schubert (2002). 

 

A bivariate distribution, based on (1), is studied in Kretschmer and Kretschmer (2007), hence 

producing three-dimensional graphs. In Morris and Goldstein (2007), another approach is 
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followed. Here one studies the (univariate) distribution ( )n  denoting the number of co-

author pairs with n 1,2,3,...=  (joint) publications. Hence, a classical framework is studied here 

but where “authors” are replaced by co-author pairs. In fact, in Morris and Goldstein (2007), 

one studies both functions ( )f n  as in (1) for authors and ( )n  (described above) for co-author 

pairs. 

 

In one draws the graph of (1) on a log-log scale it is clear that we obtain a decreasing straight 

line with slope - . The data in Morris and Goldstein (2007) clearly show this form (cf. Figs. 

7, 8 and 9, graphs (b)). In the same Figs., graphs (e), graphs in a log-log scale are found for 

the number ( )n  of co-author pairs with n common papers. They clearly show the same linear 

trend with slopes smaller than or equal to -  (the ones for the author size-frequency), hence 

the validity of Lotka’s law with Lotka exponents larger than or equal to  . 

 

It is the purpose of this paper to present a rationale for this, under some simple assumptions. 

Under the assumption that the number of co-authored papers is proportional to the number of 

papers per author we prove that ( )n , the size-frequency distribution for the number of 

papers of co-authored pairs, is Lotkaian with the same exponent as in (1). Under the 

assumption that the number of co-authored papers is more than proportional to the number of 

papers of the individual authors (in a way to be expressed exactly in the sequel), we can even 

prove that ( )n  is Lotkaian but with a Lotka exponent which is larger than   in (1), a fact 

that is confirmed in the graphs in Morris and Goldstein (2007). This will be executed in the 

next section, both in the discrete and continuous setting. 

 

The closing section draws conclusions and presents open problems. 
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II.  The size-frequency function of co-author pairs 

 

Throughout this paper we will suppose that (1) is the size-frequency function for the number 

of authors with 
maxn 1,2,...,n=  publications (papers). Then 

 

 ( )
maxn

n 1

T f n
=

= å  (2) 

 

is the total number of authors. 

 

Let ( )k  denote the size-frequency distribution of the number of co-author pairs with k (joint) 

publications. Then we have the following theorem. 

 

Theorem II.1 :  

Let f and   be as above. Suppose that the number of joint papers of 2 co-authors is 

proportional to these authors’ fraction of papers in the paper set. Then we have that, for every 

k (to be specified further), 

 

 ( )
D

k
k

 =  (3) 

 

where   is the same as in (1) and where D 0>  is a constant. 

 

Proof: 

Let A denote the number of papers in the paper set. By assumption we have that, if the first 

author has m papers in total and the second author has n papers in total, then the probability 

for a joint paper is 
m n

.
A A

. Indeed, 
m

A
 is the probability (in the paper set) (or fraction) to have a 

paper of the first author and 
n

A
 is the same for the second author. The proportionality 

assumption for a joint paper by these two authors is expressed by the independence rule: 

probability for a joint paper equals 
2

mn

A
. Otherwise said, 

2

mn

A
 is the probability to pick the 
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same paper in two independent trials, one with probability 
m

A
 (to pick m papers) and one with 

probability 
n

A
 (to pick n papers), the same paper then being a paper written by these two co-

authors. Since there are A papers in total, these two co-authors hence have a number k of joint 

papers equalling 

 

 
mn

k
A

=  (4) 

 

(note that k is not necessarily an entire number but even if k Ï ¥ , the distribution ( )k  will 

describe the properties inherited from ( )f n ). 

 

Note that the same k can be found using different pairs ( )m,n  (e.g. ( ) ( )m,n 1,12=  or 

( ) ( )m,n 2,6=  or ( ) ( )m,n 3,4= , …or m and n reversed). For a fixed pair ( )m,n  we have that 

the probability to have an author with m papers in total and to have an author with n papers in 

total equals 

 

 
( ) ( )f m f n

.
T T

 (5) 

 

by (2). This contributes to the probability to have a co-author pair with production k. We only 

have to sum up for all possible pairs ( )m,n  that yield (4). 

 

Hence, by definition of ( )k  we have 

 

 ( )
( )

maxn

2
n 1

Ak
f f n

n
k

T


=

æ ö
÷ç ÷ç ÷çè ø

= å  (6) 

 

             
maxn

2
n 1

1 C C

T nAk

n

 
=

=
æ ö

÷ç ÷ç ÷çè ø

å  

 



 6 

              
2

max

2

nC 1

T A k 
=  

 

which is (3) for 

 

                                      
2

max

2

C n
D

T A
= .                               ⁬ 

 

Note: 

If we allow all 
maxn 1,2,...,n=  as in (6), we can end up with several cases where 

Ak

n
Ï ¥ . 

Since, in the discrete case (1) we want to restrict ourselves to arguments in ¥  we can 

approximate 
Ak

n
 by the natural number which is closest to 

Ak

n
, in which case the calculation 

above is approximate. We still think that the above heuristic argument sheds some light on 

why the size-frequency distribution of co-author pairs is of the form (3). This problem will 

not be encountered later on where we will use continuous variables for the arguments of f and 

 . 

 

We will now assume, more generally, that the number of joint papers of 2 co-authors is higher 

than proportional to these authors’ fractions of papers in the paper set (cf. Borgman and 

Furner (2002): “higher RATES of collaboration are usually associated with higher 

productivity”). Borgman and Furner (2008) base themselves on earlier work by Pao (1992), 

Bordons and Gomez (2000), Subramanyam (1983), Beaver and Rosen (1979), Price and 

Beaver (1966), Pao (1981, 1982), Zuckerman (1967). 

 

For a discussion of the assertions around the relation between collaboration and production, 

we refer the reader to the “Conclusions and open problems” section, where we formulate an 

open problem around this theme, which possible validity would imply some of the earlier 

assertions mentioned above. 

 

Proportionality was expressed by independence in the proof of the above theorem: the 

probability for a joint paper of two authors with m and n papers in total was 
2

mn

A
. Since 

m,n A<  obviously we can express a higher probability for a joint paper by 
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2 2

mn mn
p

A A


æ ö

÷ç= >÷ç ÷çè ø
 (7) 

 

where 0 1< <  (since 2m,n A< ). Under this assumption we can prove the next theorem. 

 

Theorem II.2: 

Under the same notation as above and supposing (7) for the probability for a joint paper of 2 

co-authors we have that, for every k, 

 

 ( )
E

k

k





 =  (8) 

 

hence a Lotka law with exponent 

 

 


 


= >  (9) 

 

Proof: 

The proof follows the lines of the one of Theorem II.1. Now, if (by (7)) 

 

 
2

mn
p

A


æ ö

÷ç= ÷ç ÷çè ø
 

 

is the probability for a joint paper then, since there are A papers, we have 

 

 
2

mn
k A

A


æ ö

÷ç= ÷ç ÷çè ø
 (10) 

 

joint papers of these two authors. Again, as in (6), we have to account for all possible 

combinations of m and n, yielding k. Therefore we now have 
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 ( )

( )
max

1
2

n

2
n 1

A k
f f n

n A

k
T




=

æ ö÷ç æ ö ÷ç ÷ç ÷ç ÷ ÷çç ÷ç ÷è øç ÷÷çè ø
= å  (11) 

 

        
maxn

2
1

n 1 2

1 C C

T n
A k

n A

 


=

=
æ ö÷ç æ ö ÷ç ÷ç ÷ç ÷ ÷çç ÷ç ÷è øç ÷÷çè ø

å  

 

         
2

max

2
2

C n 1

T A k

 


 
-

=  

 

which is (8) for 

 

 
2

max

2
2

C n
E

T A





-

=  

 

Note that (8) is the law of Lotka for co-author pairs and that now the exponent 

 

 


 


= >  

 

since 0 1< < .                                        ⁬ 

 

Note: 

The same remark as in the note following Theorem II.1 applies to the argument given in 

Theorem II.2 (and more specifically equation (11)) above. 

 

We will now present the arguments, given in Theorems II.1 and II.2, in a continuous setting. 

Now equation (1) is replaced by 

 

 ( )
C

f j
j

=  (12) 
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where ( )f j  denotes the density of the number of authors with publication density [ ]j 1,Î  and 

where C 0>  and 1>  - cf. Egghe (2005), Chapter II. Note that now (2) is replaced by 

 

 ( )
1

T f j dj


= ò  (13) 

 

for the total number T of authors. 

 

We have the following results, being the continuous analogues of Theorems II.1 and II.2. 

 

Theorem II.3: 

Under the notation as above we have 

(i) If the publication density k of co-author pairs is given by (or is proportional with) 

 

 
jj'

k
A

=  (14) 

 

 (cf. (4)), where j and [ ]j' 1,Î  are the publication densities of the individual authors, 

we have that the size-frequency distribution of co-author pairs ( )k  is given by 

 

 ( )
D

k
k

 =  (15) 

 

 where   is the same as in (12) and where D 0>  is a constant. 

(ii) If the publication density k of co-author pairs is given by (or is proportional with) 

 

 
2

jj'
k A

A


æ ö

÷ç= ÷ç ÷çè ø
 (16) 

 

 (cf. (10)), where 0 1< < , then we have that the size-frequency distribution of co-

author pairs ( )k  is given by 
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 ( )
E

k

k





 =  (17) 

 

where E 0>  is a constant and where the Lotka exponent is 

 

 


 


= >  (18) 

 

 Proof: 

 The proof follows the lines of the proofs of Theorems II.1 and II.2. Now (6) is 

replaced by 

 

 ( )

( )

2
1

Ak
f f j

j
k dj

T





æ ö
÷ç ÷ç ÷ç ÷è ø

= ò  (19) 

 

 using (14) (deleting the eventual proportionality factor). Note that there are no 

problems with the argument 
Ak

j
 of f now: by (16) and since [ ]j, j' 1,Î  we have that 

2Ak 1,é ùÎ ê úë û
 and hence [ ]

Ak
1,

j
Î , which is the domain of f. 

 

 Equation (19) now gives 

 

 ( )
2

1

1 C C
k dj

T jAk

j



 
 =

æ ö
÷ç ÷ç ÷ç ÷è ø

ò  

 

          
( )2

2

C 1 1

T A k 

 -
=  

 

 which is of the form (15). 
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(iii) Similarly, with (16), 

 

 ( )

( )

1
2

2
1

A k
f f j

j A

k dj
T







æ ö÷ç æ ö ÷ç ÷ç ÷ç ÷ ÷çç ÷ç ÷è øç ÷÷çè ø
= ò  

 

      
2

2
11

2

C 1 1
. dj

T j
A k

j A



 



=
æ ö

÷ç æ ö ÷ç ÷ç ÷ç ÷ ÷çç ÷ç ÷è øç ÷÷çè ø

ò  

 

      
( )2

2
2

C 1 1

T A k

 


 



-

-
=  

 

 and where 1





= > .                                  ⁬ 

 

Note: 

Although the continuous setting in Theorem II.3 solves the problems of the argument of f in 

the discrete setting, we still have a problem in case (ii) of Theorem II.3. Now, since [ ]j, j' 1,Î  

are densities, it is not always so that j, j' A<  (this is so in the discrete case). But since 

[ ]j, j' 1,Î  and since A T 1> ?  we will have that 
2

jj'
1

A
<  in most cases. So we can conjecture 

that (16) still is a good continuous interpretation of the (always) correct equation (10). Note 

also that this problem does not occur in Theorem II.3 (i) since no   is applied to (14). Hence 

the result in Theorem II.3 (i) can be considered (within the used model) as correct. 

 

Experimental evidence for these results are found in Morris and Goldstein (2007). There, 

three datasets are presented. By way of example we reproduce their Figs. 8(b) and (e), with 

permission, see Figs. 1 and 2 here. The data deal with a collection of papers on distance 

education. Fig. 1 presents the size-frequency function of the authors with a certain number of 

papers in a log-log scale. The linear trend is clear, conforming with Lotka’s law (1). Fig. 2 

presents the size-frequency function of co-author pairs with a certain number of papers in a 

log-log scale. Also here is there a linear trend, conforming with Lotka’s law (1). However it is 
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clear that the linear trend in Fig. 2 has a lower negative slope  - < - , the slope of the linear 

trend in Fig. 1. Hence  >  conforming with Theorem II.2.  This is also found in their Fig. 9 

(b) and (e). On the other hand, their Fig. 7 (b) and (e) shows also decreasing linear trends, 

again with  >  but  » , conforming with Theorem II.1. In general we can say that  ³  

where   is the Lotka exponent of the size-frequency function of co-author pairs and where   

is the Lotka exponent of the size-frequency function of the authors themselves. 
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   Fig. 1   Size-frequency function of authors. 

     Reprinted with permission of Wiley InterScience. 
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   Fig. 2   Size-frequency function of co-author pairs 

     Reprinted with permission of Wiley InterScience. 
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Note: That Lotka’s law also holds for co-author pairs has also been found in Kretschmer and 

Kretschmer (2008) 

 

III.  Conclusions and open problems 

 

We showed that the size-frequency function of co-author pairs retains the Lotkaian form 

which is present in the size-frequency function of authors (vs. their papers). Experimental 

evidence of Morris and Goldstein (2007) that the Lotka exponent in the former case is larger 

than the one in the latter case is mathematically proved based on a principle that higher 

productivity leads to higher rates of collaboration, as advocated in e.g. Borgman and Furner 

(2002). 

 

Although we have experimental evidence of Morris and Goldman, we did not find 

experimental results on the Borgman-Furner assertion, although we think it is a “logical” 

principle, certainly in its reverse orde: higher rates of collaboration should lead to higher 

production of the individual authors (where authorship should be counted in the total way – 

see Egghe, Rousseau and Van Hooydonk (2000)). 

 

It is not easy to give experimental evidence for this assertion. To put things more clearly we 

state the following problem. 

 

 

Problem: 

Prove that, in general, the higher the number of papers of an author, the higher is his/her 

fraction of co-authored papers (with at least one co-author). 

 

Of course, this will not be true for every author but we conjecture that, given a field, the cloud 

of points – each point representing the number of papers of an author (obscissa) versus his/her 

fraction of co-authored papers (ordinate) – has an increasing regression line. 

 

Experimental evidence of this assertion is not available as is also confirmed by the colleages 

mentioned in the acknowledgement. Some “weaker” assertions or variants of the assertion 
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above are proved experimentally. Pao (1992) investigates global and local collaborators: 

global collaborators are authors that have co-authors from other laboratoria while local 

collaborators only have co-authors from their own lab. Pao proves that the global 

collaborators are much more productive than the local ones. Price and Beaver (1966) prove 

that researchers with many collaborators are far more productive than researchers with few 

collaborators. In Beaver and Rosen (1979) one finds that even in the period 1799-1830, the 

French scientific elite had a high average productivity in the group of scientists that 

collaborated. Zuckerman (1967) finds that Nobel laureates publish and collaborate more than 

a matched sample of scientists (a predictable fact). The study of Pao (1982) in computational 

musicology is a bit inconclusive with respect to collaboration and production, mainly due to 

the different sociological habits of the humanities (in comparison with the sciences) – see also 

Pao (1981). 

 

The kind of problem as formulated above on collaboration are of increasing interest since, 

worldwide, collaboration in scientific publications is increasing (Lipetz (1999), Schubert 

(2002)). 
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