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ABSTRACT 

 

The well-known similarity measures Jaccard, Salton’s cosine, Dice and several related 

overlap measures for vectors are compared. While general relations are not possible to prove, 

we study these measures on the “trajectories” of the form X a Y , where 0a   is a 

constant and   denotes the Euclidean norm of a vector. In this case, direct functional 

relations between these measures are proved. For Jaccard we prove that it is a convexly 

increasing function of Salton’s cosine measure, but always smaller than or equal to the latter, 

hereby explaining a curve, experimentally found by Leydesdorff. All the other measures have 

a linear relation with Salton’s cosine, reducing even to equality, in case 1a  . Hence for 
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equally normed vectors (e.g. for normalized vectors) we, essentially, only have Jaccard’s 

measure and Salton’s cosine measure, since all the other measures are equal to the latter.  

 

 

I.  Introduction 

 

The similarity measures Jaccard, Salton’s cosine (briefly cosine), Dice and related overlap 

measures are best known in their set-theoretic version. Let us repeat the well known 

definitions which can be found e.g. in the classical monographs Boyce, Meadow and Kraft 

(1995), Tague-Sutcliffe (1995), Grossman and Frieder (1998), Losee (1988), Salton and 

McGill (1987) and Van Rijsbergen (1979) and see also Egghe and Michel (2002, 2003). 

 

In general one has a universe   from which subsets A, B,… are considered as e.g. in 

information retrieval (IR) where sets A, B,… are document sets retrieved from queries that 

were put in an IR system for which   is the entire database. A good similarity measure S 

measures the degree of similarity between any two subsets A, B of   and hence is a function 

 S:   

 (A,B) S(A,B)  (1) 

where some elementary requirements must be fulfilled: S(A,B)  should be minimal (say 0 in 

most cases) if A B   and should be maximal (say 1 in most cases) if A B   (in 

which case S ranges in the interval  0,1 ). Let us for any subset A, B of   denote by | A |,| B |  

the cardinality of A respectively B, i.e. the number of elements in A, B. 

 

Jaccard’s measure, denoted J, is a symmetric overlap measure defined as follows, for A, B 

subsets of  , A,B  . 

 
A B

J(A,B)
A B





 (2) 

 

Salton’s cosine measure, denoted Cos is also symmetrical and is defined as 

 
A B

Cos(A,B)
A B


  (3) 
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(note that A B  is the geometric average of A  and B ). Why this measure is called 

Cosine is well-known but will be repeated further on.  

 

Dice’s measure, denoted E, is also a symmetric similarity measure and is defined as 

 
2 A B

E(A,B)
A B





 (4) 

(note that now we use the arithmetic average  
1

A B
2

  of | A |  and | B |). Sometimes one 

considers the generalized Dice measure E , for  0,1  

 
 

A B
E (A,B)

A 1 B




  

 (5) 

Note that 1

2

E E ; the general formula (5) uses a general convex combination of A  and B .  

 

A symmetrical measure, for which we do not have a name, but denoted by N is the following 

 
2 2

A B
N(A,B) 2

A B






 (6) 

 

Two other symmetrical overlap measures are 

 
 1

A B
O (A,B)

min A , B


  (7) 

 
 2

A B
O (A,B)

max A , B


  (8) 

 

Elementary calculations yield the following general inequalities between these measures 

 2 1J O E N Cos O      (9) 

 

Two non-symmetrical overlap measures are 

 
A B

P
A


  (10) 

and 
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A B

R
B


  (11) 

In IR, P is the precision if A = ret (the set of retrieved documents) and B = rel (the set of 

relevant documents) in which case R is called recall. Other interpretations of (10) and (11) in 

terms of fallout and miss can also be given – see Egghe (2007, 2008). Note that E respectively 

E
 are the harmonic, respectively generalized harmonic mean of P and R: 

 
1

E
1

P R

   


 (12) 

and 1

2

E E . 

 

Further inequalities are (elementary calculation) 

 2 1O P,R,E O   (13) 

 

In Egghe and Michel (2002) it is explained how to interpret the above definitions in terms of 

similarity measures between two vectors 1 2 n 1 2 nX (x ,x ,..., x ),Y (y , y ,..., y )   where n . 

In IR, X  and Y  can describe queries and documents where e.g. X  is a query and Y  is a 

document and where ix  or iy 1  if key word i appears in the query respectively the 

document and where ix  or iy 0  if this is not the case. Of course X  and Y  can both 

represent query vectors or document vectors in which case (e.g. the latter one) similarity 

between two documents is measured. 

 

The step from the above set-theoretic similarity measures to similarity measures for vectors is 

taken as follows. Denote 

   iA i 1,...,n || x 1    (14) 

   iB i 1,...,n || y 1    (15) 

then  

 
n

i i

i 1

A B X Y x y


      (16) 

where X Y  is the inproduct (sometimes also denoted by X,Y  ; the inproduct is also 

called the dot product or inner product) of the vectors X  and Y . Also 
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n 2

2

i
2

i 1

A x X


   (17) 

 
n 2

2

i
2

i 1

B y Y


   (18) 

, the squares of the Euclidean norms of the vectors X  and Y . Finally, we also have 

 
2 2

2 2
A B X Y X Y      (19) 

 

In this way, all the above similarity measures (for sets) can be redefined for vectors 

1 2 n 1 2 nX (x ,x ,..., x ),Y (y , y ,..., y )   and where we immediately extend the defenition to the 

non-binary case: all coordinates are positive real numbers: 
i ix , y   for all i 1,...,n .  

Since we extensively need these formulae in the sequel we will define them here explicitely. 

 
2 2

X Y
J J(X,Y)

X Y X Y


 

  
 

 

n

i i

i 1

n n n
2 2

i i i i

i 1 i 1 i 1

x y

x y x y



  



 



  
 (20) 

where we denote, for the sake of simplicity, 
2

   .  

 
X Y

Cos Cos(X,Y)
X Y


 


 

 

n

i i

i 1

n n
2 2

i i

i 1 i 1

x y

x y



 




 

 (21) 

 

Now it is clear why Cos is called the cosine measure: Cos(X,Y)  is indeed the cosine of the 

angle between the vectors X  and Y . Note also that, if X Y 1  , the cosine Cos(X,Y)  

equals the simple dot product X.Y . Further 

 
2 2

2X Y
E E(X,Y)

X Y


 


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n

i i

i 1

n n
2 2

i i

i 1 i 1

2 x y

x y



 







 
 (22) 

and in the generalized form 

 

 
2 2

X Y
E E (X,Y)

X 1 Y
 


 

  
 

 

n

i i

i 1

n n
2 2

i i

i 1 i 1

x y

x (1 ) y



 



  



 
 (23) 

Further 

 
4 4

X Y
N N(X,Y) 2

X Y


 



 

 

n

i i

i 1

2 2
n n

2 2

i i

i 1 i 1

x y

2

x y



 



   
   

   



 

 (24) 

 

 

 
1 1 2 2

X Y
O O (X,Y)

min X , Y


   

 

n

i i

i 1

n n
2 2

i i

i 1 i 1

x y

min x , y



 


 
 
 



 
 (25) 

 

 

 
2 2 2 2

X Y
O O (X,Y)

max X , Y


   

 

n

i i

i 1

n n
2 2

i i

i 1 i 1

x y

max x , y



 


 
 
 



 
 (26) 

and, finally, 
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2

X Y
P P(X,Y)

X


   

 

n

i i

i 1

n
2

i

i 1

x y

x









 (27) 

 

 
2

X Y
R R(X,Y)

Y


   

 

n

i i

i 1

n
2

i

i 1

x y

y









 (28) 

 

It is clear that general functional relations, using general sums 
n

i 1

 between these vectors are 

not possible. Yet if one looks at Fig.3 in Leydesdorff (2008), it is clear that there is an almost 

pure functional relationship between J and C – see Fig.1 below which is a reproduction of this 

graph (with kind permission from Wiley Interscience). 

The cloud of points hardly has any thickness, expressing that there should be a functional 

relationship between J and C. The study of this relation is executed in the next section. We 

will show that, in all cases where X a Y  ( a 0 , a constant) we have a concavely 

increasing function as in Fig.1. Also, for a 1  we show that the relation is (denote Cos = C) 

 
C

J
2 C




 (29) 

and we show that this function almost exactly fits the points in Fig.1. We also show that all 

functional relations between J and C are below the first bissectrix and that (29) is the highest 

curve for all a 0 . We also give a necessary and sufficient condition for one curve to be 

above another one, in terms of the a-values. We also present a formula for calculating the 

distance between two such curves and estimate from Fig.1 that, in this dataset, if Y X , 

then Y 2 X  (hence X 0.5 Y ) limiting the possible a-values to  a 0.5,2 . This fully 

explains the “sharp” graph in Fig.1  
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Fig.1 Relation between J and Cos: case of 24 information scientists, hence (24 x 23)/2 points dealing with 

citation data of Ahlgren, Jarneving and Rousseau (2003). Reprinted with kind permission from Willey. 
 

The third section is devoted to the relation of the other similarity measures with Cos C . 

There we show that all relations are linear in C and even that all measures are equal with C for 

a 1  (i.e. on X Y ). All straight lines (except two) are below the first bissectrix (being 

the line of equality between one measure and C, which is the case for a 1 , as mentioned 

above).  

 

The paper ends with some suggestions for further research and some open problems. 
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II.  The relation between Jaccard and Salton’s 

Cosine measure 

 

Let 1 n 1 nX (x ,..., x ),Y (y ,..., y )   be non-zero vectors such that X Y 0  . This means that 

X  and Y  are not perpendicular (otherwise all similarity measures are zero in which case no 

further comparison is necessary). We first prove a Lemma. 

 

Lemma II.1:  

Denoting Cos(X,Y)  by C we generally have for all vectors X  and Y  

 
2 2

i i

2 2

i i

C
J J(X,Y)

x y
C

y x

 

 
 
 

 (30) 

and where we denote, henceforth 
n

2 2

i i

i 1

x x


   and 
n

2 2

i i

i 1

y x


  .  

Proof:  

Denoting also 

 
n

i i i i

i 1

x y x y


   

and by (20) and (21), we have 

 

2 2

i i i i

2 2

i i

x y x yC

J x y

 

  

 
 

 

2 2

i i

2 2

i i

x y
C

y x
  
 
 

 

Hence 

 

2 2

i i

2 2

i i

x y1
C 1

J y x

 
   

 

 
 

 

from which (30) readily follows.     ⁬ 

 

We now have the following basic result. 
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Theorem II.2:  

Let X a Y  where a 0 . Then 

 
C

J
1

a C
a



 

 (31) 

Proof:  

This follows readily from (30) and 

 2 2

i iX x a Y a y         ⁬ 

 

Corrolary II.3:  

If a 1  (i.e. if X Y ) then 

 
C

J
2 C




 (32) 

Proof:  

This follows readily from Theorem II.2.     ⁬ 

 

We have calculated the values of J, obtained from (32) for increments of C equal to 0.1. The 

result can be seen in Table 1. 

 

Tabel 1. Values of J versus C of formula (31) (case a=1) 

C J 

0 0 

0.1 0.052631 

0.2 0.1111111 

0.3 0.1764706 

0.4 0.25 

0.5 0.3333333 

0.6 0.4285714 

0.7 0.5384615 

0.8 0.6666667 

0.9 0.8181818 

1 1 

 

This function, hence, fits almost exactly Fig.1 – see Fig.2, where the curve (32) is added on 

the graph in Fig.1. 
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Fig. 2 Fit of (32) on the graph in Fig.1 

 

Further to the study of the general function (31) we have the following results.  

 

Propositon II.4:  

The function (31) (hence also (32)) is a convexly increasing function of C with J(0) 0  and  

 
2

1 a
J(1) 1

1 a a 1
a 1

a

  
 

 

 

and J(1) 1  if and only if a 1 . 

Proof:  

This follows readily from (32) and by the calculation of 
dJ

dC
 and 

2

2

d J

dC
 and since 

2

a
1

a a 1


 
 

if and only if  
2

a 1 1   hence if and only if a 1 .     ⁬ 

 

To distinguish between the functions (31) for different a we will, in the sequel, denote (31) by 
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a

C
J J (C)

1
a C

a

 

 

 (33) 

 

Proposition II.5:  

For any a,a ' 0  we have 

 a a 'J (C) J (C)  (34) 

for every  C 0,1  (note that a a 'J (0) J (0) 0   for all a,a ' 0 ) if and only if 

 
1

a ' max a,
a

 
  

 
 (35) 

or 

 
1

a ' min a,
a

 
  

 
 (36) 

Furthermore, if (35) nor (36) are true, we have the opposite inequality ( )  in (34), for all 

 C 0,1  and < in (34) for all  C 0,1 , if a a '  and 
1

a
a '

 .  

Proof: 

First note that, for all a,a ' 0  we have that 

 
1

a C 0
a

    (37) 

 
1

a ' C 0
a '

    (38) 

since 
1

a 2
a

   and 
1

a ' 2
a '

   and since  C 0,1 . Indeed 

 
1

a 2
a

   

if and only if 2a 2a 1 0    which is true since 2(a 1) 0  . Then (34) is equivalent with  

 
1 1

a ' a
a ' a

    (39) 

or 

 a 'a(a ' a) a ' a    (40) 

(i) Let a ' a . Then (40) is equivalent with a 'a 1  or 
1

a '
a

 . In this case 
1

a ' max a,
a

 
  

 
. 
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(ii) Let a ' a . Then (40) is equivalent with a 'a 1  or 
1

a '
a

 . In this case 
1

a ' min a,
a

 
  

 
. 

 

Both cases together are all cases in which (34) is valid. Indeed if (35) nor (36) are valid then 

we have 
1

a ' a
a
   or 

1
a a '

a
   in which case we see, by (40) that a a 'J (C) J (C) , for all 

 C 0,1 , the opposite of (34), with strict inequality for  C 0,1  and a a '  and 
1

a
a '

 .     ⁬ 

 

Corollary II.6:  

For all  C 0,1  

 1 aJ (C) J (C)  (41) 

for all a 0  and a 1 . 

Proof: 

Since a ' 1  is between a  and 
1

a
, for every a 1 ,we have that (35) and (36) are false, hence, 

by the above Theorem, we have 1 aJ (C) J (C)  for all  C 0,1 , but, since 
1

a 1 a '
a '

   , we 

have that (41) is valid, for all  C 0,1 .     ⁬ 

 

Further we can also prove the following proposition. 

 

Proposition II.7:  

For all a 0  we have 

 aJ (C) C  (42) 

for all  C 0,1 , aJ (0) 0 , 

 a

1
J (1) 1

1
a 1

a

 

 

 (43) 

and where the inequality   in (43) is strict if and only if a 1 . 

Proof: 

By (33) we have that  

 aJ (C) C  
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for all  C 0,1  if and only if 

 
C

C
1

a C
a



 

 

By (37) we have then that this is equivalent with (for  C 0,1 ) 

 
1

a 1 C
a

    (44) 

But 
1

a 2
a

   (since 2(a 1) 0  ) hence, since  C 0,1 , we have that, hence (42) is true. 

Hence also (43) follows and, if a 1  the inequality (43) is strict since 2(a 1) 0  .     ⁬ 

 

Note that (42) also follows from (41) and the fact that 

 1

C
J (C) C

2 C
 


 

for all  C 0,1 . 

 

Summarizing, we have that all values aJ (0) 0  that only 1J (1) 1  and aJ (1) 1  for all a 1  

and that aJ (C) C  for all a 0  and  C 0,1 . This supports the experimental finding in 

Leydesdorff (2008) that “the Jaccard index covers a “smaller range” than does the cosine” 

where also reference is given to Hamers, Hemeryck, Herweyers, Janssen, Keters and 

Rousseau (1989) stating that C 2J  in most practical cases. This is, of course a too rough 

estimation but some support is given by Table 1 (case a 1 ).  

 

We close this section on the relation between the Jaccard measure and Salton’s cosine 

measure by calculating the difference a a 'J (C) J (C)  for different values of a,a ' 0  and 

 C 0,1  (note that, always, a a 'J (0) J (0) 0  ). 

 

Suppose a  and a '  are such that a a 'J (C) J (C) 0   for all  C 0,1 . We have 

 a a '

C C
J (C) J (C)

1 1
a C a ' C

a a '

  

   
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1 1
C a ' a

a ' a

1 1
a C a ' C

a a '

 
   

 
  

     
  

 (45) 

in which all factors are positive, because of (37), (38) and (39). 

 

An elementary calculation shows that (45) increases in C, implying that the largest difference 

occurs in C 1 : 

 a a '

1 1
a ' a

a ' aJ (1) J (1)
1 1

a a '
a a '

  

 
  

   
  

 (46) 

We will now use (45) to estimate the range of a in X a Y  that occurs in Leydesdorff 

(2008). A graphical inspection of Fig.2 gives 1 aJ (0.3) J (0.3) 0.03   (replacing a  by 1 and 

a '  by a). Hence (45) gives (using (41)) 

 

 
1 a

1
0.3 a 2

a
J (0.3) J (0.3) 0.03

1
2 0.3 a 0.3

a

 
  

   
 

   
 

 

yielding  

 
1

a 2.3481928
a

   

This, in turn, yields 

 0.5588709 a 1.7893218   

Note that 
1

0.5588709
1.7893218

  as it should. The part below a 1  can be omitted since 

X a Y  if and only if 
1

Y X
a

 . So, upon interchange of X  and Y  we can say that in 

the data in Leydesdorff (originating from Ahlgren, Jarneving and Rousseau (2003)) we have 

that the maximal norm factor is 1.7893218  or, roughly speaking, X 2 Y . This explains 

why a relative large variation in vector norms (up to a factor 2) still leads to very close curves 

aJ (C)  so that the cloud of points in Fig.1 is very sharp, strongly resembling a functional 

relation. 
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This ends our study of the comparison of J and C. Now we will compare all the other 

similarity measures with C Cos .  

 

 

III.  The relation between the other similarity 

measures E, E

, N, 

1
O , 

2
O , P and R with Cos in case 

X a Y  

 

III.1  E, E


 versus Cos C  

Since 1

2

E E , this special case will be comprised in the general one for  0,1 .  

 

By (21) and (23) we have 

 

2 2

i i

2 2

i i

x (1 ) yC

E x y

  

 

 
 

 

2 2

i i

2 2

i i

x y
(1 )

y x
   

 

 
 

 

In case X a Y  we hence have 

 
C 1

a (1 )
E a

     (47) 

Hence E  is a linear function of C 

 
1

E C
1

a (1 )
a

 

  

 (48) 

and for a 1  this even reduces to equality: E C   for all  0,1 . 

 

Now 
1

a (1 ) 1
a

    . Indeed 
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 2a a (1 ) a( a 1) ( 1) 0           

since a 1 1    and a 1 . Hence E C   for all  0,1  and E C   except if a 1  

( E C  ) and except in C 0  (then E 0   also). Note that (48) reduces, for 
1

2
  , to  

 
2

E C
1

a
a





 (49) 

 

III.2  N versus E and C 

It is a bit easier to, firstly, compare N with E. We have, by (22) and (24)  

 

   

2 2

i i

2 2
2 2

i i

x yN 2

E 2
x y






 

 
 

Hence 

 
      

   

2 2
2 2 2 22
i i i i

2 2
2 2

i i

x y 2 x yN
2

E x y

  
 

  

   

 
 

 

2 2

i i

2 2

i i

2 2

i i

2 2

i i

x y
2

y x

x y

y x

 





 
 
 
 

 

Hence 

 

2
2

2

2

2

1
a 2

N a2
1E

a
a

 
 

 
  

 

so that 

 

2

2

2

2

1
a 2

1 aN E
12

a
a

 





 (50) 

which implies that N E  if a 1 . In function of C we have, by (49), the linear function  

 
2

2

2
N C

1
a

a





 (51) 
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which, of course also implies N C  if a 1 . Of course, since 2

2

1
a 2

a
   for all a 1  we 

have that N C .  

 

III.3  O1 and O2 versus C 

From (21) and (25) we have 

 
 2 2

i i

2 2
1 i i

min x , yC

O x y


 

 
 (51) 

 

In case X a Y  we hence have 

 

2 2

i i

2 2
1 i i

x yC
min ,

O y x

 
 
 
 

 

 
 

 
1

min a,
a

 
  

 
 

hence 

 1

1
O C

1
min a,

a


 
 
 

 (52) 

a linear function of C. 

 

Similarly, using (21) and (26) we find the linear function of C 

 2

1
O C

1
max a,

a


 
 
 

 (53) 

which readily implies that, always, 1O C  and 2O C  but also that, if a 1 , that 

1 2O O C  . Note that, if a 1 , 
1

max a, 1
a

 
 

 
 and 

1
min a, 1

a

 
 

 
 hence 1O C  and 

2O C  for all a 0 , a 1 . This also goes for C 1  in which case 2O 1  but 1O 1 . Note 

that this is only possible in the non-binary case. If C 1  then we have that X aY  for a 

certain a 0  (since C 1  implies that the angle between X  and Y  is zero). But, in the 

binary case, X aY  implies a 1  and hence 1O C 1  . 
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III.4  P and R versus C 

(21), (27) and (28) imply 

 

2

i

2 2

i i

xC

P x y




 
 

 

2

i

2

i

xC

P y




 (54) 

and 

 

2

i

2 2

i i

yC

R x y




 
 

 

2

i

2

i

yC

R x




 (55) 

 

In the case that X a Y  we hence have the linear functions 

 
1

P C
a

  (56) 

 R aC  (57) 

hence P C  if and only if R C . Again, for a 1  we have P R C  . 

 

Remark: It is clear that from the proved relations between any measure and C we can also 

calculate all other relations between any two measures. It is clear that, in case X a Y  

( a 0  a constant), from the linear relations with C we will also obtain linear relations 

between any two measures (excluding J ). 
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IV.  Conclusions and suggestions for further 

research 

 

We defined the similarity measures J (Jaccard), Cos C  (Salton’s Cosine), E  and E  

((generalized) Dice), N  and the overlap measures 1O , 2O  (symmetric) and P and R (non-

symmetric). 

 

On the “trajectories” X a Y  with a 0  constant we studied the relations among these 

similarity measures and we showed that J  is a convexly increasing function of C, hereby 

presenting a model that explains Fig.1, given in Leydesdorff (2008). We even explain that 

variations of a  (up to a factor 2) lead to very small changes in the relation between J  and C  

(explaining the sharp function in Leydesdorff (2008)). 

 

On the same trajectories we show that all other measures are a linear function of C  and we 

can even prove that they are all equal to C  in case a 1 . 

 

In the literature one sometimes finds other similarity measures, based on 
n

i

i 1

x


  and 
n

i

i 1

y


 , 

instead of 
n

2

i

i 1

x


  and 
n

2

i

i 1

y


 . So can one find in Jones and Furnas (1987) the “pseudo” cosine 

and Dice measures 

 

n

i i

i 1

n n

i i

i 1 i 1

x y

PCos

x y



 


  
  
  



 
 (58) 

and 

 

n

i i

i 1

n n

i i

i 1 i 1

x y

PE

x y



 







 
 (59) 
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, i.e. using the L
1
-norms 

n

i
1

i 1

X x


 , 
n

i
1

i 1

Y y


  (for ix , iy 0 ) instead of the (in this 

article) used L
2
-(or Euclidean) norms 

n
2

i
2

i 1

X X x


    and 
n

2

i
2

i 1

Y Y y


   . The 

norms 
1
  correspond to the so-called “city-block” metric (see e.g. Egghe and Rousseau 

(1990), Chapter I, the section on multivariate statistics).  

 

Similarly, one finds in Dominich (2001) the 
1
  version of 1O : 

 

n

i i

i 1
1 n n

i i

i 1 i 1

x y

PO

min x , y



 


 
 
 



 
 (60) 

(while the similar variant of 2O  is not discussed in Dominich (2001)). 

 

One can even think of defining all the other measures, used here, in this way. Note that such 

definitions equally extend the binary case in the same way. Indeed (17) and (18) can be 

replaced by  

 
n

i
1

i 1

A x X


   (61) 

 
n

i
1

i 1

B y Y


   (62) 

as well. 

 

If we use the trajectories 
1 1

X a Y  now, then all the results obtained in this paper can be 

reproved for the “pseudo” versions of these measures (such as (58), (59) or (60)). Note that 

the term pseudo refers to the fact that they are variants of the original definition but that these 

measures are good similarity measures, as well.  

 

We do not see, at the moment, how to relate the 
2
 -defined measures with the 

1
 -defined 

ones. Also, we do not see how the classical correlation coefficient of Pearson, fits in this 

theory. This measure is defined as (cf. Egghe and Rousseau (1990), Ahlgren, Jarneving and 

Rousseau (2003)). 
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n n n

i i i i

i 1 i 1 i 1

2 2
n n n n

2 2

i i i i

i 1 i 1 i 1 i 1

n x y x y

r

n x x n y y

  

   

  
   
  

   
    
   

  

   

 (63) 

The problem to relate r with other measures is the simultaneous occurrence of 
n

i

i 1

x


  and 

n
2

i

i 1

x


  (and similarly for Y ). In Ahlgren, Jarneving and Rousseau (2003) it is also shown that 

r lacks some properties that good similarity measures should have. Due to the lack of the 

inproduct 
n

i i

i 1

x y


  in the 2 -measure, defined in Ahlgren, Jarneving and Rousseau (2003) 

 

2

n
2 i i

n n
i 1

j j

j 1 j 1

x y

x y

 

 
 
   
 
 
 


 

 (64) 

we also leave it open to relate 2  with the other measures.  

 

We want to conclude that from the definitions of the diverse measures, formal mathematical 

relationships follow and therefore should not be considered as sociological phenomena. In 

other words, the importance of studying different similarity measures decreases and drawing 

sociological conclusions on these relations does not make much sense. It also follows that one 

measure is enough for ranking. 
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