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Abstract 

 

Zirconia ultrathin films were deposited by aqueous chemical solution deposition, using 

citratoperoxo-Zr(IV) precursors with different citric acid content.  The precursor 

synthesis, thermal decomposition and crystallization of oxide powders was studied. This 

showed an effect of the citric acid content in every stage.  The precursors were applied 

for the deposition of uniform, ultrathin films (< 30 nm thickness) as well.  Tetragonal 

ZrO2 crystallized starting from 500°C for thin films with a thickness of 10 nm.  This 

was independent of the citric acid content in the precursor.  The topography after 

annealing at 600°C was also similar.  However, annealing at higher temperatures led to 

coarser grain size.  The dielectric constant was high (~21-22) and comparable to ZrO2 

deposited by atomic layer deposition.   
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1. Introduction 

The miniaturization of integrated circuits has led to continuous downscaling of gate 

dielectric oxide thicknesses in MOSFETS (metal oxide semiconductor field effect 

transistor).  Currently the conventional dielectric, SiO2 or SiON, is being replaced by 

alternative materials to suppress high leakage currents which are observed for low 

thicknesses.  These materials, such as hafnium and zirconium based dielectrics, have a 

higher dielectric constant or k value than SiO2.  Therefore, they can be applied with a 

higher physical thickness, leading to leakage current reduction while maintaining the 

same high specific capacitance.  For future applications however, the search for even 

higher k materials continues.  For material evaluation purposes, fabrication techniques 

which allow relatively fast material synthesis are advantageous.   

The use of sol-gel for exploration of gate materials e.g. ZrO2, SrZrO3 has been reported 

in literature before [1,2], but has been limited to relatively thick films (>180 nm).  It 

was stated that due to the inherent shortcoming of the sol-gel method, it is not possible 

to prepare ultrathin films [2].   Recently, however, we demonstrated the possibility of 

depositing ultrathin neodymia and praseodymia films by spin-coating of aqueous 

solution-gel precursors.  Thicknesses down to 3.3 nm, functioning as MOS devices [3,4] 

were achieved.  However, exploration of the route to other metal oxide materials, is 

necessary to demonstrate wide applicability.  This will also allow to address the 

discrepancy between our findings and the cited “inherent shortcoming” of sol-gel 

method(s) to produce ultrathin films. The possibility of depositing functional metal 

oxide films with thickness below 30 nm by non-aqueous chemical solution deposition 

(CSD) methods has been shown simultaneously with our work e.g. ultrathin 

piezoelectric PbTiO3 (down to 13 nm) [5] or sol-gel derived HfO2 (20 nm) [6]. 
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However, film thicknesses remain above 10 nm in contrast with the results obtained 

from our aqueous route. The results may be correlated to the substrate, its pretreatment, 

multilayer deposition method, heat treatment, specific precursor composition etc. which 

have an effect on the films’ microstructural stability [7].   

For aqueous chemical solution deposition (CSD), an interfacial SiO2 layer is inevitable: 

the use of aqueous precursor solutions requires a hydrophilic substrate in order to obtain 

good wetting and uniform film deposition.  Therefore, deposition is carried out on 

SiO2/Si substrates.  To eliminate the influence of the SiO2 on the dielectric constant 

which is measured, film thickness series are prepared.  These allow extraction of the 

dielectric constant of the high-k material itself. 

In the present work, ZrO2 films were prepared by aqueous CSD and thicknesses down 

to less than 5 nm were achieved. ZrO2 ultrathin film properties are well documented.  

By comparison of the dielectric properties with those obtained by more conventional 

deposition techniques, such as atomic layer deposition (ALD), aqueous CSD can be 

evaluated as a fast fabrication method for dielectric ultrathin oxide films.  Here, the 

effect of the citric acid content in the Zr(IV) precursor on the precursor chemistry, 

gelation, the oxide formation during thermal treatment and the ultrathin film properties 

will be discussed in detail.  

 

2. Experimental details 

 

An aqueous Zr(IV) precursor solution was synthesized by modifying the route reported 

earlier by our group [8,9]. The starting materials were zirconium(IV)-n-propanolate 

(Zr(C3H7O)4, Fluka 70% in propanol), citric acid (abbreviated as CA, C6H8O7, Aldrich, 
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99%), hydrogen peroxide (H2O2(aq) stabilized p.a., Acros Organics, 35%) and ammonia 

(NH3(aq) extra pure, Merck, 32%).  As ZrO2 itself is unreactive [10], a freshly prepared 

hydroxide precipitate was used as the starting product in this synthesis route. The 

hydroxide is obtained through hydrolysis of the appropriate amount of zirconium(IV)-

propanolate in vigorously stirred water. The fresh precipitate is washed with water to 

remove isopropanol.  Next, a solution of citric acid and hydrogen peroxide (molar ratio 

20:1 H2O2:Zr4+) is added to the precipitate and the mixture is refluxed (120°C/2h).  

Subsequently, the pH is adjusted to 7.5 with ammonia, followed by a second reflux step 

(120°C/2h).  Finally, the solution is filtered (0.1 µm pore size) to remove remaining 

particles.  

The concentration of the as-prepared solutions is determined by Inductively Coupled 

Plasma-Atomic Emission Spectrometry, Perkin Elmer, Optima 3000 DV.  The solutions 

were characterized further by means of PCS (Photon Correlation Spectroscopy, 

Brookhaven Instruments, 90Plus/BI-MAS) and cryogenic TEM (Transmission Electron 

Microscopy, Philips, CM12).  TEM sample preparation consists of freezing the 

precursor at a high rate in liquid ethane.  This prevents artificial precipitation or other 

structural changes.  

These precursors were used for the fabrication of bulk gels as well as for the deposition 

of thin films. To obtain solid gels the solution was dried in a Petri dish (furnace, 60°C). 

The gels’ chemical structure was characterized by FTIR (Fourier Transform Infra-Red 

spectrometry, Bruker, IFS 48) and their thermal decomposition was studied by TGA 

(Thermogravimetric analysis, TA Instruments, TGA 2950).  Intermediate 

decomposition products were characterized by FTIR (KBr pellets, 32 scans per 
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spectrum) and FT-Raman (Fourier Transform Raman spectrometry, Bruker, FRA 106, 

excitation wavelength 1064 nm, 2000 scans per spectrum). 

To deposit thin films, 4 layers are spin-coated (3000 rpm, 30 s) onto square pieces 

(~2.5x2.5 cm2) of p-type 1.2 nm SiO2/Si (100), cleaned in a sulfuric acid peroxide 

mixture and ammonia peroxide mixture  [11].  Hot plate treatments are carried out for 

each layer to decompose the organic components (260°C/2’, 480°C/2’). Optionally, 

thermal annealing was carried out by inserting the four-layered film into a preheated 

tube furnace in dynamic dry air (0.5 l min-1).  

The crystal structure of the films was characterized by coupled θ-2θ XRD (X-ray 

diffraction, Siemens, D5000, Cu Kα). The evolution of this crystal structure with 

temperature was studied in-situ by HT-XRD (high-temperature X-ray diffraction, 

Bruker, D8; counting 3 s per step, step size 0.04°2θ). For HT-XRD 4-layered films were 

deposited, including hot plate treatment, from 0.05 M precursor solutions containing 4, 

2 and 1.2 : 1 CA : Zr(IV) so that the expected oxide thickness at 600°C is ~ 10 nm.  For 

the 4:1 CA:Zr(IV) precursor the effect of the film’s thickness was evaluated based on 

films deposited from 0.1 (~20 nm) and 0.2 M (~40 nm) precursor solutions. The HT-

XRD measurements were carried out between 10-60°2θ at a heating rate of 10°C/min, 

with intervals of 100°C from 500 to 900°C.  The collection of each pattern requires 

approximately 50 minutes. 

Film thicknesses were determined ellipsometrically (Plasmos, single wavelength) using 

a refractive index of 1.75 for a single layer model, and calibrated by XRR (X-ray 

reflectometry).  The film’s topography was characterized by tapping mode AFM 

(Atomic Force Microscopy, Veeco, etched Si probe) and scanning electron microscopy 

(FEI Quanta 200FEG SEM).  C-V (Capacitance-Voltage) curves were measured on Pt 
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top electrodes (areas ~1.10-4 – 8.10-4 cm2) by using a semiconductor characterization 

system (Keithley 4200).  The Pt top electrodes were evaporated onto the film’s surface 

using a shadow mask for patterning and their surface areas were determined by optical 

microscopy (Nikon).  Finally, the MOS devices are subjected to a Forming Gas Anneal 

step (ambient = 5% H2, 95% N2), for 20 minutes at 520°C. 

 

3. Results and discussion 

3.1 Aqueous precursor solutions and gels 

The synthesis route of the Zr(IV) precursor [8,12] was modified in order to 

reduce the amount of citric acid present.  Clear solutions were obtained for a citric acid : 

Zr molar ratio of 4:1, 3:1, 2:1 but not for a 1:1 ratio where a precipitate remained after 

the second reflux step. It was concluded from further experiments that the minimal ratio 

for obtaining macroscopically clear solutions was 1.2:1 citric acid : Zr4+.  However, 

colloidal dispersions or sols can also have a macroscopically clear aspect, yet still 

contain nanoparticulate material [13].  To give evidence whether the precursors 

synthesized with different CA:Zr(IV) ratios are truely solutions, particle size 

measurements were carried out using PCS (Figure 1) and cryogenic TEM.  For all the 

different citric acid to Zr(IV) ratios the particle sizes obtained for the majority of the 

“particles” present in the solutions are below 2 nm, which is the detection limit of the 

apparatus.  From intensity – diameter plots (not shown) it became clear that the 

solutions also contain larger particles, up to approximately 500 nm which are present in 

negligibly small numbers (Figure 1). To give further evidence, cryogenic TEM was 

carried out for the precursor containing 1.2:1 CA:Zr.  This precursor has the highest 

probability of containing colloidal species formed by hydrolysis and condensation, due 
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to its smallest concentration of stabilizing ligands.  A representative cryogenic TEM 

image is shown in Figure 2a.  It was impossible to discern any particles, apart from ice 

crystals that are formed as an artefact during the electron microscopic analysis (Figure 

2b). The virtual absence of particles larger than 2 nm (Figure 1) as well as the cryogenic 

TEM images (Figure 2) lead to the conclusion that the precursors are truely solutions 

for all the citric acid to Zr(IV) ratios studied, without the presence of any colloidal 

particles.    

  However, the behavior of the precursor solutions does differ upon gelation via 

evaporation. For the highest CA:Zr ratios (4:1 – 2:1) a clear, glassy gel was obtained. 

For the CA: Zr 1.2:1 precursor, an opaque white precipitate is observed in the gel.  

Powder diffraction of this solid showed the presence of an unidentified crystalline 

compound (Figure 3). This could be due to precipitation of the excess ammonium 

citrate, which has reflections below 30°2θ [14].  On the other hand, since there is only a 

very small excess of ammonium citrate present, it is also possible that the reflections are 

due to the precipitation of a citrato(peroxo)-zirconium complex.  It is concluded that the 

minimum CA:Zr ratio for gelation is 2:1.   

The FTIR spectra of the 4:1 and 1.2:1 Zr(IV) solid precursors are highly similar 

(Figure 4).  This can be ascribed to the fact that both Zr(IV) precursors contain 

ammonium citrate from the excess of citric acid, albeit in different amounts, and a 

citratoperoxo-Zr(IV) complex.  This complex is assumed to have a structure similar to 

citratoperoxo-Ti(IV), Nb(V) or V(V) complexes [15-17].  They are characterized by the 

presence of citrato- and side-on coordinated peroxo ligands.  O-H, N-H and C-H 

vibrations, which show broadening due to hydrogen bonding are observed between 

3600 and 2750 cm-1.  Typical asymmetric and symmetric carboxylate stretching bands 
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are situated at 1590 and 1400 cm-1 respectively. A shift of the ν(C-O) is observed from 

1051 cm-1 in ammonium citrate to 1066 cm-1 in the Zr(IV) gel.  This can be explained 

by coordination of the citrato ligand’s α-hydroxy to the metal ion, similar to what was 

observed for the citratoperoxo-Nb(V) [16] and citratoperoxo-Ti(IV) complexes [15].  In 

the fingerprint region of the spectrum the presence of the ν(O2) stretch (900-800 cm-1) 

and the symmetric and asymmetric ν(MO2) (650-430 cm-1) [18] of the peroxoligand are 

expected. The spectra of the Zr(IV) gels were compared with ammonium citrate, 

prepared by evaporation of a citric acid solution neutralized with ammonia to pH 7.6.  It 

becomes clear that the latter also shows similar peaks in this region, at shifted positions 

(e.g. 840 cm-1 in stead of 860 cm-1 for the Zr(IV) gels).  The peak at 780 cm-1 which is 

seen for the CA 1.2:1 Zr(IV) precursor could be ascribed to a bridging peroxogroup.  Its 

absence in the CA 4:1 Zr(IV) gel might indicate a difference in the structure of the two 

Zr(IV) precursors.  Furthermore, the δ(O-C=O) of the carboxylato groups are found 

between 700-600 cm-1.  

The precursors contain ammonium groups linking the excess citrate as well as 

the complexed citrato ions into a three dimensional carboxylate structure [19].  Possibly, 

the Zr(IV) precursor with CA 1.2:1 Zr(IV) is supplementary characterized by the 

presence of bridging -Zr-O-O-Zr- units, contributing to the structure.  

 

3.2 Thermo-oxidative precursor gel decomposition and bulk metal oxide phase 

formation 

The precursors’ decomposition profiles were taken as an aid in choosing the 

anneal treatment of the films (Figure 5). The thermo-oxidative decomposition of 
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citratoperoxo-gels has been studied in detail by our group for different multimetal ion 

gel precursors [20-22]. The decomposition scheme with increasing temperature 

generally consists of a drying step (~100°C), followed by decomposition of the excess 

of ammonium citrate (~190°C), the pyrolysis of the complex (~350°C) and finally the 

removal of an organic rest fraction or carbonates (> 450°C).   

For the CA 1.2:1 Zr(IV) precursor the first step is observed with maximal rate at 

~70°C.  Next three overlapping decomposition processes take place from 220-545°C 

with maximal rates at 275°C, 370°C and 435°C. Finally there is a small weight loss 

observed around 615°C. For the CA 4:1 Zr(IV) gel overlapping steps are observed from 

room temperature to 280°C, with the highest rate at 190°C. It is followed by steps at 

345°C, 450°C and a small weight loss at 660°C.  The difference between the two 

precursors in the temperature range around 190°C, where there is only a small gradual 

weight loss for the 1.2:1 solid precursor, is due to the presence of only a very small 

amount of excess ammonium citrate compared to the 4:1 gel. The pyrolysis of the 

complex occurs in the same temperature region, around 350°C for the 4:1 gel and 

around 370°C for the 1.2:1 solid precursor. The slight difference could indicate that the 

crystallization affects the thermal stability of the solid precursor. At 490°C a large peak 

in the DTG of the 4:1 precursor is observed.  According to the general decomposition 

scheme of aqueous citrato(peroxo) gels [19-21], at this temperature organic rest 

fractions are decomposed.  These rest fractions are formed from the decomposition of 

excess ammonium citrate and consist of nitrogen containing organic compounds with a 

high thermal stability [20]. These compounds are present in a larger amount for the 4:1 

than for the 1.2:1 precursor, since it contained a larger amount of excess ammonium 

citrate.  The final decomposition step has a maximal rate at 615°C for the CA 1.2:1 
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Zr(IV) precursor and at 660°C for the CA 4:1 Zr(IV) precursor. The higher final 

decomposition temperature of the Zr(IV) gel with a higher CA content, can also be 

explained by the presence of a larger amount of excess ammonium citrate. The larger 

amount of organic material in the CA 4:1 Zr(IV) gel also leads to the lower final weight 

percentage after complete decomposition (15%) compared to the lower CA content 

(40%).  The presence of a smaller amount of organic material, which becomes 

redundant as soon as the film is deposited, may be considered as an advantage of the 

CA 1.2:1 Zr(IV) precursor. 

 

FTIR (Figure 6) and FT-Raman (Figure 7) spectra were recorded of (partially) 

decomposed precursors, heat treated up to different temperatures (heating and cooling at 

10°C/min in dynamic dry air, 30 min isothermal).    After heating up to 600°C brown 

powders were obtained, after heating up to 650°C a light brown powder was obtained 

from the 1.2:1 and a white powder from the 4:1 precursor.  At 700°C white powders 

were obtained from both precursors.   

FTIR is highly sensitive to the presence of organic material or carbonates, and is used 

here to check that phase pure zirconia is obtained in the high temperature region where 

the TGA is a flat line. The FTIR spectra (Figure 6) show hydroxide stretching vibrations 

around 3400 cm-1, even though the annealing temperature was 700°C.  This may be 

caused by adsorption of water during storage and sample handling in ambient 

conditions.  The band at 2340 cm-1 was not observed for commercial ZrO2, but can be 

ascribed here to trapped CO2, which is evolved during the decomposition of the 

precursor [23]. After annealing the CA 4:1 Zr(IV) gel at 600°C a vibration is present at 

2200 cm-1, which can be ascribed to nitriles formed from ammonium citrate by 
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dehydration to amides and subsequently to nitriles [24].  This band disappears after 

annealing at 650°C, which indicates that the final, small weight loss that was observed 

in the TGA around 660°C is due to the decomposition of these thermostable organics. 

The broad band centered around 1500 cm-1 also indicates the presence of an organic rest 

fraction and/or ionic carbonates [25].  The intensity of this band decreases as the 

annealing temperature is increased, but even after heating up to 700°C features can still 

be distinguished in the same wavenumber range. The peaks at 1630, 1570 and 1420 cm-

1 can be ascribed to adsorbed H2O, M-OH and carbonate or organic rest fractions 

respectively [1].  Sharp, weak bands are observed at 1385 and 1355 cm-1. These are 

observed in the FTIR spectrum of commercial ZrO2 as well (not shown), but the band at 

1420 cm-1
 is not.  The presence of M-O vibrations is clear below 1000 cm-1 and the 

shape of this band differs for the precursor gels with different CA content, indicative of 

a difference in the oxide phase present.   

Using Raman spectrometry (Figure 7), the tetragonal, cubic and monoclinic 

ZrO2 phase can be distinguished [26] and small sample volumes suffice. Raman 

spectrometry is suited to the distinction of these phases even more than XRD, where the 

difference between the tetragonal and cubic phase is not so clear.  After heating to 

600°C, it is impossible to distinguish any oxide peaks, as there is a strong background 

fluorescence present.  The fluorescence may be due to an organic rest fraction causing 

the high Raman intensity over a broad range of wavenumbers. For CA 1.2:1 Zr(IV) the 

fluorescent background remains more pronounced up to higher temperatures than for 

the CA 4:1 Zr(IV) gel, indicating a stronger persistence of the organic rest fraction. 

After annealing at 650°C and even clearer at 700°C, the oxide phases obtained from the 

CA 4:1 Zr(IV) gel can be identified as being a mixture of the monoclinic and the 
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tetragonal phase, while for the CA 1.2:1 Zr(IV) there is quasi pure, tetragonal phase 

obtained. The tetragonal phase is not thermodynamically stable at room temperature, 

normally the monoclinic phase is. However, when zirconia is formed with small particle 

sizes, the tetragonal phase can be stabilized [27]. The formation of tetragonal ZrO2 

(JCPDS 50-1089 [28]) was confirmed for both precursors by electron diffraction and 

transmission electron microscopy indeed showed an estimated grain size in the order of 

5-10 nm (650°C anneal).   

 

3.3 Ultra-thin film crystallization behavior 

The crystallization behavior of ultrathin films was studied using high-

temperature XRD, allowing in-situ study of the phase (trans)formation during heating 

(10°C/min, static air).  The crystal structure or amorphous nature of the high-k dielectric 

is important:  It may influence its leakage current, expected to be higher in case of 

crystalline materials due to the presence of grain boundaries, as well as its dielectric 

constant, which is dependent on the crystallographic phase [29,30].  

The relevant part of the HT-XRD diffractograms is presented in Figure 8 (for the 

CA:Zr 2:1 and 1.2:1 the results are not shown as they were very similar to the result of 

the 4:1 precursor of 0.05 mol/L).  After hot plate treatment, the films are all amorphous. 

Starting from 500°C crystalline ZrO2 characterized by a diffraction peak at 2θ=30.3° is 

present, and it remains up to 900°C independent of the thickness or citric acid content in 

the precursor. It is clear that the crystal phase formed, is not the thermodynamically 

stable monoclinic phase. The phase identification is tedious due to the preferential 

orientation, the high temperature and residual stress in the films shifting the peaks 

compared to a powder reference at room temperature, and also because of the low peak 
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intensity due to the low thickness.  However, the peak at 30.3°2θ may be ascribed to the 

(101) peak of a tetragonal ZrO2 phase, as the (111) peak of cubic ZrO2 (JCPDS 49-

1642) would have been expected at a slightly lower 2θ  of 30.1°.  After cooling down to 

room temperature the observed peak is shifted to 30.4°2θ compared to 30.3° for the 

reference, which indicates the presence of residual stress in the film [31].  Similar to the 

powders, the crystal phase in the thin films is thus identified as a metastable tetragonal 

phase.  This is in agreement with the increasing stability of tetragonal compared to 

monoclinic ZrO2 with decreasing film thickness as described in literature [32,33].   

Furthermore, from the XRD patterns after cooling down from 900°C to room 

temperature, it becomes clear that the tetragonal phase partially transforms to 

monoclinic ZrO2 only for the thickest film (~40 nm).  This leads to two new peaks at 

2θ=28.3 and 31.4°.  In contrast with this result, the stability of the pure tetragonal phase 

at room temperature in ZrO2 films of 45 nm thickness was demonstrated by off-line 

XRD at room temperature (not shown):  After annealing up to 500, 600, 700 and 800°C 

in a furnace and quench cooling, all these films only showed the presence of tetragonal 

ZrO2 phase.  This discrepancy is ascribed to the different thermal history for the furnace 

anneal and HT-XRD treatment.   

At increasing temperatures, there is an increase of the tetragonal (101) peak’s 

integrated intensity, which indicates that the volume of crystalline phase increases.  

Comparing 10 nm, 20 nm and 40 nm thick films, the peak intensity increases due to the 

increasing volume of crystallites.   

There is no evidence in the XRD patterns for the formation of crystalline 

zirconium carbonates, although time of flight – secondary ion mass spectrometry 

measurements demonstrated the presence of residual carbon in the films (not shown).   
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The absence of a difference in the crystallization temperature and phase 

formation for precursors containing different amounts of citric acid, differs from the 

observations made on powders (§2.2) and literature for other material systems [34], 

where a higher organic content led to a lower crystallinity.  This might indicate that in 

the case of CSD deposited zirconia, the low film thickness is controlling the oxide phase 

formation to the tetragonal phase, rather than the precursor composition.   

 

3.4 Film thickness and topography  

The film thickness was controlled by changing the precursor solution’s 

concentration, as shown in Figure 9 for precursor solutions with different CA:Zr ratio’s 

(1.2, 2 and 4:1).  It is clear that after the thermal treatment the film thicknesses are 

similar, independent of the citric acid content of the precursor solution.  The variations 

observed between the different precursors, are not larger than the variation within one 

precursor used for replicate depositions and is limited to a few nanometers. 

As the crystallization of the ZrO2 films may lead to local variations in film 

thickness, it is important to check their topography by AFM. Films deposited from 

precursors containing CA 1.2 and 4:1 Zr with concentrations of 0.05 and 0.005 mol/L, 

and annealed to temperatures from 500°C to 800°C in dry air were studied.  

Representative examples of height images are shown in Figure 10 and 11. The root 

mean square (RMS) roughness values are very low (0.14-0.58 nm) indicating that the 

films have very smooth surfaces.  For most of the samples the RMS roughness is in the 

same range as the SiO2/Si substrate (0.23 nm), that was cleaned and heat treated the 

same way as the substrates that were used for the deposition [35].  Generally, the RMS 

roughness increases upon increasing the annealing temperature.  This is accompanied by 
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grain growth that is observed with increasing annealing temperature for the different 

film thicknesses and precursors studied here.  After annealing the thinnest films (0.005 

M) up to 800°C, an onset of microstructural stability becomes clear.  This can be 

explained by the increase of the relative grain size compared to the film thickness 

(Figure 11) [7].   

From the AFM images no pronounced, consistent effect of the precursor 

composition on the film topography can be confirmed.  This may be related to the 

analogy in the crystallization behavior of the films deposited from the different 

precursors.  Furthermore, the topography does not vary strongly with film thickness for 

both precursors.  It is concluded that smooth, uniform ultrathin films can be deposited 

from the different precursor solutions.  This is corroborated by SEM images for the 

thicker films (0.05 M) as shown in Figure 10. 

 

3.5 Dielectric properties 

The dielectric properties were characterized by C-V measurements.  As an 

example, in Figure 12 C-V curves are shown for films with similar thickness (tXRR ~ 5 

nm) deposited from precursors containing CA 1.2, 2 and 4:1 Zr(IV). The C-V curves for 

the ZrO2 films are well behaved after forming gas anneal, which is carried out to reduce 

the number of interface states [36].  The C-V curves were fitted by the Hauser model to 

extract equivalent oxide thickness (EOT) values for the different precursors.  The EOTs 

are plotted as a function of physical film thickness in Figure 13 in order to determine 

the films’ k value, which was calculated from the slope.  In this way, it was determined 

that a high k value of 21-22 is obtained, independent of the citric acid content of the 

precursor.  This value is comparable to the dielectric constant (k=21.6) obtained for 
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zirconia films deposited by ALD [38], which is the widely accepted deposition method 

for high k films.  The good agreement of the k values for the different deposition 

methods, is an indication that the aqueous CSD method can be put to use for the 

evaluation of high k materials.  Furthermore, the similar k value for the different 

precursors can be explained by the similarity of the films deposited from them, which 

are characterized by the same crystallographic phase and similar topography. 

Leakage current measurements were carried out to further evaluate the CSD 

films’ dielectric quality as a function of the citric acid content of the precursor (Figure 

14). The leakage current obtained here is higher than the leakage for films deposited by 

ALD [38].  Moreover, the leakage current is independent of the citric acid content of the 

precursors within experimental error. This is in contrast with expectations based on 

prior results obtained for lanthanide oxides deposited by aqueous CSD.  In a first 

approach, the leakage current is regarded as being controlled by the carbon content of 

the film, which could be expected to be lower in case of a precursor with a lower citric 

acid content.  It is clear that this assumption does not suffice to explain the lack of an 

effect which is observed here.  Besides this background leakage, also a contribution of 

weak spots with different possible origins, such as grain boundaries [37] can be taken 

into account, which might be affected by the citric acid content in the precursor.  Most 

likely however for the anneal conditions chosen, the carbon content is still at a level that 

is too high to observe the difference between precursors [38].  In agreement with the 

latter, further optimization of the annealing conditions allowed to obtain leakage 

currents of the same order of magnitude as ALD, which is discussed in detail elsewhere 

[38].  Moreover, with optimal annealing conditions the leakage current was lower for 

the precursor containing the lowest citric acid content. The low CA content precursor 
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thus shows an advantage when considering leakage under optimized annealing 

conditions [38]. All different annealing conditions led to a similar k value. 

It can be concluded that after optimization of the anneal treatment, ultrathin 

zirconia films of good dielectric quality can be obtained from aqueous CSD using 

precursors with different citric acid contents.  Accurate k value extraction is relatively 

easily achieved, while for leakage reduction an optimization of the anneal treatment is 

necessary. 

 

 
 

4. Conclusions 

 

It is possible to synthesize citratoperoxo-Zr(IV) precursor solutions with different molar 

ratios of citric acid to Zr(IV), down to CA:Zr(IV) 1.2:1.  The precursor solutions are 

characterized by different gelation behavior, thermal decomposition profiles and oxide 

formation behavior, as far as the powders are concerned.  The differences are related to 

the amount of excess citric acid, which is needed to build up the amorphous gel 

structure.  The excess also plays a role in the thermal decomposition pathway of the gel 

that finally leads to the formation of the oxide.  Even though the ZrO2 is in principle 

simply formed from the Zr(IV) complex, the excess of ammonium citrate influences the 

secondary reactions, e.g. leading to formation of thermally resistant nitrogen containing 

organics, as well as the heat generated.  In this way, the excess ammonium citrate also 

influences the oxide’s phase purity and formation. 

In contrast with the differences observed for the different powder precursors, little or no 

effect is seen on the crystallization, topography or dielectric constant of ultrathin films 
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deposited from the different precursor solutions. This demonstrates that a Zr(IV) 

precursor which did not gel due to its low citric acid content, still allows deposition of 

functional zirconia films. This may be related to the different drying kinetics during 

bulk gelation and thin film formation. 

The most important advantage in thin films demonstrated here is the large decrease of 

the amount of carbon containing species that have to be decomposed for the low citric 

acid content precursor (25% less in weight). This improves the economy and ecologic 

impact of the whole process, while at the same time allowing to maintain the same k 

value as for precursors with a higher citric acid content.  
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