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Kristien Wouters, José Cortiñas Abrahantes, Geert Molenberghs,
Universiteit Hasselt, Center for Statistics, Agoralaan, B3590 Diepenbeek, Belgium

Abdellah Ahnaou, Wilhelmus H.I.M. Drinkenburg, and Luc Bijnens
Johnson & Johnson Pharmaceutical Research and Development, Turnhoutseweg 30,

B2340 Beerse, Belgium

Abstract

This paper proposes a general and simple procedure that can be applied to establish classification
rules for application with multiple-class longitudinal data. The procedure is applied to pre-clinical
pharmaco-electroencephalogram (EEG) studies aiming at characterizing psychotropic drug effects on
the basis of spectral EEG analysis. It is a flexible hierarchical supervised learning tool, allowing to
take the specific nature of the multiple drug classes into account, as well as the longitudinal aspect
of the data. Several variations to this procedure are applied to the EEG data, generally producing
comparable results, in particular similar association between the sleeping stages and the psychotropic
drug classes.
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1 Introduction

Classification techniques are used in a wide range of human activity. One such use, for example, is the

preliminary diagnosis of a patient’s disease in view of instantaneously selecting treatment while awaiting

conclusive test results. In fact, the term could be used in any context in which some decision is made on

the basis of available information, and a classification procedure is then some formal method for making

such judgments in a particular situation. In this research, we will construct a method for application with

a continuously accruing sequence of cases, in which each newly collected case must be assigned to one of
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a number of pre-defined classes on the basis of observed features. To build such a classification procedure

from a set of data for which we know the true classes, we will employ discrimination.

For longitudinal data classical discriminant analysis is not necessarily one’s best option, since it

ignores the correlation between measurements on the same subject. Of course, developing classification

rules for complex data structures, such as multiple-class problems within a longitudinal design, is a non-

trivial task and requires appropriately tailored methods. The combination of precisely these features

is encountered in so-called pharmaco-electroencephalogram (EEG) experiments, conducted to establish

classification rules for differing psychotropic drug classes. The potential of using EEG-derived parameters

(pharmaco-EEG) and characteristic fingerprints on rodent sleep-wake architecture for the classification

of drugs has been recognized for several decades and is used as a valuable tool in both preclinical drug

discovery and clinical drug development (Fink (1959), Krijzer et al (1993), Ruigt et al (1993), Depoortere

et al (1995), Edgar (2002), Drinkenburg and Ahnaou (2004), Uchida et al (2007)). In addition EEG

technology is used to identify biomarkers that have predictive validity for clinical, pharmacological activity

and even for possible efficacy (i.e. as surrogate endpoint) for some diseases such as Major Depressive

Disorder (MDD) (Mucci et al (2006), Murck et al (2003), Staner et al (2004)). These experiments motivate

our research. Classical discriminant analysis is not suited to handle the combination of a multiple-class

problem and a longitudinal design. A flexible two-step procedure, termed doubly hierarchical discriminant

analysis (Wouters et al , 2007), has been proposed to cope with such problems.

In this paper, we aim to classify psychotropic drugs based on the sleep wake behaviour of rats.

The so-called doubly hierarchical discriminant analysis or DHDA, introduced by Wouters et al (2007), has

been shown to perform adequate in the experimental data described in the next section, but there was

room for improvement, as acknowledged by aforementioned authors. Here, we introduce a more general

form of the DHDA procedure, and apply several particular instances of the procedure to the data.

In the next section, the data are described and some background on the experiments is provided.

In Section 3, the methodology is explained, starting from the general form of the doubly hierarchical

discriminant analysis, followed by a number of different versions. In Section 4, these variations to the

theme are put to the test on the data and afterwards the results will be compared.
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2 Data Description

Many different recording technologies exist today for measuring brain activity. A graphical record of

electrical activity of the brain, produced by an electro-encephalograph (EEG), is one of them. EEG

experiments have been used for many purposes. We are interested in particular in preclinical EEG studies

aiming at characterizing psychotropic drug effects on the basis of spectral EEG analysis. Psychotropic drugs

can be divided into 5 major classes: antidepressants, antipsychotics, anxiolytics, hypnotics and stimulants

(Deniker, 1982; Oughourlian, 1984; Cohen and Cailloux-Cohen, 1995), each one typically named according

to its main indication in psychiatry. Classifying drugs solely based on chemical structure would create

numerous categories, which would not necessarily be indicative of their therapeutic use. New chemical

entities ideally should be classified based on their potential therapeutic activity as early as possible in the

drug discovery process. Availability of an advanced classification model or tool that uses a standardized

physiological read-out, such as the preclinical sleep-wake EEG, would greatly aid efficient determination of

psychoactive properties of novel chemical entities and allow for better selection or to more reliably prioritize

new molecules to be developed further in highly costly clinical trials. From a translational medicine point of

view, the use of rodent sleep-wake EEG data allows for direct extrapolation to human volunteers (phase 1)

or patients (phase 2/3). Sleep-wake studies in human and patients to date have provided some important

points towards the importance of higher sigma frequency range in the sleep EEG of non-REM sleep and

REM density as a marker of treatment response (Murck et al (2003)).

In general, the aim of pharmaco-electroencephalographical studies is to characterize psychotropic

drug effects. When EEG measurements are combined with movement monitoring and the recording of

muscle activity, clearly defined states of vigilance can be separated out and used to classify psychotropic

agents. Typically, six sleep-wake stages are distinguished: (1) active wake (AW); (2) passive wake (PW);

(3) light sleep (SWS1); (4) deep sleep (SWS2); (5) intermediate stage sleep (IS); (6) Rapid Eye Movement

or REM Sleep (RS). Further details on this type of data can be found in Wouters et al (2007)

The study considered here includes 26 psychoactive agents at 4 different doses, including a zero

dose constituting a large database of well-controlled rat experiments that were carried out in a highly
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standardized way using clinically active reference drugs within the framework of pharmaceutical drug

discovery (Drinkenburg and Ahnaou (2004)). For each of these compounds, 8 rats were randomly assigned

to each of the 4 doses. The brain signals of the rats are monitored during a period of 16 hours, divided

into a light period (10 hours) and a period of darkness (6 hours). The treatment is administered at the

beginning of the light period and after each experiment 3 weeks of washout period are considered before

using the same rat in another experiment. The effects of the compounds on sleep-waking behavior are

assessed using several hypnogram parameters. For every interval of 30 minutes the time spent in each of

the six sleeping stages is measured (in minutes).

From the 104 compound dose combinations in the original dataset, only those for which the psy-

chotropic drug class is known are used in the training set. These compound-dose combinations are also

extensively used in clinical practice. The training data now consists of 64 compound-dose combinations:

26 placebos, 14 antidepressants, 7 antipsychotics, 2 anxiolytics, 5 hypnotics, and 10 stimulants.

3 Doubly Hierarchical Discriminant Analysis

Doubly hierarchical discriminant analysis (DHDA) has been proposed by Wouters et al (2007). In this

paper, a more general form of this procedure is proposed.

Figure 1, About Here.

The procedure is schematically represented in Figure 1. In a first stage, the longitudinal profiles

are modeled and appropriate summaries extracted from the model fit. These summary measures are then

used, in the second stage, as input for the discriminant analysis, in view of classifying the data. A similar

approach has been used by MacLachlan (1992). This second stage proceeds in a hierarchical fashion. Let

us zoom in on each of the two stages in turn.

3.1 Stage I: Modelling the Longitudinal Data

In the first stage, we model the longitudinal data so as to obtain relevant summaries from the profiles. A

modelling approach that allows for capturing complexities and intricacies in the data, while lending itself
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easily to the obtention of simple summaries is to be preferred. While several approaches are possible, we will

use so-called fractional polynomial mixed models (FPMM). Linear mixed effects models (LMM) are a widely

used tool for modelling longitudinal data (Verbeke and Molenberghs, 2000). To capture the irregular trends

in our profiles, we combine the LMM with the use of fractional polynomial predictor functions (Royston

and Altman, 1994). In our case, for each compound-dose combination and each sleeping stage, separate

models are fitted to the light, the dark and the first three hours periods. Not only the coefficients, but also

the fractional polynomial powers, denoted by subscripted p’s, are allowed to differ across compound-dose

combinations. The details of this approach can be found in Wouters et al (2007).

Let us now turn to the second stage.

3.2 Stage II: Hierarchical Discriminant Analysis

The continuation of the classification procedure necessitates informative summaries of the highly variable

longitudinal profile available for each rat. To this end, the parameters of the models in the first stage, i.e.,

the collection made up of β0i + b0ij , β1i + b1ij , β2i + b2ij , p1il, p2il, γ0i + c0ij , γ1i + c1ij , γ2i + c2ij , p1id,

p2id, δ0i + d0ij , δ1i + d1ij , δ2i + d2ij , p1if , and p2id, will be used as input to the discriminant procedure.

Note that this leads to important economy. Indeed, the rat-specific model parameters are used as

predictors. We have 5 parameters per model (p1, p2, intercept, and the coefficients of both covariates), with

6 models (for the 6 sleep-wake stages) in the light period, 6 in the dark period and 6 for the first 3 hours.

Since the light period on the one hand and the first three hours on the other hand present overlapping

information, each sleeping stage is at most used for one of these two periods. This results in at most

12× 5 = 60 parameters, much less than the number of observations in the dataset, brought down from 496

in the first step to 258 in the last step.

To establish and optimize a flexible classification rule, we proceed in a stepwise, hierarchical way.

In a first step, we discriminate, for example, stimulants from the other psychotropic classes, using the

parameters describing the longitudinal profile pertaining to some of the sleep-waking stages for the three

different periods considered (first 3 hours, light period, and dark period). Then, focus shifts to the remaining

five classes. This process continues until a complete decision tree has been built. The order in which the
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classes are discriminated is determined based on the performance in the training dataset. Different orders

are checked and the one that leads to the best classification results using cross-validation, is retained.

Various supervised learning techniques can be used at this stage. Numerous comparisons of differ-

ent classification methods have been made in different areas; examples include Bauer and Kohavi (1999),

Caruana and Niculescu-Mizil (2005), Lee et al (2005). In this paper, we will focus only on discriminant

analysis which uses s procedure similar to the linear discriminant analysis (LDA), but more flexible when

constructing the classification rule. In particular, we will focus on flexible (FDA) and mixture (MDA)

discriminant analysis, since they both extend LDA methodology.

A graphical display of the doubly hierarchical discriminant analysis, when either LDA, FDA, or

MDA are used, is presented in Figure 2.

Figure 2, About Here.

We will now briefly outline each of the three choices in turn.

3.2.1 Linear Discriminant Analysis

In linear discriminant analysis (Hastie, Tibshirani and Friedman, 2001), each class is assumed to follow

a multivariate normal distribution with common variance-covariance matrix, leading to a linear decision

rule. This linearity makes it easy to implement and interpret the decision boundaries. Unfortunately, in a

number of situations, linear decision boundaries are not adequate to separate the classes. To account for

this, Hastie, Tibshirani, and Friedman (2001) propose generalizations of LDA, such as flexible discriminant

analysis (FDA), mixture discriminant analysis (MDA), and penalized discriminant analysis (PDA). In what

follows, we will confine attention to FDA, because of its ability to model irregular decision boundaries, and

MDA, which allows us to use more than one prototype per class.

Another way to think about linear discriminant analysis is by assuming one disposes of observations

with a qualitative response, G say, falling into one of C classes, Ω = {1, . . . , C}, for which some features

X are measured. Suppose now that we have got a function assigning scores to the classes θ : Ω → R,

such that a linear regression on X optimally predicts the class labels. For a sample of the form (gi, xi),
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i = 1, . . . , n, one then needs to solve

min
β,θ

n∑

i=1

(θ(gi) − xT
i β)2,

with restrictions imposed on θ to avoid a trivial solution.

More generally, we can find up to L ≤ C − 1 sets of independent scorings for each of the class

labels, θ1, . . . , θL. Scores θl and βl are then chosen to minimize the average squared residuals

ASR =
1
n

L∑

`=1

[
n∑

i=1

(θ`(gi) − xT
i β`)2

]
.

The scores are assumed to be mutually orthogonal and normalized, to prevent trivial zero solutions.

3.2.2 Flexible Discriminant Analysis

The linear discriminant analysis can be regarded as a sequence of linear regression followed by classification

to the closest class centroid in the space of fits. The linear regression will now be generalized to a more

flexible one (Hastie, Tibshirani and Friedman, 2001). In this more general form, the regression problems

are defined via

ASR =
1
n

L∑

`=1

[
n∑

i=1

(θ`(gi) − f(xi))2 + λJ(f)

]
,

where J is a regularizing function, specific choices of which correspond to specific non-parametric regression

techniques.

In our particular case, we use Multivariate Adaptive Regression Splines (MARS) models (Friedman,

1991). The input space is partitioned into regions, each with its own linear regression equation. The MARS

equation is given by

f(x) = γ0 +
M∑

m=1

γmhm(x),

where M is the number of non-constant terms in the model and hm is a basis function in the collection

C = {(Xj − t)+, (t − Xj)+|t ∈ {x1j , x2j , . . . , xnj}, j = 1, 2, . . . , p} ,

with n is the number of observations.
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3.2.3 Mixture Discriminant Analysis

Mixture discriminant analysis (Hastie, Tibshirani and Friedman, 2001) is an extension of LDA, to be viewed

as a prototype classifier with each class represented by its centroid. We assign an observation to the closest

centroid using an appropriate distance measure. In many situations, a single prototype per class is not

sufficient, in which case mixture models can be used. Assume classes have several prototypes, thence a

Gaussian mixture model for the kth class could be considered. The corresponding density is

P (X |C = k) =
Rk∑

r=1

πkrφ(X ; µkr, Σ),

where the mixing proportions satisfy
∑Rk

r=1 πkr = 1, Rk is the prototype for the kth class and Σ the

covariance matrix used as a metric throughout. For class k with a priori probabilities Πk , we estimate the

parameters by maximizing the joint log-likelihood:

K∑

k=1

∑

gi=k

log

[
Rk∑

r=1

πkrφ(X ; µkr, Σ)Πk

]
.

The expectation-maximization (EM) algorithm is a convenient mode to obtain maximum likelihood esti-

mates. In order to obtain the maximum likelihood estimates, we use the EM algorithm (Dempster, Laird,

and Rubin, 1977). The algorithm consists of iterating between the expectation (E) and maximization (M)

steps, until convergence. In our situation, they take the following forms.

E-step: Given the current values for the parameters, compute the weights associated with the subclasses

ckr:

W (ckr |xi, gi) =
πkrφ(xi; µkr, Σ)

∑Rk

l=1 πklφ(xi; µkl, Σ)
. (1)

M-Step: Compute weighted MLEs for the parameters of each of the component Gaussian densities, within

each of the classes, using the weights obtained from (1).

3.3 Lack-of-classification Measure

To define the goodness of a model we first introduce some notation. Let g be the initial number of

classes, ERR(i)
kl the misclassification percentage from class k into class l for model m(i), PP(i)

kl the posterior
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probability for rats belonging to class k to be classified in class l for model m(i), Cs the class discriminated

in step s, and C−s the classes retained in the dataset in step s. Further, write

Error1(i)
s = ERR(i)

CsC−s
+
(
1 − PP(i)

CsCs

)

Error2(i)
s = ERR(i)

C−sCs
+
∑

k 6=Cs

PP(i)
kCs

Now, we can define the following lack-of-classification measure (LC) for model mi in step s as a weighted

sum of Error1(i)
s and Error2(i)

s

LC(i)
s = ws1 · Error1(i)

s + ws2 · Error2(i)
s .

The first term in this formula is monitoring the false-negative cases, while the second one focuses on the

false positives. Different weights ws1 and ws2 can be chosen, depending on the type of application. In

our particular case, we chose the following weights ws1 = s + 1 and ws2 = 2 · (g − s). Along the process,

more weight is given to the false-negatives whereas the weight given to the false-positives is decreased. The

choice of these weights is based on the fact that the algorithm discriminates in the first steps the classes

that are well differentiated from the rest whereas in the final steps the classes are less clearly separated.

The lack-of-classification measure is now standardized and corrected for the number of parameters

in the model by multiplying with a decreasing function of the number of sleep-wake stages used, given by

F (ss):

LC’(i)s = 1 −

(
1 − LC(i)

s

2 · ws1 + (g − s + 1) · ws2

)
· F (ss).

Again, different choices can be entertained for F (ss). We decided to work here with F (ss) = 0.999ss. With

this choice of F , a difference of at least 0.001 in LC ′ is enough to motivate an extra sleep-wake stage in

the model. This difference of 0.001 in LC ′ corresponds to a difference in LC varying from 0.022 in step 1

to 0.01 in step 4.

3.4 Selection Procedure

We consider two different selection procedures, both based on 10-fold cross-validation, a technique to be

described next, inspired by the fact that the dataset can be divided randomly at each of two different

hierarchical levels.
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In the first approach (Selection Procedure I), we use rats as the unit of analysis. The 512 rats

comprising the dataset are then randomly divided into ten groups. For every parameter combination

obtained from the fractional polynomial models and for each sleep-waking stage, one of the 10 samples is

used as a test dataset, while the remaining 9 samples are assigned the role of training sets. For the test

dataset, both the misclassification error and the posterior probabilities are calculated. The combination of

sleep-waking stages resulting in the lowest lack-of-classification measure is retained. This is repeated for

every step in the DHSLA.

Selection Procedure II uses 10-fold cross-validation at the compound-dose combination level. We

randomly divide the 64 such combinations into ten groups and then proceed in the same way it was

described above.

The posterior probabilities of belonging to each of the six drug classes are determined in an iterative

way. At the first split of the agents into two subclasses, posterior probabilities are calculated for each of

them. Generally, given that k splits have been made, the values of the posterior probabilities at split k +1

are multiplied with the posterior probabilities of not being classified at the previous steps in the class we

were interested to discriminate from the rest (Wouters et al , 2007).

For each selection procedure, the error count is calculated at both levels, i.e., rat and compound-

dose combination. The first is computed as the average of the percentage of misclassified rats in each class

(errorrat), while the second uses the percentages of compound-dose combinations that are misclassified in

a particular class (errorc-d).

4 Results

Upon building a fractional polynomial mixed model for the light and dark periods, as well as for the first

three hour period, separately for each of the compound-dose combinations observed, the parameters of all

these models are used in a stepwise discriminant analysis. As an illustration the fitted fractional polynomial

for the number of minutes spent in Active Wake for one particular compound-dose combination is shown

in Figure 3 together with the mean profile for that compound-dose combination.
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In all three discriminant procedures, the order in which the classes are separated is the same, but

the sleeping stages used in every step are allowed to differ. We sequentially discriminate stimulants, then

anxiolytics, antipsychotics, antidepressants; finally hypnotics are separated from placebo. The sleeping

stages used in each step of Stage II are obtained by means of both selection procedures described in

Section 3.4. Because the first three hour period is part of the light period, the first three hours are

excluded from the latter to avoid double use.

In what follows, the results obtained with linear discriminant analysis, flexible discriminant analysis

built on MARS, and mixture discriminant analysis with 2 subclasses per group are compared with respect

to the sleeping stages used in each step and the performance with 10-fold cross-validation at the rat level

as well as at the compound-dose level.

Due to lack of information about the anxiolytic class (only 2 compound-dose combinations), it was

decided to exclude this class from the classification procedure.

4.1 Linear Discriminant Analysis

In Table 1, the sleeping stages retained per step for the linear discriminant analyses, obtained with 10-fold

cross-validation on the rat level and the compound-dose combination level are shown.

Table 1, About Here.

The number of sleeping stages needed in each step is similar for the two selection procedures.

Some sleeping stages are selected by both selection procedures for some steps. For example, to discriminate

stimulants, Passive Wake, Light Sleep and Deep Sleep during the light period and Active Wake and Light

Sleep in the dark period are selected by both analyzes. This lines up with expectation because a stimulant

generally increases Active Wake and reduces Light Sleep and Deep Sleep. For the other classes, we observe

some further similarities between the two selection procedures. Passive Wake, Deep Sleep, and Intermediate

Stage Sleep in the light period,together with Active Wake in the dark period are always selected for the

classification of antipsychotics. For antidepressants, Active Wake and Light Sleep in the first three hour

period, Intermediate Stage Sleep, and REM Sleep in the light period are selected by both procedures.
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Finally for hypnotics, Light, Deep, and REM Sleep in the light period or in the first three hours are

retained by both selection procedures.

Table 2 shows the classification results obtained with DHSLA when fractional polynomials and

linear discriminant analysis are used in each of the two stages and for both selection procedures. For every

psychotropic class, the adjusted posterior probabilities for the six classes are given. The observed adjusted

posterior probabilities obtained without cross-validation are presented parenthetically.

Table 2, About Here.

As expected, the adjusted posterior probabilities, obtained with Selection Procedure I, are higher

than those coming from Selection Procedure II. Leaving out one tenth of the rats will rarely result in

leaving out a whole compound-dose combination, hence there is still information on all compound-dose

combinations in the training dataset, leading to better classification. This is different when applying

Selection Procedure II, when good results are obtained only when a representative sample of the compound-

dose combination population is taken for the training of the procedure.

The adjusted posterior probabilities for correct classification obtained with Selection Procedure

I are all very high and above 90%. The error count for this selection procedure is 0.00 at the rat level

as well as at the level of the compound-dose combinations. For Selection Procedure II, the adjusted

posterior probabilities for antidepressants, and stimulants remain high (above 85%). The ones for placebo,

antipsychotics, and hypnotics are somewhat lower, but still above 70%. The error counts for this selection

procedure are 0.12 and 0.11 at the rat and compound-dose levels, respectively.

4.2 Flexible Discriminant Analysis

The sleeping stages selected per step when flexible discriminant analysis is used in the DHSLA for the

selection procedures described in Section 3.4 are shown in Table 3. Similar to the case when the linear

discriminant analysis is used in the DHSLA, we see that the number of sleeping stages retained does not

differ much for both selection procedures. Also, we note that for some classes both selection procedures

arrive at selecting the same sleeping stages, indicating association between the class and its effect on a
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particular sleeping stage. For example, for stimulants, we retain Active Wake in the dark period, with

either selection procedure. For antipsychotics, Deep Sleep in the light period and Active Wake, Passive

Wake and Deep Sleep in the dark period are common to both selection procedures. Active Wake, Passive

Wake and Deep Sleep either in the light period or in the first three hours are retained with both selection

procedures for antidepressants. Finally, for hypnotics, Deep Sleep in the light period is selected with both

selection procedures.

Table 3, About Here.

Table 4, About Here.

Regarding the adjusted posterior probability, Table 4 displays very high posterior probabilities

for the correct classification with flexible discriminant analysis, obtained with Selection Procedure I. For

Selection Procedure II, high posterior probabilities for placebo, antidepressants, and hypnotics are obtained

too, while those for antipsychotics and stimulants are somewhat lower but still above 70%.

4.3 Mixture Discriminant Analysis

The corresponding results for mixture discriminant analysis are presented in Tables 5 and 6, respectively.

Table 5, About Here.

Similar conclusions can be drawn with respect to the sleeping stages retained at each step. Fur-

thermore, the number of stages retained is similar for both selection procedures, and some are selected by

both. For example, for stimulants, Deep Sleep in the light period and Light Sleep in the first three hours

are chosen irrespective of the selection procedure used. Similar conclusions can be drawn for the other

classes in the hierarchical procedure.

Table 6, About Here.
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For the adjusted posterior probabilities, we observe, once more, very promising results for Selection

Procedure I. All posterior probabilities for the correct classes are above 90%. For Selection Procedure II,

all adjusted posterior probabilities are above 70%. The error count for this procedure amounts to 7%.

5 Discussion

In this paper, we presented a method for classifying potentially active compounds into a predefined set of

psychotropic classes. Sleep and wake EEG data, longitudinally collected in rats, are used to this effect.

The method proceeds by first analyzing the longitudinal profiles, using the flexible fractional polynomial

regression linear mixed model, and then continuing in a second stage with one of three forms of discrim-

inant analysis: linear, flexible, and mixture discriminant analysis. The second stage is an instance of

supervised learning. Selection of compounds is done using either the individual rat or the compound by

dose combination as unit of analysis.

While the selection of the sleeping stages was done ad-hoc in Wouters et al (2007), the lack-of-

classification measure now provides us with a formal procedure to define the sleeping stages that are needed

in each step of the discriminant analysis to classify a particular psychotropic class. The sleeping stages

retained by both methods are showing similarities, but for future analysis, the last method will be coherent,

while the ad-hoc method would not necessarily be.

The number of sleeping stages used by the method at each step is very stable across the three

discriminant techniques for both selection procedures. Some sleeping stages are retained in all analyzes

irrespective of the discriminant analysis or the selection procedure.

It appears that the level on which the cross-validation is performed plays an important role in

the selection of the sleeping stages. In the second step, Deep Sleep is selected in the dark period for all

three discriminant techniques for Selection Procedure II, but does not show up in any of the analyses when

Selection Procedure I is applied. The same is observed for Active Wake in the light period and Passive

Wake in the dark period, for the third step. On the other hand, we have some sleeping stages that are

needed in all three discriminant analyses when using Selection Procedure I, but not at all when Selection
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Procedure II is used, such as Deep Sleep in the dark period in the fourth step. For the last step, the same

combination of sleeping stages is retained when Selection Procedure II is combined with linear, flexible,

and mixture discriminant analysis.

Variables that appear in a certain step for all three discriminant analyses, regardless of the selection

procedure, can be seen as important variables for the discrimination of that particular class from the rest.

The first three hours are part of the light period; therefore we will consider a variable as common when

it is used either in the light period or in the first three hours. In general, Light Sleep and Deep Sleep

in either the light period or the first three hours, and Active Wake in the dark period are showing up in

the first step, designed to discriminate stimulants from the rest. This agrees with expectation, because

stimulants generally decrease the time spent in light and deep sleep. Deep Sleep and Intermediate Stage

Sleep in the light or the first three hour period and Active Wake in the dark, appear in all six analyses in

the third step to classify antipsychotics. Active Wake, Light Sleep, Intermediate Stage Sleep, and REM

Sleep in the light or the first three hour period seem to be crucial to classify antidepressants. Finally, for

hypnotics we see that Active Wake, Deep Sleep, and Intermediate Stage Sleep in either the light period

or the first three hours are retained in all the analyses. The error counts in Selection Procedure I are

lower than those obtained with Selection Procedure II for all discriminant analyses. The error counts

on the rat level are higher than those on the compound-dose level for both selection procedures and in

all the discriminant analyses. As all three discriminant procedures produce comparable results in terms

of posterior probabilities and error counts, it would be fair to recommend the use of linear discriminant

analysis in similar settings, also in view of its simplicity.

For all three discriminant techniques, the adjusted posterior probabilities, obtained with Selection

Procedure I, are higher than the ones obtained with Selection Procedure II. This was expected, because

leaving out one tenth of the rats at random rarely results in leaving out a whole compound-dose com-

bination. Therefore, all compound-dose combinations in a certain test dataset are still present in the

corresponding training dataset. This alleviates the classification of a rat in the test dataset.

In this paper, we have only compared three discriminant techniques, driven by the similarities

between them in methodological terms. Nevertheless, they allow for different degrees of flexibilities to
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construct the classification rule to be used. Of course, other supervised learning techniques can be used

as well, such as non-parametric discriminant analysis, support vector machines, neural networks, random

forest, boosting methods, etc.

As a final remark, the methods developed here are tightly linked to the motivating problem,

coming from the wish to classify potentially active psychotropic compounds or, rather, compound-by-dose

combinations. It is evident that the methodology can be used in a variety of similar preclinical and clinical

settings, across the widest range of therapeutic areas.

The method has been tuned for this particular dataset, but the general idea as presented in Figure 1

can be applied to any other dataset. The techniques used in the first and the second phase of the procedure

can be tuned to the situation.

The interested reader can obtain the software programs from the authors upon request.
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Figure 1: Diagram representing doubly hierarchical discriminant analysis.
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Figure 2: Diagram representing doubly hierarchical discriminant analysis, when a fractional polynomial mixed
model (FPMM) is used in Stage I and linear (LDA), flexible (FDA) or mixture discriminant analysis (MDA) are
used in Stage II.
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Figure 3: Mean number of minutes spent in Active Wake for one treatment together with the corresponding
fitted fractional polynomial profile (dashed line).
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Table 1: Linear Discriminant Analysis. Sleeping stages used in each step of the doubly hierarchical discriminant
analysis with linear discriminant analysis for both selection procedures.

LDA - Selection Procedure I

Step Light period Dark period First 3 hours

(1) Stimul PW SWS1 SWS2 AW PW SWS1 SWS2
(3) Antipsy PW SWS2 IS AW PW SWS2 AW
(4) Antidep PW IS RS SWS1 IS AW SWS1
(5) Hypno AW SWS2 IS RS

LDA - Selection Procedure II

Step Light period Dark period First 3 hours

(1) Stimul PW SWS1 SWS2 AW SWS1 RS AW
(3) Antipsy PW SWS2 IS RS AW IS
(4) Antidep IS RS PW SWS2 IS AW SWS1
(5) Hypno PW SWS2 AW PW SWS2 AW IS

Table 2: Linear Discriminant Analysis. Adjusted posterior probabilities obtained when FPMM and LDA with
Selection Procedure I (upper panel) and Selection Procedure II (lower panel) are applied.

LDA - Selection Procedure I (errorrat = 0.003 / errorc-d =0.000)

Drugclass Placebo Antipsy Antidep Hypnotic Stimulant

Placebo 0.96 0.02 0.02 0.00 0.00
Antipsychotic 0.01 0.89 0.04 0.00 0.06
Antidepressant 0.00 0.03 0.96 0.00 0.01
Hypnotic 0.00 0.00 0.00 1.00 0.00
Stimulant 0.00 0.00 0.01 0.00 0.99

LDA - Selection Procedure II (errorrat = 0.121 / errorc-d =0.105)

Drugclass Placebo Antipsy Antidep Hypnotic Stimulant

Placebo 0.77 0.04 0.09 0.10 0.00
Antipsychotic 0.00 0.71 0.12 0.09 0.08
Antidepressant 0.05 0.07 0.85 0.03 0.00
Hypnotic 0.18 0.06 0.00 0.76 0.00
Stimulant 0.03 0.03 0.06 0.02 0.86
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Table 3: Flexible Discrimant Analysis. Sleeping stages used in each step of the doubly hierarchical discriminant
analysis with flexible discriminant analysis for both selection procedures.

FDA - Selection Procedure I

Step Light period Dark period First 3 hours

(1) Stimul PW SWS2 AW PW SWS1 RS
(3) Antipsy AW SWS2 RS AW PW SWS2 IS
(4) Antidep AW PW SWS1 PW RS IS RS
(5) Hypno AW SWS2 IS RS

FDA - Selection Procedure II

Step Light period Dark period First 3 hours

(1) Stimul SWS1 AW SWS2 AW
(3) Antipsy PW SWS1 SWS2 IS AW PW SWS2
(4) Antidep IS RS PW IS AW PW SWS1
(5) Hypno PW SWS2 AW PW SWS2 AW IS

Table 4: Flexible Discriminant Analysis. Adjusted posterior probabilities obtained when FPMM and FDA with
Selection Procedure I (upper panel) and Selection Procedure II (lower panel) are applied.

FDA - Selection Procedure I (errorrat = 0.016 / errorc-d = 0.000)

Drugclass Placebo Antipsy Antidep Hypnotic Stimulant

Placebo 0.96 0.00 0.04 0.00 0.00
Antipsychotic 0.00 0.98 0.02 0.00 0.00
Antidepressant 0.05 0.03 0.88 0.04 0.00
Hypnotic 0.00 0.00 0.13 0.87 0.00
Stimulant 0.00 0.00 0.01 0.00 0.99

FDA - Selection Procedure II (errorrat = 0.093 / errorc-d = 0.059)

Drugclass Placebo Antipsy Antidep Hypnotic Stimulant

Placebo 0.82 0.04 0.09 0.05 0.00
Antipsychotic 0.03 0.73 0.18 0.00 0.06
Antidepressant 0.06 0.11 0.78 0.04 0.01
Hypnotic 0.00 0.03 0.04 0.93 0.00
Stimulant 0.00 0.04 0.12 0.03 0.81
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Table 5: Mixture Discriminant Analysis. Sleeping stages used in each step of the doubly hierarchical discriminant
analysis with mixture discriminant analysis for both selection procedures.

MDA - Selection Procedure I

Step Light period Dark period First 3 hours

(1) Stimul SWS2 IS AW SWS1 AW SWS1
(3) Antipsy PW SWS2 IS AW PW SWS2 AW
(4) Antidep AW SWS1 SWS2 IS RS SWS1 SWS2
(5) Hypno AW SWS1 SWS2 IS RS

MDA - Selection Procedure II

Step Light period Dark period First 3 hours

(1) Stimul AW PW SWS2 PW SWS1
(3) Antipsy SWS2 AW PW SWS2 AW IS
(4) Antidep IS RS PW SWS2 IS AW SWS1
(5) Hypno PW SWS1 SWS2 RS AW IS

Table 6: Mixture Discriminant Analysis. Adjusted posterior probabilities obtained when FPMM and MDA with
Selection Procedure I (upper panel) and Selection Procedure II (lower panel) are applied.

MDA - Selection Procedure I (errorrat = 0.020 / errorc-d = 0.000)

Drugclass Placebo Antipsy Antidep Hypnotic Stimulant

Placebo 0.99 0.00 0.01 0.00 0.00
Antipsychotic 0.02 0.95 0.01 0.00 0.02
Antidepressant 0.00 0.04 0.95 0.01 0.00
Hypnotic 0.00 0.03 0.02 0.95 0.00
Stimulant 0.00 0.06 0.03 0.00 0.91

MDA - Selection Procedure II (errorrat = 0.108 / errorc-d = 0.065)

Drugclass Placebo Antipsy Antidep Hypnotic Stimulant

Placebo 0.82 0.07 0.05 0.06 0.00
Antipsychotic 0.17 0.73 0.04 0.03 0.04
Antidepressant 0.05 0.03 0.89 0.02 0.00
Hypnotic 0.04 0.01 0.01 0.95 0.00
Stimulant 0.08 0.11 0.06 0.00 0.76


