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SUMMARY

The use of semi-parametric mixed models has proven useful in a wide variety of settings. Here, we focus on

application of the methodology in the particular case of a cross-over design with relatively long sequences of

repeated measurements within each treatment period and for each subject. Other than an overall measure

of the difference between each one of the experimental groups and the control group, specific time point

comparisons may also be of interest. To that effect, we propose the use of flexible semi-parametric mixed

models, enabling the construction of simulation-based simultaneous confidence bands. The bands take

into account both between- and within-subject variability, while simultaneously correcting for multiple time

point comparisons. Owing to the relatively long sequences of measurements per subject, presence of serially

correlated errors is anticipated and investigated. We illustrate how several formulations of semiparametric
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mixed models can be fitted and construction of simulation-based simultaneous confidence bands using SAS

PROC MIXED.

KEYWORDS: Cross-over; Penalized splines; Semi-parametric mixed models; Simultaneous confidence

bands, Serial correlation.
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1. INTRODUCTION

In a cross-over trial, each unit or subject receives a sequence of experimental treatments rather

than a single one, in randomized order. The main advantage of a cross-over trial is that treatments

are compared within subject such that the difference between treatment measurements removes

any subject effect from the comparison, ordinarily greatly increasing precision. Administering the

treatments in random order helps to minimize, remove, and/or estimate effects stemming from

time period or from so-called carry-over treatment effect from earlier into later time periods. The

theory is well established, whether for the simplest case of two treatments and two periods, or for

higher-order designs [1]. In this tutorial, a particular case of a cross-over design with the salient

feature of a relatively long sequence of repeated measurements within each of the treatment periods

is considered. Focus is put on modeling the mean evolution using semi-parametric mixed models,

accounting for correlation between observations through random effects. A considerable amount

of literature with regard to repeated-measures cross-over designs already exists, although mainly

focusing on two treatment and two periods designs [2, 3, 4, 5]. Dunsmore [4] uses the Bayesian

growth curves of Fearn [6], with a quadratic time effect, in a two-period repeated measures cross-

over design. Analyzing the same experiment as Dunsmore [4], Grender and Johnson [5] discuss

a two-stage approach wherein the repeated measures across time for each subject are modeled
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parametrically, also using a quadratic trend, and later analyzing the parameter estimates using

multivariate methods. More recently, Putt and Chinchilli [7] analyze a two treatment and four

period design using a mixed effects model that eliminates the need for preliminary testing for such

nuisance factors as, for example, carry-over. Again, a parametric model assuming quadratic effects

in time is employed.

There are many practical situations where determining an appropriate parametric function for

the mean may not at all be easy. As pointed out by Dunsmore [4], checking for the assumption of

the presumed time trend (quadratic, in that case) may be a difficult task. It is with such cases in

mind that we propose modeling the mean evolution using flexible semi-parametric models, ridding

of the need to specify any particular parametric form. Application of semi-parametric smoothing

techniques such as, for example, penalized splines [8, 9] will prove useful. Jones and Kenward [1]

consider a cross-over study with many periods and model the period effects using natural cubic

splines. Related applications in longitudinal data settings, not necessarily cross-over designs, can

be found in, for example [10, 11, 12, 13, 14].

Having estimated the group mean profiles using penalized splines, focus shifts to constructing

confidence bands around the fitted functions. A detailed account on frequentist pointwise and

simultaneous confidence bands, both in the cross-sectional and longitudinal settings, is offered in

[9]. Guo [12] constructs Bayesian confidence intervals around the fitted functions in a parallel design.

Lin and Zhang [15] discuss, in the context of generalized linear mixed models, both frequentist and

Bayesian confidence intervals around fitted functions. Wood [16] constructs confidence intervals for

generalized additive models fitted using penalized splines. Our intention is to make adaptations of

the bands of Ruppert et al. [9] to accommodate correlation between measurements through random

effects, as well as more complex models for residual covariances; specifically, models including
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serial correlation and measurement error [17]. Indeed, experiments with long sequences of repeated

measurements are bound to yield some form of residual dependencies, in addition to what is

captured by random effects and which, at least, should be modeled parametrically.

In Section 2, a description of the experiment and data used, together with a discussion of the

research questions is provided. Section 3 exemplifies use of the AUC as a summary statistic. In

Section 4, focus is on semi-parametric mixed models and their application. Confidence intervals

are discussed in Section 5 and Section 6 is devoted to the application of the methods discussed. A

general discussion winds up the tutorial in Section 7.

2. CARDIOVASCULAR SAFETY EXPERIMENT DATA EXAMPLE

In this section, we present a case study that will be used to illustrate application of the methods

discussed subsequently. The data come from a cross-over study in a cardiovascular safety experiment

carried out in dogs. A balanced Latin square Williams design of four experimental groups and four

periods is used (Table I). Eight female beagle dogs, weighing between 10.0 and 12.9 kg, were

implanted with a device for telemetric study. The animals were orally dosed with a vehicle or a

compound, the latter at low, medium, and high doses, on four successive sessions, separated by a

wash-out period of at least 3 days.

Table I ABOUT HERE

Cardiovascular parameters of interest were recorded at 5 minute intervals for 6 hours, hence 72

time points per subject per period are available. There are no missing data. One of the primary

objectives of the study was to assess the effect of the compound on the so-called QT, a measure

of the complete electrical activity of the heart’s ventricle. A drug-induced prolongation of the
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ventricular repolarization and a concomitant QT prolongation is known to be associated with

lethal arrhythmias. Several other parameters are measured, and for purposes of this tutorial, the

response, referred to as ‘TAU,’ is a measure of the relaxation capacity of the heart (in milliseconds)

after contraction; it is a measure of how well or badly a heart relaxes after a contraction.

Table II ABOUT HERE

Table II lists the variables used for analysis in this paper. Data are stored is the SAS data file

crossdata. Using the print procedure in SAS provides output, a selection of which looks like:

dog period tau group timeh carry

1 1 15.6260 4 0.0833 1

1 1 16.8389 4 0.1667 1

1 1 17.2002 4 0.2500 1

. . . . . .

. . . . . .

. . . . . .

1 4 19.2730 2 5.8333 1

1 4 19.3113 2 5.9167 1

1 4 19.8975 2 6.0000 1

The construction of the carry-over variable carry is such that for a particular period, the variable

takes the value of the treatment group given in the preceding period. The excerpt from the data

reveals that treatment group 1 (control) was given to dog 1 in the third period. The data in the first

period are consistently allocated to one of the treatment levels, bearing in mind that period effects
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are always kept in the model. Note that the carry-over effect should be defined as a class variable.

Obviously, there is no carry-over effect during the first period and, consequently, there should be

no corresponding level for carry-over in that period. To circumvent this problem, we allocate the

same level to all observations in each first period and inclusion of period effects ensures elimination

of the carry-over in the first period [1].

The question of interest here is twofold. First, an overall measure of the differences amongst

the treated groups (i.e., low, medium, and high dose levels) and the control group is required.

Second, there is need to detect specific sections in the time window, if any, where the treated

groups significantly differ from control. Hence, in line with detecting the possible cardiovascular

effects of the compound on the response, it is necessary to examine whether the effect is in the

earlier or later stages of the experiment.

In current practice, summary measures, such as the area under the curve (AUC), which reduce

the problem to a conventional cross-over design, are often used. An obvious shortcoming of such

an approach is loss of information. Another frequently used approach is to consider a full factorial

structure for time by treatment and then to construct relevant contrasts at the required time points.

However, this approach may only be feasible with relatively few time points since experiments with

long sequences of repeated measurements yield excessively large numbers of parameters. Also,

addressing multiple comparisons with such long sequences may not be straightforward and lead to

severe losses in power.

Figure 1 ABOUT HERE

Figure 1 shows the observed mean profiles in the various experimental groups for each of the

treatment periods. The treatment groups do not appear to differ; however, the response seems to

increase with period. Note also that a parametric form for these mean profiles might not be easily
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determined, hence the need to use more flexible, semi-parametric smoothing techniques.

We will contrast our semi-parametric analysis, presented in Section 4 with the AUC-based

summary measure analysis, the topic of the next section.

3. ANALYSIS OF THE CARDIOVASCULAR SAFETY EXPERIMENT USING THE AUC AS

SUMMARY STATISTIC

In this section, we discuss application of the area under the curve (AUC) as one way of summarizing

data from a repeated measures cross-over design. As mentioned earlier, this may be seen as loss of

information. Indeed, if the aim is to compare evolution over time across the experimental groups,

such an approach is not useful. However, for an overall profile comparison, the AUC may sometimes

be a viable option. As pointed out by Jones and Kenward [1], the approach makes few modeling

assumptions about the joint behavior of the repeated measurements, making it robust. Also, given

that in our situation the data are completely balanced, each subject provides approximately the

same amount of information, a key assumption for the use of such a summary statistic [1]. Let us

now focus on the model considered for the AUC summary statistic. As is usually done, to uphold the

ubiquitous assumption of normally distributed errors, the model is based on a log transformation

of the AUC. Let Yijk denote the log of AUC for animal i in period j, receiving experimental group

k, for i = 1, . . . , n, j = 1, . . . , p, and k = 1, . . . , g. Taking the last period (j = 4) and the control

group (k = 1) as reference categories, define Pj , Gk, and Cj as indicator variables for period,

treatment group, and carry-over respectively, such that, for example, Pj = 1 if period = j, and 0

otherwise, for all j ≤ p− 1, with a similar definition for Cj and Gk and for k = 2, 3, 4. The model

takes the form:

Yijk = β0 + αjPj + τkGk + ζjCj + Ui + εijk, (1)
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where β0 is an intercept, αj is the effect associated with period j, τk is the effect associated with

treatment group k, ζj is the carry-over effect in period j, Ui is the random intercept accounting

for the correlation of observations from one subject, and εijk is the random error term. Following

[1], we do not include an interaction between period and treatment group. Such an interaction

may emanate from subjects being affected by some factors other than treatment, and/or when the

effect of a treatment level might depend on the current state of the subjects [19]. Needless to say

that then the interpretation of results becomes difficult.

Let us give a brief description of how model (1) may be fitted using the SAS procedure MIXED.

It is easy to compute the area under the curve for each subject within each treatment period using,

for example, the trapezoid rule. We will denote the SAS variable, corresponding to the AUC, by

logauc, stored together with all other relevant variables in the data set AUCdata. Note the presence

of a single measurement per subject in each period. A PRINT procedure call in SAS produces the

following output:

dog period group logauc carry

1 1 4 8.8158 1

1 2 3 8.8569 4

1 3 1 8.9353 3

1 4 2 8.8602 1

. . . . .

. . . . .

. . . . .

8 1 2 8.7573 1

8 2 1 8.7921 2
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8 3 3 8.8956 1

8 4 4 8.8874 3

The model may then be fitted using the following SAS statements:

proc mixed data=AUCdata method=ml order=data asycov;

class period group dog carry;

model logauc = period group carry / ddfm=kr solution;

random dog;

contrast "high" group 1 0 0 -1;

contrast "Medium" group 0 1 0 -1;

contrast "low" group 0 0 1 -1;

run;

The ‘method=ml’ option requests estimation to be based on maximum likelihood, rather than

defaulting to REML and ‘asycov’ invokes printing of the estimated variance-covariance matrix for

covariance parameters in the model. We make the maximum likelihood choice because some of our

comparisons include models with different fixed-effects structures, precluding the use of restricted

maximum likelihood (REML, [17]) as a basis for testing. Fixed effects in the model are reflected

under the MODEL statement, while the RANDOM statement is used to define the dog-specific

parameter Ui in (1). Assuming the group variable is sorted in descending order, the CONTRAST

statements are used to compare each of the other treatment groups to the control. Running the

model yields the following selected output, displaying tests for fixed effects and estimates of variance

components:
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Type 3 Tests of Fixed Effects

Num Den

Effect DF DF F Value Pr > F

period 3 24 37.31 <.0001

group 3 24 6.64 0.0020

carry 3 24.1 2.38 0.0950

Covariance Parameter Estimates

Cov Parm Estimate

dog 0.004833

Residual 0.000370

We observe that period and treatment effect are significant, unlike carry-over. This is the more

desirable situation. It is however important to note that the sample size (n = 8) under consideration

is rather small, so it could introduce power issues when trying to detect carry-over effects.

4. ANALYSIS OF CROSS-OVER DESIGNS USING SEMI-PARAMETRIC MIXED MODELS

In the analysis presented in Section 3, the repeated measurements for each dog were summarized

using the log of AUC as a summary statistic. However, the data fall within the realm of continuous

longitudinal data and hence can be modeled by use of a linear mixed model [17]. A flexible route,

situated within the framework of mixed models, is to model the mean with a semi-parametric

smooth function, f(t), which can be estimated, among others, with penalized splines. In Section 4.1,

we give a brief review of penalized splines formulated as mixed models, while in Section 4.2 focus

is on the inference problem for the study. Section 4.3 reviews penalized splines, specifically adapted

to the cross-over setting.

4.1. Penalized Smoothing Splines and Mixed Models

Let Yij denote the response taken at time tij (j = 1, . . . ,m) on subject i (i = 1, . . . , n). A

penalized spline model, with a subject-specific random intercept Ui, based on a truncated line

Copyright c© 200 John Wiley & Sons, Ltd. Statist. Med. 200; 0000:0–0

Prepared using simauth.cls



10

basis, can be written as:

Yij = β0 + β1tij +
K∑

v=1

bv(tij − κv)+ + Ui + εij = f(tij) + Ui + εij , (2)

where κ1 < κ2 < · · · < κK are a set of distinct knots [18] in the range of tij , and t+ = max(0, t),

bv ∼ N(0, σ2
b ) and Ui ∼ N(0, σ2

U ). The two sets of random effects bv and Ui are assumed to

be independent. The subject-specific random intercept accounts for the correlated nature of the

observations. The truncated lines basis is simple in formulation and performs adequately in many

circumstances [20] and is therefore a sensible choice. Using matrix notation [13], a stacked version

of (2) becomes:

Y = Xβ + Zb + ε. (3)

The matrix Z contains the elements of the truncated line basis, as well as columns of ones for

the random subject effect. Further, b = (b1, . . . , bK , U1, . . . , Un)
′
. The correspondence between

the penalized spline smoother and the optimal predictor in a mixed model framework, assuming

normality for the bk, is a key feature in fitting the models. This connection presents an opportunity

for using standard mixed-models software, such as, for example, the lme library in S-plus or the

MIXED procedure in SAS, to fit the penalized spline model. The method, with radial basis, is also

routinely implemented in the SAS procedure GLIMMIX with radial basis. We give a brief description

of the radial basis. For q ≥ 1, let

ZKi =
[
|xij − κv|2q−1

]
1≤i≤n, 1≤j≤m, 1≤v≤K

.

To overcome the problem of overfitting the data, the parameters in bb = (b1, . . . , bK)
′
, coefficients

for the knot points, are restricted by assuming that bb is normally distributed with zero mean vector

and variance-covariance matrix [9]

Cov(bb) = σ2
b (ΩK)−1/2(Ω−1/2

K )
′
, where ΩK =

[
|κv − κv′ |2q−1

]
1≤v,v′≤K

.
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Now, let Z∗
i = ZKiΩK

−1/2 and, as usual, construct the matrix Z by stacking the matrices Z∗
i .

This transformation then enables fitting the model using standard mixed-model software, resulting

in the model

Y = Xβ + Zbb, where Cov(bb) = σ2
bIK .

Note that the vector bb here refers only to random effects for smoothing. Taking q = 2 results in

the so-called cubic radial spline basis.

Fitting penalized splines by the linear mixed model approach has some appealing advantages,

such as the automatic determination of the smoothing parameter, a unified framework for inference

and ease to extend the models. In what follows, we proceed along these lines by formulating a series

of hypothetical semi-parametric mixed models.

4.2. Semi-parametric Models for Mean Evolution

Let us, for illustrative purposes, consider a two-group parallel design. We are interested in

investigating whether there is a difference between the two groups, that is, comparing the average

profiles in the two groups. Further, we intend to investigate which specific sections of the profiles

exhibit significant differences. The semi-parametric model discussed in Section 4 implies that

the mean response for each treatment group can be represented by an additive model of two

components, a linear component and a smooth component. Let the group-specific mean profiles

for two groups A and B be denoted by fA(t) and fB(t), respectively. To test whether the group-

specific mean profiles are equal, without loss of generality, we formulate the hypotheses:

H0 : fA(t) = fB(t), H1 : fA(t) 6= fB(t). (4)

The null hypothesis obviously implies a common mean for both groups. Figure 2 illustrates, with

hypothetical examples, several possible scenarios related to the evolution of the means over time.
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In all examples, the mean is a sum of a linear part and a smooth part. In panel A, the two groups

have the same mean, implying that the null hypothesis in (4) is enforced. Panel B allows for a

pattern in which the means of the two groups differ only by a constant, while in panel C the groups

are different in the linear part but the smooth component of the mean is identical. Finally, panel D

reveals a pattern in which the means of the two groups have different evolutions over time and the

groups are different in both the linear and smooth parts. Note that the formulation of our models

implies, in certain instances, more complicated versions of the null hypothesis in (4), since testing

for both fixed effects and variance components may be involved. In what follows, we formulate

linear mixed models within the cross-over setting, following each of the scenarios illustrated in

Figure 2.

FIGURE 2 ABOUT HERE

4.3. Formulation of the Models for the Cross-over Design

This section focuses on formulation of possible models which can be used to describe the data

at hand. The model with a full factorial structure for treatment and time as in [1] is a sensible

starting point. We show how one can move from this very general model to more parsimonious

models, based on describing the time evolution through use of penalized smoothing splines. The

formulation of the models is similar in spirit as in [14]. Using appropriately constructed matrices,

all models given in this section can be represented using the matrix notation of Section 4.1. For

the desired flexibility, 40 equally spaced knots, selected as quantiles of the time variable, are used

[9, 18]. Following [9], the 40 knots κk, which are separated by approximately 9 minutes, occupy

the
(

k+1
K+2

)
th quantiles of unique values of time.

Models 1–6 in Section 4.3.1 are used to model the cross-over aspects of the experiment, as
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in (3) where ε ∼ N(0, σ2
εI). In Section 4.4, the same set of models are considered focusing on

decomposing the covariance matrix of ε into components of serial correlation and measurement

error. All models are fitted using the SAS procedure MIXED, by means of maximum likelihood

techniques. An illustration is given in Section 4.3.1.

4.3.1. Modeling the Cross-over Aspect of the Design

Model 1. Let Yijk` denote the measurement on subject i, in period j, corresponding to treatment

group k at time point `, for i = 1, . . . , n; j = 1, . . . , p; k = 1, . . . , g; and ` = 1, . . . , m. Define

t` as an indicator variable for time, such that t` = 1 indicates that time is ` and 0 otherwise,

for ` ≤ m − 1. Consider a model with a full factorial structure for treatment group and time [1],

expressed as:

Yijk` = β0 + αjPj + τkGk + λ`t` + γklGkt` + ψjlPjt` + ζjCj + Ui + εijk`. (5)

The parameter λ` refers to the effect of time, γk` denotes the interaction between treatment group

and time, ψj` is the interaction between period and time, and εijk` are random terms.

Often, Σi = Cov(εi) is assumed to be σ2
εI, resulting in a conditional independence model. A

more general residual covariance structure, for example decomposing the vector εi into components

of serial correlation, ε(1)i, and measurement error, ε(2)i, can be considered [17] and will be discussed

in Section 4.4.

Given that for each subject, 72 measurements in each period are taken, Model 1 is bound to

yield a large number of parameters, hence the need for parsimony. The following models, adjusting

for possible period effects, show different possible approaches to modeling the time evolution in

the experimental groups. Using the SAS procedure MIXED, the mean structure is specified with

the MODEL statement while between-subject heterogeneity is taken into account by specifying a
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subject-specific random intercept in the RANDOM statement. The REPEATED statement is used

to specify the covariance structure for the random error; for Model 1, this is εi ∼ N(0, σ2
εI). The

complete code for the model is as follows:

*SAS CODE FOR MODEL 1

proc mixed data=crossuse method=ml order=data asycov;

class period group dog time carry;

model tau = period group time group*time period*time carry / ddfm=kr;

random intercept/ subject=dog solution;

repeated time/type=simple subject=dog(period);

run;

Model 2. In Model 2, it is assumed that the time evolution is the same in all treatment groups

(see Figure 2, panel A). As such, smoothing of the time trend occurs at the highest level of the

model, thereby ignoring the treatment groups. The model can be represented as:

Yij` = αjPj + β0 + β1tij` +
K∑

v=1

bv(tij` − κv)+ + Ui + ζjCj + εijk`, (6)

where κv are knots, and the coefficients bv are common to all treatment groups, such that

Var(bv) = σ2
b . Model 2 can be expressed in matrix notation by adopting the following notation:

Y = (Yij`)i,j,` and X = (1, tij`, P1, P2, P3, C1, C2, C3)i,j,`. Further, define, for each subject, a

smoothing matrix

Zbi = ((tij` − κk)+)1≤κ≤K , with stacked version Zb =




Zb1

Zb2

...

Zbn




. (7)
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The SAS code for Model 2 is shown in the panel below. The MODEL statement is used to specify

the fixed terms in (6), i.e., period, carry-over effects and the linear trend over time.

*SAS CODE FOR MODEL 2

proc mixed data=crossuse method=ml;

class period group dog time carry;

model tau = period timeh carry / solution ddfm=kr;

random Z1-Z40 / type=toep(1) solution;

random intercept / subject=dog solution;

repeated time / type=simple subject=dog(period);

run;

Since there are two variance components in the model, σ2
b and σ2

U , two RANDOM statements are

used. The first one is used to specify the non-parametric part Zb. Our application uses truncated

lines, and therefore one needs to construct the matrix Zb, with columns Z1, . . . , ZK , and denoted

(Z1-Z40 in the application). Example SAS macros for achieving this can be found in [9] and will

not be discussed here. In particular, the option ‘type=toep(1)’ in this RANDOM statement implies

that the covariance matrix of bv has a K ×K diagonal Toeplitz structure given by



σ2
b 0 . . . 0

0 σ2
b . . . 0

...
...

...
...

0 . . . σ2
b 0

0 . . . . . . σ2
b




= σ2
bIK×K

The second RANDOM statement is used, as in Model 1, to specify the random intercept for

each subject. Note that, in case additional subject-specific parameters are considered, the second

RANDOM statement ought to be modified accordingly. The REPEATED statement is used to
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specify the covariance structure for the random error. The option ‘type=simple’ implies that

εijk` ∼ N(0, σ2
ε), i.e., Cov(ε) = σ2

εI. The parameter estimates for the variance components in the

model are given in the panel below, where Variance, Intercept, and Time are the parameter

estimates for σ2
b , σ2

U , and σ2
ε , respectively.

*Covariance Parameters: Model 2

Cov Parm Subject Estimate

Variance 1.0889

Intercept dog 2.1466

Time dog(Period) 1.2473

Model 3. Model 3 assumes that the underlying linear trends in the treatment groups differ by

a shift only. However, the same non-parametric part is fitted to all treatment groups. This model

assumes the difference amongst the treatment groups, if present, does not depend on time. A

penalized spline representation of the model is:

Yijk` = αjPj + τkGk + β0 + β1tij` +
K∑

v=1

bv(tij` − κv)+ + Ui + ζjCj + εijk`. (8)

This scenario corresponds to panel B of Figure 2. Compared with Model 2, the current model

has additional fixed effects parameters, τk. Hence, the MODEL statement includes the fixed effect

group. Note that the covariance structure is the same as in Model 2 and hence the two random

statements remain unchanged.

Model 4. Here, it is assumed that the linear parts of the models differ, while the same smooth

part is considered for all groups. This resembles a scenario where, relative to Model 3, are tilted at

some angle, such that treatment effect is no longer constant in time. A representation of such a
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model is:

Yijk` = αjPj + τkGk + β0 + (β1 + β1kGk)tik` +
K∑

v=1

bv(tij` − κv)+ + Ui + ζjCj + εijk`, (9)

with Var(bv) = σ2
b . Panel C of Figure 2 graphically illustrates such a scenario. The MODEL

statement of Model 4 includes the interaction term group*timeh, which allows for different slopes

for different groups.

model tau = period group timeh group*timeh / solution ddfm=kr;

Similarly as in Model 3, the two random statements remain the same.

Model 5. All models considered so far assume that the same smooth component is fitted to

the different treatment groups. It is possible to go one step further and fit a model with different

non-parametric parts of the model in the different treatment groups, although the same smoothing

parameter is used. The linear parts of the models are assumed different and, although the random

effects are assumed independent from group to group, a single parameter is used to smooth the

groups. A representation of such a model is:

Yijk` = αjPj + τkGk + β0 + (β1 + β1kGk)tik` +
K∑

v=1

bkv(tik` − κv)+ + Ui + ζjCj + εijk`. (10)

Note that part of the design matrix, Zb, corresponding to smoothing, is now block-diagonal with

each diagonal entry corresponding to a particular treatment group and the coefficients for the

truncated lines basis, bkv, are now group-specific with Var(bkv) = σ2
b . The smoothing matrix is

now given by:

Zb =




Z1 0 0 0

0 Z2 0 0

0 0 Z3 0

0 0 0 Z4




,
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where Z1, . . . , Z4 are group-specific smoothing matrices each constructed by stacking the Zbi as

in (7).

This situation is similar to the illustration in panel D of Figure 2. To define the block-diagonal

matrix for Zb, the first random statement is changed to

random Z1-Z40 / type=toep(1) subject=group;

where the ‘subject=group’ option implies that Zb is a block-diagonal matrix with the number

of blocks equal to the number of groups. Complete code for Model 5 is given below.
*SAS CODE FOR MODEL 5

proc mixed data=crossuse method=ml order=data asycov;

class period group dog time carry;

model tau = period group timeh group*timeh carry / solution ddfm=kr;

random z1-z40 / type=toep(1) subject=group;

random intercept / subject=dog solution;

repeated time / type=simple subject=dog(period);

run;

Model 6. A further step is to relax the assumption on the smoothing parameter and to assume

that the groups can be smoothed separately but with different smoothing parameters. Hence, both

the fixed effects part and the non-parametric part differ by group and four variance components

corresponding to smoothing the different treatment groups are estimated. The penalized spline

representation of this model and the Z matrix is the same as in Model 5, with Var(bkv) = σ2
kb.
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The covariance matrix pertaining to smoothing is given by



σ2
1bIK×K 0 0 0

0 σ2
2bIK×K 0 0

0 0 σ2
3bIK×K 0

0 0 0 σ2
4bIK×K




.

The reference panel for this model is panel D, as in the previous model, since the difference

between these models cannot be seen graphically. To define a group-specific random component

for b, one needs to replace the option ‘subject=group’ with option ‘group=group’ in the RANDOM

statement, as follows:

random Z1-Z40 / type=toep(1) group=group;

Note that, this change excepting, the specification of Models 5 and 6 in SAS is identical.

*SAS CODE FOR MODEL 6

proc mixed data=crossuse method=ml order=data asycov;

class period group dog time carry;

model tau = period group timeh group*timeh carry / ddfm=kr;

random Z1-Z40 / type=toep(1) group=group;

random intercept / subject=dog solution;

repeated time / type=simple subject=dog(period);

run;

Based on Akaike’s Information Criterion (AIC) [21, 22], a comparison of models presented in

this section (see also Section 6) suggests that Model 4 be chosen as the current best model.

The covariance parameter estimates for Models 4, 5, and 6 are given below, where Variance

corresponds to the smoother, Intercept to the random intercept and Time to the residual errors.
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Note that, for Model 5, all groups share the same variance component for σ2
b , and for Model 6,

group in the Subject column indicates that each group has a different vector of random effects,

since Zb is a block-diagonal matrix.

*Covariance Parameters: Model 4

Cov Parm Subject Estimate

Variance 1.1383

Intercept dog 2.1463

Time dog(Period) 1.1523

*Covariance Parameters: Model 5

Cov Parm Subject Estimate

Variance group 0.7384

Intercept dog 2.1428

Time dog(Period) 1.1338

*Covariance Parameters: Model 6

Cov Parm Subject Group Estimate

Variance group 1 0.4898

Variance group 2 0.7575

Variance group 3 2.2180

Variance group 4 0.3784

Intercept dog 2.1427

Time dog(Period) 1.1308
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4.4. Modeling the Covariance Structure

Two types of covariance structures for measurements from a particular subject need to be accounted

for in the analysis. First, the correlations amongst measurements across different treatment periods

and, second, dependencies amongst measurements within one treatment period. Assuming that

the covariances applying to one period are similar to those in other periods, the between- and

within-period covariance structures are separable [1]. As such, accommodation of between-period

dependencies can be achieved by introducing the subject-specific random intercepts Ui. Commonly

used models for repeated measures covariance structures, such as, for example, an AR(1) process,

can be used to model the remaining within-period dependencies. In particular, we consider the

decomposition of the residual variance into components of serial correlation and measurement

error, such that:

Cov(εi) = σ2
εI + τ2Hi, (11)

where elements of Hi, the serial correlation matrix, are modeled by some parametric function,

particular cases of which are the exponential and Gaussian functions [17]. Let the variance of the

serial process be denoted by τ2 and the rate of decay of correlations with distance d``′ between

time point ` and `′ by θ. Table III shows the forms of the covariance structure we consider for

within-period residual covariance.

Table III ABOUT HERE

As mentioned before, owing to the length of the sequences of measurements per subject, one

would expect the residuals to be serially correlated. To gain insight into this phenomenon, we

fit an unstructured mean model that includes other fixed effects, like period and the necessary

interactions, and assess the behavior of the residuals. Note that, at this stage, neither random
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effects are included nor covariance structure is modeled. Denote the residuals at time point ` by

r`v, v = 1, . . . , 32. At each of the 72 distinct time points, there are 32 observations. Figure 3 shows

a plot of r1v on the horizontal axis against r`′v on the vertical axis, with `
′
= 2, 6, 10, . . . , 62, a

selection of time points.

Figure 3 ABOUT HERE

It is clear from the residual plots that, after removing the mean structure, the residuals do not

appear independent and, as expected, the dependencies tend to weaken with distance in time. As

such, conditional independence models as in Section 4.3.1 may not be appropriate in this case,

hence the modeling of serial correlation.

Models with correlated errors may be obtained by modifying the REPEATED statement of the

models presented in Section 4.3.1. The functional form of the correlation is specified in the ‘type=’

option. For an AR(1) process, the statement is modified to:

repeated time / type=ar(1) subject=dog(period);

The output for the covariance parameters, corresponding to this statement, is:

Cov Parm Subject Estimate

Variance 0.6051

Intercept dog 2.0993

AR(1) dog(Period) 0.6840

Residual 1.1770

From this output, Residual refers to λ2, the variance, and AR(1) represents θ, the rate of

decay of the correlations, as in Table III. The estimated residual variance function is λ̂2θ̂|`−`′| =
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1.177×0.6840|`−`′|. To fit a model with exponential-type serial correlation, the statement is altered

to

repeated time /type=sp(exp)(timeh) local subject=dog(period);

Note that time is a class variable whilst timeh is continuous. The ‘local’ option requests a split

of the residual variance into elements of serial correlation and additional measurement error. The

estimated covariance parameters are as follows:

Cov Parm Subject Estimate

Variance 0.8778

Intercept dog 2.0772

Variance dog(Period) 1.0312

SP(EXP) dog(Period) 0.3527

Residual 0.1553

Here, the Variance for dog(Period) corresponds to λ2 and ‘SP(EXP)’ corresponds to θ in

Table III. The estimate of the residual variance, σ2
ε in (11) is given under Residual. The

estimate for the covariance function in (11) is σ̂2
εI + λ̂2Ĥi = 0.1553I + 1.0312Ĥi, where

Ĥi``′ = exp(−d``′/0.3527). Finally, for the Gaussian type of serial correlation, the following output

is obtained:

Cov Parm Subject Estimate

Variance 0.5097

Intercept dog 2.1044

Variance dog(Period) 0.7844
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SP(GAU) dog(Period) 0.2656

Residual 0.3259

The estimate for θ is now given under SP(GAU), resulting from the statement:

repeated time /type=sp(gau)(timeh) local subject=dog(period);

Similarly, the estimated residual covariance function is σ̂2
εI + λ̂2Ĥi = 0.3259I +0.7844Ĥi, where

Ĥi``′ = exp(−d``′/0.26562).

5. POINTWISE CONFIDENCE INTERVALS AND SIMULTANEOUS CONFIDENCE BANDS

This section focuses on the construction of confidence bands around the group-specific fitted

functions. Such bands can be used to compare the different treatment groups at specific time

points, if necessary. Ruppert et al. [9] give details for constructing such intervals or bands for

smoothed functions. Our intention is to adapt their results so as to accommodate the correlation

structure, as accounted for by the random intercept, and the residual covariances allowing for

presence of serial correlation. Consider the penalized spline model expressed in the mixed model

form, as in Section 4, re-expressed as:

Y = Xβ + Zbbb +

ε∗︷ ︸︸ ︷
ZUbU + ε,

such that,

Cov(ε∗i ) = σ2
UJ + Σi = R∗

i , (12)

where Zb and ZU are matrices corresponding to smoothing and random intercepts, respectively,

and J is a matrix of ones. Construction of pointwise confidence intervals, as well as simultaneous
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confidence bands, requires the covariance for the vector of contrasts between the estimated and

true parameters for the fixed and random effects, such that [9]:

Cov




β̂ − β

b̂b − bb


 '

(
CT R̂

−1
C + B̂

)−1

, (13)

where C is a design matrix containing linear time effects and truncated line basis, R̂ is the residual

covariance, and B̂ is a matrix constructed from variance components corresponding to smoothing.

Consider a random-intercept model in a parallel design with balanced longitudinal data consisting

of n subjects, each with m repeated measurements. Assuming independent residual errors, the

required covariance matrix takes the form [14]:

(
CT R̂

−1
C + B̂

)−1

= σ̂2
ε

[
n∑

i=1

{
CT

i

(
Im×m − σ̂2

b0

σ̂2
ε + mσ̂2

U

Jm×m

)
Ci

}
+

σ̂2
ε

σ̂2
b

D

]−1

, (14)

where D = diag(0, 0, 1, . . . , 1). The simultaneous confidence bands are based on simulations,

assuming a multivariate normal distribution for the vector of contrasts between the estimated and

true parameters for both fixed and random effects,


β̂ − β

b̂b − bb


 ∼ N

{
0,

(
CT R̂

−1
C + B̂

)−1
}

. (15)

For details on how the simulations from (15) are used to construct the bands, we refer to [9].

Note, the generality of (13) makes it applicable in different settings. For example, expression (14)

follows specifically from a random-intercept model with independent errors, implying a compound-

symmetry structure for R̂, which is readily invertible. The following section focuses on how the

preceding developments can be extended to the particular case of a cross-over design.

5.1. Adaptation of the Confidence Bands to the Cross-over Setting

Consider a random-intercept model as discussed in Section 4. Further, assume the model also

includes both components of serial correlation and measurement error in the residual covariance
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structure. The resulting R̂ implies a simplified version of (13), but may not be straightforwardly

obtained. However, the matrix can still be used in its most general form. For illustrative purposes,

consider a particular dog i. Assuming an exponential type of serial correlation, the part of Cov(ε∗i )

in the first period corresponding to the first three observations is given by:

R∗
i[3] =




σ2
U σ2

U σ2
U

σ2
U σ2

U σ2
U

σ2
U σ2

U σ2
U




+ τ2




1 exp(−d12/θ) exp(−d13/θ)

exp(−d12/θ) 1 exp(−d23/θ)

exp(−d13/θ) exp(−d23/θ) 1




+




σ2
ε 0 0

0 σ2
ε 0

0 0 σ2
ε




, (16)

where τ2 is the variance for the serial correlation part, θ is the rate of decay of the correlations as a

function of d``′ , which is the Euclidean distance between coordinates of the time variable, and σ2
ε

is the variance of the measurement error. Therefore, R∗
i consists of matrices of the form (16) as

diagonal elements, corresponding to each period, and matrices of the form σ2
UJ in the off diagonal

entries. Now, replacing R̂ with R̂
∗

in (13), where R̂
∗

is block-diagonal with diagonal elements R̂
∗
i ,

provides the expression which can used to construct either pointwise or simultaneous confidence

bands. Focusing on Model 4, estimates of σ2
U , τ2, θ, and σ2

ε are as given in Section 4.4.

5.2. SAS Macro for Calculating Simultaneous Confidence Bands

Implementing the confidence bands involves use of (15) and (16). For this purpose, required output

data sets are kept using the ODS OUTPUT statement, as in Section 4.3.1. Calculation of the

confidence intervals/bands is implemented in a SAS macro, the usage of which is briefly explained.

The macro essentially uses covariance parameter estimates obtained in Section 4.4 as input to
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compute (16). Generation of vectors from a multivariate normal distribution, see (15), is done

using a separate SAS macro, included within the macro, by the call

%inc(<location of the file containing the MVN macro>)

The general call of the macro, which calculates pointwise and simultaneous bands has the form

%macro CBmacro(data=,model=,resp=,time=,subject=,group=,

period=,carry=,K=,sctype=,nsim=);

The data for analysis is specified under data. Our macro fits Models 2–6 and choice of

the required model is given under MODEL. The option of either exponential or Gaussian serial

correlation is specified in sctype, which takes values exp or gau. The response and the ‘time’

variable are passed on via resp and time, respectively. One has to also provide the number of knot

points K, and the required number of simulations (nsim) for construction of simultaneous confidence

bands. Finally, it is imperative to indicate from the data set to be analyzed, which variables represent

the subject of analysis, the treatment groups, carry-over effect and the treatment period.

The macro CBmacro, available from the authors, outputs panels with tests for fixed effects and

covariance parameter estimates. Further, a data set containing group-specific fitted values together

with 95% pointwise and simultaneous confidence bands is created by the macro. As an example, a

call for Model 3 takes the form
%macro CBmacro(data=crossuse,model=3,resp=tau,time=time,subject=dog,

group=group, period=period,carry=carry,K=40,sctype=exp,nsim=10000);

and the predicted values and confidence intervals may be obtained from the output data set

myout exemplified in the following panel, which may be useful in producing plots like Figure 4.
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TIME PRED GROUP SE L95 U95 MALPHA LS95 US95

0.08333 19.7630 1 0.54270 18.6993 20.8267 2.4179 18.4508 21.0753

0.16667 19.8702 1 0.53545 18.8207 20.9197 2.4179 18.5755 21.1649

0.25000 19.9633 1 0.53304 18.9186 21.0081 2.4179 18.6744 21.2522

0.33333 20.0632 1 0.53252 19.0194 21.1069 2.4179 18.7755 21.3508

0.41667 20.1696 1 0.53297 19.1250 21.2142 2.4179 18.8809 21.4583

. . . . . . . . .

. . . . . . . . .

. . . . . . . . .

6. RESULTS

This section focuses on the application of the methodology discussed in the previous sections.

Emphasis will be on the semi-parametric mixed model approach. Within the semi-parametric

models, a comparison of models assuming independent residual errors with models assuming some

form of residual correlation structure will be undertaken. In addition, we briefly discuss the issue of

carry-over where, loosely, the observed response in one period could be the result of the effect of

the previously allocated treatment. Regardless of the wash-out period used in the study, carry-over

effects are not unexpected. For models that do not require preliminary testing for carry-over, we

refer to [7]. The approach we take is to select one of the semi-parametric models with independent

errors, based on Akaike’s Information Criterion (AIC) [21, 22]. The selected model will then be

improved by modeling the covariance structure and all further inferences will be based on the model
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selected based on comparing covariance structures. The results from such a model are compared

with the summary statistics analysis.

6.1. Model Fitting, Selection, and Hypotheses Testing

Let us now focus on fitting and selection of the models discussed in Section 4.3.1. For each of the

models, the independent errors structure, a commonly used approach in practice, is assumed and

results given in Table IV.

Table IV: ABOUT HERE

The exploratory comparison of the models with independent residual errors appears to indicate

Model 4, with differing linear effects by group and the same non-parametric component is a

plausible starting point. A formal likelihood ratio test (LRT) can be performed to see if indeed

there is need to move from Model 3 to Model 4. Such a test, based on a χ2
3, and a LRT statistic

of 29.6 = 6922.9 − 6893.3 yields a highly significant result (p = 0.0001). Hence, a model with

different linear effects by group fits better. Note, the test between Model 3 and 4 is based on fixed

effects only; no variance components are involved.

Different ways of modeling the residual covariance are applied and the results in Table IV indicate

a substantial improvement in the fit of Model 4 upon modeling of the residual covariance structure.

In particular, the model with exponential-type serial correlation appears to fit better than other

models. However, the group-by-time interaction is now insignificant, implying Model 3. Note that,

the group-by-time interaction is the characteristic separating Models 3 and 4. Thus a formal test

between both models would be based on χ2
3, with a LRT statistic of 3.2 = 5521.6 − 5518.4 and

p = 0.3618, corroborating that a constant difference in time suffices in this situation. Henceforth,

Model 3, with exponential serial correlation, becomes our chosen model and any further inferences
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will be based upon this model. The selection of Model 3 already suggests presence of treatment

effect. However, a formal test may be required, and that translates to testing the chosen model

against Model 2 (the null model). The hypothesis of interest then becomes, following (6 and (8):

H0 : τk = 0, k = 2, 3, 4. The null model was fitted under the various covariance structures, such

that appropriate comparisons of fixed effects against any of the (chosen) alternative models may

be effectuated. In this case, a test between Models 3 and 2, both under the exponential serial

correlation would be appropriate. Again, there are no variance components equated to zero in this

test and therefore it is based on χ2
3. The LRT statistic is 22.5, which is significant (p < 0.0001),

hence groups differ.

We present the fixed-effects parameter estimates for Model 3, p-values from the associated t-

tests, and variance components in Table V. For the sake of comparison, we have included parameter

estimates from the model with independent residual errors.

Table V ABOUT HERE

Focusing on the model with serial correlation in Table V, it can be observed that only the medium

dose group differs from the control group (p = 0.0014). Let us focus on comparing this model with

the model assuming independent errors. While parameter estimates do not change much, it is the

standard errors that substantially change, rendering some previously significant effects insignificant,

such as, for example, the difference between the low and high doses. This highlights the problem

of underestimating variability, often ignored when models such as the conditional independence

model are applied in practice.

Table V also gives results from the AUC analysis. Although the time dimension is lost in this

analysis, an overall comparison amongst the doses can be salvaged. Note the parameter estimates for

the AUC are not directly comparable to those from the semi-parametric mixed models since they are

Copyright c© 200 John Wiley & Sons, Ltd. Statist. Med. 200; 0000:0–0

Prepared using simauth.cls



31

on the log scale. Similar to the conclusion made above, the results indicate a significant difference

between the medium dose and the control group, albeit with weakened evidence (p = 0.0129).

Hence, the animals receiving the medium dose group tend to have higher values of the measure of

relaxation capacity of the heart than the control group, and the difference is constant over time.

A common issue with cross-over designs is carry-over [1] and [19]. To investigate how carry-over

may have influenced our results, we re-consider Model 3 with serial correlation and, in addition,

introduce carry-over effects. The results for parameters of interest from this model are also given

in Table V. Although carry-over (parameter estimates not given) appears significant (p = 0.0390),

no major changes are obtained in parameter estimates, their standard errors, or the conclusions

reached previously.

6.2. Confidence Intervals and/or Bands

The final model emerging as the ‘best’ explicitly suggests that treatment effect is constant over

time, implying that for this situation time point comparisons are redundant. We proceed to construct

the confidence bands around the fitted profiles. This endeavor requires estimation of the variance

components pertaining to smoothing and random intercept, as well as the parameters associated

with the exponential serial correlation. Note that smoothing is performed at the highest level of the

model, and hence, one variance component is estimated for all four treatment groups. Following the

discussion in Section 5, using the estimates in Table V, one can construct the pointwise as well as

simultaneous confidence bands. Constructing simultaneous confidence bands involves estimating a

value m(1−α), which would replace Z(1−α
2 ) usually used in constructing confidence intervals under

the normal distribution assumption [9].

Figure 4 ABOUT HERE
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Five independent simulations of 10,000 draws each, using results discussed in Section 5 are

performed. We obtain m0.95 ≈ 2.4587, 2.4603, 2.4593, 2.4669 and 2.4128. The minimum of

these values, i.e., 2.4128, can be taken as the estimate of m0.95, implying that the simultaneous

confidence bands are about 2.4128/1.96 = 1.23 times wider than their pointwise counterparts.

Figure 4 show the group-specific fitted profiles and the corresponding 95% confidence bands. The

model appears to fit well. The simultaneous confidence bands constructed enable one to make

joint statements about the profiles’ evolution in time. In case the model featured treatment effect

changing over time, such intervals could be used, for example, to compare each of the active

treatment groups to the control and each time point.

7. DISCUSSION

We have exemplified the flexibility of penalized smoothing-splines methodology, within the linear

mixed model framework, to the context of cross-over designs. We have illustrated that one can

formulate different possible scenarios, showing how the different treatment groups could possibly

differ. Such an approach then enables one to select the model deemed ’best’ according to some

criterion. Amongst the models considered, an interesting comparison is between Model 4, with

an overall smooth part, and Model 5, having independent random effects by group, with the

same variance component. Although in Model 5 the random effects responsible for smoothing are

independent and vary from group to group, only a single smoothing parameter is estimated as

in Model 4. The two models are not the same. However, from a parametric point of view, they

contain the same number of parameters. It is not clear how formal tests between such models may

be performed, hence the use of information criteria, such as AIC.

Particular attention has also been given to models including serial correlation, wherein time-
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honored functions, such as exponential and Gaussian, have been considered. Indeed, with relatively

long sequences of repeated measurements within a period, residual correlations are expected.

As we have seen, ignoring such correlations can possibly lead to misleading results. It is worth

mentioning that the flexible models considered here for the mean can be considered to model the

serial correlation as well, something that has received limited attention thus far in the literature.

Often, researchers require comparisons of treatment groups at specific time points. This could

possibly be done by fitting a full factorial structure in time and compare groups using appropriate

contrasts. However, the large number of time points involved here makes such an approach

prohibitive. An attractive alternative is the use of confidence intervals and/or bands, constructed

around the fitted profiles. Once a suitable model has been selected, confidence bands can then

be constructed around the fitted functions. Focus has been on the adaptation of the confidence

intervals and bands of Ruppert et al. [9] for application in the specific cross-over design situation.

Using the confidence bands, one is able to identify specific sections where the bands do not overlap,

indicating significant differences. Other than overcoming the disadvantages of the full factorial

structure approach mentioned above, the problem of multiple comparison is also elegantly solved

here. Note that, as mentioned before, the model we have focused on does not warrantee use of

confidence bands for time point comparisons, since treatment effect is constant over time.

In summary, we have demonstrated the use of penalized splines to data from a repeated measures

cross-over design. Particular attention was on comparing models with different mean structures as

well as various covariance structures. Further, we touched upon the construction of simulation-

based simultaneous confidence bands for the fitted profiles.
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Table I. Williams design for a cross-over study with four dose groups, control (C ≡1), low (L ≡ 2),

medium (M ≡ 3), and high (H ≡ 4). The design is replicated twice, resulting in a total of 8 animals

being used.

Period

Subject 1 2 3 4

1 H M C L

2 M L H C

3 L C M H

4 C H L M

Table II. Meaning of the variables used in the SAS programs.

Variable Explanation

tau The response variable

logauc Logarithm of the area under curve for Tau

group Class variable of experimental group

period Class variable indicating treatment period

dog Class variable for subject indicator

timeh Time in hours (continuous variable)

time Duplicate of timeh for use as a class variable

Carry Class variable for carry-over effect

Z1-Z40 Columns of Z matrix for smoothing
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Table III. Various covariance structures for modeling residual covariance within periods.

Serial correlation

AR(1) Gaussian (GSC) Exponential (ESC)

τ2θd``′ τ2exp
(−d``′/θ2

)
τ2exp (−d``′/θ)

Table IV. Minus twice loglikelihood values and AIC values for models in Section 4.3.1, assuming

independent residual errors. For the null model (Model 2) as well as the model with the smallest AIC

(Model 4), different covariance structures are considered.

Within-period cov. Crit. Mod. 1 Mod. 2 Mod. 3 Mod. 4 Mod. 5 Mod. 6

Independent -2 loglik 9025.3 7128.7 6922.9 6893.3 6941.8 6938.3

AIC 10041.3 7150.7 6950.9 6927.3 6975.8 6978.3

AR(1) -2 loglik 5590.7 5557.1 5552.5

AIC 5614.7 5587.1 5588.5

Gaussian ser. corr. -2 loglik 5650.4 5600.2 5593.9

AIC 5670.4 5632.2 5631.9

Exp. ser. corr. -2 loglik 5544.1 5521.6 5518.4

AIC 5570.1 5553.6 5556.4
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Figure 1. Observed mean profiles for each period and experimental group.
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Figure 2. Hypothetical examples of the semi-parametric models showing the linear and non-parametric

parts of the model. The models illustrate how the group-specific mean functions could possibly evolve

over time.
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Figure 3. Residuals at first time point plotted against residuals from other 16 selected time points (2,

6, 10,. . . , 62).
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Figure 4. Group-specific fitted profiles together with the corresponding 95% simultaneous confidence

bands around them. The points are observed mean values at each time point.
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