Titium nitride grown by sputtering for contacts on boron doped diamond

MORTET, Vincent; Elmazria, O.; DEFERME, Wim; DAENEN, Michael; D'HAEN, Jan; LAZEA, Andra; Morel, A.; HAENEN, Ken & D'OLIESLAEGER, Marc (2007)

DOI: 10.1002/ppap.200730506
Handle: http://hdl.handle.net/1942/9096
Titanium nitride grown by sputtering for contacts on boron doped diamond

Vincent Mortet*a,b, Omar Elmazriac, Wim Defermea, Michael Daenena, Jan D'Haena, Andrada Lazeaa, Anne Moreld, Ken Haenena,b, Marc D'Olieslaegera,b.

a Institute for Materials Research, Hasselt University, Wetenschapspark 1, 3590, Diepenbeek, Belgium
Tel. +32 (0)11 26 88 48, Fax. +32 (0)11 26 88 99
E-mail: vincent.mortet@uhasselt.be

b IMEC, Division IMOMEC, Wetenschapspark 1, 3590, Diepenbeek, Belgium

c LPMIA, Université H. Poincaré, Nancy I, F-54506, Vandoeuvre-les-Nancy Cedex, France

d ENSAM, boulevard du Ronceray, B.P. 3525, F-49035 Angers cedex, France
Titanium nitride grown by sputtering for contacts on boron doped diamond

Keywords: Titanium nitride, Characterization, Sputtering

Abstract

Due to its exceptional properties, semiconducting diamond is expected to be used for electrically active devices which can be operated in harsh environments. Such devices need reliable ohmic contacts that can also stand hostile environments. Titanium nitride (TiN) is a chemically stable material with good electrical conductivity. In this work, TiN contacts on boron doped diamond have been made and characterized. TiN films were deposited by reactive magnetron sputtering. Boron doped diamond layers were deposited by plasma enhanced chemical vapour deposition. Optimal deposition conditions have been determined to obtain TiN films with low resistivity (~100 $\mu\Omega$.cm), high reflectance in IR region and low stress. TiN contacts show ohmic behaviour after annealing at 750°C.

1. Introduction

The exceptional properties of diamond and the possibility to obtain diamond films at low pressure on different types of substrates, make this material a good candidate for a large number of novel applications. Diamond also offers the possibility to fabricate electrically active devices which can be operated at elevated temperatures, in hostile environments. Diamond can also be used in biomedical
applications and it fulfils the main requisites for use in human implants due to its biocompatibility and its chemical stability.

Titanium nitride (TiN) is a hard, dense, refractory material with high electrical conductivity. TiN has good optical properties, including an attractive gold-tinged appearance when pure, and it has a high reflectance in the IR range. Titanium nitride is thermodynamically stable in air up to 600°C and it is inert to corrosive media. Like diamond, TiN is a non-toxic and biocompatible material. TiN meets the Food and Drug Administration (FDA) guidelines and it has been approved for use in numerous medical/surgical devices, including implants. TiN is also widely employed in semiconductor manufacturing as a "diffusion barrier" layer and it has already been used as ohmic contact on GaN and SiC [1, 2].

The use of TiN in combination with diamond is attractive for the construction of ohmic contacts, operating either at elevated temperatures, in hostile chemical and radiation environments or in biologic environment.

In this paper, an optimization of TiN thin films grown by reactive DC-pulsed magnetron sputtering is reported. Structural, mechanical, optical and electrical properties of TiN films have been measured. Homo-epitaxial boron doped diamond layers were grown by Plasma Enhance Chemical Vapor Deposition and they were characterized by Fourier Transform Photocurrent Spectroscopy (FTPS) [3]. Finally, TiN contacts on boron doped diamond have been made and characterized.

2. Experimental

The titanium nitride layers were deposited on silicon (100) and fused silica substrates. The substrates were ultrasonically cleaned in trichloroethylene, acetone
and alcohol and they were dried with pure nitrogen. The titanium target (10 cm in diameter, 99.99% purity), which is held on the water-cooled magnetron cathode, was sputtered in a mixture of argon and nitrogen. The argon and nitrogen flow rates (Φ_{Ar} and Φ_{N}, respectively) were controlled by two mass flows and the total gas flow rate was kept constant (50 sccm). The total pressure was controlled with a throttling valve situated in front of the turbo-molecular drag pump. The target power supply was driven in constant-power mode at 250 kHz pulse frequency and 1600ns pulse width. The distance between the target and the substrate holder can be adjusted. The substrates were not heated and their temperature was only dependent on the plasma heating.

Before deposition, the sputtering chamber was evacuated to a pressure below 2×10^{-6} mbar. The target was cleaned in an argon discharge for 10 minutes and was pre-sputtered in the same conditions as the film deposition conditions for additional 10 minutes. During these steps, the substrates are shielded from deposition by a shutter. TiN films were deposited under various target power (P), total pressure (P_t), target to substrate distance (d) and nitrogen ratio ($R_N = \Phi_N/(\Phi_{Ar}+\Phi_N)$). The investigated deposition conditions are summarised in table I.

Titanium nitride films were characterised by X-ray diffraction in 0–20 scan mode with CuK$_{a1}$ radiation and scanning electron microscopy (SEM). The films thicknesses were measured by SEM cross-section observation. The mechanical stress was calculated from substrate curvature measurements using the Stoney formula [4]. The substrates curvatures were measured by a Dektak3ST profilometer. Electrical characterizations of the films were performed using a four-points probe. Finally, optical reflectance of TiN films was also measured in near infrared, visible and ultraviolet range (NIR-Vis-UV).
Boron doped diamond layers were grown on (100) Ib \(2.5 \times 2.5 \times 0.5\) mm\(^3\) single crystal diamond samples by plasma enhanced chemical vapour deposition (PECVD) in a home made NIRIM type reactor [5]. Before deposition, the vacuum chamber is evacuated to a base pressure lower than \(10^{-6}\) mbar with a turbo-molecular pump. Boron doping is achieved using trimethylboron (TMB) diluted in hydrogen (200ppm). The thickness of the boron doped layers was calculated from the mass measurement assuming that the density of the epilayer is 3.52. Resistivity of the p-type layers was measured using the Van der Pauw resistivity measurement method. The incorporation of substitutional boron in the diamond layer was confirmed using Fourier Transform Photocurrent Spectroscopy (FTPS) at liquid nitrogen temperature. Ohmic titanium/aluminum inter-digitated electrodes with a special period of 400 mm were obtained by lift-off. Electrical characterisation of the diamond layer and TiN contacts were made using circular transmission line model measurements (c-TLM) [6].

3. Results and discussion

3.1 titanium nitride growth

First, TiN films were deposited at different nitrogen concentrations at low pressure (with \(d=5\) cm, \(P=450\) W). Films deposited at \(R_N=100\%\) are gray, films deposited at lower nitrogen concentration have a copper-like colour, whereas films deposited at \(R_N=5\%\) are golden which is a particularity of stoichiometric TiN. X-ray diffraction patterns of these films are reported in Figure 1. All films deposited at a nitrogen concentration higher than 30% do not exhibit any diffraction peak. At lower
nitrogen concentration, X-ray diffraction patterns show a peak at 2θ~36.6° related to the (111) TiN peak. The most intense peak was obtained at RN = 5% and it is shifted to lower 2θ. This is probably due to a high stress in the layer as one can see from the inset of Figure 1 where the variation of the films stress as a function of the nitrogen concentration is represented. The stress is compressive and maximum (~1.3 GPa) at RN = 5%.

Second, TiN films were deposited at different target’s powers and different total pressures at RN = 5%. All these films show the X-ray diffraction peak of (111) TiN. The optimal target power has been found to be 450W. As one can see on Figure 2a, the stress of the layer is high (~2 Gpa) at low pressure whatever the target power is, and it decreases to nearly no stress for pressures higher than 20-30×10⁻³ mbar. We have observed that films deposited at higher pressure and without stress, are slightly less shiny than the films deposited at lower pressure. Figure 2b shows the resistivity of the TiN films as a function of the total pressure and the target power. The resistivity of the films is low (~100 μΩ.cm) at low pressure and rises at the threshold pressure of ~ 20-30×10⁻³ mbar. Figure 3 shows the reflectivity spectra of TiN films deposited at different pressures. The reflectivity spectra are characteristic of a free-electron system in a metal with a reflectivity edge at ~ 400 nm, due to a screened plasma resonance [7]. One can see that the reflectivity in the IR region of TiN films deposited at low pressure is higher than those deposited at high pressure whatever the target power. The lower reflectivity might be due to either surface scattering due to the films roughness or different electrical properties of the films. TiN films with the lowest resistivity are obtained at target powers between 375W and 450W. Figure 4 show the typical SEM pictures of a film deposited at low pressure and a film deposited at high pressure. Films deposited at low pressure are
smooth with very fine grains, whereas films deposited at high pressure are rough with large grains.

Properties of films deposited at low pressure and different target-to-substrate distances (from 5 cm to 13 cm) have been investigated. No significant effects of the target-to-substrate distance on the stress, the morphology and the reflectivity of the layers have observed, however the increase distance does decrease the crystalline quality and the deposition rate.

In the optimal deposition conditions (P=375-450 W, P\textsubscript{t}=20 mbar, R\textsubscript{N}= 5\%, d = 5cm), low stress, high reflectivity in the IR range, low resistivity TiN films with a (111) crystalline orientation are obtained. The chemical stability of TiN films has been tested. TiN films were let in Aqua Regia and in a Al etchant solution (H\textsubscript{3}PO\textsubscript{4}:HNO\textsubscript{3}:H\textsubscript{2}O 60:7:10). TiN films are slowly etched in Aqua Regia (10 nm/hour) and they are not etched in the Al etching solution while they are etched in hot H\textsubscript{2}O\textsubscript{2}.

3.2 Homoepitaxial boron doped diamond growth and electrical characterisation

Doped diamond layers were grown in a mixture of 1% of methane diluted in hydrogen at a total pressure of 110 mbar, a microwave power of 500 W and a substrate temperature of ~1100°C. The B/C ratio in the plasma was adjusted from 4 ppm up to 32 ppm. During deposition, the total gases mass flow rate was kept constant at 500 sccm. The layers morphology has been observed by optical microscopy. The diamond layers show pits and non epitaxial crystallites on their surfaces. The number of those defects varies a lot from one sample to another. Those defects can come from the quality of the samples surface before deposition and/or the
cleaning process before deposition. Figure 5 shows the FTPS spectra of a boron doped diamond layer obtained using a B/C ratio of 4 ppm. The spectrum exhibits a clear photoionisation threshold at 0.37 eV and a peak at 0.347 eV. The photocurrent signal shows two series of equidistant minima starting at 0.30 and 0.35 eV with a period of ~165 meV. All these results are a clear signature of boron incorporation in the diamond layer [8]. The resistivity of the diamond layer decreases from 14 Ω.cm to 0.8 Ω.cm as the TMB concentration increases.

Electrical characterisation of TiN contacts on boron doped diamond layer were made using circular transmission line model measurements. The circular contacts were obtained by lift-off. Prior to TiN deposition, the surface of the doped diamond layers were oxidised in hot H₂SO₄ and KNO₃ solution to remove non-diamond carbon and the hydrogenated surface. Figure 6 shows the I-V curves of a boron doped diamond layer (18 ppm) with as deposited and annealed (at 450°C and 750°C) TiN contacts. As deposited and 450°C annealed contacts are highly resistive, while contacts annealed at 750°C show ohmic contact behavior. The specific contact resistivitance (ρₐ) could only have been determined for the diamond layers grown with a B/C ≥ 26 ppm: ρₐ ~ 10⁻² Ω.cm². This result is one order of magnitude higher than Ti/Pt/Au contacts [9]. This might be due to a low dopant concentration [9] or/and a different reactivity of TiN an Ti to form ohmic contact.

4. Conclusion

TiN films deposited by reactive magnetron sputtering have studied and characterised. Smooth and conductive TiN films with low stress were obtained in optimal deposition conditions. It has been observed that the properties of the TiN
films are strongly dependant on the nitrogen concentration and the total pressure. TiN contacts were deposited using photolithography and lift-off techniques onto boron doped diamond obtained by PECVD. Experimental results show that ohmic contacts can be formed after annealing at temperatures $\geq 750^\circ$C. This first results show that TiN contacts can be formed on boron doped diamond and they can be used for electronic applications in harsh environments or in biological environments on p type diamond semiconductor.

Acknowledgements

This work has been supported by the IWT-SBO-project No. 030219 “CVD Diamond, a novel multifunctional material for high temperature electronics, high power/high frequency electronics and bioelectronics”. KH is a Postdoctoral Fellow of the Research Foundation – Flanders (FWO-Vlaanderen).
References

Table 1: Summary of the investigated deposition conditions and the optimal depositions conditions.

<table>
<thead>
<tr>
<th></th>
<th>Studied range</th>
<th>Optimal conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Base pressure</td>
<td>2×10^{-6} mbar</td>
<td>/</td>
</tr>
<tr>
<td>Target</td>
<td>Ti (99.99% pure)Ø 10 cm</td>
<td>/</td>
</tr>
<tr>
<td>Gases</td>
<td>Argon - Nitrogen</td>
<td>5% nitrogen in Argon</td>
</tr>
<tr>
<td>Target-to-substrate distance</td>
<td>5 to 13 cm</td>
<td>5 cm</td>
</tr>
<tr>
<td>Target power</td>
<td>375 to 750W</td>
<td>375-450 W</td>
</tr>
<tr>
<td>Total pressure</td>
<td>4.7×10^{-3} mbar</td>
<td>$20 \times 30 \times 10^{-3}$ mbar</td>
</tr>
</tbody>
</table>
Figures captions

Fig. 1: X-ray diffraction pattern of TiN films obtained at different nitrogen concentrations. Inset: variation of the mechanical stress of TiN as a function of the nitrogen concentration in the discharge gas.

Fig. 2: Variation of the mechanical stress (a) and the resistivity (b) as a function of the total pressure in the deposition chamber.

Fig. 3: Variation of the reflectance in UV-visible-NIR range of TiN films grown at different total pressures the deposition chamber.

Fig. 4: Scanning electron microscopy images of TiN films’ surface deposited at low and high pressure (P=450 W, R_N=5 % and d=5 cm).

Fig. 5: FTPS spectra of boron doped diamond layer (B/C=4ppm)

Fig. 6: I-V characteristic of TiN contacts on boron doped diamond layer (B/C=18 ppm) after different annealing treatments.
Stress (GPa) vs. N\textsubscript{2} concentration (%)

Intensity (cps) vs. 20 (°)

P=450 W, P\textsubscript{t}= 5 \textmu bar, d=5 cm

(111) TiN

Si substrate artefact

5\%

15\%

30\%
Figure a: Graph showing the relationship between stress (GPa) and pressure (μbar) for different power levels (375W, 450W, 600W, 750W) with a radius of 5% and a thickness of 5 cm.

Figure b: Graph showing the resistivity (μΩ cm) as a function of pressure (μbar) for the same conditions as in Figure a.
Not annealed & Annealed @ 450°C
Annealed @ 750°C