
Made available by Hasselt University Library in https://documentserver.uhasselt.be

ReWiRe: Creating Interactive Pervasive Systems that cope with

Changing Environments by Rewiring

Peer-reviewed author version

VANDERHULST, Geert; LUYTEN, Kris & CONINX, Karin (2008) ReWiRe: Creating

Interactive Pervasive Systems that cope with Changing Environments by Rewiring.

In: Proceedings of The 4th IET International Conference on Intelligent Environments

(IE'08). p. 1-8..

Handle: http://hdl.handle.net/1942/9189



ReWiRe: Creating Interactive Pervasive Systems that cope with
Changing Environments by Rewiring

Geert Vanderhulst Kris Luyten Karin Coninx

Hasselt University – transnationale Universiteit Limburg – IBBT
Expertise Centre for Digital Media

Wetenschapspark 2, 3590 Diepenbeek, Belgium
Email: {geert.vanderhulst,kris.luyten,karin.coninx}@uhasselt.be

Abstract
The increasing complexity of pervasive computing envi-
ronments puts the current software development methods
to the test. There is a large variation in different types
of hardware that need to be addressed. Besides, there is
no guarantee the environment does not evolve, making the
software developed for the initial environment deprecated
and in need for updates or reconfiguration. Software de-
ployed in such an environment should be sufficiently dy-
namic to cope with new environment configurations, even
while the system is in use. This goes beyond coping with
new contexts of use and building context-aware systems:
while most approaches are mainly focused on how the soft-
ware behavior adapts according to the changing context in
a fixed environment, our approach, ReWiRe, allows the en-
vironment configuration to change over time.

1 Introduction
Most software systems still expect a static environment
where the devices and services that are used to complete a
task and the number of users that interact with the software
do not change in one usage session. When the environment
is allowed to change while users are interacting with it, this
also means the end-users will be able to interact in different
ways with the system that can only be determined while the
software system is in use.
The ReWiRe framework presented in this paper introduces
a system that can adapt itself when new configurations
arise such as the usage of a new mobile device. We re-
fer to this dynamic (re)configuration process with the term
‘(re)wiring’. Achieving collaborations by bringing together
several users and devices is part of a (re)wiring process.
Similar problems are tackled in [12], [3] and [8] where a
semantic layer for describing the context of use is exploited
to support context-aware pervasive systems. Most attention
in this work goes into supporting changes in an existing
architecture, although dynamically composed. We seek to
support systems that have to cope with a changing config-
uration during usage and where the system as well as the
end-user can coordinate the effect of these changes.
Our approach links the environment configuration with the
software architecture. This link is continuously maintained
during the lifetime of a pervasive application. When the en-
vironment configuration changes, the software architecture

changes accordingly. For this purpose we encode a perva-
sive computing system as a graph structure that describes
how different entitities in the environment are related with
each other. A graph corresponds to an ontology instance
and allows us to query, update and rewire the system while
it is being used.
Various standardized techniques are combined to realize
our system. ReWiRe is built on OSGi [1] technology which
provides a dynamic platform that is well suited to man-
age the cycle of software services at runtime. By adding
a unified semantic layer to a set of software services using
standardized languages and technologies, we gain flexibil-
ity without loosing generality. The underlying techniques
make use of semantic Web technologies such as the Re-
source Description Framework (RDF), the Web Ontology
Language (OWL), the SPARQL query language for RDF
and XML events over HTTP. An overview and sound mo-
tivation for the use of semantic Web technologies in perva-
sive environments can be found in [2].
The contributions in this paper are threefold. First, we in-
troduce a dynamic semantic environment model that de-
scribes a pervasive environment in terms of its users, de-
vices, services and supported tasks. Second, we present
a framework incorporating this model that enables a de-
veloper to create software that runs in a pervasive com-
puting environment and that can be rewired at runtime to
take advantage of changes in the environment configura-
tion. Third, we propose pervasive menus and interactive
wizards as end-user tools that allow to discover features as
well as to control the behavior of the pervasive system.
The remainder of this paper is organized as follows: sec-
tion 2 discusses the runtime environment model which is
the core of our approach. Next, section 3 delves deeper
into the system behavior that is accomplished by using the
ReWiRe approach. Section 4 contains an overview of the
architecture of the system and in section 5 we present a
pervasive application that was built using our framework.
Finally, section 7 concludes the paper and states some di-
rections for future work.

2 A Runtime Environment Model

The cornerstone of our approach is the runtime environment
model. It describes the full context of use of the interactive
software system during its lifetime. Instead of mangling



this information in the program code or provide this infor-
mation at deploy time by means of configuration files, we
use an ontology instance that is linked with the software ar-
chitecture. An ontology instance adheres to an ontology,
which on its turn describes classes of objects, relationships
between (classes of) objects and domain constraints on their
properties [7]. The ontology instance provides us with the
semantics required to create a system that can rewire during
usage.
Figure 1 illustrates the upper environment ontology of
ReWiRe (note that ‘a’ labels correspond to ‘isa’ relation-
ships). The upper ontology serves as a starting point for
the environment and provides a structure upon which on-
tologies for specific domains can be constructed. When-
ever new resources become available in the environment,
the model definition can be extended with domain-specific
knowledge at runtime. This is accomplished by merging
the ontology associated with the new resource with the on-
tology that describes the current state of the system. We
consider the environment as an autonomous part of the sys-
tem that keeps track of all resources and entities that make
use of the system. Note that an “environment” is not physi-
cally constrained (e.g. limited in space). We distinguish the

Figure 1: The environment is described in a set of domain-
specific ontologies.

following generic concepts in the upper ontology:

• User: A user represents a human interactor. Each user
is related with one or more devices that act as a tool to
interact with the surroundings.

• Device: Devices offer computing power, storage, in-
put and output modalities, etc.

• Service: A service offers a set of features which are
exposed in a clean API and that can be (re)used by
other services.

• Task: A user task represents a goal a user can accom-
plish and a system task specifies how other entities
(users, devices, . . . ) can collaborate to reach a goal.
Section 3.1 provides a more detailed discussion of the
use of tasks in ReWiRe.

A change in an environment configuration can be one of the
following:

D+ : A mobile device enters the environment and can now
be used to support the end-user tasks;

D− : A mobile device that was being used to support the
end-users tasks leaves the environment;

U+ : A new user enters and interacts with the system using
the devices available in the environment;

U− : A user leaves and stops interacting with the software;

S+ : (T+) A service and/or task becomes available;

S− : (T−) A service and/or task becomes unavailable.

Figure 2 shows how a graph presentation of an ontology
instance evolves over time. For example, between the
graphs presented in figure 2(a) and figure 2(b), the fol-
lowing changes in the environment occurred: D+, U+,
S+ and T+. The relations between the ontology instances
show that the new device (Device PC) is used by the new
user (User Geert) and that this device runs a software ser-
vice (PresentationService I) that is used in a task (Presen-
tationTask I); the latter is joined by the user.

3 Runtime Behavior
The relations that apply between resources in the environ-
ment are synchronized between digital and physical worlds.
On the one hand, a user can create new relations by inter-
acting with the surroundings using the available devices.
On the other hand the system itself can wire resources to-
gether to better support users with their goals. Figure 3
presents an interaction diagram that illustrates how entities
behave when ReWiRe initiates. The terms ‘device agent’
and ‘environment agent’ respectively refer to the ReWiRe
software installed on end-user devices and the kernel of our
system. Most of the initial actions are D+, S+, T+ and
U+ actions, that populate the environment. Before a user
can interact with the system using a personal device, a D+
and U+ action should have occurred and the user and de-
vice need to be related to each other. A device can discover
the availability of a ReWiRe environment and register itself
in this environment (D+) together with its services (S+)
and related tasks (T+). By uploading her user profile on
a registered device, a user is related with the device and
also known in the environment (U+). Off course, users can
also use shared equipment already present in an environ-
ment (e.g. whiteboard). In this case, often no user/device
relations are established, unless a tracking mechanism or
manual registration process is used. The ReWiRe system
gracefully deals with the level of detail in the model: the
more detail, the more intelligent the system can react on
changes in the configuration.

3.1 Tasks and Goals

With these changes that can occur in an environment, we
need to add information about which tasks can or cannot be
done with the available resources. We distinguish between
user and system tasks. A user task corresponds to a spe-
cific user goal for which a user interface is available (e.g.



(a) Initial environment model
without users, devices, services
or tasks.

(b) A user has entered the environment,
uses a device that runs a software service
and participates in a task.

Figure 2: Two different graphs representing the state of the
system. Each graph is the model of the environment at a
particular time during the usage of the system. Graph (a)
shows an environment model that has no user, devices or
services at all. Graph (b) shows the environment model
with one new user (U+), device (D+), service (S+) and
task (T+) with their relationships. The service is used in a
task that is joined by the user.

play music, toggle lights, navigate slides, etc). Note that a
user task could be presented by different types of user inter-
faces (graphical, speech, . . . ) suited for a specific context
of use and/or target device. Hence user interfaces that are
distributed to devices actually ‘present’ some user task in
the model. A system task, on the other hand, orchestrates
the collaboration of different resources (users, devices, ser-
vices, . . . ) and monitors the environment context to rewire
when needed or useful. The system task logic will try to
allocate devices for specific user tasks, either automatically
or assisted by the user as discussed in section 3.2.

3.2 Pervasive Menu and Wizards

As denoted in [4] the shifting from the control of systems
and applications confined to a single workstation to that of
a dynamic interactive space brings up the need to control,
mould and understand an interactive environment. The con-
cept of meta-UI outlined in [4] suggests tools to control and
evaluate the state of an environment by its users. Our ap-

Figure 3: The interaction diagram shows how ReWiRe ini-
tiates. The most common actions during the initialization
phase are adding new users, devices, services and tasks to
a discovered environment. Next, wiring takes place to con-
nect entities for a specific goal, e.g. a user joining a presen-
tation task that has been deployed in the environment.

proach incorporates a pervasive menu and interactive wiz-
ards that serve as such tools and that are focused on end-
users who should have no technical expertise. A pervasive
menu is composed of tasks that are deployed in the entire
environment rather than on a single computing device. In
other words, it provides a view on what the user can do
in a pervasive environment. The purpose of such menu is
twofold. First, it promotes collaboration and user-driven
resource allocation through tasks and interactive wizards.
Second, it grants access to services through migratable user
interfaces.
While system tasks can be considered as autonomous build-
ing blocks that orchestrate a pervasive computing environ-
ment, user input is still required to correctly deal with many
non-trivial situations: it would not be realistic to expect
the computer system to figure out what the user wants by
itself. Hence ReWiRe is able to engage in a dialog with
its users, i.e. ask questions, present choices, etc. This is
achieved by means of wizards that are distributed to the
end-user’s personal device whenever user input is required.
Previous research on mixed-initiave user interfaces already
suggests agent entities that ask users about their goals and
needs instead of guessing these goals [9]. [9] also presents
a method to decide whether or not the system should act au-
tonomously or ask for input. We distinguish different stages
when input is required. First, when creating a new task in-
stance, the user might manually indicate resources to allo-
cate or walk through task-specific configuration steps. Sec-
ond, when a task is joined by a user, the task might ask for
the user’s preferred role in the task (e.g. passive attendee or
presenter in a meeting context) which will have an effect on
the set of user interfaces that are to be distributed. A newly
announced resource might also improve the performance of
the task at hand. The input that is collected from the user
on such occasions will result in new relationships that are
created in the environment model or existing relations that
are changed.
Figure 4 depicts the structure of a prototype menu which is
generated at runtime from information in the environment
model. The prototype is rendered as (X)HTML markup so
almost any contemporary device can display it. The menu
lists the set of tasks that are currently deployed in the en-
vironment and allows to create a new instance of a task or
join/leave an existing one. These actions trigger a wizard



by which the task is (re)configured. Note that the pervasive
menu is dynamic as it evolves with the environment model
and also personalized since the user context for instance de-
termines if an actor can join or leave a task.

3.3 Rewiring

We use rewiring as an indication of changes that occur in
the environment model. When edges are added or removed
from the environment graph, a notification is sent to inter-
ested parties. In particular, system task entities will sub-
scribe to these events since they coordinate the runtime be-
havior and changes in the environment configuration might
affect this behavior. For example, the disappearance of a
device from the environment model (D−) without a user
logging out of the system, means the user interface that was
presented on the device has to be migrated to another de-
vice. When the model changes, a task will verify whether
it can still support its goal or if reconfiguration is needed.
The combination of push (sending a notification) and pull
(querying the model for changes) helps to smoothen the
rewring process.
In practice, rewiring at runtime can increase the cognitive
load of using the pervasive computing environment and re-
sult in disorientation of the user. A rewire operation causes
task interruption, an event that causes interruption of a pro-
cess that is meant to be a continuous flow of interaction
[11]. ReWiRe uses rewiring strategies: patterns of behav-
ior that have proved to be useful to guide the user from one
situation into another situation while minimizing the extra
cognitive load of a task interruption. Based on the layered
reference model proposed by Massink and Faconti in [11],
rewiring patterns can be defined on several levels: the (5)
group level, which specifies cooperation in cooperative ap-
plications, the (4) task/conceptual level, (3) Propositional
level, (2) Perceptual level, that deal with information pro-
cessing, and the (1) Physical level, where the physical in-
teraction takes place. ReWiRe currently operates on differ-
ent levels: it combines patterns on the task/conceptual level
with manual control to smoothen transitions: an intelligent
wizard is used to guide the user through a rewiring opera-
tion. Section 3.2 already mentioned the use of wizards in
the context of creating and joining task instances. Further
research is still needed to create a mature set of rewiring
strategies to deal with the complexity of the target environ-
ments.

4 Architecture and Design

4.1 Basic Architecture

The main architecture of ReWiRe uses the OSGi framework
as a modular platform to deploy components. OSGi com-
ponents, also referred to as bundles, are software compo-
nents implemented in Java that can be remotely installed,
started, stopped and updated, even when the system is ac-
tive. The suitability of OSGi as a foundation to create per-
vasive computing environments has been discussed in sev-
eral other papers, e.g. [10, 14]. The OSGi framework al-
ready offers several services useful for dynamic computing

environments such as life cycle management and loosely-
coupled service-oriented components. We currently use the
Apache Felix OSGi framework1 which is a very stable im-
plementation of the latest OSGi specification.
Figure 5 describes the architecture of ReWiRe in terms of
execution environment and basic services. We distinguish

Figure 5: Overall architecture of ReWiRe. The kernel and a
client are interconnected by a W2P network and can access
a shared environment model.

a kernel and a client side that differ in terms of deployed
core OSGi components. The kernel serves an environment
that is discovered by ReWiRe clients that are installed on
all devices that are used with our system. Clients and ker-
nel are interconnected through a shared network layer and
can transparently access the pervasive environment through
higher level APIs that are built on the network layer. A data
layer provides access to a semantic data repository (Jena2

in our implementation), whereas the environment layer ex-
poses an API to interact with the environment model and
deploy wizards, services, user interfaces, etc.
The model is queried using the SPARQL query language;
queries are processed in the data layer. The binding with an
XML-based results format3 renders SPARQL a good candi-
date for language-neutral processing of query results. Each
concept in the environment ontology is mapped on a Java
class equivalent and each resource is identified by a URL
by which its context can be acquired and updated. For ex-
ample, an existing user context can easily be retrieved as
follows:
User u = new User(’http :// edm.org/environment#User Geert’);
u.update();

Note that the User class is derived from Resource and thus
matches the ontology structure. Since the context of a re-
source is stored in the model and the API provides synchro-
nized access to the model, resources can be accessed from
anywhere a connection with the model can be established.
Although kernel and client expose the same API in the data
and environment layer, the kernel actually hosts the layer
logic while the clients have a proxy component installed
that interoperates with this logic (proxy components are in-
dicated by a dotted line in figure 5). An embedded Web

1http://felix.apache.org/
2http://jena.sourceforge.net/
3http://www.w3.org/TR/rdf-sparql-XMLres/



Figure 4: A pervasive menu generated from the environment model is rendered as a Web interface. Users can create, join
and leave task instances and (re)configure them at runtime using interactive wizards.

server in the kernel is used by task entities to share re-
sources and serve wizards when user input is required. To
alter the behavior and configuration of the system at run-
time, we integrated a script engine in the kernel that can ex-
ecute scripts when the system is in use. We elaborate on this
in section 4.4. Apart from some core services, kernel and
clients exploit the OSGi framework to dynamically install
components on an as needed basis. While service compo-
nents are distributed amongst clients, task components are
injected in the kernel.

4.2 Communication

While simple ad-hoc communication protocols might sim-
plify the implementation of pervasive applications, the typ-
ical non-standard protocols used in these applications make
it harder to integrate a pervasive system with other dis-
tributed systems (e.g. Web applications) [6]. Most of these
communication protocols are specific for a platform or even
for an application domain. To keep the development of
applications simple yet avoid ad-hoc protocols, our archi-
tecture makes use of a light-weight cross-platform commu-
nication library called W2P [16] that works on top of the
HTTP protocol; it is integrated in the network layer shown
in figure 5.
W2P facilitates both synchronous and asynchronous mes-
sage exchange between loosely coupled distributed com-
ponents and with its built-in publish and subscribe mecha-
nism, the framework also accommodates a solution to prop-
agate events. In our implementation, events are for in-
stance used to notify a subscriber of a sensor that has been
triggered. Some specific applications could require other
types of communication protocols, e.g. for media stream-
ing, which can be provided in an OSGi bundle and dynam-
ically deployed in our system when needed (see figure 5).

4.3 Sensors and Groundings

Since the set of services deployed in the environment is not
static, a mechanism is needed to bind to services at runtime,
i.e. invoke their functions, exchange context data or present
a user interface to interact with service logic. Dynamic ser-
vice binding is commonly used to interact with Web ser-
vices; various description languages (OWL-S, WSDL, . . . )

have been defined to automate Web services interoperation.
Inspired by these languages, we extended the upper envi-
ronment ontology with sensors and groundings that provide
the semantic glue to bind to services at runtime. Figure 6
shows that the meta concepts Grounding and Sensor are in-
tegrated with the upper ontology and further concretizised
in specific ontologies. The Grounding concept serves as a
base for concrete grounding ontologies that hook up ser-
vices with invocation logic. One such concrete grounding,
an OSGi grounding ontology, provides the semantic glue
to relate services with OSGi bundles. This OSGi ground-
ing relates a service with a proxy bundle which exports a
software interface to remotely interact with it. Besides, a
UI bundle (which depends on one or more proxy bundles)
provides ReWiRe clients with a user interface that presents
a user task. When installed, these bundles export factories
that are used to load a proxy object or user interface from
a service or user task URL respectively; the service or task
context is retrieved through this URL from the environment
model. Note that to dynamically bind to a Web service,
an interactor should be able to generate invocation code
from a description document, whereas the OSGi ground-
ing assumes an OSGi platform where the service invocation
logic (packed in an OSGi bundle) is directly injected. This
plug and play approach greatly simplifies the service bind-
ing process in our architecture. Nevertheless, alternative
groundings can be defined to integrate OSGi-less platforms.
For example, an AJAX grounding might be useful for per-
vasive Web applications that run in a Web browser. To in-
teract with a service, a software component has to lookup a
compatible grounding in the model and install it. Likewise,
to execute a user task, a ReWiRe client will lookup a suit-
able user interface in the model and render it on the target
device.

The Sensor concept acts as an endpoint through which con-
text events that occur in a resource are published in the envi-
ronment. In other words, a sensor provides remote context
events to interested entities in the environment. For exam-
ple, an RFIDScanSensor describes a sensor that is triggered
when an RFID tag is scanned by an RFID service. The
structure of the sensor data is described in the ontology (not
shown in the figure), so services that are subscribed to the
sensor can easily consume it.



Figure 6: The semantic glue to link model and software is
described in an extended upper environment ontology.

4.4 Behavior scripts

With a platform for software services and a protocol to
allow these services to communicate in an heterogeneous
environment a complete functioning interactive distributed
system can be created. When the system configuration
would change over time, for example because of a device
entry (D+) that causes several S+ actions because the de-
vice carries several services, tasks can start a (re)wiring
process. Nevertheless, more flexibility might be required
to adapt the behavior of the system to specific contexts of
use, e.g. to dynamically attach a behavior to RFID tags or
to play a sound when a new resource becomes available.
We support these dynamic behaviors by means of scripts,
i.e. small pieces of code that are interpreted at runtime. A
script is linked with a sensor and executed when a context
event is fired through this sensor. We integrated the Rhino
scripting engine4 in ReWiRe which allows developers to de-
fine behavior using JavaScript code.

5 Implementation Case

5.1 Development Process

Before looking at a specific implementation case, we give
a global overview of the steps a designer has to traverse to
create a pervasive application using the ReWiRe framework.
We distinguish between modeling and engineering steps:

Modeling Design an ontology for the application domain.
This can be done with the Protégé [5] ontology editor
in which the upper environment ontology and some other
domain-specific ontologies can be imported and extended.
In this step the developer should identify services, tasks, re-
lations between resources, the sensors and groundings that
are needed for the application, etc. The ontology is the ap-
plication’s skeleton and foundation for its design.

Engineering Implement the services, (system) tasks and
user interfaces that have been identified during the mod-
eling phase. To adhere to the OSGi grounding (see sec-
tion 4.3), each service implementation (i.e. OSGi bundle)

4http://www.mozilla.org/rhino/

should have its own proxy bundle that allows to access the
service logic from any device in the environment. Software
interfaces and common classes can be shared between logic
and proxy components and W2P can be used to handle the
communication. When engineering a system task, the en-
vironment API can be used to subscribe to sensors, query
resources, distribute user interfaces, deploy wizards, etc,
in order to coordinate services and devices to support the
user(s) in reaching the envisioned goal(s). Implementing a
system task can also involve creating wizards to collect user
input. The embedded Web server component in the ReWiRe
kernel can be used to serve wizards in plain HTML or us-
ing servlets. Finally, user interfaces that present a user task
are grounded with an implementation which could also be
a (distributable) OSGi bundle.

5.2 Ubiquitous Tux

Tux Racer is an open source arcade game. In the game, the
player controls Tux as he slides down a course of snow and
ice collecting herring. The player can choose to control Tux
either by keyboard or joystick. Various forks of the game
exist and we bundled one of them, PlanetPenguinRacer5,
with our framework to create a ubiquitous game experience.
The goal of this demo setup is to allow gamers to play the
game against each other and compete using the equipment
that is available. For our experiment we used a room that is
equipped with a tabletop display, a PC with projector and
each gamer also has a PDA that has the ReWiRe initializa-
tion client software pre-installed. The gamer can register
herself in the environment using her PDA. Unlike the orig-
inal game, our pervasive variant scales to an heterogeneous
environment and encourages collaboration. The game is
configured at runtime by a task that has been deployed on
the ReWiRe platform and that monitors changes in the en-
vironment model and (re)wires whenever necessary to con-
tinuously guarantee an optimal game experience. By query-
ing the model the system can easily discover the devices
on which the native game software, encapsulated in a Tux
Racer service, is installed. The SPARQL query in listing 1
illustrates this and will return the digital table device and PC
with projector in our setup. Notice how the upper ontology
and a domain-specific ontology are seamlessly accessed in
the query.

PREFIX e: <http://edm.org/environment#>
PREFIX tux: <http://edm.org/environment/tux#>
SELECT ?d
WHERE ?d a e:Device . ?d e:runs ?s . ?s a tux:TuxRacerService

Listing 1: SPARQL query that asks for those devices that
run a Tux Racer service.

Once the system is initialized, users can walk towards the
projector screen or tabletop display and scan an RFID tag
using their PDA device (equipped with an RFID reader) to
participate in a game at that location. The RFID scan trig-
gers a sensor which results in the execution of a script that
connects the user with a game task. A wizard, that allows

5http://planetpenguinracer.com



the gamer to select a course and start a new game or join
one and optionally indicate her preferred input device to
control Tux, is deployed on the PDA. An input task for the
game service provides a user interface that is distributed to
a selected input device. The rendering of the game is au-
tomatically adapted to the target device, e.g. on the digital
table the game is rendered in a mirrored split-screen mode,
thus orientend towards gamers sitting on both sides of the
table as shown in figure 7. The graph in figure 8 illustrates
how connections between users, devices, the game service
and game tasks are reflected in the environment model. The
player’s name is automatically derived from the model and
displayed during a race.

Figure 7: Screenshot of a pervasive Tux Racer game when
running in mirrored split screen mode on a tabletop display.
One user uses a PDA device to control Tux, while the other
one uses the table itself as input device.

The experiment shows the ReWiRe architecture offers a
solid foundation to integrate existing applications in a per-
vasive computing environment. Users particularly appreci-
ated the initiative of the system: most of the configuration
steps are handled in the background, but when needed the
system engages in a dialogue with the user, e.g. to ask for
the course that she wants to play.

6 Related Work

The use of an ontology to describe the context of use has
been researched before. For example, in [8] and [13] on-
tologies are proposed for ambient intelligent environments.

Figure 8: The graph that gives rise to the game setup de-
picted in figure 7.

These ontologies are mainly geared towards the creation
and deployment of context-aware systems. The Context
Ontology Language (CoOl, [15]) is another approach that
defines the context of an application by using the aspect-
scale context model. This means each aspect has one or
more scales to express context information. SOUPA [3]
provides a richer ontology created for ubiquitous and per-
vasive applications. It is expressed in OWL and combines
useful existing vocabularies in a shared ontology that can
be used by a broker-centric agent architecture. In ReWiRe
light-weight ontologies that describe an application’s do-
main are merged and instantiated at runtime. This ensures
we can keep queries simple for each context of use.
Previous work discusses the use of OSGi technology in a
pervasive environment [10, 8, 14]. Gu et al. make use of the
OSGi platform to support service delivery and provision-
ing, and deal with security and privacy issues that are cru-
cial for a pervasive deployment of context-aware services
and applications. In contrast with [14] we do not extend the
OSGi framework itself to add distribution capabilities, but
add semantics separate from the framework that describe
how to interoperate with OSGi components or other soft-
ware services. This way, we gain flexibility to integrate our
design with all kinds of distributed systems.

7 Conclusions

We presented ReWiRe, a framework that supports net-
worked heterogeneous environments by design: distribu-
tion of system components over the available devices is an
integrated part of our approach, as is the support for mul-
tiple users and thus cooperative applications. The corner-
stone of our approach, a semantic graph that describes the
environment and that is linked to the pervasive computing
system, provides us with a solid foundation to reason over



the system properties and the relations between different
entities that occur in the environment. We believe a main
contribution of ReWiRe is its ability to deal with changes
in the environment configuration while the system is in
use. The runtime environment model, migratable services
and user interfaces, orchestrating tasks, scripts, a pervasive
menu and interactive wizards are all tools that help accom-
plish this. Since our framework is built on standardized
technologies such as OSGi, semantic Web technologies and
a uniform communication framework (W2P), ReWiRe en-
ables developers to create pervasive applications using fa-
miliar technologies. We illustrated that ReWiRe can be used
to integrate existing software in a pervasive environment.
We acknowledge various improvements can still be made.
For example, further research is needed to improve rewiring
strategies to mimize the cognitive load when the end-user
has to cope with a changing environment. We also plan to
(partially) automate the development of tasks, wizards (us-
ing some formal description language) and behavior scripts.
Hence we are currently experimenting with a configuration
tool to graphically edit the behavior of a pervasive system
in a more user friendly way.
Additional information on ReWiRe can be found at
http://research.edm.uhasselt.be/rewire/

Acknowledgments

Part of the research at EDM is funded by EFRO (European
Fund for Regional Development) and the Flemish Gov-
ernment. Funding for this research was also provided by
the Research Foundation – Flanders (F.W.O. Vlaanderen,
project number G.0461.05).
The authors would like to thank Alexandre Demeure and
Luc Claesen for their valuable input.

References

[1] OSGi Alliance. OSGi Service Platform. 2003.

[2] Harry Chen, Tim Finin, and Anupam Joshi. Seman-
tic Web in the Context Broker Architecture. In Pro-
ceedings of the 2nd IEEE International Conference
on Pervasive Computing and Communications (PER-
COM’04), pages 277–286, 2004.

[3] Harry Chen, Filip Perich, Tim Finin, and Anupam
Joshi. SOUPA: Standard Ontology for Ubiquitous
and Pervasive Applications. In Proceedings of the 1st
International Conference on Mobile and Ubiquitous
Systems (MobiQuitous’04), pages 258–267, 2004.

[4] Joëlle Coutaz. Meta-User Interfaces for Ambient
Spaces. In Proceedings of the 5th International Work-
shop on Task Models and Diagrams for User Interface
Design (TAMODIA’06), pages 1–15, 2006.

[5] Natalya F. Noy, Michael Sintek, Stefan Decker, Mon-
ica Crubézy, Ray W. Fergerson, and Mark A. Musen.
Creating Semantic Web Contents with Protege-2000.
IEEE Intelligent Systems, 16(2):60–71, 2001.

[6] Robert Grimm. One.world: Experiences with a Perva-
sive Computing Architecture. IEEE Pervasive Com-
puting, 03(3):22–30, 2004.

[7] Thomas Gruber. A Translation Approach to Portable
Ontology Specification. Knowledge Acquisition,
5(2):199–220, 1993.

[8] Tao Gu, Hung Keng Pung, and Da Qing Zhang.
Toward an OSGi-Based Infrastructure for Context-
Aware Applications. IEEE Pervasive Computing,
3(4):66–74, 2004.

[9] Eric Horvitz. Principles of Mixed-Initiative User In-
terfaces. In Proceedings of the ACM SIGCHI Con-
ference on Human Factors in Computing Systems
(CHI’99), pages 159–166, 1999.

[10] Choonhwa Lee, David Nordstedt, and Sumi Helal.
Enabling Smart Spaces with OSGi. IEEE Pervasive
Computing, 2(3):89–94, 2003.

[11] Mieke Massink and Giorgio P. Faconti. A Reference
Framework for Continuous Interaction. Universal Ac-
cess in the Information Society, 1(4):237–251, 2002.

[12] Stephen Peters and Howard E. Shrobe. Using Se-
mantic Networks for Knowledge Representation in an
Intelligent Environment. In Proceedings of the 1st
IEEE International Conference on Pervasive Comput-
ing and Communications (PERCOM’03), page 323,
2003.

[13] Davy Preuveneers, Jan Van den Bergh, Dennis Wage-
laar, Andy Georges, Peter Rigole, Tim Clerckx,
Yolande Berbers, Karin Coninx, Viviane Jonckers,
and Koen De Bosschere. Towards an Extensible Con-
text Ontology for Ambient Intelligence. In Proceed-
ings of the 2nd European Symposium on Ambient In-
telligence (EUSAI’04), volume 3295 of LNCS, pages
148–159, 2004.

[14] Jan S. Rellermeyer and Gustavo Alonso. Services
Everywhere: OSGi in Distributed Environments. In
EclipseCon 2007, 2007.

[15] Thomas Strang, Claudia Linnhoff-Popien, and Ko-
rbinian Frank. CoOL: A Context Ontology Language
to Enable Contextual Interoperability. In Proceedings
of the 4th International Conference on Distributed
Applications and Interoperable Systems (DAIS’03),
pages 236–247, 2003.

[16] Geert Vanderhulst, Kris Luyten, and Karin Coninx.
Middleware for Ubiquitous Service-Oriented Spaces
on the Web. In Proceedings of the 21st Interna-
tional Conference on Advanced Information Network-
ing and Applications Workshops (AINAW’07), pages
1001–1006, 2007.


