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Reliability captures the influence of error on a measurement and, in the classical setting, is defined
as one minus the ratio of the error variance to the total variance. Laenen, Alonso, and Molenberghs (Psy-
chometrika 73:443–448, 2007) proposed an axiomatic definition of reliability and introduced the RT co-
efficient, a measure of reliability extending the classical approach to a more general longitudinal scenario.
The RT coefficient can be interpreted as the average reliability over different time points and can also be
calculated for each time point separately. In this paper, we introduce a new and complementary measure,
the so-called RΛ, which implies a new way of thinking about reliability. In a longitudinal context, each
measurement brings additional knowledge and leads to more reliable information. The RΛ captures this
intuitive idea and expresses the reliability of the entire longitudinal sequence, in contrast to an average
or occasion-specific measure. We study the measure’s properties using both theoretical arguments and
simulations, establish its connections with previous proposals, and elucidate its performance in a real case
study.
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1. Introduction

Frequently, in clinical practice and clinical trials, patients are measured repeatedly over time.
For instance, in psychiatry and psychology, this type of longitudinal evaluations constitutes a very
powerful tool to obtain precise diagnostics as well as to evaluate the efficacy of new treatments
or therapeutic procedures. However, longitudinal studies also bring some methodological chal-
lenges, especially from a statistical modeling perspective. Indeed, in such studies, patients usu-
ally exhibit a systematic change or evolution over time in addition to an individualized evolution
that is characterized by correlated subject-specific effects. Moreover, serial correlation and het-
erogenous variance components are frequently present (Verbeke & Molenberghs, 2000). A lon-
gitudinal modeling framework should be able to address the special characteristics of this type
of data in order to avoid estimation bias.

Rating scales play an important role in many scientific areas and are mainly used when
the trait of interest cannot be observed directly, such as the measurement of depression, anxiety,
and quality of life. Very often, these instruments are used within a longitudinal framework in
view of studying patients’ time course. Nevertheless, whenever a new measurement scale is de-
veloped, its validity and reliability ought to be evaluated. Reliability is not an intrinsic property
of an instrument, but rather changes depending on the population in which it is used. Therefore,
the reliability of a measurement scale should be evaluated every time the scale is introduced
to a different population.
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The conventional concept of reliability was conceived within a cross-sectional scenario, i.e.,
a scenario where every patient is measured on only one occasion. In this setting, the classical
test theory (CTT) defines reliability as “the ratio of the true score variance to the observed score
variance” (Lord & Novick, 1968). In spite of being intuitively appealing, this classical definition
can be difficult to apply in longitudinal studies, mainly due to the restrictive modeling framework
within which classical test theory is cast. In fact, any extension of the concept of reliability
to a longitudinal scenario should take into account all the specific characteristics of this data
type and the model used in CTT simply is not suitable to achieve that. Essentially, measures of
reliability are model based quantities and their scope and applicability will never go beyond the
scope and applicability of the model they are based on.

In general, each data structure presents unique problems for the estimation of reliability,
but longitudinal data, with their different sources of variation and correlation, present some of
the most challenging problems for defining and estimating reliability. An important attempt to
extend the concept of reliability to a longitudinal setting was done using generalizability theory
(from now on referred to as G-theory). G-theory was developed by Cronbach, Gleser, Nanda, Ra-
jaratnam (1972) to explicitly model the multiple sources of variation present in a measurement
system. It is undoubtedly one of the most relevant developments in the psychometric field over
the last 40 years and since its introduction, G-theory has grown steadily in popularity and has
been applied to virtually all areas of psychology and education. The basic mathematical model
on which G-theory is based, the analysis-of-variance model with random effects, is quite solid.
However, the utility of G-theory to evaluate reliability in longitudinal studies depends on the
adequacy of this model to describe the specific data structure encountered. Unfortunately, the
G-theory modeling framework can be applied to a longitudinal setting only if strong and unre-
alistic assumptions are made. For instance, we will need to assume stability of the true scores
over time, uncorrelated error structure, uncorrelated random effects, equal variance over time
and, in its most classical formulation, it will also require a missing completely at random mecha-
nism when data are incomplete. All the previous assumptions are quite restrictive for longitudinal
studies, limiting the applicability of G-theory. Applying G-theory models in a setting where these
assumptions are violated will lead to biased estimates of the variance components and, as a con-
sequence, to biased estimates of the G coefficients (Diggle, Liang, & Zeger, 1994; Verbeke &
Molenberghs, 2000; Smith & Luecht, 1992; Bost, 1995; Molenberghs & Kenward, 2007).

Hence, the main objective of our work is to extend the classical concept of reliability to a
very general modeling framework that takes into account the specifics of longitudinal data. In
this, we build further on earlier work by Laenen et al. (2007). These authors introduced the RT

coefficient, expressing the average reliability over the time points in a longitudinal framework.
However, the same methodology allows to obtain occasion-specific reliability estimates. Where
the latter can be useful for studying reliability over time, a single reliability estimate has the ben-
efit of simplicity, mainly when a large number of measurements is taken, or in case two rating
scales are being compared. In this paper, we introduce the RΛ coefficient, a new measure for
reliability which is complementary to the RT coefficient. In a longitudinal context, each mea-
surement brings additional information. One could argue that the total information ought to be
more reliable than the information obtained at separate time points. The RΛ coefficient corre-
sponds to this idea and expresses the reliability of the entire longitudinal sequence, in contrast
to an average, or occasion-specific measure. One could say that this measure gives shape to the
clinical premise stating that the longer we study and observe a patient, the more reliable our
conclusions relative to that patient will be.

Section 2, starts by citing the underlying methodological framework and summarizing pre-
vious work in this context and continues with the elaboration of a new proposal for measur-
ing reliability. In Sect. 3, established and novel measures are studied and compared by means
of a simulation study. In Sect. 4, the previously developed methods are applied to a case study
on schizophrenia.
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2. Methodology

2.1. The Linear Mixed Model

In the previous section, we described some of the limitations of the modeling framework
used in G-theory when applied within a longitudinal framework. In the last decades, a substantial
amount of work has been carried out to try and solve some of the modeling problems discussed
previously. Many of these proposals are primarily based on path analysis or structural equations,
and have been developed to estimate reliability in a longitudinal setting without assuming sta-
bility of the true scores (Heise, 1969; Jagodzinski & Kühnel, 1987; Werts, Breland, Grandy, &
Rock, 1980; Wiley & Wiley, 1970). Nevertheless, to evade the requirement of true score stabil-
ity when estimating reliability, these models often impose additional assumptions that may have
questionable validity in this setting. For instance, it is usually assumed that the changes in the
true scores across time follow a simplex pattern (Heise, 1969; Wiley & Wiley, 1970; Werts, Linn,
& Jøreskog, 1977).

Additionally, some of these approaches also make strong assumptions regarding the pattern
of measurement errors across time such as equal reliabilities across time (Heise, 1969), equal
error variances over time (Wiley & Wiley, 1970) or uncorrelated error structures (Tisak & Tisak,
1996). Raykov (2000) criticizes the equal-reliability assumption of Heise (1969) and proposed a
model that circumvents this limitation. Nevertheless, his model still assumed uncorrelated error
terms. Many other authors have focused on the advantages and disadvantages of using a first-
order autoregressive structure to describe within-subject evolution over time (Kenny & Zautra,
1995; Hertzog & Nesselroade, 1987; Cole, Martin, & Steiger, 2005). The model discussed by
Kenny and Zautra (1995) decomposes the observed scores as an overall constant that is allowed
to change over time, but does not depend on any covariate, a trait, or subject-specific-parameter
(equivalent to a random intercept in the linear mixed model formulation), a term representing
the state which is equivalent to the serial correlation component in linear mixed model (LMM)
and a random error equivalent to the random error also present in LMM. Unlike the LMM, the
model assumes that the variance explained by each source is the same for all time points. Another
important difference with LMM is that the so-called trait-state-error model (TSE) imposes a first-
order autoregressive structure for the state factor. Hertzog and Nesselroade (1987) criticized the
first-order autoregressive assumption and claim it is not flexible enough to be applied to some
data structures.

Against the background of Laenen, Alonso, and Molenberghs (2007) and Vangeneugden,
Laenen, Geys, Renard, and Molenberghs (2004), we will set our proposals for quantifying re-
liability within a linear mixed models framework. These allow to incorporate many of the pre-
viously discussed features, such as varying true scores, correlated error terms, including differ-
ent types of serial correlation, heteroscedastic error components, and correlated random effects,
in a very natural way. Being able to account for all of these complexities within the same mod-
eling paradigm is of the utmost importance to guarantee unbiased results when estimating relia-
bility. For instance, we can incorporate the systematic variability of the true scores into the fixed
effect structure of the model in a very flexible way using, for example, fractional polynomials
(Royston & Atman, 1994) or nonparametric approaches such as splines (Verbyla, Cullis, Ken-
ward, & Welham, 1999). Unlike in the model of Kenny and Zautra (1995), we could incorporate
many different structures to account for serial correlation like Gaussian, first-order autoregres-
sive, exponential, and m-dependent structure among others. More general serial correlations have
been accommodated by Verbeke and Molenberghs (2000). These authors have described different
techniques for exploring serial correlation within the LMM framework and have offered flexi-
ble tools to model serial correlation based on fractional polynomials. The assumption of equal
error variance over time can also be relaxed easily and fully general variance functions can be
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considered. A linear mixed-effects model can generally be written as

Y i = Xiβ + Zibi + ε(1)i + ε(2)i ,

bi ∼ N(0,D), ε(1)i ∼ N(0,ΣRi), ε(2)i ∼ N
(
0, τ 2Hi

)
,

b1, . . . ,bN,ε(1)1, . . . ,ε(1)N ,ε(2)1, . . . ,ε(2)N independent, (1)

where Y i is the pi dimensional vector of responses for subject i, 1 ≤ i ≤ n, with n denot-
ing the number of subjects, and pi the number of measurements for subject i. Xi and Zi are
fixed (pi × q) and (pi × r) dimensional matrices of known covariates, β is the q-dimensional
vector of fixed effects, bi is the r-dimensional vector containing the random effects, ε(2)i is a
pi -dimensional vector of components of serial correlation, and ε(1)i is a pi -dimensional vector
of residual errors. Additionally, D is a general (r × r) covariance matrix, associated with the
subject-specific random effects, Hi is a (pi × pi ) correlation matrix, τ 2 is a variance parameter,
and ΣRi is a (pi × pi ) covariance matrix. Furthermore, Hi and ΣRi depend on i only through
their dimension pi .

Model (1) implies the marginal model Y i ∼ N(Xiβ,Vi), where Vi = ΣDi
+ Σi with

ΣDi
= ZiDZ′

i and Σi = τ 2Hi + ΣRi . Note that the total variability is decomposed into a com-
ponent stemming from the subject-specific random effects and a residual variability component.
The remaining variability is the sum of a serial correlation part and an error part, but we will
generically refer to it as the error variability.

In what follows, we will discuss a proposal by Laenen et al. (2007) to quantify reliability in
this very general scenario. Further, we will argue for the utility of having a measure that is able
to capture the reliability of the entire sequence of observations and finally, we will introduce and
study such a measure. Even though it is not strictly necessary from a mathematical point of view,
from now on we will only consider the single-trial setting with a balanced design, and we will
assume that Σi = Σ , ΣDi = ΣD , and Vi = V for all i. This will considerably simplify notation
and facilitate interpretation. Note further that these assumptions are usually met in clinical trials,
the premier environment we are working in.

2.2. Summarizing the Concept of RT

Using the just-introduced modeling framework, Laenen et al. (2007) extended the classical
concept of reliability through a set of defining properties. According to these authors, any mea-
sure of reliability θ , defined in a general setting, should satisfy: (i) 0 ≤ θ ≤ 1; (ii) θ = 0 if and
only if there is only measurement error: V = Σ ; (iii) θ = 1 if and only if there is no measure-
ment error: Σ = 0; and (iv) in the cross-sectional setting, θ should equal the true-score variance
to observed variance ratio, used in classical test theory. This type of axiomatic definitions have
been successfully applied in many different areas, so as to extend concepts, originally defined in
a simple setting to more general scenarios. For instance, the same approach was used in mathe-
matics to define the concept of distance or in probability and statistics to define the concept of
probability density function.

Further, these authors propose the so-called RT coefficient, a measure of reliability that
satisfies the previous properties. The RT coefficient is defined as RT = 1 − tr(Σ)

tr(V )
. Additionally,

Laenen, Alonso, Molenberghs, and Vangeneugden (2009) showed that the RT coefficient can
be incorporated into a more general framework, based on the generalized eigenvalues related
to the matrices V and Σ . Indeed, these authors introduced the following family of reliability
parameters:

Ω =
{

θ : θ =
p∑

j=1

wjρ
2
j with wj > 0

p∑

j=1

wj = 1

}

, (2)



ANNOUSCHKA LAENEN ET AL. 53

where the elements wj are weights, ρ2
j = 1 − λj and λj are solutions of the equation

q(λ) = |Σ − λV | = 0. (3)

All members of Ω satisfy the defining properties (i)–(iv) and one can further show that the
RT coefficient belongs to this family. Note that even though it is not an explicit requirement
of the properties (i)–(iv), the RT coefficient mimics the general functional form of the classical
definition of reliability. Indeed, the trace of the variance-covariance matrix is usually regarded
in multivariate analysis as a plausible generalization of the univariate concept of variance. From
this perspective, it is easy to see that the functional form of the RT coefficient is very similar to
the one used in CTT. In the next section, we will summarize the variability in this multivariate
setting, using another plausible generalization of the concept of variance: the determinant of
the variance-covariance matrix. Remarkably enough, such a change leads to a completely new
measure of reliability, with different mathematical properties and interpretation.

2.3. RΛ: Measuring the Reliability of an Entire Sequence

As stated before, in multivariate analysis, the generalized variance of a random vector can
be defined using either the trace or the determinant of the corresponding variance-covariance
matrix. Replacing the traces in the definition of the RT coefficient by the determinant of the
variance-covariance matrix leads to the following expression for reliability:

RΛ = 1 − ∣∣ΣV −1
∣∣. (4)

Note that RΛ is closely related to the Wilks’ Lambda statistic (Johnson & Wichern, 1998), well
known in multivariate analysis. It can be proven that the parameter RΛ satisfies the following set
of properties: (a) 0 ≤ RΛ ≤ 1; (b) RΛ = 0 if and only if there is only measurement error: V = Σ ;
(c) RΛ = 1 if and only if |Σ | = 0; and (d) in the cross-sectional setting, the true score variance
to observed variance ratio is obtained. Properties (a), (b), and (d) are identical to properties (i),
(ii), and (iv). However, property (c) is slightly different from (iii). Only when Σ = σ 2I , (c) and
(iii) are equivalent. In a sense, (a)–(d) contain (i)–(iv) in that if θ satisfies (i)–(iv), then it will
also satisfy (a)–(d) and, therefore, the later provides a more flexible defining set of properties for
reliability.

To acquire a better insight into the RT and RΛ coefficients, as well as to better understand
their relationship, we will study their behavior in an important special case, the random intercept
model. Let us then start by assuming that Model (1) holds with bi ∼ N(0, σ 2

b ) and ε(1)i + ε(2)i =
εi ∼ N(0, σ 2I ). It is easy to prove that in this setting,

RT = σ 2
b

σ 2
b + σ 2

, (5)

i.e., the ratio of true-score variance to total variance. It is important to point out that the usual
approach followed when estimating reliability in a longitudinal framework is based on the calcu-
lation of the reliability at each time point separately (Tisak & Tisak, 1996; Wiley & Wiley, 1970;
Raykov, 2000). This typically leads to a function of reliability that changes over time. Note fur-
ther that both the RT and the RΛ coefficients can also be calculated at each time point, leading
again to a general function of reliabilities across time. However, they also offer a global measure
of reliability that nicely complements their time functions. We believe this is an important issue
because having a global measure of reliability, valid under such a general scenario, can substan-
tially aid when comparing and interpreting the results obtained from two or more scales and can
facilitate the understanding of their psychometric properties. It is intuitively clear that a single
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meaningful measure is much easier to analyze, understand, and interpret than several functions
of changing reliabilities over time.

To understand how the RT coefficient summarizes these reliabilities over time, let us note
that under the assumed model, subsequently applying the classical definition of reliability at
each time point leads to (5). Therefore, for this model, reliability is stable across time. The RT

coefficient can thus be seen as an average of the time-point reliabilities. If we now calculate RΛ

under the same model, it can be shown that

RΛ = σ 2
b

σ 2
b + σ 2

p

. (6)

This expression is very interesting from a theoretical as well as practical point of view. First, let
us note that (6) is similar in spirit to the Spearman–Brown prediction formula (Spearman, 1910;
Brown, 1910) in the sense that reliability increases with an increasing number of observations.
A second important issue is that RΛ goes to one as the number of time points goes to infinity. This
shows that unlike the RT coefficient, the RΛ coefficient does not capture the average reliability
but rather the reliability of the sequence as a whole. Increasing the numbers of time points, we
also increase the amount of useful information about the patient, even if it is contaminated by
measurement error. Actually, (6) confirms a clinical truth: the longer we follow a patient, the more
reliable will be our conclusions about this patient. The practical implications of this result are also
appealing. We can study the number of repeated measurements needed to obtain a certain level

of reliability RΛ, the number can be derived as p = σ 2

σ 2
b

RΛ

1−RΛ
. Note that if we aim at a reliability

of 1, p will go to infinity. The equation further shows that as long as σ 2
b �= 0, it will always be

possible to achieve convergence: there always will be a certain number of measurements p that
results in a prespecified value for RΛ. We have used the random-intercept model to gain more
insight into the meaning of the RΛ coefficient. However, the assumptions on which this model
is based will be too restrictive in many real applications. The following theorem extends the
previous result to a totally general scenario and confirms our interpretation for this measure.

Theorem 1. Let us assume that Model (1) holds for a balanced study design in which p time
points have been considered. Further, let us denote by RΛ(p) the corresponding value of the RΛ

coefficient in this setting. If q additional observations are taken, then the new value of the RΛ

coefficient for the p + q time points sequence satisfies RΛ(p+q) ≥ RΛ(p).

The proof of the theorem can be found at the authors’ web page, www.uhasselt.be/censtat.
Theorem 1 proves in a very general setting that increasing our information about the patients
can only increase the reliability of our conclusions, a very plausible and appealing result. We be-
lieve that in a longitudinal framework this measure is more attractive than the classical reliability
functions previously proposed. Indeed, the main objective of longitudinal studies is to get infor-
mation from the entire profile and not to analyze each time point separately. The RΛ coefficient
quantifies precisely this, i.e., the reliability of the whole profile we have at hand.

2.4. The Relationship between RΛ and Ω

We have seen that every member of the Ω family (2) is a weighted sum of the ρ2
j = 1 − λj .

Also, RΛ can be written as a function of these elements. In fact, it is possible to show that:

RΛ = 1 −
p∏

j=1

(
1 − ρ2

j

)
.

http://www.uhasselt.be/censtat
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RΛ can further be seen as an upper bound for Ω . Indeed, if wj > 0 and
∑

wj = 1 then:

p∑

j=1

wjλj ≥
p∏

j=1

λ
wj

j ≥
p∏

j=1

λj .

Note that the first part of the inequality is the general form of the well-known relationship be-
tween the arithmetic and geometric means, whereas the second part comes from the fact that if
0 ≤ wj ≤ 1 then λ

wj

j ≥ λj . From this expression, we have:

θ = 1 −
p∑

j=1

wjλj ≤ 1 −
p∏

j=1

λj = RΛ.

This final inequality shows that θ ≤ RΛ for all θ ∈ Ω and, therefore, the RΛ coefficient can be
interpreted as an upper bound for the family. This result totally coincides with our interpretation
of the RΛ coefficient as a measure of reliability for the entire sequence and our interpretation of
the Ω family as summary measures of “average” reliability.

2.5. Reliability as a Measure of Association between True and Observed Scores

As pointed out in the previous section, the Ω family and RΛ are built based on the same
basic elements. Nevertheless, the practical interpretation of the ρ2

j is not totally clear. In the
present section, we approach reliability from an alternative point of view that will help us to
clarify the role and interpretation of the ρ2

j . In classical test theory, Lord and Novick (1968) have
proven that reliability equals the squared correlation between the observed score Yi and the true
score Ti , i.e., R = Corr(Yi, Ti)

2. It would then be natural to explore whether such a connection
also holds in the more general scenario considered here. Therefore, in what follows, we will
study the relationship between the measures of reliability previously introduced and the squared
association between Y i and bi . Let us start by defining Si = (Y i bi )

′. The following theorem
will allow us to quantify this association.

Theorem 2. If Model (1) holds, then Si ∼ N(μ0i ,Σ0i ), where

μ0i =
(

Xiβ

0

)
and Σ0i =

(
Vi ZiD

(ZiD)′ D

)
.

The proof of this result is posted at the authors’ web pages. Since Si is multivariate nor-
mally distributed, canonical correlations are a natural way to quantify the association between
Y i and bi (Johnson & Wichern, 1998). As before, we consider the case of a balanced clinical trial,
where Σ0i = Σ0, Vi = V , and Zi = Z, where V = ZDZ′ + Σ . The canonical correlations asso-
ciated with Y i and bi are then the eigenvalues of the matrix: V −1ZDD−1DZ′ = V −1ZDZ′ =
V −1(V − Σ) = I − V −1Σ . Moreover, it is possible to prove that if λ is a solution of (3), then
it is also a root of the equation |I − V −1Σ − (1 − λ)I)| = 0. Thus, 1 − λ is an eigenvalue of
I − V −1Σ . This result shows that ρ2

j are just the canonical correlations between Y i and bi . It is
appealing to see that two equivalent classical definitions of reliability also concur in this extended
setting. However, a high-dimensional vector of canonical correlations may be difficult to interpret
and difficult to use when comparing two scales regarding their reliabilities. Therefore, aiming at
easy interpretation, we have summarized the information about the reliability, contained in the
canonical correlation vector, using meaningful functions of its elements. All the previous results
clearly illustrate that like in classical test theory, the newly introduced reliability measures can
also be interpreted as quantifications of the association between the true and observed scores.
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2.6. Relationship between the New Proposals and the G Coefficients

As stated in the Introduction, one of the most important attempts to estimate reliability in a
longitudinal framework was based on G-theory and the use of the G coefficients. Now, we will
study the relationship between the RT , the RΛ, and the G coefficients when the assumptions of
the G-theory modeling framework are met.

Let us then consider that the following model, used in generalizability theory holds:

Yij = μ + bi + τj + εij , (7)

where Yij denotes the score for subject i (i = 1 . . . n) at time point j (j = 1 . . . p), μ denotes a
constant general mean, bi ∼ N(0, σ 2

b ) is a subject-specific effect, τj ∼ N(0, σ 2
τ ) denotes the time

effect and the error terms are assumed independent with εij ∼ N(0, σ 2). It is further assumed
that bi , τj , and εij are independent. Under these assumptions Var(Yij ) = σ 2

b + σ 2
τ + σ 2 and the

index of dependability for absolute decisions is:

Φ = σ 2
b

σ 2
b + σ 2

τ

p′ + σ 2

p′
,

with p′ the number of time points considered in the D-study. Note that using vector notation,
Model (7) can be rewritten as:

Y i = 1pμ + 1pbi + τ + εi , (8)

where Y i = (Yi1, Yi2, . . . , Yip)′ denotes a column vector with all observations originating from
subject i, 1p = (1,1, . . . ,1)′ denotes a p-dimensional column vector, τ = (τ1, τ2, . . . , τp)′ de-
notes a column vector with the time effects, and finally εi = (εi1, εi2, . . . , εip)′ denotes the col-
umn vector with all the error terms associated with subject i. This model can be seen as a special
case of the linear mixed model we considered. Indeed, Model (8) is a linear mixed model with
only one subject-specific random effect and the error structure decomposed into a time compo-
nent (which can be seen as a special type of serial correlation where the Hi matrix reduces to
the identity), and a component that captures extra residual variably. As we stated before, it is im-
portant to differentiate the variability emanating from the subject-specific random effects and the
one coming from other sources. In this case, we have only one subject-specific random effect bi

and, therefore, for this model the variance-covariance matrix associated with the subject-specific
random effects D = σ 2

b is scalar. Using matrix notation, we can now write

V = Var(Yi) = Jpσ 2
b + Ip

(
σ 2

τ + σ 2), (9)

where Jp = 1p1′
p and Ip is a p × p identity matrix. Employing notation previously introduced,

we have V = ΣD + Σ with ΣD = Jpσ 2
b accounting for the variability coming from the subject-

specific effect and Σ = Ip(σ 2
τ + σ 2) accounting for the remaining variability. It now follows

that

RT = 1 − tr(Σ)

tr(V )
= 1 − p(σ 2

τ + σ 2)

p(σ 2
b + σ 2

τ + σ 2)
= σ 2

b

σ 2
b + σ 2

τ + σ 2
= Φ

for p′ = 1. Further, we can calculate the value of RΛ for what we will need the following result
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|aIp + bJp| = ap−1(a + pb) (Searle, 1982). We now can write

RΛ = 1 − |Σ |
|V | = 1 − (σ 2

τ + σ 2)p

(σ 2
τ + σ 2)p−1(pσ 2

b + σ 2
τ + σ 2)

= 1 − σ 2
τ + σ 2

pσ 2
b + σ 2

τ + σ 2
= σ 2

b

σ 2
b + σ 2

τ

p
+ σ 2

p

= Φ

for p′ = p. The previous result illustrates that, when the assumptions underlying Model (7)
are met, the RT and the RΛ coefficients equal the index of dependability for 1 and p time
points correspondingly. Note that this is in full agreement with the previous interpretations of
the RT and RΛ coefficients as the average reliability and the reliability of the entire sequence,
respectively. A very similar proof can be constructed to illustrate that after conditioning on the
time points, the RT and RΛ equal the generalizability coefficients for relative decisions

Eρ2 = σ 2
b

σ 2
b + σ 2

p′
.

These are a very appealing results. Indeed, the previous derivations show that G-theory coeffi-
cients also satisfy our defining properties and given the seminal success of G-theory in many
applications, these results increase our confidence in the newly proposed reliability definition
and coefficients.

3. A Simulation Study

A simulation study was set up to investigate the performance of both, the RΛ and RT coef-
ficients. We considered 36 different simulation settings. In a first stage, the data were generated
based on the following linear mixed model with random intercept:

Yij = β0 + β1tj + β2Zi + bi + εij , (10)

where Yij refers to an observation for subject i at time tj , and Zi is the treatment indicator vari-
able. Further, bi ∼ N(0, σ 2

b ), εij ∼ N(0, σ 2I ), σ 2
b = 300, σ 2 = 30, 300, or 3,000 and the sample

size was set to n = 50 or 150. These choices for σ 2
b and σ 2 allow us to study the performance of

both measures RT and RΛ when the error variance is 9%, 50%, and 90% of the total variance, re-
spectively. These settings correspond to high, medium, and low reliability. In a second stage, data
were generated based on a linear mixed model with random intercept and random slope for time:

Yij = β0 + β1tj + β2Zi + b1i + b2i tj + εij , (11)

where (b1i , b2i )
′ ∼ N(0,D), and εij ∼ N(0, σ 2I ). D contains σ 2

b1 = 300, σ 2
b2 = 5, and

σb1b2 = −1. The same choices for σ 2 and n are made as before. The norm ||D|| was used
as an indication of the “size” of the random-effects variance and based on this, the values of the
error variance account again for 9%, 50%, and 90% of the total variance.

The mean parameters were fixed at β0 = 85, β1 = 2.5, and β2 = 3. These values are in line
with the results obtained in the analysis of the case study. We considered p = 3, 6, and 9 time
points of measurement and 500 data sets were simulated in each setting.

Tables 1 and 2 show the results of the simulation study for the random intercept model (RI)
and random intercept and slope model (RIS), respectively. Confidence intervals were calculated
using matrix differential calculus, combined with the delta method. More information on the
calculations can be found in Laenen et al. (2007) for RT and in Appendix for RΛ.
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TABLE 1.
Simulation Results for RI model: RT and RΛ average point estimates and 95% confidence intervals for different error
percentages (%), number of time points (p), and sample sizes (50, 150).

% p RT RΛ

50 150 50 150

9 3 0.91 [0.86; 0.94] 0.91 [0.89; 0.93] 0.97 [0.95; 0.98] 0.97 [0.96; 0.98]
9 6 0.90 [0.86; 0.93] 0.91 [0.89; 0.93] 0.98 [0.97; 0.99] 0.98 [0.98; 0.99]
9 9 0.90 [0.86; 0.93] 0.91 [0.89; 0.93] 0.99 [0.98; 0.99] 0.99 [0.99; 0.99]

50 3 0.50 [0.37; 0.64] 0.50 [0.43; 0.58] 0.75 [0.61; 0.85] 0.75 [0.68; 0.81]
50 6 0.49 [0.38; 0.61] 0.50 [0.43; 0.57] 0.85 [0.77; 0.90] 0.86 [0.82; 0.89]
50 9 0.49 [0.38; 0.60] 0.50 [0.44; 0.56] 0.89 [0.84; 0.93] 0.90 [0.87; 0.92]
90 3 0.10 [0.04; 0.52] 0.10 [0.04; 0.30] 0.24 [0.09; 0.74] 0.24 [0.10; 0.55]
90 6 0.09 [0.04; 0.28] 0.09 [0.05; 0.16] 0.35 [0.17; 0.69] 0.38 [0.24; 0.54]
90 9 0.09 [0.04; 0.20] 0.09 [0.06; 0.14] 0.45 [0.26; 0.69] 0.47 [0.35; 0.60]

TABLE 2.
Simulation Results for RIS model: RT and RΛ average point estimates and 95% confidence intervals for different error
percentages (%), number of time points (p), and sample sizes (50, 150).

% p RT RΛ

50 150 50 150

9 3 0.91 [0.87; 0.94] 0.92 [0.90; 0.93] 0.98 [0.96; 0.99] 0.99 [0.98; 0.99]
9 6 0.94 [0.91; 0.96] 0.94 [0.93; 0.95] 1.00 [1.00; 1.00] 1.00 [1.00; 1.00]
9 9 0.96 [0.94; 0.97] 0.96 [0.95; 0.97] 1.00 [1.00; 1.00] 1.00 [1.00; 1.00]

50 3 0.54 [0.40; 0.67] 0.53 [0.45; 0.62] 0.79 [0.59; 0.91] 0.79 [0.67; 0.87]
50 6 0.61 [0.50; 0.70] 0.61 [0.55; 0.67] 0.94 [0.88; 0.97] 0.94 [0.91; 0.96]
50 9 0.70 [0.62; 0.78] 0.71 [0.66; 0.75] 0.98 [0.96; 0.99] 0.98 [0.97; 0.99]
90 3 0.16 [0.06; 0.53] 0.14 [0.06; 0.34] 0.33 [0.11; 0.82] 0.31 [0.13; 0.65]
90 6 0.15 [0.07; 0.29] 0.14 [0.09; 0.22] 0.50 [0.26; 0.76] 0.50 [0.34; 0.67]
90 9 0.20 [0.12; 0.30] 0.20 [0.12; 0.30] 0.70 [0.51; 0.84] 0.71 [0.51; 0.84]

Table 1 clearly illustrates that the values for RT , based on a random intercept model with
homogeneous error variances do not depend on the number of time points, as shown in (5).
Not surprisingly, confidence intervals tend to be narrower with larger sample sizes and with
increasing number of time points.

The values for RΛ, under the same model, increase with the number of time points. When
the error variability is relatively small compared to the total variability (9%), we get high values
for both the RT and the RΛ coefficients. However, when the error variability is 50% of the total
variability, unlike with the RT coefficient, we still obtain very high values for RΛ in case 6
or 9 measurements are taken. This means that when there is a lot of measurement error, still
very reliable information can be obtained over the whole sequence of measurements when the
measurement is repeated a sufficient number of times. Even repeating the measurement three
times, the combined information could be considered as reliable (RΛ = 0.79). A similar result is
found for RΛ under the random intercept and random slope model (Table 2).

Under this model, however, we find an interesting result for the RT coefficient. Table 2
shows an increase of RT for an increasing number of time points. In what follows, we will
further explore the relationship between RT and p.
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Let us assume that Model (1) holds and that information from p time points is available. We
can then write RT as

RT (p) = 1 − tr(Σp)

tr(ΣDp) + tr(Σp)
= 1 −

tr(Σp)

tr(ΣDp)

1 + tr(Σp)

tr(ΣDp)

= 1 − xp

1 + xp

,

with xp = tr(Σp)/[tr(ΣDp)]. If we define f (xp) = xp/(1 + xp), then f (xp) is an increasing
function of xp , and RTp = 1 − f (xp) decreases when xp increases. If information on an addi-
tional time point p + 1 becomes available, then

xp+1 = tr(Σp) + σ 2
p+1

tr(ΣDp) + zp+1Dz′
p+1

.

It is easy to show that xp > xp+1, and thus RT (p) < RT (p+1) if and only if

tr(Σp)

tr(ΣDp)
>

σ 2
p+1

zp+1Dz′
p+1

.

We thus see that RT can both increase and decrease when adding an extra measurement, the
direction depending on the ratio between the error and true score variability in such an extra
measurement. This is an intuitively logical result since RT can be seen as an “average” reliability
over a whole sequence of measurements. Adding an extra measurement which error-true score
variance ratio is “worse” than the same ratio for the previous p measurements will make the
average reliability go down. Adding a measurement of which the error-true score variance ratio
is better than the same ratio for the previous p measurements will result in the opposite effect.
We will illustrate this finding with an additional simulation study.

We revisit the results of the simulations following the RI model (10) for p = 3, as presented
in Table 1. We further generated data with an extra time point (p = 4), in such a way that the
extra measurement satisfies

tr(Σp)

tr(ΣDp)
<

σ 2
p+1

zp+1Dz′
p+1

,

or equivalently, under the present model

∑p

j=1 σ 2
j

p
< σ 2

p+1,

thereby expecting RT to decrease compared to the results displayed in Table 1. Precisely, the
data were generated based on Model (10), where bi ∼ N(0, σ 2

b ), εij ∼ N(0,Σ), with σ 2
b = 300,

and with Σ a diagonal matrix with the first three diagonal elements equal to σ 2 and the fourth
diagonal element equal to 2σ 2, σ 2 = 30, 300, and 3,000. Figure 1 summarizes our findings. We
indeed observe that the values for RT decrease with a larger number of time points. However,
the values of RΛ increase.

This simulation study illustrates once more that the RT and RΛ coefficients should be in-
terpreted in different ways. RT is an average reliability taken over a number of measurements.
Adding time points with “low” reliability will pull the average down, adding “reliable” measure-
ments will lift the average up. Unlike RT , the RΛ coefficient quantifies the reliability of the whole
sequence of measurements. Adding more measurements to the sequence will never decrease our
total information about the true scores. Obviously, the magnitude of the increase will depend on
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FIGURE 1.
Simulation study. RT and RΛ for additional time point with large error variability.

the amount of measurement error that contaminates the new observations. Adding measurements
with little measurement error will lead to a faster increase of RΛ than what measurements with a
lot of measurement error would do.

4. Analysis of the Case Study

The case study data come from a clinical trial investigating the effect of risperidone com-
pared to an active control for the treatment of chronic schizophrenia (Peuskens & the Risperidone
Study Group, 1995). Three different rating scales were used as outcome measures; the Brief Psy-
chiatric Rating Scale (BPRS) containing 18 items, the Positive and Negative Syndrome Scale
(PANSS) with 30 items and including all items of the BPRS, and the Clinical Global Impression
(CGI), which is a global rating of the change of the patient’s condition compared to baseline
measurement. A sample of 453 patients was evaluated at baseline and after 1, 2, 4, 6, and 8
weeks. In our analysis, both reliability coefficients, RT and RΛ, are calculated based on the co-
variance parameter estimates resulting from fitting a linear mixed model. A model building step
is therefore crucial to find the best fitting model for the data at hand. Since interest primarily
lies in the covariance structure, a complex fixed effects structure was adopted (Diggle, Liang, &
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TABLE 3.
Schizophrenia Study: estimates and 95% confidence intervals for RT and RΛ .

PANSS BPRS CGI

RT 0.846 [0.825; 0.865] 0.821 [0.797; 0.842] 0.737 [0.700; 0.771]
RΛ 0.994 [0.992; 0.996] 0.991 [0.988; 0.993] 0.977 [0.969; 0.983]

Zeger, 1994), containing time (categorically), treatment, and treatment by time interaction. The
covariance structure that lead to the lowest AIC was selected. Restricted maximum likelihood
was used for parameter estimation (Verbeke & Molenberghs, 2000). For all three scales, the final
model takes the general form:

Yij = μij + bi0 + bi1tj + εij ,

where Yij denotes the outcome for subject i at time point tj , μij summarizes the fixed ef-
fects, bi ∼ N(0,D) with D a 2 × 2 unstructured variance-covariance matrix, and εi ∼ N(0,Σ).
For PANSS and BPRS, the best fitting covariance structure for the errors corresponds to
Σ = diag(σ 2

j ). However, for CGI, Σ = τ 2H , with H corresponding to a spatial power serial
correlation structure.

Table 3 presents the reliability estimates for both measures together with the 95% confidence
interval. The RT coefficient reveals good average reliabilities for the PANSS and BPRS scales,
somewhat lower, but still acceptable is the reliability for CGI. This difference is to be expected
since the former two scales are multi-item scales whereas CGI is a one-item instrument. Further-
more, it is interesting that the RT values for both multi-item scales are very similar, even though
BPRS is a subscale of PANSS and, therefore, simpler. This implies that the additional complex-
ity of PANSS does not translate into a reliability gain. Note that similar findings were obtained
by Alonso, Geys, Molenberghs, and Vangeneugden (2002) and Alonso, Geys, Molenberghs, and
Kenward (2004) when investigating the criterion validity of the same scales.

When the entire sequence of repeated measurements is considered, very reliable information
can be obtained from all three scales, with RΛ values all close to 1. This is not unexpected since
the average reliabilities for the scales (RT ) are already high and we have a fair number of time
points. The RΛ coefficient of CGI stays the lowest (however, still high), due to a lower average
reliability and a smaller number of time points.

5. Discussion

In the present work, we have approached the problem of defining and estimating reliability
within a longitudinal framework. Longitudinal studies are regularly used in clinical practice and
research, especially in psychiatry and psychology, where they constitute a very powerful tool for
diagnostic purpose and for evaluation. However, longitudinal data, with their various sources of
variability and correlation, introduce many challenges into the estimation of reliability.

The classical definition of reliability, proposed in classical testing theory, is defined within a
cross-sectional framework. It is based on a very simple model that cannot be used in a longitu-
dinal scenario and, therefore, extensions are needed. We have proposed such extensions, making
use of the linear mixed model framework. We have introduced a set of defining properties and
further proposed a new measure, the so-called RΛ coefficient, that fully captures the reliability
of the entire sequence of observations.

We have mainly focused on studies where a balanced design was used. Indeed, balanced
designs are very frequently used in clinical trials and even though missing data could break the
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balance originally designed, this will not represent a serious problem within the modeling frame-
work used in this research. Indeed, linear mixed models are fitted using the marginal likelihood
obtained after integrating out the random effects. It has been established that maximum likeli-
hood and Bayesian methods are valid under a missing at random generating mechanism (MAR,
Rubin, 1976) unlike frequentist methods such as least squares or generalized estimating equa-
tions (Liang & Zeger, 1986) that are only valid under the more restrictive missing completely
at random mechanism (MCAR) (Rubin, 1976; Verbeke & Molenberghs, 2000; Molenberghs &
Kenward, 2007).

Hence, using a likelihood approach, such as the LMM, will permit us to estimate in an un-
biased fashion the Σ and V matrices in a balanced design with missing data, to the extent that
the MAR assumption is plausible. This further implies that the RΛ coefficient and all measures
previously introduced can be unbiasedly estimated in this setting, too. It has been argued that
MAR is a reasonable and plausible assumption in many clinical trials and, therefore, these mea-
sures will be applicable in many practical setting (Verbeke & Molenberghs, 2000; Molenberghs
& Kenward, 2007).

In an unbalanced design, the concept of missing data becomes more diffuse because patients
have a different number of observations taken at different time points and these measurements
frequently do not follow a prespecified plan, making it more troublesome to precisely define
what is meant by a missing observation. In such a setting, we could still estimate the necessary
matrices, Σi and Vi , to calculate reliability. However, now they will vary across subjects and, as
a consequence, an extra index i is needed. We could still define the RT and RΛ coefficients using
the average of all subject contributions. Nevertheless, the interpretation of these quantities will
become less clear in such a scenario.

Appendix: A Confidence Interval for RΛ

If D̂, τ̂ , Ĥ , Σ̂R denote the maximum likelihood estimators (MLE) for D, τ , H , and ΣR ,
respectively, then the MLE for RΛ is given by R̂Λ = 1−|Σ̂V̂ −1|, where V̂ = ZD̂Z′+ τ̂ 2Ĥ +Σ̂R

and Σ̂ = τ̂ 2Ĥ + Σ̂R . According to the delta method, R̂Λ ∼ N(RΛ,�ΣP �′), where ΣP is the
variance-covariance matrix of the parameter estimates and

�′ =
(

∂RΛ

∂D
,
∂RΛ

∂τ 2
,
∂RΛ

∂H
,
∂RΛ

∂ΣR

)
.

To avoid confidence limits beyond the [0,1] range, a logit transformation is applied. In what
follows, we will calculate the ∂RΛ

∂z
with z a scalar. Let us first note that

∣∣ΣV −1
∣∣ = 1 − RΛ ⇔ ln|Σ | − ln|V | = ln(1 − RΛ) = γ.

For simplicity, we will calculate ∂γ
∂z

. Notice that

∂γ

∂z
= − 1

1 − RΛ

∂RΛ

∂z

and, therefore,

∂RΛ

∂z
= (RΛ − 1)

∂γ

∂z
, where

∂γ

∂z
= ∂

∂z
ln|Σ | − ∂

∂z
ln|V |.

If we call γ1 = ln|Σ | and γ2 = ln|V |, then: ∂γ
∂z

= ∂γ1
∂z

+ ∂γ2
∂z

.
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We have:

∂γ1

∂z
= tr

(
Σ−1 ∂Σ

∂z

)
,

but Σ = τ 2H + ΣR and, therefore,

∂Σ

∂z
= ∂

∂z

(
τ 2H + ΣR

) = ∂τ

∂z
H + τ 2 ∂H

∂z
+ ∂ΣR

∂z
.

On the other hand,

∂γ2

∂z
= tr

(
V −1 ∂V

∂z

)
,

but V = ZDZ′ + Σ and, therefore,

∂V

∂z
= Z

∂D

∂z
Z′ + ∂Σ

∂z
,

implying that ∂γ2
∂z

= tr[V −1(Z ∂D
∂z

Z′) + V −1 ∂Σ
∂z

].
Finally, the general formula is given by

∂RΛ

∂z
= (RΛ − 1) tr

[
V −1

(
Z

∂D

∂z
Z′

)
+ (

V −1 + Σ−1)∂Σ

∂z

]
,

where ∂Σ
∂z

= ∂τ 2

∂z
H + τ 2 ∂H

∂z
+ ∂ΣR

∂z
.

The formulae by cases can be summarized as follows:

For z element of D:
∂RΛ

∂z
= (RΛ − 1) tr

[
V −1

(
Z

∂D

∂z
Z′

)]

For z = τ 2: ∂RΛ

∂τ 2
= (RΛ − 1) tr

[(
V −1 + Σ−1)H

]

For z element of H : ∂RΛ

∂z
= (RΛ − 1) tr

[(
V −1 + Σ−1)τ 2 ∂H

∂z

]

For z element of ΣR: ∂RΛ

∂z
= (RΛ − 1) tr

[(
V −1 + Σ−1)∂ΣR

∂z

]
.
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