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Abstract

The drug development process involves identifying a compound and assessing its merit through
rigorous pre-clinical and clinical trials. The pre-clinical stage is designed to assess the chemical
properties of the new drug, as well as to determine the steps for synthesis and purification. In this
stage of drug development, circumstances might dictate the use of alternative endpoints than the
originally anticipated clinically relevant endpoint. In this regard, identification and evaluation of
surrogate endpoints is of paramount importance. The validation methods enable to quantify degrees
of association between the clinically relevant endpoint, also termed the true endpoint, and the
alternative, surrogate endpoint. In this paper, we adapt the surrogate marker evaluation methodology
of Alonso et al. (2003, 2006), developed for the case of two longitudinal outcomes, to the situation
where either a longitudinal surrogate and cross sectional true endpoint is recorded, or vice versa. The
work is motivated by a preclinical experiment conducted to asses association between Corticosterone
(CORT), heart rate, and blood pressure in rats, the data from which are then subjected to analysis.
It was found that there is a weak relationship between CORT and behavior, and between CORT on
the one hand and heart rate and blood pressure on the other hand, but a reasonably high degree of
association was registered between heart rate and behavior.

Some Key Words: fractional polynomial; R2

Λ
; spline; surrogate endpoint, true endpoint; variance

reduction factor.

1 Introduction

The first step in the process of drug development is identifying promising compounds. Once a compound

has been isolated for further scrutiny, it enters a rigorous testing and evaluation stage, the so-called

pre-clinical phase. This stage is designed to assess the chemical properties of the new drug as well as to

determine the steps for synthesis and purification. In this stage, the toxicological and pharmacological

effects of the drug are evaluated through in-vitro and in-vivo animal testing. There might be a variety
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of reasons hindering undertaking these tests directly on the clinically relevant outcome, even when the

studies involve animals, necessitating the use of biomarkers.

Several challenges are encountered in the identification of biomarkers, including: understanding the role

of a specific biomarker to a clinically relevant problem; developing either an indirect or a direct readout

of physiologic state; determining the comparable pathways between animal models and humans; and

finally embedding the biomarker into a robust assay and subsequent validation and approval of the assay

in clinical applications (Pien et al., 2005). Several attempts, from both a biological and a statistical

angle, have been made to circumvent these challenges (Burzykowski, Molenberghs, and Buyse, 2005).

Focusing on the statistical problem of identifying and validating a biomarker, statistical expertise, in

particular paradigms designed to validate surrogate markers, might be handy tools to quantify the degree

of association between the biomarker and the clinically relevant outcome.

In surrogate marker evaluation, two possible sources of evidence can be sought to validate a biomarker.

The first is situated at the individual patient level and is concerned with the biological pathway from

the surrogate to the true endpoint. The second possible source of evidence comes from the trial

level, and quantifies the association between the treatment effects on the marker and clinical endpoint

(Burzykowski, Molenberghs, and Buyse, 2005). The purpose of this paper is to adapt existing surrogate

marker validation methodology to quantifying the degree of association between behavior, as measured

by alertness, corticosterone levels, and telemetry measures such as heart rate and blood pressure of

rats, with emphasis given to the prediction of one of the outcomes given the other in a single trial

setting. Note that, if there is an interest in the trial-level surrogacy, there is then need for repetition of

the experiment, for example at different centers and/or by different investigators, or even through the

conduct of a sequence of altogether different trials.

The rest of this paper is organized as follows. The motivating study is introduced in Section 2, followed

by a description of flexible models for longitudinal data in Section 3. A review of the basic, single-trial

approaches for continuous outcomes is offered in Section 4.1. Section 4.2 studies the so-called variance

reduction factor (V RF ) approach for combined longitudinal and cross-sectional endpoints. Section 4.3

is concerned with the so-called likelihood reduction factor (R2
Λ
) approach. Section 5 is dedicated to the

case study’s analysis.
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2 Motivating Case Study

The data come from a preclinical rat experiment on a compound under development for stress-related

disorders. The objective of the experiment was to identify the effect of the compound on stress hormones

and a series of physiological variables. In the experiment, stress is induced by forcing a rat to swim for

15 minutes in a bath of 20 cm high lukewarm water of 25 degrees Celsius, according to a protocol as

described by De Groote and Linthorst (2007). The experiment was designed according to a latin square

crossover design with 4 periods and 4 treatment groups (vehicle without stress, vehicle with stress,

compound without stress, compound with stress). Forty-five minutes after randomization, the rats were

injected with either a vehicle or the compound under consideration. Ten minutes later, half of the rats

injected with the vehicle and half of the rats injected with the compound, were subjected to so-called

“swim stress”, also depending on group membership. For all eight animals, measurements were analyzed

in order to quantify their stress level. Telemetry measurements (such as heart rate and blood pressure)

were recorded continuously and averaged every 5 minutes. Seventeen blood samples were taken in a

fully automated way, leaving the animals completely undisturbed and following a well-defined scheme

to sample blood plasma from which corticosterone (CORT) was later extracted and quantified . And

finally, rats were also screened for their behavior in a 10 minutes interval by means of a video monitor.

For each rat, the percentage of time it has been active is thus determined. The recording of behavior

was done twice: a first time at 25 minutes after injection and a second time at 50 minutes after the

end of the swim stress.

3 Flexible Linear Mixed Modeling

3.1 Longitudinal Data Analysis

The data considered here include both cross-sectional and longitudinal outcomes. Let us first give

a brief introduction to the analysis of longitudinal data. Since we are in the framework of continuous

longitudinal data, modeling can be done by way of a linear mixed model. The general linear mixed-effects

model can be represented as (Verbeke and Molenberghs, 2000):





Y j = Xjβj + Zjbj + εj

bj ∼ N (0, G), εj ∼ N (0, Σj), b1, . . . , bN , ε1, . . . , εN are independent,
(1)
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where Y j (j = 1, . . . , n) is the mi-dimensional response vector of measurements for dog j, Xj and

Zj are mj × p- and mj × q-dimensional matrices of known covariates (e.g., time), respectively, βj is a

p-dimensional vector of fixed effects, bj is q-dimensional dog-specific vector of random effects and εj is

an mj-dimensional vector of residuals. The matrix G is a general q × q covariance matrix and Σj is an

mj ×mj covariance matrix. Often, Σj is assumed to equal σ2
εImj

, resulting in the so-called conditional

independence model. Note that when the response is cross-sectional, the general model reverts to the

usual regression model wherein subject-specific effects are dropped.

The evolution over time can be captured by specifying parametric functions, such as, for example, linear,

quadratic or even higher-order polynomials in the vector Xj. These effects may well be included in the

random-effects vector Zj as well. However, it is not difficult to imagine cases where obtaining a suitable

parametric form adequately describing the mean is a challenge. Although our primary goal is to quantify

the association between CORT, heart rate, and blood pressure via surrogate marker validation methods,

proper modeling of the mean evolution in time is necessary. One can get rid of the need to specify a

parametric model through use of flexible modeling techniques, an issue taken up further in the following

section.

3.2 Flexible modeling techniques

Postulating a parametric function to model the mean evolution may be difficult and/or restrictive, as is

clear from Figure 1. An appealing alternative is to model the time evolution using some flexible smooth

function. In this section, we briefly discuss linear mixed models to model longitudinal data (Verbeke

and Molenberghs, 2000) with the time trend determined by some flexible smooth function in the form

of either penalized smoothing splines (Eilers and Marx, 1996; Verbyla et al., 1999; Ruppert, Wand, and

Carroll, 2003) or fractional polynomials (Royston and Altman, 1994).

3.2.1 Penalized Smoothing Splines

Use of penalized splines results in a semi-parametric smooth function, the term ‘semi-parametric’ here

referring to the feature that the model combines parametric and non-parametric aspects. We provide a

brief description of the model as is usually encountered with longitudinal data.
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Let Yjk denote the response taken from subject j at time tjk (k = 1, . . . , K). The model of interest

can be expressed as: Yjk = f(tjk) + εjk, for a smooth function f(·). Restricting focus to the truncated

lines basis, which is simple in formulation and performs adequately in many circumstances (Ngo and

Wand, 2004), the penalized-spline representation can be written as:

Yjk = β0 + β1tjk +

Q∑

q=1

bq(tjk − κq)+ + εjk, (2)

where κ1, . . . , κQ are a set of distinct knots in the range of tjk, t+ = max(0, t), and bq ∼ N (0, σ2
b).

The knot points are selected as equally spaced quantiles of time (Ruppert et al., 2003). For ease of

development, we adopt the following matrix notation. Let

Y j =
[

yjk

]
1≤j≤n,1≤k≤K

, Xj =
[

1 tjk

]
1≤j≤n,1≤k≤K

, β =
[

β0 β1

]′
.

Further, define:

Zj =
[

(tjk − κk)+

]
1≤j≤n, 1≤k≤K, 1≤κ≤Q

, b =
[

b1, . . . , bQ

]′

, εj =
[

ε11, . . . , εnK

]′

.

Using this notation, a stacked version of (2) becomes Y = Xβ + Zb + ε. The correspondence be-

tween the penalized spline smoother and the optimal predictor in a mixed model framework is a key

feature in fitting the models. This connection offers the opportunity of using ordinary software packages

for mixed models, such as, for example, SPlus, SAS, or R. Here, we use the MIXED procedure in SAS.

Fitting penalized splines by the linear mixed model approach has some appealing advantages, such

as automatic determination of the smoothing parameter, a unified framework for inference, and the

flexibility with which the models can be extended (Faes et al., 2006). Specifically, note that extending

(2) to the cross-over setting simply involves addition of fixed effects, typically, treatment group, period,

and carry-over effects, together with interactions of interest. The theory relating to cross-over designs is

well established, whether for the simplest setting of two treatments and two periods, or for higher-order

designs (Senn, 1993; Jones and Kenward, 2003).

3.2.2 Fractional Polynomials

As an alternative to capturing the time trend as mentioned in Section 3.2.1, the so-called fractional

polynomial approach may be used. Fractional polynomials provide an extension to classical polynomials
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allowing for non-integer powers to the time covariate, thereby adding greater flexibility in capturing

rather complex non-linear relationships. A brief description of fractional polynomials is given below.

Let t = (tj1, . . . , tjK) denote the set of time points pertaining to subject j. Royston and Altman (1994)

define a fractional polynomial of degree m by

φm(t; β, p) =
m∑

r=0

βrHr(t), (3)

where m is a positive integer and p = (p1, . . . , pm) is a real-valued set of powers such that p1 ≤ · · · ≤ pm

and β = (β0, . . . , βm) are real-valued coefficients. For r = 0, H0(t) = 1, p0 = 0, and for r = 1, . . . , m:

Hr(t) =

{
tpr if pr 6= pr−1,

Hr−1(t) ln(t) if pr = pr−1.

As mentioned in Royston and Altman (1994), polynomials of a degree higher than 2 or 3 are rarely

encountered in practice. The best power transformation is frequently found among the members of the

list {−2,−1,−0.5, 0, 0.5, 1, . . . , max(3, m)}. While it is possible to incorporate other powers, there is a

danger coming with including large negative powers, in the sense that individual extreme observations

will influence the fit too much (Royston, Parmar, and Qian 2003).

Note that the fractional polynomial model has been defined in its generic form and in analogy with

penalized-splines models; extension to include covariates other than time is possible. In such a situation,

an extension of (3) may be obtained through adding the fixed effects for treatment, period, and carry-

over, together with relevant interactions.

4 Validation Methods

In this section, we give a concise description of the various methods used in validating a surrogate

endpoint, with emphasis on the individual level.

4.1 Review of the Single Trial-based Validation Methods for Continuous Outcomes

Several methods have been suggested for the formal evaluation of surrogate markers. Some of these

methods are based on a single trial while others, which are gaining momentum in the present day, are

based on meta-analytic concepts. The first formal approach to evaluate markers is attributed to Prentice
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(1989), who has given a definition of surrogate endpoints, followed by a series of operational criteria to

check whether the definition is fulfilled.

Freedman, Graubard, and Schatzkin (1992) have supplemented the hypothesis-testing-based criteria,

which necessarily depend on the power of the test performed, with a quantity to be estimated. They

suggested the use of the so-called proportion of treatment effect explained (PTE) by the surrogate as

an alternative means of validation. The PTE faces serious drawbacks, against the background of which

Buyse and Molenberghs (1998) have suggested the use of another quantity, the relative effect (RE),

defined as the ratio of the treatment effect on the true endpoint to that on the surrogate endpoint.

In turn, the RE is open to severe criticism as well. First, the RE’s confidence intervals, like the ones

for PTE, tend to be wide. While this could in principle be overcome, there is a second, more severe

problem in the sense that the RE is useful for prediction of the true treatment effect from the surrogate

treatment effect only when the relationship between both is multiplicative. This may be rightfully viewed

as restrictive and, in any case, cannot be verified from a single trial.

Switching to the individual patient or experimental animal level, the need might arise to quantify the

association between the surrogate and the true endpoint after adjustment for the treatment effect. To

this end, Buyse and Molenberghs (1998) suggested the use of the adjusted association. Suppose we

have a single trial, let Sj and Tj be the surrogate and true endpoint, respectively, and let Zj be a binary

treatment group indicator. To compute the adjusted association, consider the following pair of models:

Sj = µ
S

+ αZj + εSj
,

Tj = µT + βZj + εTj
,

where the error terms have a joint zero-mean normal distribution with variance-covariance matrix:

Σ =

(
σSS σST

σTS σTT

)
.

Then, the adjusted association, denoted R2 can be computed as:

R2 = R2
εTi|εSi

=
σ2

ST

σSSσT T

.

Note that the individual-level surrogacy is meant to measure the degree of correlation between the two

endpoints after correcting for treatment and other possible effects. One way to correct for treatment
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effect is by including a treatment variable in the model, thus justifying inclusion of treatment effect in

the model.

4.2 Variance Reduction Factor

In this section, we review the variance reduction factor, suggested by Alonso et al. (2003) for the case

of two repeatedly measured outcomes, where after we show how this method can be adapted to the

situation where one of the two outcomes is cross-sectional. Let us assume that there are n subjects

enrolled for a particular study and further suppose that tjk is the time at which the kth measurement of

the jth subject is taken. Let Tjk and Sjk be the true and the surrogate endpoints, respectively, and let

Zj be a binary treatment indicator. Now, consider the following joint model for the true and surrogate

endpoints:

Tjk = µ
T

+ αZj + f(tjk) + εTjk ,

Sjk = µS + βZj + f(tjk) + εSjk ,
(4)

where (µ
T
, µ

S
, α,β) are intercepts and treatment effects on the true and surrogate endpoints, respec-

tively, f(tjk) is a flexible function in time which can be modeled as fractional polynomial, penalized

spline, or any flexible function in time. In principle, it is possible for the two endpoints to depend on time

through different functions, in which case we will have fT (tjk) and fS(tjk) for the true and surrogate

endpoint respectively. However, without loss of generality, let us assume that both depend on time

through the same function. The error terms (εTjk, εSjk) are assumed to follow a zero-mean normal

distribution with patterned variance-covariance matrix

Σ =

(
ΣTT ΣT S

Σ
ST

Σ
SS

)
, (5)

with obvious notation.

In this setting, Alonso et al. (2003) proposed to quantify the individual-level surrogacy using the so-called

variance reduction factor , which is defined as

V RF =
tr(ΣTT ) − tr(ΣT |S)

tr(ΣTT )
, (6)

where ΣT |S denotes the conditional variance-covariance matrix of Tjk given Sjk, i.e., ΣT |S = ΣTT −

ΣTSΣ−1
SS ΣST . Furthermore, these authors have shown that the V RF satisfies a set of properties that

makes it practically applicable: (i) V RF ranges between zero and one; (ii) V RF = 0 if and only if the

8



true and the surrogate endpoints are independent; (iii) V RF = 1 if and only if there exists a deterministic

relationship between the true and surrogate endpoint; and (iv) V RF = R2 in the cross-sectional setting.

Note that, at the individual level, interest lies in the prediction of the true endpoint given the surrogate

endpoint. In this regard, property (ii) shows that if the V RF equals zero, then no sensible prediction

is possible, whereas a perfect prediction is attained if V RF equals one, as indicated by property (iii).

Property (iv) establishes the link between this approach and the one suggested by Buyse et al. (2000)

for univariate outcomes.

Let us now turn to the question as to how this approach can be used when one of the two endpoints is

cross-sectional. Assume we have K measurements per subject for the longitudinal outcome.

4.2.1 Case 1: A Longitudinal Surrogate for a Cross-sectional True Endpoint

Let us assume that the surrogate endpoint is repeatedly measured over time with K repeated measures

and that the true endpoint is cross-sectional. Model (4) takes the form:

Tj = µ∗
T

+ α∗Zj + εTj ,

Sjk = µ∗
S + β∗Zj + f(tjk) + εSjk ,

(7)

and the error terms (εTj ,εSjk
) are assumed to follow a zero-mean normal with variance-covariance matrix

Σ, which in this setting takes the form

Σ =

(
σTT ΣTS

ΣST ΣSS

)
. (8)

Here, σTT denotes the variance of the true endpoint, ΣTS is a (1×K) vector containing the covariances

between the true endpoint and the surrogate endpoint at different time points, and ΣSS is a (K × K)

variance-covariance matrix associated with the longitudinal surrogate endpoint. Then, the V RFindiv for

longitudinal surrogate and a cross-sectional true endpoint denoted by V RFLC
ST , with a subscript ‘L’ (‘C’)

reminiscent of ‘longitudinal’ (‘cross-sectional’), can be computed as

V RFLC
ST =

tr(σTT ) − tr(σT |S)

tr(σ
TT

)
, (9)

where σ
T |S denotes the conditional variance of T given S: σT |S = σT T − ΣTSΣ−1

SS ΣST . Using this

expression, (9) can be re-written as

V RFLC
ST =

tr(σTT ) − tr(σTT − ΣTSΣ−1
SS ΣST )

tr(σTT )
. (10)
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Note that all matrices involved in the computation of V RFLC
ST are of dimension (1 × 1) and hence the

trace reduces to the corresponding scalar, offering the opportunity to simplify (10):

V RFLC
ST =

σT T − σT T + ΣT SΣ−1
SS ΣST

σT T

=
ΣTSΣ−1

SS ΣST

σTT

. (11)

Notice that V RFLC
ST = 0 if and only if ΣST = 0, i.e., if and only if when S and T are independent.

Intuitively, (11) quantifies how much of the total variability of the true endpoint is explained by the sur-

rogate endpoint, after adjusting for treatment effects and repeated measures of the surrogate endpoint.

4.2.2 Case 2: A Cross-sectional Surrogate for a Longitudinal True Endpoint

Next, let us consider a role reversal, such that the true endpoint is repeatedly measured over time with

K repeated measures, whilst having the surrogate endpoint in cross-sectional form. Model (4) becomes:

Tjk = µ∗
T + β∗Zj + f(tjk) + εTjk ,

Sj = µ∗
S + α∗Zj + εSj .

(12)

The error terms (εTjk ,εSj
) are zero-mean normally distributed with variance-covariance matrix:

Σ =

(
ΣTT ΣT S

ΣST σ
SS

)
, (13)

Now, the V RFindiv for this case is

V RFCL
ST

=
tr(ΣTT ) − tr(ΣT |S)

tr(Σ
TT

)

=
tr(ΣTT ) − tr(ΣTT − ΣTSσ−1

SS ΣST )

tr(ΣTT )

=
tr(ΣTT ) − tr(ΣTT ) + tr(ΣTSσ−1

SS ΣST )

tr(ΣTT )

=
tr(ΣTSΣST )

σSS.tr(ΣTT )
. (14)

From (11) and (14), it is clear that there is asymmetry in the VRF calculations. Results differ depending

on which of the two endpoints is the cross-sectional one. This is in line with our expectations. In the

case of a longitudinal true endpoint, the V RF measures the ability of the cross-sectional endpoint to

predict the longitudinal outcome at each time point, whereas when the longitudinal sequence is treated

as surrogate endpoint, the V RF measures the adequacy of the longitudinal sequence to predict the

cross-sectional outcome. It is therefore imperative to determine in advance which of the two outcomes
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is treated as true when applying this procedure to quantify association. Either way, a V RF value close

to one indicates that the surrogate is a ‘good’ predictor of the true endpoint at the individual level,

while values close to zero indicate ‘poor’ prediction. In any case however, the values of the V RF have

to be complemented with expert opinion before passing judgment on the adequacy of the surrogate to

predict the true endpoint.

4.3 The Measure R
2
Λ

As can be seen from (6), the V RF summarizes the variability of the two endpoints using the trace of the

corresponding variance-covariance matrices. In multivariate analysis, there is no unique way of defining a

generalized variance, the trace is one of the classical ways of doing so, while another common definition

uses the determinant. Interestingly, using the trace or the determinant to summarize the variability

of the endpoints has important ramifications for analysis and leads to two totally separate measures

with different interpretations. To this end, Alonso et al. (2006) have suggested another measure, the

so-called R2
Λ
, which uses this alternative definition of the generalized variance. Like the V RF , this

measure can be derived based on Model (4), as follows:

R2
Λ = 1 −

|Σ |

|ΣTT | · |ΣSS |
. (15)

The authors have shown that this measure enjoys desirable properties: (i) R2
Λ is symmetric and invariant

with respect to linear bijective transformations; (ii) R2
Λ ranges between zero and one; (iii) R2

Λ = 0 if

and only if the error terms are independent; (iv) R2
Λ

= 1 if and only if there exist a and b so that aTεSjk

= bTεTjk
with probability one; and (v) R2

Λ = R2 in the cross-sectional setting.

All of these properties, except the fourth property are shared with the V RF . The fourth property,

however, differs in important ways from the V RF . Indeed, whereas the V RF takes the value 1 when

there is a deterministic relationship between both endpoints, R2
Λ is 1 whenever there is a deterministic

relationship between two linear combinations of both endpoints, allowing us to uncover strong association

in cases where the V RF might fail to do so. This is not a disadvantage of one or the other proposal,

but rather underscores them focusing on different aspects. The expression for R2
Λ clearly shows that,

unlike the V RF , this measure treats both endpoints symmetrically. To clarify this further, let us first

consider the surrogate to be longitudinal and the true endpoint cross-sectional, and thereafter reverse

the roles.
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4.3.1 Case 1: A Longitudinal Surrogate for a Cross-sectional True Endpoint

Consider Model (7) and the corresponding variance-covariance matrix (8). The R2
Λ for a longitudinal

surrogate and a cross-sectional endpoint is given by

R
2,LC
Λ,ST

= 1 −
|Σ |

|σTT | · |ΣSS |
, (16)

where σTT , ΣSS, and Σ are as defined in (8). Note that

|Σ| = |ΣSS| · |ΣT |S| = |ΣSS| · |σTT − ΣTSΣ−1
SS ΣST |

and, substituting this in (16), we obtain

R
2,LC
ΛST

= 1 −
|σTT − ΣTSΣ−1

SS
ΣST |

|σTT |

= 1 −
σT T − ΣTSΣ−1

SS ΣST

σTT

=
ΣTSΣ−1

SS ΣST

σTT

, (17)

since all matrices involved are of dimension one.

4.3.2 Case 2: A Cross-sectional Surrogate for a Longitudinal True Endpoint

Consider model (12). The R2
Λ for a longitudinal true and a cross-sectional surrogate endpoint is

R
2,CL
Λ,ST

= 1 −
|Σ |

|ΣTT | · |σSS |

= 1 −
|ΣTT | · |σSS − ΣSTΣ−1

TT ΣTS |

|ΣTT | · |σSS |

= 1 −
|σSS − ΣSTΣ−1

TT ΣTS |

|σSS |

= 1 −
σSS − ΣSTΣ−1

TT ΣTS

σSS

=
ΣSTΣ−1

TT
ΣTS

σ
SS

. (18)

Comparing (17) with (18) establishes that R
2,LC
Λ,ST

= R
2,CL
Λ,ST

. In the first case, we used σTT and ΣSS as

component variances, of scalar and matrix type, respectively. These roles are reversed in the current,
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second case. Nevertheless, we obtain the same final expression for R2
Λ

as is, of course, entirely in line

with the original, symmetric definition (15) of the quantity.

Furthermore, note that R2
Λ

and V RF are equal when the surrogate is longitudinal and the true endpoint

cross-sectional. This implies that, only the VRF with the surrogate cross-sectional and the true endpoint

longitudinal will be different from all of the others, that than coincide. This again highlights the feature

that, for a longitudinal true endpoint, the V RF studies prediction of the entire sequence, while the R2
Λ

assesses how well an optimal linear combination of the true endpoint profile can be predicted. Both may

be useful, but definitely are different. Moreover, one would expect the V RF to be well below the R2
Λ

in many applications, since prediction of an entire longitudinal sequence from a cross-sectional quantity

is a tall order, whereas it might well be feasible to predict a particular linear combination. The choice

between the two measures lies in the objective to be attained. If the objective is to measure the strength

of the surrogate to predict the entire sequence of the true endpoint, then V RF will be an ideal choice.

However, when this seems an attainable goal or when we are rather interested in predicting some linear

combination of the true endpoint, then we can resort to R2
Λ. Note that standard error of the estimates

can be calculated using either a delta method or bootstrap (Efron, Bradley and Tibshirani, 1993). In

this manuscript, standard errors are calculated using bootstrap methods.

5 Application to the Case Study

The treatment is referred to as “the compound” due to confidentiality. The experiment was performed

in the following manner. First, the eight rats were randomized to treatment and vehicle groups and then

followed up, a time during which several responses were measured. After a fixed period, half of the rats

from the treatment group and half of those from the vehicle group were subjected to stress. The follow-

up then continued and some further measurements ere recorded. Thus, after stress, there were four

groups: (1) “treatment alone;” (2) “treatment+stress;” (3) “vehicle alone;” and (4) “vehicle +stress.”

The researchers wished to assess the association between the different responses before and after stress

was induced. Thus, the results for pre- and post-stress correspond to the associations measured between

the different responses before and after the stress with the treatment variable (Z), having two possible

values (1: active treatment, 0:vehicle) for pre-stress and having four different possible values after stress.
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Figure 1 shows the group-specific mean profiles of CORT measurements, averaged over the four treat-

ment periods. The plot depicts the average CORT values per treatment group at each time point,

essentially showing how, on average, CORT values evolve over time in each treatment group. A de-

tailed account on how these data were collected can be found in Section 2. The need for flexible

modeling tools is apparent from Figure 1, since finding a suitable or rather an acceptable classical para-

metric model is not an easy task. Hence, as mentioned before, we discuss results emanating from an

application of surrogate marker validation methodology in conjunction with flexible modeling techniques

(spline and fractional-polynomial based), meant to appropriately capture trends over time. For purposes

of comparison, an unstructured mean model or a full factorial structure for time is also considered.

However, this approach often yields excessively large numbers of parameters, thereby rendering it less

desirable.

The V RF and R2
Λ approaches have been applied to the dataset introduced in Section 2. The variance-

covariance matrices, based upon which the V RF and R2
Λ

are computed, are estimated using maximum

likelihood. The variance-covariance matrices can assume general structures unless the data suggests

otherwise. In such cases, simple covariance structures, such as auto-regressive or compound symmetry,

might be considered. For the purpose of our application, a number of models with different variance-

covariance structures has been fitted. The best model, here being an unstructured variance-covariance

structure, can be chosen using a conventional likelihood ratio test and/or Akaike’s Information Criterion.

The results of the analysis for the association of telemetry and behavior as well as that of CORT and

behavior are summarized in Table 1 with bootstrap standard errors and in Table 2 with asymptotic

standard errors, respectively. We should like to point out that it is not a trivial task to derive a closed-

form expression for the standard errors of V RF and R2
Λ

for the particular case we have considered.

However, fortunately, Alonso et al (2006) have shown that the V RF and R2
Λ are special cases of the so-

called Likelihood Reduction Factor , which is based on the information-theory approach. These authors

have derived an asymptotic solutions for LRF . Hence, by virtue of the relationship of these measures

with the LRF , we have been able to provide asymptotic standard errors based on the information-theory

approach. There are no general guidelines as to how large a V RF and R2
Λ should be in order to be

considered sufficiently large. However, since the V RF and R2
Λ

are R-square type measures, it might be

possible to make some general remarks concerning the degree of association based on their magnitude.
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Since such a degree of association arguably would vary from application to application, the final decision

has to be made in consultation with the experts, regardless their value. Having this in mind, from the

results for the pre- and post-stress, we might infer that there is a rather weak relationship between

behavior and CORT. However, strong and moderate relationships were observed between heart rate

and behavior, and between blood pressure and behavior, respectively. Recall that behavior is measured

cross-sectionally while CORT, heart rate, and blood pressure are longitudinal outcomes.

In this regard, when the cross-sectional outcome was used as a possible surrogate for the longitudinal

outcomes, the V RF produced very low values, as anticipated in the previous section. Indeed, it is

very difficult to predict the subtleties and richness of a longitudinal sequence from a single, cross-

sectional measure. We consider this a desirable feature of the V RF . The R2
Λ

on the other hand, states

that, although still small for some of the endpoints, there is better hope to predict a particular linear

combination of the longitudinal outcomes from the cross-sectional outcome. As such, V RF and R2
Λ

both provide useful but totally different pieces of information. When there is role reversal, that is, when

the longitudinal outcomes were treated as a possible surrogates for the cross-sectional outcome, the

V RF values coincided with the R2
Λ. This underscores that the V RF does not treat both endpoints

symmetrically. The R2
Λ
, however, stayed the same even when there was role reversal, as expected from

its construction.

The higher V RF and R2
Λ

values obtained when the longitudinally measured heart rate and blood pressure

were used as surrogate endpoints for the cross-sectionally measured behavior, establish the possibility

of predicting behavior using some linear combination of the longitudinal sequence.

Zooming in on the association between telemetry and CORT, both longitudinal in nature, we learn that

there is a very weak association, with a maximum R̂2
Λ

= 0.2314 and maximum V̂ RF = 0.0513, between

the three modeling approaches. This is an indication that there is a very limited overlap in information

between both outcomes, inhibiting comfortable prediction of one from the other.

In conclusion, the analysis has revealed that the longitudinally measured CORT level offers limited

opportunity for prediction of activity, which is measured by the degree of alertness expressed in terms

of the percentage of minutes the rats have been awake. We learn that heart rate and blood pressure

are weakly related to CORT but have a strong predictive ability for behavior. The results advice against
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the use of activity to predict the longitudinal CORT level, heart rate, and blood pressure at each time

point. These findings, however, have to be complemented with expert opinion before the results are to

be practically used.

6 Discussion

In this manuscript, we have adapted surrogate marker evaluation methods, originally designed to handle

two repeated measures sequences, to the case of one cross-sectional and one longitudinal outcome,

where either of these can be used as the surrogate. The methods have been applied to quantifying

association between longitudinally measured CORT level, heart rate, and blood pressure, with cross-

sectional behavior measured by the level of activity, expressed as the percentage of time experimental

rats have been active after exposure to treatment followed by stress. The methods appear to work

adequately for this particular mix of longitudinal and cross-sectional endpoints.

The various theoretical properties of the methods have manifested themselves in the results of the

data analysis. In particular, it has been nicely confirmed that the V RF focuses on the prediction of a

longitudinal sequence as a whole by a cross-sectional outcome, while R2
Λ

is concerned with the prediction

of an optimal linear combination of the longitudinal outcome.

In the case of two longitudinal outcomes, the optimal linear combinations from the two outcomes are

the first canonical variates. In the context of a longitudinal true and cross-sectional surrogate endpoint,

the optimal linear combination could be the first principal component or any other summary measure

of the longitudinal measurements, thereby maximally retaining information. Thus, optimality in this

context refers to finding a linear combination that best summarizes the repeated measures.

The longitudinal outcomes were modeled using flexible modeling tools such as fractional polynomials,

penalized splines, and a general unstructured mean where the time trend is not modeled but rather

an analysis-of-variance type approach is followed. This offers the possibility of fitting different models

and then selecting the best one according to some model selection tool such as, for example, Akaike’s

Information Criterion. It is, indeed, important to conduct proper modeling before moving into quantifying

surrogacy, because the results may critically depend on the model’s goodness-of-fit.

16



In all cases, V RF or R2
Λ

estimates close to one are indicative of ‘good’ surrogacy, with the reverse

holding for values close to zero. Evidently, it is difficult to provide general advice as to how large is

large enough. Arguably, the statistical evaluation of a surrogate can be an important component in the

decision making process, but at least equally important is expert opinion coming in from pharmacological,

biological, clinical, ethical, and health economy considerations.

All analysis performed in this paper can be conducted using statistical softwares such as SAS, SPlus, R,

or any package that allows fitting of bivariate models. A SAS macro is available from the authors’ web

site www.uhasselt.be/censtat.
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Figure 1: Group-specific mean profiles of CORT values, averaged over different treatment periods.

The shaded regions indicate the time windows in which activity was measured before and after the
stress induction.

19



Table 1: R2
indiv

values(bootstrap standard errors) under pre-stress and post-stress conditions, for a variety of true and surrogate endpoints,

using unstructured, fractional polynomial, and penalized splines models, and based on both V RF and R2
Λ.

endpoint unstructured fract. pol. pen. splines

true surrogate V RF R2
Λ V RF R2

Λ V RF R2
Λ

Pre-stress

behavior CORT 0.433(0.1803) 0.433(0.1803) 0.372(0.1547) 0.372(0.1547) 0.402(0.1818) 0.402(0.1818)

CORT behavior 0.060(0.0314) 0.433(0.1813) 0.039(0.020) 0.372(0.1547) 0.026(0.290) 0.402(0.1818)

behavior heart rate 0.807(0.0928) 0.807(0.0928) 0.816(0.1116) 0.816(0.1116) 0.798(0.1793) 0.798(0.1793)

heart rate behavior 0.119(0.0568) 0.807(0.0928) 0.069(0.0624) 0.816(0.1116) 0.071(0.0689) 0.798(0.1793)

behavior blood pressure 0.571(0.1916) 0.571(0.1916) 0.586(0.1781) 0.586(0.1781) 0.408(0.2146) 0.408(0.2146)

blood pressure behavior 0.081(0.0246) 0.571(0.1916) 0.073(0.0468) 0.586(0.1781) 0.011(0.0369) 0.408(0.2146)

Post-stress

behavior CORT 0.386(0.1889) 0.386(0.1889) 0.499(0.2095) 0.499(0.2095) 0.359(0.1190) 0.359(0.1190)

CORT behavior 0.038(0.0248) 0.386(0.1889) 0.045(0.0984) 0.499(0.2095) 0.032(0.0273) 0.359(0.1190)

behavior heart rate 0.913(0.0498) 0.913(0.0498) 0.984(0.0263) 0.984(0.0263) — —

heart rate behavior 0.227(0.0868) 0.913(0.0498) 0.126(0.0755) 0.984(0.0263) — —

behavior blood pressure 0.343(0.1041) 0.343(0.1041) 0.513(0.2050) 0.513(0.2050) — —

blood pressure behavior 0.079(0.055) 0.343(0.1041) 0.160(0.1288) 0.513(0.2050) — —
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Table 2: R2
indiv

values (asymptotic standard errors) under pre-stress and post-stress conditions, for a variety of true and surrogate

endpoints, using unstructured, fractional polynomial, and penalized-splines models, and based on both V RF and R2
Λ.

endpoint unstructured fract. pol. pen. splines

true surrogate V RF R2
Λ V RF R2

Λ V RF R2
Λ

Pre-stress

behavior CORT 0.433(0.1178) 0.433(0.1178) 0.372(0.1174) 0.372(0.1174) 0.402(0.1179) 0.402(0.1179)

CORT behavior 0.060(0.0632) 0.433(0.1178) 0.039(0.0533) 0.372(0.1174) 0.026(0.0463) 0.402(0.1179)

behavior heart rate 0.807(0.0724) 0.807(0.0724) 0.816(0.0702) 0.816(0.0702) 0.798(0.0745) 0.798(0.0745)

heart rate behavior 0.119(0.0850) 0.807(0.0724) 0.069(0.0669) 0.816(0.0702) 0.071(0.0677) 0.798(0.0745)

behavior blood pressure 0.571(0.1105) 0.571(0.1105) 0.586(0.1091) 0.586(0.1091) 0.408(0.1179) 0.408(0.1179)

blood pressure behavior 0.081(0.0717) 0.571(0.1105) 0.073(0.0685) 0.586(0.1091) 0.011(0.0823) 0.408(0.1179)

Post-stress

behavior CORT 0.386(0.1177) 0.386(0.1177) 0.499(0.1156) 0.499(0.1156) 0.359(0.1171) 0.359(0.1171)

CORT behavior 0.038(0.0528) 0.386(0.1177) 0.045(0.0563) 0.499(0.1156) 0.032(0.00497) 0.359(0.1171)

behavior heart rate 0.913(0.0415) 0.913(0.0415) 0.984(0.0108) 0.984(0.0108) — —

heart rate behavior 0.227(0.1063) 0.913(0.0415) 0.126(0.0868) 0.984(0.0108) — —

behavior blood pressure 0.343(0.1164) 0.343(0.1164) 0.513(0.1149) 0.513(0.1149) — —

blood pressure behavior 0.079(0.0709) 0.343(0.1164) 0.160(0.0947) 0.513(0.1149) — —
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