
Made available by Hasselt University Library in https://documentserver.uhasselt.be

Dynamical properties of granular rotors

Non Peer-reviewed author version

CLEUREN, Bart & EICHHORN, Ralf (2008) Dynamical properties of granular rotors.

In: JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT,

2008(10), (ART N° P10011).

DOI: 10.1088/1742-5468/2008/10/P10011

Handle: http://hdl.handle.net/1942/9349



Dynamical properties of granular rotors

Bart Cleuren1 and Ralf Eichhorn2

1Hasselt University, B-3590 Diepenbeek, Belgium
2Universität Bielefeld, Fakultät für Physik, 33615 Bielefeld, Germany

E-mail: bart.cleuren@uhasselt.be, ralf.eichhorn@physik.uni-bielefeld.de

Abstract. The stochastic motion of an arbitrarily shaped rotor, free to rotate around

a fixed axis as a result of dissipative collisions with a surrounding thermalized gas, is

investigated. A Boltzmann master equation is derived, starting from the elementary

gas-rotor collisions. Analytical expressions for the moments of the rotational speed and

the rotational temperature are obtained in the form of a series expansion, using the

mass ratio of gas particle and rotor as expansion parameter. We discuss the general

features of the motion, which is largely determined by the geometry of the rotor.

In particular, a stationary non-zero rotation is observed for rotationally asymmetric

rotors. Molecular dynamics simulations support the analytical results.
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1. Introduction

Granular gases form an important class of non-equilibrium systems [1]-[3]. Because of

the dissipative nature of the particle collisions, they behave quite differently than their

elastic counterparts [4]. Most notably, when the gas is left on its own, its temperature

will steadily decrease until finally all motion has gone. In order to reach a stationary

regime, a constant input of energy is required, for example by shaking the enclosing box.

Such a setup in turn may lead to many intricate phenomena, such as granular ratchets

[5]-[8], temperature anisotropy [9] or non-Maxwellian velocity distributions [10, 11].

The study of “tracer” systems, consisting of a single granular object interacting

dissipatively with a surrounding thermalized bath, has proven to be a convenient tool

to reveal properties of granular gases [12]-[17]. For spherical tracer objects in a gas

with elastic inter-particle collisions it has been shown that the velocity distribution is

Maxwellian [12, 13], irrespective of the nature of the collisions between tracer and gas

particles (elastic or inelastic). In contrast, non-trivially shaped, anisotropic tracers may

show significant deviations from a Maxwellian (angular) velocity distribution [16, 17]

under inelastic collisions with the surrounding (elastic) gas.

A connection to Brownian motors [18] is established, whenever these deviations

in the velocity distribution are accompanied by a non-vanishing first moment [19, 20].
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The corresponding directed motion of the tracer particle is generated by rectifying the

fluctuations which arise from the random collisions with the surrounding gas. For such a

rectification of unbiased random fluctuations to occur, breaking of both spatial and time

symmetry is required [18]. Precisely these ingredients are present when an asymmetric

tracer object is placed into a granular gas. As a result of the dissipation during collision

events, the environment constantly loses energy, part of which is converted into the

directed motion of the tracer. Since such motion persists even if working against a (not

too large) load force, the asymmetric tracer can operate as a motor [19].

In this work, we investigate the rotational motion of an arbitrarily shaped tracer

object (granular rotor) around a fixed axis during incessant dissipative collisions with

a surrounding gas. As is to be expected, the shape has a significant influence on the

dynamical properties of the object. The (angular) velocity distribution deviates from the

Maxwellian form, as is shown indirectly by calculation of the angular velocity moments.

A similar conclusion was reached in [16, 17] for the case of a granular needle, and it was

shown there that the deviations are significant mainly in the limit of small moment of

inertia. The results presented here, valid for arbitrary shapes, show that even for large

moment of inertia deviations can be observed, most notably through the appearance of

a nonzero first moment for rotationally asymmetric rotors. Apart from the theoretical

issues of granular matter, and in the context of Brownian motors, rotational motion

(being restricted in space) is of relevance to future applications. This is nicely illustrated,

e.g., by recent theoretical and simulation work regarding the rotational and dynamical

properties of nanosized systems formed by carbon nanotubes [21, 22].

The paper is organized as follows. In section 2 the basic setup is introduced, and

the Boltzmann master equation describing the stochastic motion of the rotor is derived.

A discussion is given on its validity and the necessary conditions which are assumed.

The main results are presented in section 3, clarifying the influence of the geometry

on the motion of the rotor. In section 4 the general theory is applied to a number of

specific rotor shapes. The theoretical predictions are compared with molecular dynamics

simulations in section 5. Finally, the main results are summarized in section 6, together

with a few concluding remarks.

2. Model description

The basic setup is shown in figure 1: an object of mass M (henceforth called the rotor)

can rotate freely around a fixed axis, as a result of collisions with the surrounding gas

particles (mass m). Our focus here is on a two dimensional situation, with the motion

of the rotor and gas particles taking place in the x-y plane orthogonal to the rotational

axis. The motion of the rotor is then described by its instantaneous angular velocity

~ω = ω~ez. The dynamical properties of the rotor are further specified by its moment

of inertia I around the rotational axis, and its geometrical shape. The extension to a

general three dimensional rotor is straightforward, although the algebra is considerably

more involved.
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The motion of the rotor is induced solely by the interaction with the gas particles.

In between collisions, the angular velocity remains constant. The collisions with the

rotor are assumed to be instantaneous and inelastic, and described by the (normal)

restitution coefficient 0 ≤ α < 1 (with α = 1 corresponding to elastic collisions). The

surfaces of both rotor and gas particle are taken to be smooth, implying the absence of

tangential forces. The effect of a single collision event follows by applying the appropriate

dynamical laws, which in the present situation are (post-collisional quantities are labeled

with a ′):

• Conservation of angular momentum (no external forces are present):

m~r × ~v ′ + Iω′ = m~r × ~v + Iω . (1)

• Conservation of tangential velocity of the gas particle:

~v ′ · t̂ = ~v · t̂ . (2)

• Inelastic reflection of the normal component of the relative velocity:

(~v ′ − ~V ′) · n̂ = −α(~v − ~V ) · n̂ , (3)

where ~V = ~ω × ~r is the velocity of the rotor at the impact position.

The point of impact is specified by its spatial position ~r = (x, y) and the orientation

of the surface, determined by the angle ϕ between the x-axis and the tangential unit

vector t̂ = (cos ϕ, sin ϕ). The normal to the surface is then n̂ = (sin ϕ,− cos ϕ). Solving

equations (1)-(3) for ω′ gives:

ω′ = ω + (1 + α)
ε2g

RI

(~V − ~v) · n̂
1 + ε2g2

, (4)

with ε :=
√

m/M , and RI :=
√

I/M the radius of inertia. The geometrical features of

the collision, i.e. the dependence on the rotor shape and the position of the rotational

axis, come into play through the dimensionless quantity g, defined as:

g = g(~r) := (~r · t̂)/RI = (x cos ϕ + y sin ϕ)/RI , (5)

which depends on the point of impact ~r on the rotor surface (for the sake of simplicity, the

argument ~r is omitted in the following). As will become clear later, g plays an important

role in characterizing the effect of the rotor shape on its dynamical properties. Notice

that it does not depend on the details of the surrounding gas, but is solely a property

of the rotor.

As a result of the collisions, the angular velocity of the rotor changes stochastically

in time. In general, recollisions introduce correlations between these angular velocity

changes, which we neglect in the following theoretical analysis, i.e. different collisions

are assumed to occur independently. The justification for doing so rests ultimately upon

a comparison with molecular simulations or experiments. The dynamics of ω is then

Markovian, and the time evolution of the probability distribution P (ω, t) is given by a

Boltzmann-master equation:

∂

∂t
P (ω, t) =

∫

[W (ω|ω′)P (ω′, t) − P (ω, t)W (ω′|ω)] dω′. (6)
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Figure 1. Sketch of the system under consideration: a solid object is free to rotate

along a fixed axis, as a result of the collisions with the surrounding gas particles. (a)

Top view of the object representing the 2-dimensional reduction used for the theoretical

analysis. The coordinate system is placed such that the z axis coincides with the

rotation axis, i.e. the center of rotation in the 2-dimensional x-y plane (indicated by

the star) coincides with the origin of the coordinate system. A surface point of the

2-dimensional (reduced) object is given by ~r = (x, y); its normal unit vector n̂ and its

tangential unit vector t̂ as well as the angle ϕ with the positive x axis are also shown.

(b) Total view of the object, which is homogeneous along the axis of rotation, and thus

allows for a reduction to 2 dimensions.

with W (ω′|ω) being the probability per unit time for the angular velocity to change

from ω to ω′. It is given by:

W (ω′|ω) =

∫

dS

∫

+∞

−∞

dvx

∫

+∞

−∞

dvy ρ φ(vx, vy) Θ
[

(~V − ~v) · n̂
]

× |(~V − ~v) · n̂| δ

[

ω′ − ω − (1 + α)
ε2g

RI

(~V − ~v) · n̂
1 + ε2g2

]

. (7)

The integral over the surface S of the rotor takes into account all the possible collision

points at the surface of the rotor. The Dirac delta function picks out the velocities

which give the corresponding change ω′−ω of the rotational speed. φ(vx, vy) represents

the velocity distribution of the surrounding gas, taken to be by the Maxwell-Boltzmann

distribution at temperature T . Integrating out the velocity components of the incoming

particle leads to:

W (ω′|ω) =
ρ

(1 + α)3

√

I2

2πmkT

∫

dS |ω′ − ω|(1 + ε2g2)2

ε2g2

× Θ

[

ω′ − ω

g

]

exp

[

− I

2kT

(

ωεg +
(ω′ − ω)(1 + ε2g2)

(1 + α)εg

)2
]

.(8)

This expression, together with the master equation (6), yields an exact microscopic

description of the rotational motion of the rotor under the given assumptions, and

constitutes the starting point for its analysis.

The basic premises of our theory – uncorrelated collisions with Maxwell-Boltzmann

distributed gas particles – are justified if recollisions are rare. Then, correlations
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between different collisions can safely be neglected, and the distribution of incoming

particles colliding with the rotor does not deviate noticeably from the Maxwell-

Boltzmann distribution. As confirmed by molecular dynamics simulations (section 5)

these conditions are very well fulfilled for convex shaped rotors in a diluted thermalized

gas.

3. Analytical results

3.1. Angular velocity moments

The central quantities of interest are the moments of the angular velocity in the

stationary regime t → ∞, given by

〈ωn〉 := lim
t→∞

∫

dω ωnP (ω, t) . (9)

However, an explicit exact solution of (6) is not possible, not even in the steady state

regime ∂tP (ω, t) = 0 approached for large times, and we must resort to a perturbative

method. In most cases of interest, the mass of the rotor is much larger than the gas

particle mass, M ≫ m. Then, a systematic expansion of the Master equation in the

small parameter ε =
√

m/M is feasible, similar in spirit as Van Kampen’s system-size

expansion [23]. Starting from the Boltzmann master equation (6) one can derive the

(infinite) set of coupled evolution equations for the moments. These equations can be

decoupled by a series expansion in ε. In the steady state (∂t〈ωn〉 = 0) the solution

reduces to a (tedious) algebraic problem. The result is an analytical expression for all

moments 〈ωn〉 (n = 1, 2, . . .) in the form of a series expansion in terms of ε. An outline

of the procedure is given in the Appendix, see also the discussion in reference [24].

Of particular physical interest for analyzing the motion of the rotor are the first two

moments, namely the average rotational speed 〈ω〉 and its “fluctuations” 〈ω2〉. Their

explicit expressions, showing first two terms in the series expansion (order ε3 for 〈ω〉
and ε4 for 〈ω2〉), are given by:

〈ω〉 =
( m

M

)1/2

√

πkT

2I

α − 1

4

〈g3〉
〈g2〉

+
( m

M

)3/2

√

πkT

2I

α − 1

32

[

2(α + 5)
〈g3〉〈g4〉
〈g2〉2 − 8

〈g5〉
〈g2〉 − π

〈g3〉3
〈g2〉3

]

+ . . . (10)

〈ω2〉 =
kT

I

α + 1

2
+

m

M

kT

I

α − 1

16

[

4(α + 1)
〈g4〉
〈g2〉 − π

〈g3〉2
〈g2〉2

]

+ . . . (11)

The powers of g in brackets are defined as average over the (one-dimensional) surface

of the rotor:

〈gn〉 :=

∫

dS

S
gn (12)

and contain the detailed information about its geometry.
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When additionally taking into consideration the third and fourth moment, 〈ω3〉
and 〈ω4〉, we can quantitatively compare the distribution of the angular rotor velocity

with a Gaussian (Maxwellian) form by determining the skewness

ζ :=
〈(ω − 〈ω〉)3〉

〈(ω − 〈ω〉)2〉3/2
(13)

and kurtosis excess

κ :=
〈(ω − 〈ω〉)4〉
〈(ω − 〈ω〉)2〉2 − 3 , (14)

which both vanish in case of a Gaussian distribution. In lowest non-trivial order (being

ε3 for ζ and ε4 for κ) we obtain:

ζ =
( m

M

)3/2 √

π(α + 1)
α − 1

4

[〈g5〉
〈g2〉 −

7〈g3〉〈g4〉
6〈g2〉2 +

π〈g3〉3
8〈g2〉3

]

+ . . . (15)

κ =
( m

M

)2 α2 − 1

4

[〈g6〉
〈g2〉 −

4〈g4〉2 + 3π〈g3〉〈g5〉
4〈g2〉2 +

π〈g3〉2〈g4〉
〈g2〉3 − 3π2〈g3〉4

32〈g2〉4
]

+ . . . (16)

The expressions (10), (11) and (15), (16) constitute the main analytical results

of the present work. We can immediately infer (within the presented order in ε)

that the tracer object is at equilibrium with the surrounding gas, independently of

its shape, for elastic collisions (α = 1) with the gas particles, since then the angular

velocity distribution is Maxwellian with the gas temperature T . Furthermore, these

expressions also predict a systematic rotation of the tracer object due to a non-vanishing

first moment 〈ω〉, accompanied by an asymmetric distribution of the angular velocity,

provided the following two conditions are fulfilled: (i) a restitution coefficient smaller

than unity, α < 1, and (ii) a nonzero 〈g3〉 (in lowest order).

The first condition implies that the system is necessarily out of equilibrium. This

can be seen by defining the temperature kTr = 〈ω2〉I that the rotor adopts from the

interaction with the gas. From (11) we read off:

Tr = T

(

α + 1

2
+

m

M

α − 1

16

[

4(α + 1)
〈g4〉
〈g2〉 − π

〈g3〉2
〈g2〉2

]

+ . . .

)

. (17)

In lowest order this expression becomes independent on the rotor’s shape and reduces

to the result Tr = T (α + 1)/2, which turns out to be quite general and not limited to

M ≫ m [12]. For dissipative collisions with α < 1 the rotor temperature Tr is smaller

than T . Because of this temperature difference, an energy flow is established from the

gas into the object. Replacing α in (10) in terms of T and Tr, reveals that 〈ω〉 ∝ T −Tr

in lowest order.

The second condition, 〈g3〉 6= 0 is of purely geometrical origin, and occurs when the

object breaks the rotational symmetry. We will comment on this statement further in

the next section.

As is well known, these two conditions – breaking of detailed balance and spatial

symmetry – are necessary ingredients for the appearance of a Brownian motor [18],

implying that the here analyzed granular rotor may operate as a granular motor. A

specific example is presented in section 4. Analogous results were obtained in [19, 20]

for the case of translational motion.
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3.2. Symmetries

As already mentioned above, in the results (10), (11) and (15), (16), the information

about the shape of the rotor and the location of the rotation center is exclusively‡
contained in the surface averages 〈gn〉 as defined in (12). We thus concentrate on their

properties first and show that they obey the following three symmetries:

(i) 〈g〉 = 0 independent of the rotor’s shape.

(ii) 〈gn〉 is invariant under rotation around the rotor’s center of rotation.

(iii) 〈gn〉 → (−1)n〈gn〉 for x → −x (or y → −y).

The proofs are straightforward:

(i) In the case n = 1 we can choose d~r := t̂ dS to find 〈g〉 ∝
∮

~r ·d~r. For any physical

object, the path along which this line integral is calculated will be closed. We can then

apply Stokes’ theorem which leads to the surface integral
∫∫

∇×~r ·d ~O, and hence 〈g〉 = 0

independent of the object’s shape and the location of the center of rotation. Actually,

this identity has already been incorporated in the results (10), (11) and (15), (16).

(ii) The rotation invariance immediately follows from the fact that g is defined by

the scalar product (5) in a coordinate system where the origin coincides with the center

of rotation, and that RI depends on the rotation center only via the moment of inertia

I.

(iii) When reflecting the rotor at the y-axis, the location of a surface element at

~r = (x, y) is moved to (−x, y). Correspondingly, the angle ϕ defining the normal

(pointing outwards) and tangential vectors to this surface element transforms into 2π−ϕ.

From (5), we thus find g → −g under x → −x (recalling that I, and thus RI , is invariant

under reflection), and the above statement 〈gn〉 → (−1)n〈gn〉 readily follows. Analogous

arguments apply for the transformation y → −y when the rotor is mirrored at the x

axis.

The most important result is (iii). Together with (10) and (11) it follows that

the rotor, if reflected at one of the coordinate axes, switches rotation direction 〈ω〉,
whereas the amount of “fluctuations” in the angular velocity 〈ω2〉 remain unchanged.

These findings reproduce the fundamental mirror symmetry 〈ωn〉 → (−1)n〈ωn〉 for the

moments of the angular velocity, which is required to be valid for physical reasons due to

the symmetry of our setup. Put differently, any order of the series expansion of 〈ωn〉 in

ε must have a functional structure in terms of 〈gn〉 that preserves this mirror symmetry

by the property (iii); the results (10) and (11) constitute examples of this statement for

〈ω〉 and 〈ω2〉 to order ε3. Analogous arguments apply to the functional structure of the

skewness ζ and the kurtosis excess κ, see equations (15) and (16).

As an immediate and central further consequence we find:

〈ω〉 = 0 if the rotation center is located on a
mirror symmetry axis of the rotor. (18)

‡ Actually, the moment of inertia I does depend on the position of the rotation center. However, I

trivially is invariant under rotation and reflection, and thus this dependence is of no relevance for what

we are going to prove.
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The reason is that the rotor and the center of rotation are mapped onto itself upon

reflection at a mirror axis, so that 〈ω〉 remains unchanged, in addition to 〈ω〉 → −〈ω〉
from the reflection symmetry. More intuitively, the clockwise and counter-clockwise

rotational movements around a center that is fixed on a mirror axis of the object are

performed in identical physical manners, and thus exactly cancel. In this sense, one

has to break “rotational symmetry” of the setup by breaking the mirror symmetry of

the rotor or by moving the rotation center away from the mirror axis, in order to get

a non-vanishing average angular motion. On the level of the geometric quantities 〈gn〉,
(18) is tantamount to 〈gn〉 = 0 for n odd (see the symmetry (iii) above), so that the

spatial asymmetry with respect to rotation manifests itself in 〈gn〉 6= 0 for n odd.

3.3. Langevin description

By means of a Kramers-Moyal expansion one can derive a Fokker-Planck equation from

the master equation (6) (see the Appendix), and by identifying drift and diffusion terms

one ends up with the following Langevin equation in lowest order of ε:

ω̇(t) = −γ

I
ω(t) +

F

I
+ η(t) (19)

with the friction coefficient γ and the external torque F given by:

γ = (α + 1)ρ

√

2kTm

π
SR2

I〈g2〉 (20)

F =
(α2 − 1)

4
ρ
kTm

I
SR3

I〈g3〉 (21)

and η being the white noise term characterized by:

〈η(t)〉 = 0 and 〈η(t)η(t′)〉 =
2γkT

I2

α + 1

2
δ(t − t′) (22)

This Langevin description gives a intuitive picture of the stochastic behaviour of the

granular rotor. The rotor is, on the one hand, driven by a constant forcing, which

is proportional to the gas temperature and emerges from the inelastic collisions with

the gas particles (α < 1). On the other hand, these collisions also induce friction and

Brownian random forces being present independent of the collisions’ nature. Note that

the friction coefficient scales with the square root of the gas temperature T , as well

known from the kinetic theory of gases [25]. Moreover, both the friction (20) and the

forcing (21) are proportional to the gas density ρ, so that the average angular velocity

〈ω〉 = F/γ becomes density-independent, in agreement with (10). In lowest order of

ε, the results (10) and (11) for 〈ω〉 and 〈ω2〉 are easily reproduced from the Langevin

equation (19).

4. Applications

Having established the general framework, we now continue with applying it to specific

rotor shapes. We focus on (convex) rotors that are built of straight linear segments
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Figure 2. (a) Rectangle with its sided parallel to the coordinate axes; the origin of the

coordinate system represents the center of rotation. (b) Highly symmetric rotor with

all corners being located ion a circle and with pair of opposite sides of equal length

that can be imagined to belong to rectangles, as indicated by the dashed lines for one

pair of opposite sides.

(“sides”), see figures 2 and 3 for illustration. Before turning to some explicit examples,

we discuss a large class of highly symmetric piecewise linear rotors that do not rotate

at all.

4.1. Square, rectangle and more symmetric rotors

For rotor shapes consisting of straight segments, the surface integral (12) can be

rewritten as a sum over those sides:

〈gn〉 =
∑

side i

∫

dSi

S
gn

i . (23)

Any term in this sum is invariant under rotation around the center of rotation, as

follows from the same argument used for demonstrating the symmetry (ii) above. This

invariance expresses the physical consequence of the isotropicity of the granular gas:

the contribution of the impacts of gas particles on any side of the rotor to its average

rotational speed 〈ω〉 (and to the higher moments of ω as well) is independent of the

actual angular position of the rotor.

When calculating 〈gn〉 for the rectangular rotor of figure 2a, it is thus most

convenient to rotate the rectangle into a position where its sides are parallel to the

coordinate axes, because then the functions gi and the surface elements dSi in (23)

have a very simple form. For instance, for the vertical side 1 in figure 2a, one readily

finds 〈gn
1 〉 =

∫ y2

y1
dy/S yn, and for the opposite side 3 〈gn

3 〉 =
∫ y3

y4
dy/S (−y)n. In view of

y1 = y4 and y2 = y3 (see figure 2a), the sum of these surface averages gives 〈gn
1 〉+〈gn

3 〉 = 0

for n odd. This result is completely independent of the position of the center of rotation,

because the integrals are independent of x anyway, and a translation of the origin along

the y direction would only shift the integration limits y1, y2, y3 and y4 by the same

distance without changing the identities y1 = y4 and y2 = y3. (Note, however, that the

sum 〈gn
1 〉+〈gn

3 〉 = 2〈gn
1 〉 for n even does depend on the rotation center.) The same result

is readily found for the two other opposite rectangle sides 2 and 4 (see figure 2a), either
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PSfrag replacemen

x

y

~r~R0

circumference S

Figure 3. Equilateral triangle with equal sides, each of length S/3. The center of

rotation coincides with the origin of the (x, y) coordinate system and is positioned at
~R0 = (X0, Y0) with respect to the center of mass (the diamond in the middle of the

triangle). The dashed lines represent the mirror symmetry lines of the triangle.

by direct calculation or else by exploiting the rotation invariance of 〈gn
i 〉. If applied to

the result for the rectangle sides 1 and 3 the latter tells us that

〈gn
i 〉 + 〈gn

j 〉 = 0 (n odd)

for any pair i, j of opposite sides
that belong to a rectangle. (24)

We immediately infer that 〈gn〉 = 0 (n odd) for squares and rectangles, and thus

〈ω〉 = 0 [see equation (10) and the discussion in section 3.2 following the proofs of the

symmetries (i)-(iii)], irrespective of the location of the rotation center. However, (24)

implies the absence of systematic rotation for a much larger class of rotors: Any object

that consists of an even number of sides where opposite sides have equal length and with

corners that are all located on a circle, does not rotate, i.e. 〈ω〉 = 0. The reason is

that such an object can be imagined to be composed of rectangles, see figure 2b for an

illustration. Of course, the rectangle itself is a special case with just four sides.

4.2. Equilateral triangle

As a concrete rotor we consider in the following the simplest non-trivial case of an

equilateral triangle, see figure 3. Since we are interested in the dependence of the angular

velocity on the position of the rotation center, we specify its location by ~R0 = (X0, Y0)

with respect to the center of mass.

Performing the surface averages (12) for n up to 5, we find

〈g2〉 =
1

108R2
I

[

S2 + 54
(

X2
0 + Y 2

0

)]

, (25a)

〈g3〉 = − 1

4R3
I

X0

(

X2
0 − 3Y 2

0

)

, (25b)

〈g4〉 =
1

6480R4
I

[

S4 + 180S2
(

X2
0 + Y 2

0

)

+ 2430
(

X2
0 + Y 2

0

)2
]

, (25c)
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Figure 4. Average rotational speed of the equilateral triangle from figure 3 for kT = 1,

m = 1, ρ = 0.0025, M = 10, α = 0.9, S = 3, Y0 = 0 and for varying X0. Inset: Second

moment of ω for the same parameter values. The solid lines show the analytical results

from (10) and (11) (inset), with (25a)-(26b), whereas the dots with error bars are the

results of molecular dynamics simulations (in the inset, the error bars are smaller than

the symbol sizes). The grey triangle is positioned in a way that the X0 axis represents

the locations of the rotation axis with respect to the triangle and its center of mass,

which is marked by a grey diamond.

〈g5〉 = − 5

432R5
I

X0

(

X2
0 − 3Y 2

0

) [

2S2 + 27
(

X2
0 + Y 2

0

)]

. (25d)

Moreover, by Steiner’s theorem we get

I = M(S2/108 + X2
0 + Y 2

0 ) , (26a)

RI =
√

(S2/108 + X2
0 + Y 2

0 ) . (26b)

With these expressions we can calculate the angular velocity 〈ω〉 and and its

“fluctuations” 〈ω2〉 up to order ε3, from (10) and (11). The results are shown in figure 4

for Y0 = 0 and varying X0. Note that the odd averages 〈g3〉 and 〈g5〉 vanish for X0 ≡ 0

and Y0 = ±X0/
√

3. These lines constitute the mirror symmetry lines of the triangle,

and, as expected, the average rotational speed is indeed zero at these lines according to

(10).

Also included in figure 4 are the results of molecular dynamics simulations for the

rotating triangle (figure 3), showing remarkably good agreement with the theory. The

details behind the simulations are explained in the following section.

5. Simulations

The motion of the rotor due to the collisions with surrounding gas particles is simulated

by an event-driven molecular dynamics code. The gas is treated as an ideal gas of point-

like particles, i.e. no collisions between the gas particles occur. The collisions of gas

particles with the object are detected numerically by solving the exact transcendental
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equations for the point of impact on the rotor surface, which result from equating the

rotational motion of the linear rotor sides with the translational gas particle movement.

At each collision, the rotational speed of the rotor is changed according to the collision

rule (4), and the velocity of the gas particle according to the collision rule obtained from

solving equations (1)-(3) for ~v ′.

In order to mimic an infinitely large reservoir of gas particles with given density

and temperature, the rotor is placed into a rectangular box which is filled with gas

particles according to the prescribed density, and whose boundaries have the following

properties: A gas particle that reaches a box wall is taken out of the gas (it exits the box

and “disappears” into a surrounding infinite reservoir); new gas particles are created at

the box walls according to a Poissonian process (as if they were entering the box from a

surrounding gas reservoir) with a rate parameter determined by the gas properties (in

particular density and temperature) and the box size. It is taken care, of course, that

the box is large enough (typically of size 20×20) to completely incorporate the rotating

object.

The presented simulation results (figure 4 and 5) are obtained by simulating the

collisions of about 20000 different gas particles with the object, which initially is at rest.

For the parameter values given in figure 4, e.g., this corresponds to a simulation time

of approximately 7 × 106. Depending on the amount of fluctuations (cf. the results for

〈ω2〉 in figure 4 and 5) averages over 20000 to 1000000 runs are performed.

The actual number of detected collisions for different runs vary significantly due to

the regular occurrence of recollisions of gas particles with the rotating object. Such

recollisions are obviously correlated and, moreover, introduce deviations of the gas

particle velocity distribution from the Maxwellian equilibrium form, in contrast to the

assumptions of our theory (see section 2). However, the effects on the average rotational

speed of the rotor turn out to be very small for not too large gas densities. This is nicely

demonstrated by the excellent agreement between theory and simulation results (for

ρ = 0.0025) displayed in figure 4 (see also figure 5a). We conclude that our assumptions

are very well justified.

To further test the range of validity of our theory we compare in figure 5 the

theoretically predicted rotational speed with simulation results for varying gas density

and rotor mass. As already mentioned in section 3.3, the linear dependence of the

effective driving force (21) and friction (20) on the gas density ρ cancels out to result in

a density independent average rotational speed 〈ω〉, cf. (10). Figure 5a shows that this

theoretical prediction breaks down at large densities, where the effects of an increased

number of recollisions may lead to different (non-linear) ρ-dependencies of the driving

force and friction coefficient, and imply a larger disagreement with the theoretical

prediction. Furthermore, due to the series expansion in ε =
√

m/M the deviations

between theory and simulations are expected to become more notable for smaller mass

ratios m/M , see figure 5b. For m/M . 2 the third order result (10) even gives a

qualitatively wrong behaviour as it predicts a decreasing rotational velocity for smaller

mass ratios. It can be improved, however, by taking into account higher order terms.
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Figure 5. Average rotational speed of the equilateral triangle from figure 3 for kT = 1,

m = 1, α = 0.9, S = 3, Y0 = 0, X0 = 0.6 (i.e. at approximately maximal average

rotational speed, see figure 4). (a) Dependence on the gas density ρ for M = 10 from

the theoretical result (10) with (25a)-(26b) (solid line) and from molecular dynamics

simulations (dots with error bars). (b) Dependence on the rotor mass M for ρ = 0.0025

(inset: 〈ω2〉 as a function of M) from the theoretical result (10) with (25a)-(26b) (solid

line) and from molecular dynamics simulations (dots, the error bars are smaller than

the symbol size). The dashed line shows the theoretical result corresponding to (10)

with the next order in ε =
√

m/M taken into account, i.e. for fifth order in ε.

6. Conclusions

We have studied the rotational motion of a heavy granular tracer exposed to inelastic

collisions with particles from a surrounding thermalized gas (granular rotor). Explicit

results are obtained for the first two moments of the angular velocity, in (10) and (11)

and the rotational temperature of the object (equation (17)) in the form of a series

expansion, valid for arbitrary rotor shapes. Deviations from the Gaussian form of the

angular velocity distribution are quantified by calculating its skewness and kurtosis, see

equations (15) and (16). It turns out that such deviations are small in that the results

are non-trivial only in higher orders of the series expansion.

For rotationally asymmetric granular rotors a non-vanishing first moment of the

angular velocity distribution, representing a non-zero average rotational speed of the

tracer, is found if the collisions with the gas particles are inelastic. The result (10)

for the average rotational speed clearly indicates the requirements needed to observe a

steady rotation: dissipation, meaning that the combined system (gas with rotor) is out

of equilibrium, and a spatial asymmetry. As mentioned before, these two ingredients

are necessary for the appearance of a systematic motion in Brownian motors [18]. As

is discussed previously in the literature [24, 26, 27, 28], non-equilibrium conditions may

also be established by putting different parts of the rotor in contact with distinct gases

at different temperatures.

We point out that our analytical approach allows for a direct calculation of the

velocity moments without any a priori knowledge about the velocity distribution. The

obtained results are exact under the assumption that the successive collisions between



CONTENTS 15

gas particles and tracer object occur independently. In particular, the influence of the

rotating object on the gas, changing the gas properties near the surface of the rotor, is

neglected. As verified by molecular dynamics simulations, this assumption is very well

justified and we expect our theory to yield the dominating contribution to the dynamical

behavior of the rotor under quite general conditions, see section 5.
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Appendix. Expansion procedure

A systematic expansion of the master equation is based on the fact that the change

in velocity ω′ − ω, as given by (4), is of order ε2. As a result, the transition rate

W (ω′|ω) vanishes rapidly for increasing ω′−ω, justifying our choice of ε as the expansion

parameter. We note, however, that M also appears implicitly in the velocity ω, as

anticipated from the equipartition principle I〈ω2〉 ∝ kT . Therefore, we switch to the

dimensionless quantity Ω, defined as:

Ω :=

√

I

kT
ω (A.1)

A Kramers-Moyal expansion of the master equation (6), in terms of this new variable,

gives the following equivalent form:

∂tP (Ω, t) =
∞

∑

n=1

(−1)n

n!

(

d

dΩ

)n

[An(Ω)P (Ω; t)] , (A.2)

with An(Ω) being the so-called jump moment, defined as:

An(Ω) =

√

kT

I

∫

dΩ′ (Ω′ − Ω)nW (
√

kT/IΩ′|
√

kT/IΩ). (A.3)

Their explicit expression reads:

An(Ω) = 2
n

2 ρ

√

kT

2πm

∫

dS

(

εg(1 + α)

1 + ε2g2

)n

e−
(Ωεg)2

2

×
[

Γ (1 + n/2)Φ
(

1 + n/2, 1/2; Ω2ε2g2/2
)

+
√

2ΩεgΓ ((3 + n)/2)Φ
(

(3 + n)/2, 3/2; Ω2ε2g2/2
)

]

. (A.4)

The function Φ (a, b, z) is Kummer’s confluent hypergeometric function.

Of more interest to us is the following set of coupled equations, describing the time

evolution of the moments 〈Ωn〉 :=
∫

dΩ ΩnP (Ω, t):

∂t〈Ω〉 = 〈A1(Ω)〉 (A.5)
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∂t〈Ω2〉 = 2〈ΩA1(Ω)〉 + 〈A2(Ω)〉 (A.6)

∂t〈Ω3〉 = 3〈Ω2A1(Ω)〉 + 3〈ΩA2(Ω)〉 + 〈A3(Ω)〉 (A.7)

. . .

These equations follow directly from (A.2) by multiplying it with Ωn and subsequent

integration over Ω. This new set of equations are fully coupled and equally difficult

to solve as the original Master equation. However, the equations decouple in the limit

ε =
√

m/M → 0. Indeed, using the following series expansions:

Φ(α, γ; z2) = 1 +
α

γ
z2 +

α(α + 1)

γ(γ + 1)
z4 + ... (A.8)

one finds:

A1(Ω) ≈ −(1+α)ρ

√

kT

m

{

√

2

π
Ω〈g2〉ε2 +

(1 − Ω2)

2
〈g3〉ε3 +

(6Ω − Ω3)

3
√

2π
〈g4〉ε4 + ...

}

(A.9)

and:

A2(Ω) ≈ (1 + α)2ρ

√

kT

m

{

√

2

π
〈g2〉ε2 − 3Ω

2
〈g3〉ε3 +

(3Ω2 − 4)√
2π

〈g4〉ε4 + ...

}

(A.10)

The steady state expressions for the moments are now readily obtained by solving the

equations for the first two moments 〈Ω〉 and 〈Ω2〉 at the steady state up to order ε3.

To lowest order in ε, we find 〈Ω〉 = 0 and 〈Ω2〉 = (1 + α)/2. The next order of 〈Ω〉 is

obtained by replacing 〈Ω2〉 with (1 + α)/2 in 〈A1(Ω)〉. Higher orders are obtained in

this recursive manner, leading to the expressions (10) and (11). With this procedure,

all the moments can be obtained to arbitrary order, although the algebra can become

quite involved.

The Langevin equation, and its corresponding Fokker-Planck equation, can be

obtained by breaking off the Kramers-Moyal expansion (A.2) after the first two terms,

and by expanding the jump moments A1 and A2 up to order ε3 (see the expressions

above). In this way, we end up with the following linear Fokker-Planck equation:

∂tP (Ω, t) = −∂Ω

[(

F√
IkT

− γ

I
Ω

)

P (Ω; t)

]

+
(1 + α)2

2
ρ

√

2kT

πm
〈g2〉ε2 ∂2

ΩP (Ω; t). (A.11)

from which the resulting Langevin equation (19) can be derived.
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