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Abstract

A specific integral, which is used in insurance mathematics for the determination
of a stop-loss premium, corresponds to the definition of a performance characteristic of
an inventory management decision problem. It is investigated whether the operational
management problem might benefit from specific results obtained in the actuarial world. In
the case little infarmation is available on the demand distribution during the lead-time,
which is relevant in inventory decision-making, interesting results might be used from the
actuarial problem where limited information (e.g., only a few moments of the claim size
distribution) is known. With a Jimited transformation of the actuarial results, upper and
lower bounds may be determined for the safety stock in the inventory management problem.
Also a numerical approximation using linear programming is shown to be equivalent to the
problem under study.

Keywords : Incomplete information, inventory management, linear programming.

1. Introduction

In insurance mathematics, an insurance company using the option of
re-insurance is confronted with a stop-loss premium. A stop-loss premium
limits the risk X of an insurance company to a certain amount ¢. If the claim
size is higher than f the re-insurance company takes over the risk X — ¢,
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The stop-loss premium is based on the expected value of X — t, which in
case of a known claim size distribution may be defined as:

]ﬂ " (x = 1) +dF(x) (1)

where F(x) represents the claim size distribution (Goovaerts ¢t al. [1984]).

The same formula (1) may be useful in the performance evaluation
of inventory management in case of uncertain demand during lead time.
When a company holds t units of a specific product in inventory starting
a period between order and delivery, any demand less than { is satisfied
while any demand X greater than ! results in a shortage of X — [ units.
A lesser number of units short results in a better service to the customer. In
this way formula (1) is a measure for customer service in inventory
management,

This research deals with the case where the demand distribution
during lead time is not completely known. This situation is realistic
either with products which have been introduced recently to the market
or with slow moving products. In both cases not sufficient data are
available to decide on the functional form of the demand distribution
function. Limited but not full information might exist like the range of
the demand, its expected value, its variance and maybe some knowledge
about unimedality of the distribution.

In the following sections lower and upper bounds are obtained for
the performance measure under study, given various levels of information
about the demand distribution. From a production or trading company’s
point of view, a decision might be formulated to answer the following
question: given an expected number of units short the company wants to face,
what should be the safety inventory at least or at mnost?

2. The case of a known range, expected value and variance

Let the size of the demand X for a specific product in a finite period
have a distribution F with first two moments p; = E(X) and un = E(X?).
From a mathematical point of view, the problem is to find the

following bounds:
oG

sup (x —#)+dF(x) (2a)
Fegp /0

and
inf [ (x—1)+dE(x) (2b)

Fed /o



STOP-LOSS PREMIUM FOR INVENTORY MANAGEMENT 117

where @ is the class of all distribution functions F which have moments
u1 and 4, and which have support in R*. Let further 0% = pp — y%. We
assume ! to be strictly positive.

For any polynomial P(x) of degree 2 or less, the integral
o P(x)dF(x) only depends on p; and pg, so it takes the same value for all
distributions in @. In the next sections polynomials P are looked for such

that
-P
P

> (x—t)+ on R" in case of sup,
2

(x — )4+ on R* in case of inf.

There exists some distribution G in @ for which the equality holds:

Awpumcuy=ﬁmu—n+ﬂxn. 3)

As distribution G a two-point or three-point distribution is used. The
equality (3) is attained when P(x) and (x — t) 4+ are equal in the two points
of G. The best upper and lower bounds on this term with given moments
141 and y; are derived. The method is inspired by papers of Janssen et al.
(1986), and Heijnen and Goovaerts (1989). In the following we assume the
known range of the distribution to be a finite interval [a, b].

A probability distribution F is called n-atomic if all its probability
mass is concentrated in n points at most. The points are called the atoms
of the distributions. The problem (2a) has a 2-atomic solution and (2b) has
a 3-atomic solution.

If &, 3 are two different atoms of the 2-atomic probability distribution
F satisfying the first-order moment constraint [ xdF = y,, then the corres-
ponding probability masses py and pg are

ch‘—_‘:_{fr pﬁ=?_:‘ (4)
If &, 3, v are three different atoms of the 3-atomic probability distribution
F satisfying the moment constraints [ xdF = p;, [x%dF = pp, then the
corresponding probability masses pa, pg and py are

o+ (m — B) (w1 —¥)

Pa =

(x— B)(x—)
P = o2 + (uy — a)(y — )
8 (B=a)(B—7)

_ Pt (m-a)(m—B)
Py (y—a)(y—8)

(5)
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Table 1 shows the results for the problem (2a). The domain of the parame-
tersisa < p; < b,0< 02 < (g —a)(b—p) oruf <y < ppla+b) —ab.
Further the following abbreviations are used: 02, = 02 + (u; — t)?and ¢ =
1/2(a + b). Further let 1 and u» be chosen that the previous inequalities

hold, then let r' = ‘—1% for every r € [a,b] and r # y.

K]
Table 1

Upper bounds for the stop-loss premium in an interval [a, b)

Upper bounds Atoms of solution | Conditions

%(am-?-m-l-t) t— Oy, t+ o t<cou<t—a
(14y—1 —a)+ot ) 2

(1 — a) W00 |y gy o b<com=t—a

%{U;l!+ul+t) t_a',uht‘f'o'uf fZC,CTme"f

(b—Heo?
“.?—_Lll)"-i-ﬂ"'

u1—1£271,b t>com<b-—t

Table 2 shows the results for the problem (2b). The domain of the
parameters is the same as in Table 1.

Before moving towards the interdisciplinary application, it should
be stated that the bounds and their use in applications can be translated
from any distribution defined on [a, b] into the bounds with a distribution
defined on [0, by|, where by = b —a. Furtherlettg =t —a, 19 = 1y —a
and pp0 = pg — 2app — a%. In the following paragraphs we work, without
loss of generalisation, with distributions defined on [0, by).

Table 2

Lower bounds for the stop-loss premium in an interval [a, b]

Lower bounds | Atoms of solution | Conditions

0 a,py,t o2 < (g —a)(t— )
b =~ toug, b o2 < (p — )b — )
Clnnbast) |t 0% > (u —a)(t— )
CHtn=l) | g, t,b 0% > (uy —a)(t = )
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Table 3

Lower bounds on the stop-loss premium in an interval [0, by]

Lower bounds Conditions

Hio — to 0 < tg < by or

0 <ty < (p20 = Hiobo) /(110 — bo)

(120 — toto) /by | by < tg < 0'or

(r20 — 10b0) /(110 — bo) < to < p20/ K10

o 0" <ty < bg or pao/pi0 < to < bo
Table 4
Upper bounds on the stop-loss premium in an interval [0, bg]
Upper bounds Conditions
Hi0(p20 — H10to) /20 tg < 0/2o0r

to < m20/(2p10)

(M0 — tg + \ﬂuzn — ndy) + (to — p10)) /2

0'/2 < tg < (by + bE,)/Z or
20/ (2110) < b

< (pao — b3)/(2(p10 — bo))

(uza‘—u%u)(b|1-":})
({p20— “]2”) +(by—p10)?)

(bn*{-b{’,)/z < Ipor

(k20 — b3)/(2(p10 — bo)) < kg

3. Application to an inventory management performance measure

Almost every inventory system contains uncertainty. Some of the
uncertainty (such as lead time, quantity and quality) depends on the
suppliers. If the suppliers introduce too much uncertainty, corrective
action should be taken. Some uncertainty, however, is attributable to
customers, especially demand. If insufficient inventory is hold, a stock-
out may occur leading to shortage costs. Shortage costs are usually high
in relation to holding costs, i.e., the cost of keeping the goods during some
time period in the warehouse. Companies are willing to hold additional
inventory, above their forecasted needs, to add a margin of safety.
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Determination of an inventory replenishment policy, of the quantities
to order and of the review period are typical decisions to be taken
by logistics managers. Decisions are made making use of optimisation
models taking a performance measure into consideration which might be
cost-oriented or service-oriented. Performance measures of the service-
oriented type may be expressed relatively as a proportion of customer
demand met from inventory, or may be expressed absolutely in terms of
number of units short, which is a direct indication for lost sales. This study
concentrates on the latter type of performance measure.

Note that the problem and its bounds with a demand distribution
defined on the finite interval [a,b] can be translated without loss of
generalisation to the problem and its bounds with a demand distribution
defined on the finite interval (0, by].

The use of the bounds is illustrated by means of a numerical example.
Let the demand be defined on the interval [25,75]. The demand follows a
distribution with only the following characteristics known: ) = 45 and
tz = 975. This means that in Tables 3 and 4, the following values have to
be used for uyg = 20, ugp = 600, by = 50, by = 13.333, and 0’ = 30. The
values for upper and lower bounds are shown in Tables 5 and 6.

Table 5
Lower bounds on the number of units short for the illustrative
example
I Lower bounds [ Conditions l
20— tp 0<ty <£13.333
12 —-2/5k 13333 <3, <30
0 30 < tp < 50
Table 6
Upper bounds on the number of units short for the illustrative
example
| Upper bounds [ Conditions
20 — 2/3tq 0<t <15
(20 — tp + /200 + (¢g — 20))/2 15 < kg < 31.667
(100 — 249)/11 31.667 <ty < 50

The upper and lower bounds, as expressed in Tables 5 and 6, related
to the safety inventory level for the numerical example under study is
shown in Figure 1.
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Figure 1
Upper and lower bounds on the number of units short W (vertical
axis) in relation to the safety inventory level ty (horizontal axis)

From Tables 5 and 6, a decision-maker may be decide which level of
inventory to hold, given a target value on the number of units short W as
a performance measure. From these tables he can derive upper bounds on
tq, which correspond to a pessimistic viewpoint and lower bounds on £y,
which correspond to an optimistic viewpoint. The values corresponding
to both viewpoints for the numerical example under study are given in
Tables 7 and 8.

Table 7
Lower bounds on the safety inventory level Upper bounds
| Lower bounds ] Requirements |
] 30 -5/2W | W < 6.667 |
[ 20—-W | 6.667 < W |
Table 8
Upper bounds on the safety inventory level
I Lower bounds J_ Requirements ]
50 - 11/2W W < 3.333
(50 — W2 +20W) /W 3333<W <10
(60— 3W)/2 10<W
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4. A linear program formulation for the problem under study

In this section we consider, of the relevant integral, the supre-
mum version. Let fi, f2,..., fn be functions or R. Let, for any z/ =

(z1,....2y—1) € R""! consider the primal maximisation problem:
oo
P(z') = sup U (x — )+ dE(x)|I(F)] (6)
Fedi LIV

where I(F) is a set of integral equality constraints of the type
Jfilx)dF(x) =z;, (i=1,...,n—1)and f, = (x — t)+. In our application,
the constraints are moment constraints, i.e., the first and second moment
equalities and the obvious constraint because any member of ¢ is a
probability distribution.

f dF(x) =1, fxdzf(x) — iy s fx?-dF(x) = fiz )

which means that

=3

hlx) =X

fa{x) = x2
falx) = (x—1t)+
Z1 = 1

2= U3

The optimisation problem (6) has a dual program of the type:
Q) = inf(y1z1+v2z2+y3ly1 /1 (8) + y2f2(8) + y3 2 f3(6)) (8€]) (®)

where the infimum is over all y = (y,, 2, y3) € R? satisfying the cons-

traints indicated after the slash. The functions f,-(B'} (i = 1,...,n) are
defined on a, mostly infinite, set | by
fi(8) = [ fidHa(x) with 0 ], ©)

where Hy is a subset of functions depending on the family of distributions
under consideration.

The family of distributions considered in this study concerns distri-
butions on a finite interval [0, b], where b is a fixed positive number. In this
case (Goovaerts ef al. (1982)):

Ha(x) = lg<x (0<8<D), (10)
which means in our case that

fi(B)=6 (0<8<D)
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h(e)=6" (0<0<b).

Mostly the set [ is infinite, so the number of linear constraints on y is
infinite. In Goovaerts ¢t al. [1982] an idea is launched to replace | by a
large finite subset of | and then to solve the so obtained linear program.

It means that the optimisation problem (8) can be approximated by
the problem Q*:

QA(z") = ;gé(.‘nm + Ya2r2 + Y3ly16) + 1267 + y3 2 (6, — 1)+),

(9,:1'-2,(;:0,1,...,::)). a1)

The problem in section 3 will be approximated by the linear program as
discussed above. The convergence to the optimal solution obtained from
the results in section 3 will be shown.

As an illustration, 11 evaluation points are used (k = 10) for various
values of t in the three ranges mentioned in Table 6.
For a value f = 12, the optimisation model can be written as:
min20Y1+ 600Y2 -+ Y3
subject to
0Y1+0Y2+4+Y34+ 20
5Y14+25Y2+Y3 =0
10Y1+100Y2+Y3 >0
15Y1 4+ 225Y2+Y3 >3
20Y1+400Y2+Y3 > 8
25Y1+4625Y2+Y3 > 13
30Y1+900Y2+Y3 > 18
35Y1+1225Y2+Y3 > 23
40Y1 4+ 1600Y2 + Y3 > 28
45Y1 +2025Y2+4Y3 > 33
50Y1 +2500Y2+Y3 > 38
The objective function value of this optimisation problem is 12, which
corresponds to the value which should be obtained by using the formula
from Table 6, with mass in two points a« = 0 and 3 = 30, with p, = 1/3

and pg = 2/3. The values of the decision variables are Y1 = 0.12,
Y2 =0.016 and Y3 = 0.
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For a value t = 24, the optimisation model can be written as:

min20Y1 +600Y2 + Y3

subject to

0Y1+0Y2+Y32>0
5Y14+25Y2+Y3 >0
10Y1+100Y24+Y3 >0
15Y1+225Y2+Y3 >0
20Y1 +-400Y24+Y3 >0
25Y1+625Y2+ Y3 2> 1
30Y1+900Y2+Y3 =6
35Y1+1225Y24+- Y3 = 11
40Y1 + 1600Y2+ Y3 > 16
45Y142025Y2+Y3 = 21
50Y1+2500Y2+ Y3 > 26

The objective function value of this optimisation problem is 5.333, which
is close to the value 5.348 which should be obtained by using the formula
from Table 6. The values of the decision variables are Y1 =

Y2 =0.015and Y3 = 0.762.

For a value t = 36, the optimisation model can be written as:

min20Y1+600Y2+Y3

subject to

0Y1+0Y2+Y3 >0
5Y1+25Y24+Y3 >0
10Y1+100Y2+Y3 >0
15Y1 +225Y2+Y3 =0
20Y1+400Y2+Y3 >0
25Y1 +625Y2+Y3 >0
30Y14900Y24+Y3 >0
35Y1+1225Y2+Y3 >0
40Y1 +1600Y2+ Y3 = 4
45Y1+ 2025Y2+Y3 > 9
50Y1+2500Y24Y3 > 14

~0.229,
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The objective function value of this optimisation problem is 2.5, which is
close to the value 2.545 which should be obtained by using the formula
from Table 6. The values of the decision variables are Y1 = —0.25,
Y2 =0.0land Y3 = 1.5.

Table 9 shows how the objective function value and the solution
change with increasing values of k in the approximation problem (11). It
can be observed that the objective function value does not increase
monotonically with k, but is does with k versus k' where k = n - k' with
n a positive integer (n > 1).

Table 9
Evolution of the objective junction value in terms of the number
of constraints for various values of the safety inventory level

Objective
ol k value Y1 | Y2 | v3
12 10 12.000 0.120 0.0160 0.000
20 12.000 0.164 0.0145 0.000
30 12.000 0.176 0.0141 0.000
40 12.000 0.183 0.0139 0.000
50 12.000 0.186 0.0138 0.000
100 12.000 0.193 0.0136 0.000
24 10 5.333 -0.229 0.0152 0.762
20 5.333 -0.287 0.0164 1.231
30 5.340 -0.309 0.0169 1.405
40 5.344 -0.321 0.0171 1.496
50 5.345 -0.327 0.0172 1.552
100 5.347 -0.314 0.0169 1.449
36 10 2.500 -0.250 0.0100 1.500
20 2.533 -0.293 0.0110 2.000
30 2.545 ~0.249 0.0099 1.549
40 2.543 -0.270 0.0103 1.770
50 2.544 -0.284 0.0110 1913
100 2.545 -0.275 0.0104 1.819

5. Conclusion and further work

It is shown that, in the case of limited information on the demand
distribution during lead time, upper and lower bounds might be obtained
for the safety stock level based on an analogy between an inventory
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management performance measure and the stop-loss premium. The in-
formation in this study is limited to the range and to the first and second
moments of the distribution.

This idea offers opportunities of computing bounds in case other
types of limited information are available, for example, the unimodality of
the distribution, the knowledge of a tail probability, or the knowledge that
the distribution might be written as a mixture of exponential distributions.
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