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ABSTRACT
Unlike in traditional query languages, expressions in XQuery
can have an undefined meaning (i.e., these expressions pro-
duce a run-time error). It is hence natural to ask whether
we can solve the well-definedness problem for XQuery: given
an expression and an input type, check whether the se-
mantics of the expression is defined for all inputs adhering
to the input type. In this paper we investigate the well-
definedness problem for non-recursive fragments of XQuery
under a bounded-depth type system. We identify properties
of base operations which can make the problem undecidable
and give conditions which are sufficient to ensure decidabil-
ity.

1. INTRODUCTION
Much attention has been paid recently to XQuery, the XML
query language currently under development by the World
Wide Web Consortium [6, 11]. Unlike in traditional query
languages, expressions in XQuery can have an undefined
meaning (i.e., these expressions produce a run-time error).
As an example, consider the following variation on one of
the XQuery use cases [9]:

<bib> {

for $b in $bib/book

where $b/publisher = "ACM"

return element{$b/author}{$b/title}

} </bib>

This expression should create, for each book published by
ACM, a node whose name equals the author of the book and
whose child is the title of the book. If there is a book with
more than one author node however, then the result of this
expression is undefined because the XQuery specification re-
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quires that the first argument to the element constructor is
a singleton sequence.

This leads us to the natural question whether we can solve
the well-definedness problem for XQuery: given an expres-
sion and an input type, check whether the semantics of
the expression is defined for all inputs adhering to the in-
put type. This problem is undecidable for any computa-
tionally complete programming language, and hence also
for XQuery. Following good programming language prac-
tice, XQuery is therefore equipped with a static type sys-
tem (based on XML Schema [5, 20]) which ensures “type
safety” in the sense that every expression which passes the
type system’s tests is guaranteed to be well-defined. Due
to the undecidability of the well-definedness problem, such
type systems are necessarily incomplete. That is, there are
expressions which are well-defined, but not well-typed.

The typical XQuery expression does not use the whole of
XQuery’s computational power however. For example, sixty-
two out of the seventy-seven XQuery uses cases [9] can be
written as a “for-let-where-return” expression without re-
cursive function definitions. It is hence worthwhile to inves-
tigate whether we can solve the well-definedness problem for
such expressions. If so, then we essentially obtain a type-
system which is both sound and complete. We note that the
XQuery type system remains incomplete on this restricted
fragment. Indeed, consider the following expression which
is trivially well-defined since the then-branch of the if-test
will never be executed.

if false then element{()}{()} else ()

In the general setting for which the XQuery type system is
designed, it is undecidable to check that an expression al-
ways evaluates to true. The XQuery type system is therefore
“conservative” in the sense that it requires both branches of
an if-test to type-check. Since the then-branch in our ex-
ample is always undefined, it cannot type-check, and hence
the whole expression is ill-typed. This example clearly illus-
trates that in order to solve well-definedness one also has to
solve “satisfiability”. We will see, however, that this alone
is not sufficient to solve well-definedness.

In previous work [21] we investigated the well-definedness
problem for Relational XQuery (RX). This is a first-order,
set-based database dialect of XQuery without recursive func-
tions; where we only allowed the child axis; took a value-
based point of view (i.e., we ignored node identity); and



observed a type system similar to that of the nested rela-
tional or complex object data model [1, 8, 22]. Since RX
can simulate the relational algebra, well-definedness is still
undecidable, even in this restricted setting. Surprisingly,
the problem remains undecidable for the positive-existential
fragment of RX. This undecidability is due to the identi-
fication of an item with the singleton containing that item
in the XQuery data model [13], which becomes difficult to
analyze under a set-based semantics. Removing this identifi-
cation leads to a dialect of positive-existential RX for which
well-definedness is decidable.

The above results do not transfer to XQuery itself however.
Indeed, the XQuery data model is sequence-based instead
of set-based, has node-identity, and its type system is far
richer than that of the complex object data model. In this
paper we therefore study the well-definedness problem in
the XQuery data model. Specifically, we study a family of
query languages XQ(B) under a bounded-depth version of
the XQuery type system. Here, B is a set of base operations
(such as for example XQuery’s atomic value comparison, its
children axis, . . . ) and XQ(B) is the query language ob-
tained from B by adding variables, constants, conditional
tests, let-bindings, and for-loops. As such, every XQ(B)
is a fragment of “for-let-where-return” XQuery without re-
cursive function definitions. We also omit type-tests (such
as XQuery’s instanceof and typeswitch) since these quickly
make the well-definedness problem undecidable [21]. The
bounded-depth restriction of the XQuery type system is mo-
tivated by the fact that most XML documents in practice
have nesting depth at most five or six, and that unbounded-
depth nesting is hence often not needed.

Concretely, we identify properties of base operations which
can make the well-definedness problem undecidable and give
corresponding conditions which are sufficient to ensure de-
cidability. The decidability of well-definedness for a large
fragment of XQuery immediately follows as we show that,
in the absence of automatic coercions, the various axis move-
ments, node constructors, value and node comparisons, and
node-name and text-content inspections satisfy these condi-
tions. In contrast, well-definedness for this fragment with
automatic coercions is undecidable.

Related work
Our formalization of XQuery is very similar to the indepen-
dently developed one by Hidders et al. [14].

As we will see that the presence of atomic data values signif-
icantly influences the well-definedness problem, we restrict
ourselves in what follows to the related work which also con-
siders data values.

A problem reminiscent to the well-definedness problem is
semantic type-checking : check that the output of a given
expression is always in a given output type for every input
adhering to a given input type [2, 3]? We will show however,
that there are XQ(B) for which well-definedness is decidable,
but semantic type-checking is not.

We will also show that in order to solve well-definedness
it is necessary (but not sufficient) to solve the satisfiability
problem (i.e., non-empty output of a well-defined expression

on at least one input). Recently, Lakshmanan et al. [17]
have studied the computational complexity of satisfiability
in tree pattern queries, which capture a fragment of XPath
(and hence of XQuery).

Organization
This paper is further organized as follows. We introduce our
abstraction of the XQuery data model in Section 2. In Sec-
tion 3 we introduce the notion of a base base operation and
show how to extend these to a query language XQ(B). In
Section 4 we state the well-definedness problem, introduce
a bounded-depth version of the XQuery type system, iden-
tify several properties of base operations which may render
the well-definedness problem undecidable, and propose cor-
responding restrictions on base operations. We show that
these restrictions are sufficient to ensure decidability in Sec-
tion 5 and conclude in Section 6.

2. DATA MODEL
XQuery expressions do not operate directly on XML text,
but on instances of the XQuery data model [13]. Every value
in this data model is a sequence of items, where every item
is an atomic value or a node. There are seven node kinds,
the most prominent being the element, attribute, and text
nodes. Nodes are grouped in “hedges” (sequences of trees).
In what follows we will restrict ourselves to values containing
only atoms, element nodes, and text nodes. This restriction
is done solely for simplicity, we could add the remaining
node types without sacrificing any of our results.

The XQuery type system is an integral part of the XQuery
data model as every item in a value also carries a type an-
notation. Examples of such annotations are integer (for
atoms) and element of type Bibliography (for element
nodes). Potentially, these type annotations can also be
untypedAtomic (for atoms) or untyped (for nodes) indicat-
ing that the item was not validated against a schema. We
will restrict ourselves in what follows to such unvalidated
values. This decision is motivated as follows. XQuery uses
the type annotations of validated inputs during (1) static
and dynamic type-checking1 and (2) the evaluation of type-
tests (such as instance-of and typeswitch). The aim of this
paper is to study well-definedness, which is more fundamen-
tal than static or dynamic type-checking. Furthermore, we
will omit type-tests in our study, as these quickly turn the
well-definedness problem undecidable [21]. It is therefore
safe to restrict ourselves to unvalidated values. All refer-
ences to the semantics of XQuery should hence be under-
stood to mean “the semantics of XQuery when the input is
unvalidated”. As atoms can now only carry the type anno-
tation untypedAtomic and nodes can only carry the anno-
tation untyped, we can drop type annotations altogether in
our formalization.

Atoms and nodes
Formally, we assume to be given a recursively enumerable set
A = {a, b, . . . } of atoms, which contains the booleans true
and false. We further assume to be given an infinite set N =
{n, m, . . . } of nodes, disjoint with A, which is partitioned

1Static type-checking is an optional feature in XQuery. All
XQuery processors have to perform dynamic type-checking
however.



into a recursively enumerable, infinite set N e of element
nodes and a recursively enumerable, infinite set N t of text
nodes. Elements of A ∪N are called items.

Stores
Nodes are given an interpretation inside an XML store [14,
16]. This is essentially a sequence of ordered node-labeled
trees, where each tree represents an XML fragment. For
example, Figure 1(a) depicts a store where the first tree
represents the XML fragment in Figure 1(b) and the second
tree represents the XML fragment in Figure 1(c). Here we
use circles to depict element nodes and boxes to depict text
nodes. Formally, a store Σ is a tuple (V, E, λ, <,≺) where

• V is a finite set of nodes;

• E is the edge relation: a binary relation on V such
that (V, E) is an acyclic directed graph where every
node has in-degree at most one and text nodes have
out-degree zero (hence (V, E) is composed of trees);

• λ : V → A is the labeling function which associates
each node in V with its label ;2

• < is the sibling order : a strict partial order on V that
compares exactly the different children of a common
node:

(n < n′) ∨ (n′ < n) ⇔ ∃m ∈ V : E(m, n) ∧ E(m, n′);

and

• ≺ is a strict partial order on the roots, i.e., the nodes
with in-degree zero.

Using the sibling and root order, the XQuery data model
defines the document order � on Σ which intuitively equals
the left-to-right, pre-order traversal of a sequence of trees.
Formally, the document order � is the strict total order on
V such that (1) if E(n, n′) then n�n′, and (2) if m < n
or m≺n, E∗(m, m′), and E∗(n, n′), then m′�n′. Here we
write E∗ for the reflexive transitive closure of E.

Example 1. Figure 1(a) depicts the store (V, E, λ, <,≺)
where

V = {n1, n2, n3, n4, n5, n6, n7, n8, n9}
E = {(n1, n2), (n1, n4), (n2, n3), (n5, n6), (n5, n8),

(n6, n7), (n8, n9)}
< = {(n2, n4), (n6, n8)}
≺ = {(n1, n5)},

and where λ is defined by

λ(n1) := beer λ(n2) := name λ(n3) := Duvel

λ(n4) := blond λ(n5) := name λ(n6) := first

λ(n7) := John λ(n8) := last λ(n9) := Doe.

For this store ni �nj if, and only if, i is less than j.

2The label of a text node is called the node’s content in
XQuery terminology.

n1

beer

n2name

n3Duvel

n4

blond

n5

name

n6first

n7John

n8 last

n9 Doe

(a)

<beer>

<name>Duvel</name>

<blond/>

</beer>

(b)

<name>

<first>John</first>

<last>Doe</last>

</name>

(c)

Figure 1: A store and the XML fragments it repre-
sents.

We will use the standard terminology for trees on stores.
That is, if E(m, n) then m is the parent of n and n is a child
of m. A node n ∈ V is a root node of Σ if it has in-degree
zero. We write roots(Σ) for the set of all root nodes in Σ.
If Σ has at most one root node, then we say that Σ is a
tree. Note that the empty store is hence also a tree. For
convenience we will denote the empty store by ∅.

Two stores Σ and Σ′ are disjoint when VΣ ∩ VΣ′ = ∅. If Σ
and Σ′ are disjoint stores then the concatenation of Σ and
Σ′, denoted by Σ ◦Σ′, is the store with node set VΣ ∪ VΣ′ ,
edges EΣ ∪ EΣ′ , labeling function λΣ ∪ λΣ′ , sibling order
<Σ ∪<Σ′ , and root order ≺Σ ∪≺Σ′ ∪ roots(Σ) × roots(Σ′).
Clearly, all stores can be written as a concatenation of trees.

Finally, if n is a node in Σ, then the sub-tree of Σ rooted at
n, denoted by Σ|n, is the store with nodes

V ′ = {m | E∗(n, m)},

edges E ∩ (V ′ × V ′), labeling function λ|V ′ , sibling order
<∩(V ′ × V ′), and the empty root order.

Values
A value-tuple of arity p is a tuple (Σ; s1, . . . , sp) where Σ is
a store and every sj is a finite sequence of atoms and nodes
in Σ. A value is a value-tuple of arity one. We write Vp for
the set of all value-tuples with arity p and abbreviate V1 by
V.

We denote the empty sequence by 〈〉, non-empty sequences
by for example 〈a, b, c〉, and the concatenation of two se-
quences s1 and s2 by s1 ◦ s2. In addition, we will write s(j)
for the j-th item of a sequence s, |s| for the length of s,
rng(s) for the set of items occurring in s, and ~s for a tuple
s1, . . . , sp of sequences.

Renamings
A renaming ρ is a permutation of A ∪ N that is the iden-
tity on the booleans and maps atoms to atoms, element



nodes to element nodes, and text nodes to text nodes. A
node-renaming is a renaming that is the identity on atoms.
Renamings are extended to sets, tuples, and sequences in
the canonical way:

ρ(S) = {ρ(v) | v ∈ S}
ρ((v1, . . . , vp)) = (ρ(v1), . . . , ρ(vp))

ρ(〈v1, . . . , vp〉) = 〈ρ(v1), . . . , ρ(vp)〉

Note that in particular ρ is thus also extended to stores and
value-tuples.

Two value-tuples v and v′ are isomorphic, denoted by v ≡
v′, when there exists a renaming ρ such that ρ(v) = v′.
Two value-tuples v an v′ are node-isomorphic, denoted by
v ≡node v′, when there exists a node-renaming such that
ρ(v) = v′.

3. SYNTAX AND SEMANTICS
We are interested in studying the well-definedness prob-
lem for fragments of “for-where-let-return” XQuery. The
(un)decidability of the well-definedness problem for a certain
fragment depends of course on the set of allowed operations
in this fragment. In order to establish fundamental prop-
erties of these operations which cause (un)decidability, we
introduce the formal concept of a base operation. Base op-
erations serve as a general framework in which the concrete
behavior of XQuery’s basic operations and functions [18] can
be described.

Base operations
Formally, a base operation of arity p is a relation R ⊆ Vp×V
which is

1. Computable: it is effectively decidable, given a value-
tuple v, whether there exists a w such that R(v, w),
and if so, such a w is effectively computable from v.

2. Store-increasing : R only relates value-tuples (Σ;~s) to
values of the form (Σ ◦Σ′; s′) with Σ′ possibly empty.
Hence, R can add trees to a store, but cannot modify
existing trees.

3. Node-generic: for every node-renaming ρ we have

R(v, w) ⇔ R(ρ(v), ρ(w)).

As such, R can only interpret nodes by the informa-
tion given in the input store. Furthermore, nodes
which are added to the input store are chosen non-
deterministically.

4. a Semi-function: R is a function up to node-isomor-
phism: if R(v, w) and R(v, z) then w ≡node z.

5. Reachable-only : R only uses information of those trees
in the input store whose nodes are mentioned in one of
the input sequences. That is, for all sequence-tuples ~s,
all (possibly empty) trees Θ1, . . . , Θk, Θ′

1, . . . , Θ
′
k such

that Θj = Θ′
j if a node of Θj is mentioned in ~s, and all

stores Σ disjoint with Θ1, . . . , Θk, Θ′
1, . . . , Θ

′
k, we have

R((Θ1 ◦ · · · ◦Θk;~s), (Θ1 ◦ · · · ◦Θk ◦Σ; s′))
⇔

R((Θ′
1 ◦ · · · ◦Θ′

k;~s), (Θ′
1 ◦ · · · ◦Θ′

k ◦Σ; s′))

We write R(v) for the set of all values w for which R(v, w)
holds. The first four properties above capture the notion of
a “determinate” transformation from the theory of object-
creating queries [1]. As such, R(v) is finitely representable
and this representation can effectively be computed from v.

Let us give some examples of base operations:

• XQuery’s concatenation operator concat (written as
a comma in XQuery) is a binary base operation that
relates (Σ; s, s′) to (Σ; s ◦ s′).

• XQuery’s children axis is a unary base operation that
relates (Σ; s) with s a sequence of nodes to (Σ; s′)
where s′ is the unique sequence containing the chil-
dren of nodes in s in document order. Formally,

rng(s′) = {n | ∃m ∈ rng(s) : E(m, n)},

and s′(i)� s′(j) when i < j. Note that there are no re-
peated nodes in s′, since � is a strict order. XQuery’s
other axes (i.e., parent , descendant , following-sibling ,
. . . ) can similarly be viewed as unary base operations.

• XQuery’s atomization function data can be modelled
as a unary base operation that relates (Σ; s) to (Σ; s′)
where s′ has the same length as s, and s′(j) is the coer-
cion of s(j) to an atom. That is, s′(j) = s(j) when s(j)
is an atom, s′(j) = λ(s(j)) if s(j) is a text node, and
s′(j) = fold(r) if s(j) is an element node. Here, r is the
unique sequence containing all text node descendants
of s(j) in document order and fold is an abstract func-
tion mapping sequences of text nodes to atoms. In
XQuery, fold returns the string concatenation of the
text nodes’ labels.

• XQuery’s atomic value comparison eq is a binary base
operation that relates (Σ; s, s′) to (Σ; 〈〉) if s or s′ is the
empty sequence, and relates (Σ; 〈a〉, 〈b〉) to (Σ; 〈a =
b〉).3 We will use a C-style notation for comparisons:
a = b evaluates to true when a equals b, and evaluates
to false otherwise.

• XQuery’s node comparisons is and � are binary base
operations that relate (Σ; s, s′) to (Σ; 〈〉) if s or s′ is the
empty sequence, and relate (Σ; 〈n〉, 〈m〉) to (Σ; 〈n =
m〉) respectively (Σ; 〈n�m〉).

• XQuery’s kind tests is-element and is-text are unary
base operations that relate (Σ; 〈n〉) to (Σ; 〈n ∈ N e〉)
respectively (Σ; 〈n ∈ N t〉).4

• XQuery’s node-name function is a unary base oper-
ation that relates (Σ; 〈〉) to (Σ; 〈〉), relates (Σ; 〈n〉) to
(Σ; 〈λ(n)〉) when n ∈ N e, and relates (Σ; 〈n〉) to (Σ; 〈〉)
when n ∈ N t. Conversely, we could also consider an
operation content which behaves like node-name, but
then on text nodes.

3XQuery’s atomic value comparison will actually first atom-
ize its arguments using the data function described earlier,
and then compare the obtained sequences according to our
semantics. This behavior can be simulated in our query lan-
guage XQ(B) defined below as it allows composition of base
operations.
4Kind tests are part of XPath expressions in XQuery,
and are written as for example $x/self::element() or
$x/self::text().



• XQuery’s element node constructor element is a binary
base operation that relates (Σ; 〈a〉, s) to (Σ ◦Θ, 〈n〉)
where Θ is a tree, disjoint with Σ, whose root element
node n is labeled by a, such that there exists a bijection
g from [1, |s|] to the children of n satisfying5

1. g(j) <Θ g(j′) if j is less than j′;

2. g(j) is a text node labeled with s(j) if s(j) is an
atom; and

3. Θ|g(j) ≡node Σ|s(j) if s(j) is a node.

• XQuery’s text node constructor text is a unary base
operation that relates (Σ; 〈a〉) to (Σ ◦Θ, 〈n〉) where Θ
is a tree, disjoint with Σ, whose root text node n is
labeled by a.

• A final example of a unary base operation is XQuery’s
emptiness test function empty which relates (Σ; s) to
(Σ; 〈true〉) when s = 〈〉, and relates (Σ; s) to (Σ; 〈false〉)
otherwise.

Expressions
We create a query language XQ(B) out of a finite set of
base operations B by adding variables, constants, and basic
control-flow as follows. For each base operation R we assume
to be given a base expression f : a unique syntactical entity
which denotes R. For ease of notation we will often not
distinguish between a base operation and its associated base
expression. As such, we will write for example v ∈ f(w) to
denote v ∈ R(w).

The syntax of XQ(B) is defined by the following grammar:

e ::= x | a | () | f(e1, . . . , ep)
| if e1 then e2 else e3

| let x := e1 return e2

| for x in e1 return e2

Here, e ranges over expressions, x ranges over variables, a
ranges over atoms, f ranges over base expressions in B,
and p is the arity of f . We view expressions as abstract
syntax trees and omit parentheses. The set FV (e) of free
variables of an expression e is defined as usual. That is,
the free variables of x is {x}, the free variables of a and
() is the empty set, the free variables of f(e1, . . . , ep) and
if e1 then e2 else e3 is the union of the free variables of
their immediate subexpressions, and the free variables of
let x := e1 return e2 and for x in e1 return e2 is

FV (e1) ∪ (FV (e2) \ {x}).

Semantics
The input to an expression e is described by a context (Σ; σ)
on e, consisting of a store Σ and a function σ from a finite
superset {x, . . . , y} of the free variables of e to sequences of
items such that (Σ; σ(x), . . . , σ(y)) is a value-tuple. A func-
tion from a finite set of variables to sequences of items is
called an environment. We write x : s, σ for the environ-
ment σ′ with domain dom(σ)∪{x} such that σ′(x) = s and
σ′(y) = σ(y) for y 6= x.

5The semantics of XQuery’s element constructor is actu-
ally more complex in the sense that adjacent text nodes
are grouped into one node by concatenating their content.
Since we do not wish to give a concrete interpretation to the
atoms, we discard this behavior.

The semantics of an expression e is described by means of
the evaluation relation, as defined in Figure 2. Here, we
write (Σ; σ) |= e ⇒ (Σ′; s) to denote the fact that e evalu-
ates to value (Σ′; s) on context (Σ; σ) on e. We note that
the disjointness requirements in the rules for base operation
invocation and for loop ensure that different invocations of
a subexpression add different nodes to the input store. We
will write e(Σ; σ) for the set of all values to which e can eval-
uate on context (Σ; σ). It is easy to see that the semantics
of an expression only depends on its free variables: if two
environments σ and σ′ are equal on FV (e), then

(Σ; σ) |= e ⇒ (Σ′; s) ⇔ (Σ; σ′) |= e ⇒ (Σ′; s).

Example 2. XPath expressions like $bib/book can be sim-
ulated in XQ(children, is-element ,node-name, eq) as follows

for $b in children($bib) return

if is-element($b) then

if eq(node-name($b), "book") then $b else ()
else ()

Example 3. XQuery’s quantified expressions can be simu-
lated using the emptiness test. For example,

some $x in data($pubs) satisfies $x eq "ACM"

can be expressed in XQ(eq , data, empty) as follows:

let $z :=

for $x in data($pubs) return

if eq($x,"ACM") then $x else ()
return

if empty($z) then false else true

It immediately follows that generalized comparisons (such
as $pubs = "ACM") can also be simulated using the empti-
ness test, as such comparisons are just syntactic sugar for
quantified expressions like the one shown above.

Example 4. If B contains the base operations children,
data, eq , node-name, and element , then the XQuery expres-
sion from the beginning of Section 1 can be expressed in
XQ(B) as follows.

element("bib",
for $b in $bib/book return

if $b/publisher = "ACM" then

element(data($b/author), $b/title)

else ()
)

For the sake of brevity we have not expanded XPath expres-
sions (such as $bib/book) or generalized comparisons (such
as $b/publisher = "ACM"), as we have already shown how
to simulate these in the previous examples.

When we fix some order on the variables, a context (Σ; σ)
with dom(σ) = {x, . . . , y} is fully determined by the value-
tuple (Σ; σ(x), . . . , σ(y)). Since the semantics of an expres-
sion only depends on its free variables, every expression e



σ(x) = s

(Σ; σ) |= x ⇒ (Σ; s) (Σ; σ) |= a ⇒ (Σ; 〈a〉) (Σ; σ) |= () ⇒ (Σ; 〈〉)

(Σ; σ) |= e1 ⇒ (Σ1; 〈true〉) (Σ; σ) |= e2 ⇒ (Σ2; s2)

(Σ; σ) |= if e1 then e2 else e3 ⇒ (Σ2; s2)

(Σ; σ) |= e1 ⇒ (Σ1; 〈false〉) (Σ; σ) |= e3 ⇒ (Σ3; s3)

(Σ; σ) |= if e1 then e2 else e3 ⇒ (Σ3; s3)

(Σ; σ) |= e1 ⇒ (Σ1; s1)
(Σ1; x : s1, σ) |= e2 ⇒ (Σ2; s2)

(Σ; σ) |= let x := e1 return e2 ⇒ (Σ2; s2)

(Σ; σ) |= ej ⇒ (Σ ◦Σj ; sj) j ∈ [1, p]
Σj is disjoint with Σj′ when j 6= j′

(Σ′; s′) ∈ f(Σ ◦Σ1 ◦ · · · ◦Σp; s1, . . . , sp)

(Σ, σ) |= f(e1, . . . , ep) ⇒ (Σ′, s′)

(Σ; σ) |= e1 ⇒ (Σ0; s) (Σ0; x : 〈s(j)〉, σ) |= e2 ⇒ (Σ0 ◦Σj ; sj) j ∈ [1, |s|]
Σj is disjoint with Σj′ when j 6= j′

(Σ; σ) |= for x in e1 return e2 ⇒ (Σ0 ◦ · · · ◦Σ|s|; s1 ◦ · · · ◦ s|s|)

Figure 2: The evaluation relation

hence defines a relation on Vp × V, where p is the number
of free variables in e. It is then possible to show that ev-
ery expression defines a computable, store-increasing, node-
generic, reachable-only semi-function.

Proposition 5. Every expression e in XQ(B) defines a base
operation.

4. WELL-DEFINEDNESS
The evaluation of an expression e on an input (Σ; σ) may
be undefined, i.e., e(Σ; σ) = ∅. For instance, the expression
of Example 4 returns the empty result when $bib contains
a book node which is published by ACM and is written by
multiple authors. Indeed, the element constructor does not
relate any value to value-tuples of the form (Σ; s, s′) with s
not a singleton atom.

Since the fact that e is undefined on (Σ; σ) models the situ-
ation where an actual implementation would produce a run-
time error, it is a natural question to ask wether we can
check, given an expression e and a (possibly infinite) set S
of contexts on e, whether e is defined on every context in S.
The answer to this problem clearly depends on both the set
B of base operations and the class of context sets used as
inputs. For the purpose of this paper we will focus on the
class of context sets specified by a bounded-depth version of
the XQuery type system. This class is rich enough to model
the typical data processing scenario of XQuery where the
input consists of a tuple of input trees, which are processed
starting from the top. Indeed, it is a public secret that most
XML documents in practice have nesting depth at most five
or six, and that unbounded-depth nesting is hence often not
needed.

Formally, a type is a term generated by the following gram-
mar:

τ ::= atom | text | element(a, τ)
| empty | τ + τ | τ ◦ τ | τ∗

A type denotes a set of values, as defined in Figure 3. Here
we denote the empty store by ∅ and trees by Θ. For ease

of notation we will not distinguish between a type and its
denotation. A type assignment Γ on an expression e is a
function from the free variables {x, . . . , y} of e to types. A
type assignment denotes the set of contexts

{(Σx ◦ · · · ◦Σy; σ) | (Σz; σ(z)) ∈ Γ(z)

for all z ∈ {x, . . . , y}}.

Again we will not distinguish between a type assignment
and its denotation.

Definition 6. Let B be a finite set of base operations. We
say that e ∈ XQ(B) is well-defined under a type-assignment
Γ on e if e(Σ; σ) 6= ∅ for every context (Σ; σ) ∈ Γ. The
well-definedness problem for XQ(B) consists of checking, for
a given expression e ∈ XQ(B) and a given type assignment
Γ on e, whether e is well-defined on Γ.

It is not obvious that the well-definedness problem is decid-
able. Indeed, we will next identify several properties of B
which can make the problem undecidable.

4.1 Non-monotonic behavior

Definition 7. Let B be a finite set of base operations. Let
e be an expression in XQ(B) and let Γ be a type assignment
under which e is well-defined. We say that e is satisfiable
under Γ if there exists a context (Σ; σ) ∈ Γ such that s is
non-empty for every value (Σ′; s) ∈ e(Σ; σ). The satisfiabil-
ity problem for XQ(B) consists of checking, given e and Γ,
whether e is satisfiable under Γ.

Note that, since every expression defines a semi-function by
Proposition 5, s is non-empty for some (Σ′; s) ∈ e(Σ; σ)
if, and only if, all values in e(Σ; σ) have a non-empty list.
Hence, e is satisfiable under Γ if, and only if, there exists a
context (Σ; σ) ∈ Γ and a value (Σ′; s) in e(Σ; σ) such that s
is non-empty.

The satisfiability problem is reducible to the well-definedness
problem. Indeed, let e be an expression in XQ(B) and let Γ



a ∈ A
(∅; 〈a〉) ∈ atom

n ∈ N t is Θ’s root

(Θ, 〈n〉) ∈ text

n ∈ N e is Θ’s root λΘ(n) = a
EΘ(n) = {n1, . . . , nk} n1 <Θ . . . <Θ nk

(Θ|n1 ◦ · · · ◦Θ|nk ; 〈n1, . . . , nk〉) ∈ τ

(Θ, 〈n〉) ∈ element(a, τ) (∅, 〈〉) ∈ empty

(Σ, s) ∈ τ1 or (Σ, s) ∈ τ2

(Σ, s) ∈ τ1 + τ2

(Σ1, s1) ∈ τ1 (Σ2, s2) ∈ τ2

Σ1 is disjoint with Σ2

(Σ1 ◦Σ2, s1 ◦ s2) ∈ τ1 ◦ τ2

(Σ1, s1) ∈ τ · · · (Σp, sp) ∈ τ p ≥ 0
Σj is disjoint with Σj′ when j 6= j′

(Σ1 ◦ · · · ◦Σp, s1 ◦ . . . ◦ sp) ∈ τ∗

Figure 3: The denotation of types.

be a type assignment under which e is well-defined. Then e
is unsatisfiable under Γ if, and only if, the expression

for x in e return (if () then () else ())

is well-defined under Γ. Indeed, since the subexpression
if () then () else () is always undefined, it follows that
the whole expression is defined if, and only if, e always re-
turns the empty list. In earlier work [21] we have already ob-
tained the following proposition for a set-based data model,
which parallels earlier results on semistructured query lan-
guages such as StruQL [12]:

Proposition 8. If B includes the base operations concat,
children, eq, node-name, content, element, and empty, then
XQ(B) can simulate the relational algebra. Concretely, for
every relational algebra expression φ over database schema
S there exists eφ ∈ XQ(B) and a type assignment ΓS such
that

• eφ is well-defined under ΓS,

• ΓS contains encodings of all databases over S, and,

• eφ evaluated on an encoding of database D equals an
encoding of φ(D).

Consequently, satisfiability (and hence well-definedness) is
undecidable for XQ(B) above because it is undecidable for
the relational algebra. Note, however, that every expression
in the monotone fragment of the relational algebra (i.e., the
relational algebra without difference where selection only
tests equality on attributes) is satisfiable. The satisfiability
problem for the monotone relational algebra is hence triv-
ially decidable. In the hope of finding XQ(B) for which the
well-definedness is decidable, it is therefore worthwhile to re-
strict ourselves to those base operations which are in a sense
also “monotone”. For this purpose, we adapt the notion
of (unordered) complex object containment [4] to (ordered)
values.

Containment
Intuitively, a store Σ is contained in a store Σ′ if Σ can be
obtained by removing nodes from Σ′ in such a way that if
we remove a node, we also remove all of its descendants.
Formally, Σ is contained in Σ′ when every component of
Σ is a subset of the corresponding component of Σ′ i.e.,
VΣ ⊆ VΣ′ , EΣ ⊆ EΣ′ , λΣ ⊆ λΣ′ , <Σ ⊆ <Σ′ , ≺Σ ⊆ ≺Σ′ , and
roots(Σ) ⊆ roots(Σ′).6

6Containment is closely related to the notion of simula-
tion [7]: there exists a simulation from Σ to Π which re-

Example 9. Consider the three stores depicted in Figure 4.
It is easy to verify that Σ2 is contained in Σ3. Store Σ1 is
not contained in Σ2 however, as n1 is a root in Σ1, but not
in Σ2. It can similarly be seen that Σ1 is also not contained
in Σ3.

By the same intuition as above, a sequence s is contained
in a sequence s′ if s can be obtained from s′ by deleting
items. Formally, s is contained in s′ if there exists a strictly
increasing function h : [1, |s|] → [1, |s′|] such that s(j) =
s′(h(j)) for every j ∈ [1, |s|]. Such a function h is called a
witness of the fact that s is contained in s′.

Example 10. Consider the sequences s = 〈a, b, c〉 and s′ =
〈a, b, b, a, c〉. Then s is contained s′, as witnessed by the
function h : [1, 3] → [1, 5] with h(1) = 1, h(2) = 2, and
h(3) = 5. In contrast, when s = 〈a, a, b, c〉 then s is not
contained in s′, as we cannot obtain s from s′ simply by
deleting items in s′.

Containment extends naturally to value-tuples: a value-
tuple (Σ; s1, . . . , sp) is contained in a second value-tuple
(Σ′; s′1, . . . , s

′
p) if Σ is contained in Σ′ and every sj is con-

tained in the corresponding s′j . Finally, we lift the contain-
ment relation to sets of value-tuples: SvS′ if, and only
if, for every v′ ∈ S′ there exists v ∈ S such that v is con-
tained in v′. In what follows we will denote the containment
relation on stores, sequences, value-tuples and sets of value-
tuples by v.

Monotonicity
A relation R ⊆ Vp × V is monotone if for all v and w in Vp

with R(v) 6= ∅, R(w) 6= ∅, and vvw we have R(v)vR(w).

Example 11. The concatenation operator concat is clearly
monotone. The children axis is also monotone. Indeed, let
(Σ; s)v(Σ′; s′) and suppose that children is defined on (Σ; s)
and (Σ′; s′). Since sv s′ we know that every node mentioned
in s is also mentioned in s′. Furthermore, since ΣvΣ′ we
know the set of children of a node n in Σ is a subset of the
set of children of n in Σ′. Finally, since ΣvΣ′ we know that
if n precedes m in document order in Σ, it also precedes m
in document order in Σ′. Hence, if (Σ; t) is the result of

spects document order and relates all roots of Σ to roots of
Π if, and only if, there exists a store Σ′, node-isomorphic to
Π, such that Σ is contained in Σ′.
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Figure 4: Containment of stores. Store Σ1 is not contained in Σ2 or in Σ3. Store Σ2 is contained in Σ3.

children on (Σ, s) and (Σ′; t′) is the result of children on
(Σ′; s′), then it is easily seen that tv t′. Therefore,

children(Σ; s) = {(Σ; t)}v{(Σ′; t′)} = children(Σ′; s′),

as desired.

We can generalize example 11 as follows:

Proposition 12. The base operations concat, children, par-
ent, preceding-sibling, following-sibling, descendant, ances-
tor, eq, is, is-element, is-text, �, node-name, content, el-
ement, and text are all monotone.

Note that if our restriction to monotone base operations is
to have any chance of leading to XQ(B) for which well-
definedness is decidable, empty must be non-monotone. In-
deed, all other base operations mentioned in Proposition 8
are monotone by Proposition 12. Fortunately:

Example 13. The emptiness test is not monotone. In-
deed, let Σ be a store. The emptiness test relates (Σ; 〈〉)
only to (Σ; 〈true〉) and (Σ; 〈a〉) only to (Σ; 〈false〉). How-
ever, 〈true〉 6v 〈false〉, although (Σ; 〈〉)v(Σ; 〈a〉).

We also note that the atomization function data, depending
on the concrete interpretation of the function fold , is poten-
tially not monotone. Indeed, suppose for example that fold ,
when viewed as a base operation, relates (Σ; 〈〉) to (Σ; 〈a〉)
and relates (Σ; s) with s a non-empty sequence of text nodes
to (Σ; 〈b〉) for some b 6= a.7 Then fold (and hence data)
is clearly not monotone. Our definition of monotonicity is
not being overly restrictive, since with this interpretation of
fold we can simulate an emptiness test in XQ(B). Indeed,
empty(e) is simulated by

eq(data(element(c, for x in e return c)), a).
7The actual interpretation of fold in XQuery has this kind of
behavior: it relates the empty sequence to the empty string,
and non-empty sequences to non-empty strings.

Here, c is an atom. As such, we obtain that XQ(concat , chil-
dren, eq , node-name, content , element , data) is at least as
expressive as XQ(concat , children, eq , node-name, content ,
element , empty). Its well-definedness problem is hence also
undecidable. This reasoning clearly illustrates that auto-
matic coercions, such as the one performed by atomization,
are not harmless with regard to deciding well-definedness.

We note that monotonicity transfers from base operations
to expressions:

Proposition 14. If B is a finite set of monotone base oper-
ations then every expression in XQ(B) defines a monotone
relation.

4.2 Interpretation of atoms
Another potential source of undecidability is the interpreta-
tion of atoms by base operations. Indeed, suppose that B
includes base operations + and × which interpret the atoms
as integers and simulate the addition respectively multipli-
cation on them. That is, + and × relate (Σ; 〈k〉, 〈l〉) to
(Σ; 〈k + l〉) respectively (Σ; 〈k × l〉). Note that + and ×
are monotone. It is easy to see that for every polynomial
P (x1, . . . , xk) with integer coefficients there exists an ex-
pression eP with free variables x1, . . . , xk that simulates P .
Hence, the expression

if eq(eP , 0) then (if () then () else ()) else ()

is well-defined under the type assignment which maps ev-
ery xj to atom if, and only if, the Diophantine equation
P (x1, . . . , xk) = 0 has no integer solution. Since we now
have a reduction from Hilbert’s undecidable tenth prob-
lem [19], well-definedness for XQ(B) is undecidable.

We will therefore restrict ourselves to base operations which
cannot interpret the atoms, except for the booleans true and
false. Formally, we require base operations R to be generic:
for every renaming ρ we have w ∈ R(v) ⇔ ρ(w) ∈ R(ρ(v)).



It is easy to see that all base operations mentioned in Sec-
tion 3, except data (depending on the concrete interpreta-
tion of fold), are generic.

Proposition 15. The base operations concat, children, par-
ent, preceding-sibling, following-sibling, descendant, ances-
tor, eq, is, is-element, is-text, �, node-name, content, el-
ement, text, and empty are all generic.8

Note that hence genericity alone is not powerful enough to
prevent the construction of XQ(concat , children, eq , node-
name, content , element , empty) for which well-definedness
is undecidable.

An easy induction shows:

Proposition 16. If B is a finite set of generic base op-
erations, then for every expression e ∈ XQ(B) and every
renaming ρ which is the identity on the atoms mentioned in
e we have v ∈ e(Σ; σ) ⇔ ρ(v) ∈ e(ρ(Σ; σ)).

4.3 Non-local behavior
In this section we will show that, even if B is a set of
monotone and generic base operations, well-definedness for
XQ(B) need not be decidable. In order to illustrate this
statement, we first note that the containment problem for
XQ(concat) is undecidable:9

Proposition 17. It is undecidable to check, given expres-
sions e1 and e2 in XQ(concat) with the same set of free
variables and a type assignment Γ under which e1 and e2

are well-defined, whether e1(v)v e2(v) for every v ∈ Γ. This
is true, even when we only allow type assignments in which
every context has depth at most one.

The proof largely resembles that of Ioannidis and Ramakr-
ishnan, who have shown that containment of unions of con-
junctive queries on bags is undecidable [15].

The undefinedness behavior of base operations such as eq ,
children, and element is quite simple: one of the input se-
quences contains two or more items; the input sequence con-
tains an atom where it should only contain nodes; or the first
input sequence is not a singleton atom, respectively. Base
operations with more complex undefinedness behavior are
problematic with regard to well-definedness checking, as the
following corollary to Proposition 17 shows.

Corollary 18. Let check be the base operation which relates
(Σ; s, s′) to (Σ; 〈〉) if sv s′ and which is undefined otherwise.
The well-definedness problem for XQ(check,concat) is unde-
cidable.10

Crux. It is easy to see that expressions in XQ(concat) do not
create new nodes. Therefore, if e is an expression in XQ(B)
and (Σ; σ) is an environment on which e is defined, then
every value in e(Σ; σ) is of the form (Σ; s). Moreover, let

8Remember that renamings are the identity on the booleans.
This explains why for example eq can be generic.
9We note that, in contrast, the corresponding problem in a
set-based data model is decidable [10].

10We note that check is not a base operation in XQuery. Our
aim here is merely to show that complex undefinedness be-
havior can significantly influence the well-definedness prob-
lem.

(Σ; s) and (Σ; s′) be two values in e(Σ; σ). Since e defines a
semi-function (Proposition 5), there exists a node-renaming
ρ such that ρ(Σ; s) = (Σ; s′). Since hence ρ(Σ) = Σ and
since stores are ordered, ρ must be the identity function on
nodes in Σ. Hence, s = ρ(s) = s′, i.e., (Σ; s) = (Σ; s′).
Thus, expressions in XQ(concat), when defined, evaluate to
exactly one value.

Then let e1 and e2 be two expressions in XQ(concat) with
the same set of free variables and let Γ be a type assignment
under which e1 and e2 are well-defined. By our earlier ob-
servations it follows that check(e1, e2) is well-defined under
Γ if, and only if, e1(Σ; σ)v e2(Σ; σ) for every (Σ; σ) ∈ Γ.
Since we now have a reduction from the containment prob-
lem for XQ(concat), which is undecidable by Proposition 17,
it follows that well-definedness for XQ(concat , check) is also
undecidable.

Note however that concat and check are both monotone and
generic. Hence, monotonicity and genericity alone do not
imply decidability. Furthermore:

Proposition 19. The satisfiability problem for XQ(check,
concat) is decidable.

Hence, solving the satisfiability problem is not sufficient to
solve well-definedness.

The core difficulty with XQ(check ,concat) is that check ’s
undefinedness on a certain input depends on the whole in-
put, and not on a local part of it. We will therefore restrict
ourselves to base operations which are undefined on an in-
put due to a local reason. We make this notion precise as
follows.

Requirements
A requirement w is a tuple (V ; P1, . . . , Pp) where V is a set
of nodes and the Pj are subsets of the natural numbers. Let
w = (Σ; s1, . . . , sp) be a value-tuple. We say that w is a
requirement on w when V is a subset of the nodes in Σ and
Pj is a subset of [1, |sj |], for every j ∈ [1, p]. A value-tuple
(Σ′; s′1, . . . , s

′
p) satisfies w on w if (Σ′; s′1, . . . , s

′
p)vw, V is

a subset of the nodes in Σ′, and for every j ∈ [1, p] there
exists a witness hj for s′j v sj such that Pj ⊆ rng(hj). Note
that w itself trivially satisfies w on w. We will denote the
set of all value-tuples which satisfy w on w by [w, w].

Example 20. As an example, (∅; {2}) is clearly a require-
ment on (Σ; 〈n, a, m, a〉). Furthermore, the value (∅; 〈a〉)
satisfies (∅; {2}) on (Σ; 〈n, a, m, a〉). Indeed, it is clear that
(∅; 〈a〉)v(Σ; 〈n, a, m, a〉), and that ∅ is a subset of the nodes
in ∅. Moreover, the function which maps 1 to 2 is a witness
of 〈a〉v〈n, a, m, a〉 whose range obviously includes {2}. The
value (∅; 〈m, a〉) does not satisfy (∅; {2}) on (Σ; 〈n, a, m, a〉)
however. Indeed, there exists no witness h of

〈m, a〉v〈n, a, m, a〉

for which {2} ⊆ rng(h).

Locally-undefinedness
Let R ⊆ Vp × V be a relation and let w ∈ Vp such that
R(w) = ∅. A requirement w on w is a reason why R(w) = ∅
if R(v) = ∅ for every v ∈ [w, w]. Intuitively, a reason why



R(w) = ∅ describes a “part” of w which causes R to be
undefined on w.

The size of a requirement w = (V ; P1, . . . , Pp), denoted by
|w|, is the maximum of |V |, |P1|, . . . , |Pp|. We say that R
is locally-undefined if there exists a constant k such that for
every v on which R is undefined there exists a reason why
R(v) = ∅ of size at most k. We call k a witness of the fact
that R is locally-undefined. Intuitively, a locally-undefined
base operation cannot base its decision to be undefined on
a certain input on the whole input, but only on a small part
of it.

Example 21. XQuery’s children axis is locally-undefined
with witness k = 1. Indeed, suppose that children is un-
defined on w = (Σ; s). This only happens if there exists
j ∈ [1, s] such that s(j) is a atom. Let w be the requirement
(∅; {j}) on (Σ; s). It is clear that w has size one. Further-
more, let (Σ′; s′) ∈ [w, w]. Since there then exists a witness
h of s′v s with {j} ⊆ rng(h), there exists i ∈ [1, |s′|] such
that h(i) = j. It follows that s′ also mentions an atom
since s′(i) = s(h(i)) = s(j). Hence, children is undefined on
(Σ′; s′) and w is a reason why children(w) = ∅.

We can generalize generalize Example 21 as follows:

Proposition 22. The base operations concat, children, par-
ent, preceding-sibling, following-sibling, descendant, ances-
tor, data, eq, is, �, is-element, is-text, node-name, con-
tent, element, text, empty, +, and × are all locally unde-
fined.

Note that hence locally-undefinedness alone is not powerful
enough to prevent the construction of XQ(concat , children,
eq , node-name, content , element , empty) and XQ(+,×), for
which well-definedness is undecidable.

Unfortunately, locally-undefinedness does not transfer from
base-operations to expressions, a fact which can also cause
trouble:

Proposition 23. There exists a finite set B of monotone,
generic, and locally-undefined base operations for which there
exist non-locally-undefined expressions in XQ(B) and for
which the well-definedness problem of XQ(B) is undecidable.

The core difficulty with this set of base operations B is that
it contains a base operation which is non-local in the sense
that a part of the output can not necessarily be attributed
to a “small” part of the input. We will therefore restrict
ourselves to base operations where every part of the output
depends only on a local part of the input. We make this
notion precise as follows.

Locality
We say that R is local if there exists a computable increas-
ing function c mapping natural numbers to natural numbers
such that for every input v, every w ∈ R(v), and every re-
quirement w on w there exists a requirement v on v of size
at most c(|w|) such that for every u ∈ [v, v], if R(u) 6= ∅
then R(u) ∩ [w, w] 6= ∅. We call c a witness of the fact that
R is local.

Intuitively, w describes part of the output of R on v. The
fact that R(u) ∩ [w, w] 6= ∅ for every u ∈ [v, v] intuitively

indicates that v is a part of the input v which causes w to
be part of the output. The fact that v cannot be greater
than c(|w|) indicates that v is local.

Example 24. The kind test is-element is local as witnessed
by the identity function. Indeed, let w ∈ is-element(v) for
some v. Since is-element(v) is hence defined, we know that
v is of the form v = (Σ; 〈n〉). By definition of is-element ,
w = (Σ; 〈n ∈ N e〉). Let w = (V ; P ) be a requirement on w.
Note that in particular P ⊆ {1}. Then take v = (V ; ∅). It
is clear that v is a requirement on v of size at most |w|. Let
u ∈ [v, v] and suppose that is-element(u) is defined. Note
that hence the sequence of u must be a singleton node. Since
also u ∈ [v, v] it follows that u is of the form

u = (Σ′; 〈n〉)

with Σ′vΣ and V a subset of the nodes in Σ′. Then

is-element(u) = {(Σ′; 〈n ∈ N e〉)}.

Moreover, it is clear that (Σ′; 〈n ∈ N e〉)v(Σ; 〈n ∈ N e〉).
Finally, since P ⊆ {1}, it follows that the identity function
is certainly a witness of 〈n ∈ N e〉v〈n ∈ N e〉 whose range
includes P . Hence, is-element(u) ∩ [w, w] 6= ∅, as desired.

We can generalize Example 24 as follows:

Proposition 25. The base operations concat, children, par-
ent, preceding-sibling, following-sibling, descendant, ances-
tor, data, eq, is, �, is-element, is-text, node-name, con-
tent, element, text, empty, +, ×, and check are all local.

Note that hence locality alone is not powerful enough to
prevent the construction of XQ(concat , children, eq , node-
name, content , element , empty), XQ(+,×), and XQ(concat ,
check), for which well-definedness is undecidable.

Locally-undefinedness transfers to expressions if B only in-
cludes monotone, local, and locally-undefined base opera-
tions:

Proposition 26. If B is a finite set of monotone, local,
and locally-undefined base operations, then every expression
e in XQ(B) also defines a locally-undefined relation. More-
over, a witness of this locally-undefinedness can be effectively
computed from e.

5. DECIDABILITY RESULT
The conditions on B proposed in Section 4 are strong enough
to guarantee decidability. To see why, we first introduce the
following notions.

Definition 27. The size |Σ| of a store Σ is the number
of nodes in Σ. The size |(Σ; s1, . . . , sp)| of a value-tuple
(Σ; s1, . . . , sp) is the sum |Σ|+ |s1|+ · · ·+ |sp|.

Lemma 28. For every type τ there exists a computable,
increasing function cτ mapping natural numbers to natural
numbers such that for every w ∈ τ and every requirement
w on w there exists v ∈ [w, w] ∩ τ of size at most cτ (|w|).
Moreover, an arithmetic expression defining cτ is effectively
computable from τ .

Theorem 29. If B is a finite set of monotone, generic,
local, and locally-undefined base operations then the well-
definedness problem for XQ(B) is decidable.



Proof. Suppose that e ∈ XQ(B) is not well-defined under
type assignment Γ on e. Then there exists some context
w ∈ Γ such that e(w) = ∅. By Proposition 26 there exists a
natural number k, computable from e, and a requirement w
on w of size at most k such that e(v) = ∅ for all v ∈ [w, w].
By Lemma 28 there exists v ∈ [w, w] ∩ Γ of size at most

l :=
X

x∈FV (e)

cΓ(x)(k).

Here, cΓ(x) is a function for which a defining arithmetic ex-
pression is computable from Γ(x), for every x ∈ dom(Γ).
Hence, l is computable from e and Γ. Note that e(v) = ∅.
It is easy to see that v contains at most l nodes and that v
can mention at most l different atoms. Let N be a set of
nodes consisting of l element nodes and l text nodes. Let
A be a set of atoms containing all constants mentioned in e
and l other atoms. Then surely there exists a renaming ρ
which is the identity on constants in e such that ρ(v) con-
tains only nodes in N and mentions only atoms in A. By
Proposition 16, e(ρ(v)) is also undefined.

Hence, in order to check if e is well-defined under Γ it suffices
to enumerate all contexts v′ ∈ Γ of size at most l with nodes
in N and atoms in A, and check whether e(v′) is defined.
There are only a finite number of such v′, from which the
result follows.

Since all base operations mentioned in Section 3, except data
and empty , are monotone, generic, locally-undefined and lo-
cal by Propositions 14, 22, and 25, it follows in particular:

Corollary 30. Well-definedness for XQ(concat, children,
parent, preceding-sibling, following-sibling, descendant, an-
cestor, eq, is, �, node-name, content, is-element, is-text,
element, text) is decidable.

Since satisfiability reduces to well-definedness, as we have
noted in Section 4.1, it follows that satisfiability for this
fragment is hence also decidable.

In contrast, the semantic type-checking problem (i.e., is, for
every input in a given input type, the output of a given
expression always in a given output type) for this fragment
is undecidable [3].

6. CONCLUSION
We have shown that well-definedness for XQ(B) is decidable
if B contains only generic, monotone, local, and locally-
undefined base operations. Violation of any one of these
conditions allows the definition of a language for which well-
definedness is undecidable.

It is clear however that the number of possible counter-
examples we need to check according to decision procedure
outlined in the proof of Theorem 29 can grow huge very
fast. Hence the obvious question for future work: what is
the computational complexity of well-definedness?
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