
Analyzing Trajectories using Uncertainty and
Background Information

Bart Kuijpers, Bart Moelans, Walied Othman, and Alejandro Vaisman

Hasselt University & Transnational University of Limburg, Belgium
{bart.kuijpers,bart.moelans,

walied.othman,alejandro.vaisman}@uhasselt.be

Abstract. A key issue in clustering data, regardless the algorithm used,
is the definition of a distance function. In the case of trajectory data, dif-
ferent distance functions have been proposed, with different degrees of
complexity. All these measures assume that trajectories are error-free,
which is essentially not true. Uncertainty is present in trajectory data,
which is usually obtained through a series of GPS of GSM observations.
Trajectories are then reconstructed, typically using linear interpolation.
A first source of error in trajectory are the GPS observations themselves,
since many reported points lie outside the road network. Thus, the users
position must be matched to a map, leading to the problem of map
matching. A well-known model to deal with uncertainty in a trajectory
sample, uses the notion of space-time prisms (also called beads), to esti-
mate the positions where the object could have been, given a maximum
speed. Thus, we can replace a (reconstructed) trajectory by a necklace
(intuitively, a a chain of prisms), connecting consecutive trajectory sam-
ple points. When it comes to clustering, the notion of uncertainty requires
appropriate distance functions. The main contribution of this paper is the
definition of a distance function that accounts for uncertainty, together
with the proof that this function is also a metric, and therefore it can
be used in clustering. We also present an algorithm that computes the
distance between the chains of prisms corresponding to two trajectory
samples. Finally, we discuss some preliminary results, obtained cluster-
ing a set of trajectories of cars in the center of the city of Milan, using
the distance function introduced in this paper.

1 Introduction

Moving object databases The study of Moving Object Databases (MODs) [7,21]
has been increasingly attracting the attention of the GIS (Geographic Infor-
mation Systems) community. Most of the time, in this field, a moving object’s
trajectory is obtained from trajectory samples, i.e., finite sequences of time-space
points. A trajectory sample database contains a finite number of labeled trajec-
tory samples. There are various ways of reconstructing trajectories from tra-
jectory samples, of which linear interpolation is the most popular one [7]. An
important issue in these databases is the problem of uncertainty, arising from
various sources (e.g., errors in measurements, interpolation). The uncertainty of

the moving object’s position in between sample points has been studied using
space-time prisms or beads, where it is assumed that besides the time-stamped
locations of the object also some background knowledge is known, like, for in-
stance, a speed limit vmax at a location (xi, yi). Informally, the space-time prism
between two consecutive sample points is defined as the collection of space-time
points where the moving objects may have passed, given the speed limitation.

Clustering One of the most common data mining techniques is Clustering [9].
This technique partitions the dataset into collections of data objects, such that
within each partition the objects are ‘similar’ to each other and ‘different’ from
the objects contained in other partitions. In the context of moving object data,
the clustering technique is aimed at identifying groups of objects that followed
similar trajectories. These kinds of data present particular problems for cluster-
ing. Clustering moving object trajectories requires, for example, finding out a
proper spatial granularity level, and it is not obvious to identify the best clus-
tering algorithm among the wide corpus of work on the subject. In the presence
of uncertainty, the problem of representing a trajectory of moving objects and
formalizing the notion of trajectory similarity is even more involved. This issue
takes us to the problem we address in this paper: studying a distance function
that accounts properly for the notion of uncertainty.

1.1 Problem statement and contributions

There exist two classic approaches to trajectory clustering: one based on the
notion of similarity, typically operationalized through a so-called distance func-
tion between trajectories. A second approach is denoted trajectory-specific, and
exploits the characteristics of the data type in the clustering algorithm. In this
paper we position ourselves in the first group: we study the impact over clus-
tering of the uncertainty of trajectory samples, by means of the definition of
a distance function that accounts for the uncertainty involved in a trajectory.
In short, a distance function measures the similarity of two trajectories. Many
different distance functions can be defined (we give a formal definition, and a re-
view, later in the paper), ranging from the most simple ones (like, for instance,
clustering trajectories with the same origin and/or destination), to very com-
plex mathematical functions. The former are obviously more computationally
efficient, probably at the expense of returning less reliable clusters.

A well-known model to deal with uncertainty in a trajectory sample, uses the
notion of space-time prisms (also called beads), to estimate the positions where
the object could have been, given a maximum speed. We therefore introduce a
distance function that accounts for uncertainty, and prove that this function is a
metric which can be used to cluster trajectory (and hence, uncertain) data. Given
two trajectory samples T1 and T2, their uncertainty is represented by two chains
of space-time prisms (also called lifeline necklaces), N1 and N2, respectively,
that connect consecutive sample points of each trajectory. Intuitively, in our
proposal, the largest the intersection of the necklaces with respect to their union,
the smallest the distance between both trajectories. In other words, the more

uncertainty shared by T1 and T2, the closer they are. On the other hand, if N1

and N2 do not intersect, this indicates that these trajectories could not have met,
given the speed limit. Then, a clustering algorithm will not group together these
two trajectories. We also present an algorithm that, given the chains of space-
time prisms of two trajectories, computes the distance between them. Finally,
we present preliminary experiments, clustering a set of data corresponding to
movement of cars in the center of the city of Milan, using the distance function
we introduce in this paper.

In Section 2 we review related work on clustering and space-time prisms.
Section 3 introduces the concepts of space-time prisms and their relation with
uncertainty and background information. In Section 4 we introduce the new
distance function, denoted du, and we show it is a metric apt for trajectory
clustering. Section 5 presents an algorithm to compute du. Section 6 presents
preliminary experimental results. We conclude in Section 7.

2 Related work

Space-time prims and uncertainty In this paper we work with trajectory samples,
which are well-known in MODs, namely finite sequences of time-space points. A
trajectory sample database contains a finite number of labeled trajectory sam-
ples. There are various ways of reconstructing trajectories from samples, of which
linear interpolation is the most popular in the literature [7]. However, linear in-
terpolation relies on the (rather unrealistic) assumption that between sample
points, an object moves at constant minimal speed. It is more realistic to as-
sume that moving objects have some physically determined speed bounds. Given
such upper bounds, an uncertainty model has been proposed which constructs
space-time prisms between two consecutive space-time points in a trajectory
sample. Basic properties of this model were discussed a few years ago by Egen-
hofer et al. [3] and Pfoser et al. [17], but space-time prisms were already known
in the time-geography of Hägerstrand in the 1970s [8]. In short, a space-time
prism is the intersection of two cones in the space-time space such that all pos-
sible trajectories of the moving object between the two consecutive space-time
points, given the speed bound, are located within them. Space-time prisms man-
age uncertainty more efficiently than other approaches based on cylinders [21].
A chain of space-time prisms connecting consecutive trajectory sample points is
called a lifeline necklace [3].

Trajectory clustering As we mentioned above, there are mainly two approaches
to the problem of trajectory clustering: one is the classic distance-based, the
other is denoted trajectory-specific clustering [16]. We first comment on the
latter approach.

In one of the first works on trajectory clustering, Ketterlin [10] presents
an structured methodology for discovering patterns in sequences of composite
objects. These objects, basically time-series data, can be considered an abstract
representation of a trajectory (i.e., a composite object may be described as a

sequence of simpler data). The author studies the generalization of sequences of
complex objects, and integrate this in a general-purpose clustering algorithm.
This generalization-based approach, together with the limitation to time-series,
could be considered as shortcomings of this first approach.

Another proposal applies to trajectories some multidimensional scaling tech-
nique for non-vectorial data. This is performed in Fastmap [5], where a data
space is mapped to an Euclidean space approximately preserving the distances
between objects. Then, any standard clustering algorithm for vectorial data can
be applied.

Gaffney and Smyth [6] use a different approach, denoted model-based clus-
tering. They work with continuous trajectories, grouping together objects which
likely to be generated from a common core trajectory, by adding Gaussian noise.
In this way, a cluster contains all objects which can be obtained by a regres-
sion function. The problem of this approach is the lack of flexibility for different
application contexts.

Typically, the distance between two trajectories is computed by fixing two
time instants and considering points within this interval. Clustering trajectory
data usually produces clusters containing geographically close trajectories. A
classical approach for clustering trajectories, is to adapt traditional algorithms
like k-means or hierarchical clustering, to the trajectory setting, leading to the
notion of distance-based clustering.

Nanni [14] defines a distance measure that describes the similarity of trajecto-
ries of objects across time, computed by analyzing the way the distance between
the objects varies. He considers only pairs of contemporary instantiations of ob-
jects, i.e., for each time instant compares the positions of the objects at that
moment, aggregating the set of distance values obtained this way. The distance
between trajectories is computed as the average distance between objects:

D(τ1; τ2) | T =

∫
T
d(τ1(t); τ2(t))dt
| T |

where d() is the Euclidean distance over R2, T is the temporal interval over
which trajectories τ1 and τ2 exist, and τi(t) is the position of object τi at time
t. This is the more general expression. However, the author showed that due to
the piece-wise linearity of the trajectories, the distance can be computed as a
finite sum by means of O(n1 + n2) Euclidean distances, where n1 and n2 are
the number of observations for τ1 and τ2.

Other proposals compute the longest common subsequence of two series [19],
and the least common sub-sequence of two series, and take these measures as
the distance between trajectories [1].

A different line of work is Density-based clustering, which can be considered
as a combination of the two approaches mentioned above. Initially proposed
by Ester et al. [4], clusters are populated by objects which can reach each other
through densely populated regions, instead of objects close to each other. In other
words, these algorithms agglomerate objects in clusters based on the population
within a given region. This form of clustering is used in the OPTICS algorithm,

proposed by Ankerst et al. [2]. It is particularly well-suited to trajectory clus-
tering, given that trajectories of cars in urban traffic tend to agglomerate in
non-convex clusters, and that many outlier trajectories should be considered as
noise. Nanni and Pedreschi [15] generalize the spatial notion of distance between
objects to a spatio-temporal notion of distance between trajectories, leading to a
natural extension of the density-based clustering technique to trajectories. More
recently, the concept of progressive clustering has been introduced, as a pro-
cess that, using a visual analytics approach, starts from the simpler functions
to complex ones, in an incremental way [18], using an iterative approach that
filters clusters using simpler but efficient distance functions in the firsts steps.

3 A model for moving object data with uncertainty

A well-known model for the management of the uncertainty of the moving ob-
ject’s position in between sample points is the space-time prism model, where
it is assumed that besides the time-stamped locations of the object, also some
background knowledge, in particular a (e.g., physically or law imposed) speed
limitation vi at location (xi, yi) is known. The space-time prism between two
consecutive sample points is defined as the set of time-space points where the
moving objects may have passed, respecting the speed limitation. The chain of
space-time prisms connecting consecutive trajectory sample points is called a
lifeline necklace [3].

In this paper we focus on space-time prisms on road networks. Early adapta-
tions of the space-time prism model to road networks were done by Miller [12,13].
We view road networks as a graph embedding in R2 where all edges are embed-
ded as straight lines between vertices. All edges have a (strictly positive) speed
limit as well an associated weight, called their time span, which is equal to the
time needed to get from one end of the edge to the other when traveling at the
speed limit. Also Kuijpers and Othman [11] studied the problem of space-time
prisms on road networks, and introduced an algorithm for computing and vi-
sualizing space-time prisms. In Section 5 we use this algorithm to compute the
surface of a space-time prism.

In the remainder of the paper we work with the speed limits of the road
network, simply setting a uniform speed limit, namely vi, on the network to
construct the space-time prism between two sample times ti and ti+1. We first
review basic concepts about trajectories and road networks, that we use through-
out the paper.

3.1 Preliminaries: trajectories and trajectory samples

Let R denote the set of the real numbers and R2 the 2-dimensional real plane.
We consider objects moving in a subset of the two-dimensional (x, y)-space R2

and describe this movement in the (t, x, y)-space R×R2, where t represents time.
Moving objects, which we assume to be points, produce a special kind of curves,
denoted trajectories. The definitions we present next, necessary to understand
the remainder of the paper, are based on [11].

Definition 1. [Trajectory] Let I ⊆ R be an interval. A trajectory T is the graph
of a mapping α : I → R2 : t 7→ α(t) = (αx(t), αy(t)), i.e., T = {(t, αx(t), αy(t))
∈ R×R2 | t ∈ I}. We call I the time domain of T . ut

In practice, trajectories are only known at discrete moments in time. This
partial knowledge of trajectories is formalized by the notion of sample.

Definition 2. [Trajectory sample] A trajectory sample is a finite set S = {(t0,
x0, y0), (t1, x1, y1), ..., (tN , xN , yN)} of time-space points. The order on time, t0 <
t1 < · · · < tN , induces a natural order on the sample. ut

A trajectory T , which contains a trajectory sample S = {(t0, x0, y0), (t1, x1,
y1), ..., (tN , xN , yN)}, i.e., (ti, αx(ti), αy(ti)) = (ti, xi, yi) for i = 0, ..., N , is called
a geospatial lifeline for S [3].

In this paper, we consider movement in R2 that is constrained to a road
network. Thus, we need to formalize the notion of a road network.

Definition 3. [Road network] A road network RN is a graph embedding in R2 of
a labeled graph given by a finite set of vertices V = {(xi, yi) ∈ R2 | i = 1, . . . , N},
and a set of edges E ⊆ V×V that are labeled by a speed limit and an associated
time span. This graph embedding satisfies the following conditions. Edges are
embedded as straight line segments between vertices1. If an edge between (xi, yi)
and (xj , yj) is labeled by the speed limit vij > 0, then its time span wij is√

(xi−xj)2+(yi−yj)2

vij
, i.e., it is the time needed to get from one side of an edge to

another when traveling at the speed limit. ut

A trajectory (sample) on a road network RN is then a trajectory (sample)
whose spatial projection is in RN. More formally, if T is a trajectory given by
the functions αx and αy, then it must satisfy (αx(t), αy(t)) ∈ RN for all t in the
time domain of T, and for a trajectory sample S = {(t0, x0, y0), (t1, x1, y1), ...,
(tN , xN , yN)} we must have (xi, yi) ∈ RN for all i = 0, . . . , N .

3.2 Space-time prisms in road networks

Given a point in a trajectory sample, if we assume that a speed limit is valid
until the next point, we can use this limit to define space-time prisms which
model the uncertainty of the object’s location in between sample points. In this
paper, we consider movement and space-time prisms in road networks in R2.

In general, suppose p and q are points in some space, and an object is traveling
from p to q, leaving p at time tp and arriving in q at tq; also assume a speed
limit vmax is given. We know that at a time t, tp ≤ t ≤ tq, the object’s distance
to p is at most vmax(t − tp) and its distance to q is at most vmax(tq − t). The
object is therefore somewhere in the intersection of the sphere with center p and
radius vmax(t− tp) and the sphere with center q and radius vmax(tq − t). This is
illustrated in Figure 1. The geometric location of these points, for tp ≤ t ≤ tq,
is referred to as a space-time prism.
1 These edge embeddings may intersect in non-vertex points. So, we can model bridges

and tunnels in our model.

Fig. 1. A moving object’s location at time t.

Although we are interested in space-time prisms on a road network, the
problem does not simply amount to taking the intersection of a space-time prism
representing unconstrained movement and the road network. To see this, consider
the projection of the unconstrained space-time prism along the time axis onto
the xy-plane. This projection is an ellipse such that its foci are the points of
departure and arrival, i.e., p and q. We recall that at a time t, tp ≤ t ≤ tq,
the object’s distance to p is at most vmax(t − tp) and its distance to q is at
most vmax(tq − t). Adding those distances gives vmax(t − tp) + vmax(tq − t) =
vmax(tq − tp), which is constant. Therefore, all possible points a moving object
with speed limit vmax could have visited must lie within this ellipse with foci
p and q. Moreover, the sum of their distances to p and q is less or equal to
vmax(tq− tp). Any trajectory that touches the border of the ellipse and has more
than two straight line segments, is longer than vmax(tq − tp). This particular
trajectory lies in the ellipse and hence in the intersection of the unconstrained
space-time prism and the road network, but it does not lie in the road network
space-time prism entirely because there are points on it which can be reached in
time, but from which the destination can not be reached in time and vice versa.
Figure 2 depicts such a situation. There is no path on the road network from
p that reaches q in the given time interval. The intersection of the space-time
prism with the road network is nonempty, whereas the road network space-time
prism clearly is. Figure 3 depicts a space-time prism on a road network, and its
spatial projection.

To define space-time prisms on a road network, we need to define an ap-
propriate distance function on the network. This distance measure is derived
from the shortest path-distance used in graph theory [20]. Consider a road
network RN, given by a set of vertices V and a set of labeled edges E. Let
p = (xp, yp) and q = (xq, yq) be two points on RN, not necessarily vertices.
Also suppose that p lies on (the embedding of) the edge ((xp,0, yp,0), (xp,1, yp,1))
and q lies on the edge ((xq,0, yq,0), (xq,1, yq,1)). We construct a new road net-
work RNpq from RN. Its set of vertices is Vpq = V ∪ {p, q} and its set of edges
is Epq = E ∪ {((xp,0, yp,0), (xp, yp)), ((xp, yp), (xp,1, yp,1)), ((xq,0, yq,0), (xq, yq)),
((xq, yq), (xq,1, yq,1))}. So, we have split the edges on which p and q are located.

Fig. 2. Road network space-time prisms can not be easily derived from space-time
prisms in R2.

Fig. 3. Space-time prism (red) on road networks (green and black) and its spatial
projection (green).

The speed limits are the ones of the original edges, and the time spans of the new
edges are computed according to Definition 3. It is precisely this construction
we need to define the distance along the road network RN and the space-time
prism on RN. To do this we need a metric on RN.

Definition 4. [Road network time] Let RN be a road network and let p, q ∈ RN.
The road network time between p and q, denoted by dRN(p, q), is the shortest-
path distance (i.e., the shortest-path distance as usual in graph theory and that
can be computed by the Dijkstra’s algorithm [20]) between p and q in the graph
(Vpq,Epq), with respect to the time-span labeling of the edges. ut

Note that the road network time between p and q in the above definition
has minimal total weight and returns the earliest possible time you can reach
p from q and vice versa. The metric that we describe takes two points from a

road network and returns the shortest time needed to get from one to the other
when traveling at the allowed maximal speed at each segment. We remark that
if all edges in road network have the same speed limit vmax, then the metric
defined in Definition 4 is the shortest-path metric (up to a scaling factor vmax)
on the graph embedding RN. If, on the other hand, there are different speed
limits per edge, then the metric of Definition 4 is the shortest time-span metric
on the temporal projection of the spatio-temporal data. It follows that in the
latter case, the shortest paths are not always the fastest paths. Figure 4 depicts
a situation where neither one of the two shortest paths in the network is also
the fastest path. Indeed, looking at the evolution of the prism over time, it is
clear that the fastest path starts at the leftmost node, goes to the upper, then
the lower node, and ends at the rightmost node.

Fig. 4. Road Network space-time prism where the fastest path does not coincide with
the shortest.

A space-time prism on a road network is the geometric location in R×RN ⊂
R×R2 of all points a moving object could have visited when traveling, restricted
to RN, from an origin p to a destination q with in a time-frame ranging from tp
to tq, respecting the speed limits on the edges of RN.

4 An uncertainty-aware distance function

The goal of clustering algorithms is, basically, grouping together the objects
which are similar to each other and keep them separated from the objects which
are different. A key issue of this technique is the definition of a distance measure.
To be useful for clustering, the distance function must be a metric, which means
that it has to verify four well-known conditions stated in the next definition.

Definition 5. A distance function d() is a metric if:

1. ∀ i : d(i, i) = 0 (identity)
2. ∀ i, j : d(i, j) > 0 (positivity)
3. ∀ i, j : d(i, j) = d(j, i) (symmetry)
4. ∀ i, j, k : d(i, j) + d(j, k) ≥ d(i, k) (triangularity).

There are many (mainly Euclidean-based) distance functions used for clus-
tering. In particular, for trajectory clustering, a definition of distance is aimed
at considering similar two objects that followed approximately the same spatio-
temporal trajectory. The main problem in this scenario is to find out which
are the objects that moved together. However, depending on the application at
hand, or the analysis a user needs to perform, other forms of distances could be
useful. For instance, we may want to cluster together trajectories starting and
ending at the same locations [18]. Nevertheless, as far as we are aware of, no
distance function has been proposed to account for an intrinsic problem trajec-
tory data have, that is, the uncertainty involved in GPS or GSM observations
that originate the trajectory samples. The intuition behind this function is that
the temporal projection of the intersection of the space-time prisms of two tra-
jectories, represents the instants when the two trajectories could have met. Our
claim is that the longer this period, the more similar the trajectories are. This
notion is captured by the distance we introduce in Definition 6 below.

Definition 6 (Uncertainty-aware distance). Let us denote A and B two
necklaces corresponding to two trajectory samples τ1 and τ2, respectively. Let
us also denote VA and VB the volumes defined by these necklaces. Then, the
expression

du(A,B) = 1− VA ∩ VB

VA ∪ VB
(1)

is denoted the Uncertainty-based distance between τ1 and τ2.

Theorem 1 (Distance metric). The distance of Definition 6 is a distance
metric.

Proof. Let us prove first the identity property. If we replace B by A in (1), (and,
in consequence, VB by VA), we obtain:

du(A,B) = 1− VA ∩ VB

VA ∪ VB

= 1− VA

VA

= 0

The second property is straightforward. Symmetry is proved in a way anal-
ogous to the simple proof for the first property:

du(B,A) = 1− VB ∩ VA

VB ∪ VA

= d(A,B)

Now, we prove the triangularity condition in Definition 5. For that, let us
consider the diagram of Figure 5, where we have three sets, let us call them A,
B, and C, representing three space-time prisms with these names. We replace
the terms in Equation 2 with the elements in the partition of Figure 5.

du(A,B) = 1− a2 + a5

a1 + a2 + a3 + a4 + a5 + a6
=

a1 + a3 + a4 + a6

a1 + a2 + a3 + a4 + a5 + a6

du(B,C) =
a2 + a3 + a4 + a7

a2 + a3 + a4 + a5 + a6 + a7

du(A,C) =
a1 + a2 + a6 + a7

a1 + a2 + a4 + a5 + a6 + a7

Then,

du(A,B) + du(B,C) =
a1 + a3 + a4 + a6

a1 + a2 + a3 + a4 + a5 + a6 + a7
+

a2 + a3 + a4 + a7

a1 + a2 + a3 + a4 + a5 + a6 + a7

And, since a1, a7 ≥ 0, we have:

du(A,B) + du(B,C) ≥ a1 + a3 + a4 + a6

a1 + a2 + a3 + a4 + a5 + a6 + a7
+

a2 + a3 + a4 + a7

a1 + a2 + a3 + a4 + a5 + a6 + a7

=
a1 + a3 + a4 + a6 + a2 + a3 + a4 + a7

a1 + a2 + a3 + a4 + a5 + a6 + a7

≥ a1 + a2 + a6 + a7 + a3

a1 + a2 + a3 + a4 + a5 + a6 + a7

(2)

And, since “If 0 ≤ a ≤ b 6= 0 and c ≥ 0, then a
b ≤

a+c
b+c ”, then we get:

≥ a1 + a2 + a6 + a7

a1 + a2 + a4 + a5 + a6 + a7
= d(A,C)

(3)

5 An algorithm to compute du

We now describe the algorithm that computes the intersection between two
chains of space-time prisms computed for two trajectories whose distance we need
to calculate. In order to speed-up the computation, we pre-process information
related to the road network. This pre-processed structures are presented next.

Fig. 5. A schematic description of the sets.

Data structure. The basic structure for storing the road network is a graph G,
such that for each two nodes ni, nj , we store the weight of the edge connecting
them, given by d(ni,nj)

vmax
, where vmax is the speed limit in the road segment. We

also have two lists, denoted rowNonZeroes and columnNonZeroes, defined as
follows.

rowNonZeroes = {. . . , {.., nj, ...}i, . . .}
Thus, rowNonZeroes is a list of lists, such that the list in position i contains

the nodes nj such that ni, nj ∈ G. (i.e., the nodes reachable through just one
edge from ni). Analogously,

columnNonZeroes = {. . . , {.., nj, ...}i, . . .}

Thus, columnNonZeroes is a list of lists, such that the list in position i
contains the nodes nj such that nj , ni ∈ G. (i.e., the nodes that can reach ni

traversing just one edge).

Computing the distance between two chains of space-time prisms. First, we in-
troduce an adaptation to our problem of the Dijstra’s algorithm [20]. We want
to find the shortest path to all nodes in the network, from a given node p, (a
point in a trajectory, matched to a vertex in the network), and provided that
the traveling time is less than a given threshold. For each p, we apply Algorithm
1.

Algorithm 1 DijkstraSource(p,maxT ime, nbrV ertices)

Output: outputP = { a list of nodes Nm = N ∪ N1, where N = (n1,nk)
is the set of nodes reachable from p in at most maxTime, and N1 = {n|n 6∈
N and ∃ ni ∈ N, (ni, n) ∈ G, and d(p, n) > maxTime}; distlist = {d1, d2, 0, dn},
a list containing the distances from p to the nodes in Nm; a list Oe of the form
n, 〈e1, ...ef 〉 representing the edges outgoing from the nodes in Nm}
1: ToProcess = {(p, 0)};

2: distlist = {∞,∞, 0,∞, }, a list of length —V—, with a zero in the position
of the input node p.

3: Processed = {};
4: Nm = {};
5: while ToProcess.notEmpty() && ToProcess[1].[2] < maxTime do
6: current := ToProcess[1];
7: append current.[1].[1] to Nm;
8: append (current[1].[1], 〈rowNonZeroes[current]〉 to Oe;
9: delete ToProcess[1];

10: for each node nj in rowNonZeroes[current] do
11: build a pair (nj , distlist[current.[1]] + dcurrent.[1],j);
12: distlist[j] := min(distlist[j], distlist[current.[1]] + dcurrent.[1],j);
13: if nj 6∈ Processed then
14: append (nj , dj) to ToProcess;
15: end if
16: end for
17: sort ToProcess by time;
18: append current.[1] to Processed;
19: end while

An analogous algorithm computes the shortest path from all nodes in the net-
work, to a given node q, such that q is a point in a trajectory, matched to a vertex
in the network, and provided that the traveling time is less than a given thresh-
old. We call this algorithm DijkstraDestination. The main difference with Al-
gorithm 1 is that rowNonZeroes[current] is replaced by columnNonZeroes[current],
and that Nm contains the nodes that can reach q (i.e., instead of outgoing edges
we work with incoming edges).

Algorithm 2 DijkstraDestination(q,maxTime, nbrV ertices)

Output: outputQ = { a list of nodes Nm = N ∪ N1, where N = (n1,nk)
is the set of nodes that can reach q in at most maxTime, and N1 = {n|n 6∈
N and ∃ ni ∈ N, (n, ni) ∈ G, and d(n, q) > maxTime}; distlist = {d1, d2, 0, dn},
a list containing the distances to q from the nodes in Nm; a list Ie of the form
n, 〈e1, ...ef 〉 representing the edges incoming to the nodes in Nm}
1: ToProcess = {(q, 0)};
2: distlist = {∞,∞, 0,∞, }, a list of length —V—, with a zero in the position

of the input node q;
3: Processed = {};
4: Nm = {};
5: while ToProcess.notEmpty() && ToProcess[1].[2] < maxTime do
6: current := ToProcess[1];
7: append current.[1].[1] to Nm;
8: append (current[1].[1], 〈columnNonZeroes[current]〉 to Oe;
9: delete ToProcess[1];

10: for each node nj in columnNonZeroes[current] do
11: build a pair (nj , distlist[current.[1]] + dcurrent.[1],j);

12: distlist[j] := min(distlist[j], distlist[current.[1]] + dcurrent.[1],j);
13: if nj 6∈ Processed then
14: append (nj , dj) to ToProcess;
15: end if
16: end for
17: sort ToProcess by time;
18: append current.[1] to Processed;
19: end while

Now, given two points p and q in a trajectory, we compute their space-
time prisms prism1 and prism2, using the output of Algorithms 2 and 3. From
them, we compute their union and intersection, from which the distance follows
straightforwardly.

Algorithm 3 prism(p1, tp1 , q1, tq1 , p2, tp2 , q2, tq2)

Output: The polygons and their surface, in the two prisms and their intersec-
tion (for the prisms defined by the two pairs of points in the input).

1: DijkstraSource(p1,maxT ime, nbrV ertices);
2: DijkstraDestination(q1,maxT ime, nbrV ertices);
3: DijkstraSource(p2,maxT ime, nbrV ertices);
4: DijkstraDestination(q2,maxT ime, nbrV ertices);
5: if p1 ∈ outputQ1 [1] and q1 ∈ outputP1 [1] then
6: prism1 = {Nmp1

∩Nmq1
, distlistp1 , distlistq1 , Oep1

∩ Ieq1
};

7: end if
8: if p1 ∈ outputQ2 [1] and q1 ∈ outputP2 [1] then
9: prism2 = {{Nmp2

∩Nmq2
, distlistp2 , distlistq2 , Oep2

∩ Ieq2
};

10: end if
11: if prism[1] ∩ prism2[1] == ∅ then
12: Compute only the surface of the polygons;
13: else
14: compute polys = {distlistp1 , distlistq1 , distlistp2 , distlistq2 , prism1[1] ∪

prism2[1], prism1[4] ∪ prism2[4]};
15: for every edge in polys do
16: Compute the polygons of prism1, prism2, and prism1 ∩ prism2, using

the algorithm in [11];
17: end for
18: end if

The final step of the algorithm computes the intersection and union of two
chains of prisms. We explain this through an example, for the sake of clarity. Let
us consider two trajectories:

T1 = {(p1, t1)(p2, t2)(p3, t3)...(pn, tn)}
T2 = {(p′1, t′1)(p′2, t

′
2)(p′3, t

′
3)...(p′m, t

′
m)}

We now compute the interval where the trajectories overlap, and compute
the surface with Algorithm 3. For example, if the time instants are such that

t3 < t′1 < t4 < t′2 < t′3 < t5...., we first use the points (p3, t3), (p4, t4) and
(p′1, t

′
1), (p′2, t

′
2), and compute the intersection and union of the two prisms.

The algorithm is based on a sliding window approach. Thus, we next compute
the intersection of the prisms corresponding to (p4, t4), (p5, t5) and (p′1, t

′
1), (p′2, t

′
2)

(note that there is a non-empty intersection here too); and, analogously, (p4, t4),
(p5, t5) and (p′2, t

′
2), (p′3, t

′
3).

A first optimization in the computation of the distance function is that if
the intersection is empty, we do not compute the surface of the polygons in the
extremes (for computing the union). A second optimization we implemented in
our algorithm (besides the pre-computation step already mentioned), is that we
keep the results of the previous iteration when computing the intersection of the
chains of prisms (for example, we keep the prism for (p′1, t

′
1), (p′2, t

′
2) above).

Intersection of space-time prisms The distance defined in Section 4 requires the
computation of the intersection between two space-time prisms. For this compu-
tation, in short, the algorithm described in [11] iterates over every edge that has
at least one polygon in both space-time prisms, and compute the intersection
as an intersection between polygons. However, since we use this intersection to
compute the distance between two chains of space-time prisms, a subtle prob-
lem appears here. A prism on a road network is basically composed by the three
geometries depicted in Figure 6 (a) through (c). This yields a geometry like the
one in Figure 6 (d). A naive computation of the intersection would imply inter-
secting each component of one prism, with all the components of the other one.
It is clear that this may result in an intersection larger than the union. Thus,
we only intersect each component in one prism, with its analogous in the other
prism. In this way, if we have two prisms B1 and B2, such that B1 = B2, then
B1 ∩B2 = B1 ∪B2. Note that, in addition of allowing to use our distance func-
tion, this way of computing the intersection provides an appropriate and natural
semantics to the space-time prisms. In two-way roads, and given the points r
and s of Figure 6, the triangle corresponding to r represents the trajectories
going from r to r. Analogously, the triangle corresponding to s represents the
trajectories going from s to s. The parallelogram (Figure 6 (b)) represents the
trajectories going from r to s. In one-way roads (like in the case we are studying),
only the latter is considered.

6 Preliminary experimental results

We performed (very) preliminary experiments using a set of 52 trajectories ob-
tained from cars moving in the city center of Milan, in one day, from 1PM to
2PM, that is, all in the same short period, increasing the possibility of moving
together. We used k-mediods with k=2..6 as clustering algorithm. We only con-
sider trajectories with at least 5 different points. Also, we split a trajectory if
there is a gap of more then 6 minutes between two consecutive points.

Results for k=6 are shown in Figure1 7. The blue cluster represents all trajec-
tories that, according to principle of alibi query [11], could not have met. Thus,

Fig. 6. Space-time prism components.

the distance between any two trajectories in the blue cluster is 1. The cluster
composition is shown in the next table.

Cluster Color # of trajectories
0 blue 26
1 red 13
2 green 4
3 black 2
4 cyan 1
5 orange 6

Figure 8 shows the clusters for k=4, overlayed with the road network of
Milan, to provide a more realistic way of displaying the results. We see that the
blue clusters are similar to the ones obtained using k=6. More precisely, for all
clustering runs (with k=2..6), the blue cluster contained 26 trajectories, i.e., the
trajectories that could have never met each other are always together in one
cluster, no matter the parameter k used.

Prism-based clustering allows to draw some additional conclusions, useful
for traffic analysis. Note that the closer to the speed limits the objects move
(i.e., fluent traffic), the less likely their trajectories are to get clustered together.
In our case, our results suggest that cars in the sample move at speeds higher
than the speed limit. This follows from observing that, initially, using the city’s
maximum speed limit in downtown, many empty prisms are obtained. Adjusting
these limits, increasing the speed by 20%, the number of empty prisms dropped
considerably, but prisms were narrow, mainly yielding empty intersections. How-
ever, we remark that this assertion always needs further insight into the dataset,
since also the results are influenced by the map matching process. In our case,
we use a geometric approach, which maps a point to the closest street segment,
which sometimes could yield imprecise results.

Fig. 7. Result of clustering with k=6 (left); Projection over x-y coordinates (right).

7 Conclusion and future work

We have presented a new distance function for clustering trajectory samples,
that accounts for the inherent uncertainty contained in the GPS observations.
For this, instead of computing the distance between the trajectories themselves
(e.g., using some metric, like the Euclidean distance), we measure the relation
between the union and the intersection of the space-time prisms associated to
each trajectory (using the speed limit of the road segment), in a way such that if
the intersection is empty, then, the two trajectories could not have met, and the
distance equals ‘1’. To the best of our knowledge, this is the first proposal in this
sense. We also provided a formal proved that this distance is actually a metric,
and sketched the algorithm to compute it. Finally, we presented preliminary
experimental results using real data obtained from cars moving in the Milan.

References

1. Agrawal, R., Lin, K., Sawhney, H.S., K., S.: Fast similarity search in the presence of
noise, scaling, and translation in time-series databases. In: VLDB. (1995) 490–501

2. Ankerst, M., Breunig, M., Kriegel, H.P., Sander, J.: Optics: Ordering points to
identify the clustering structure. In: SIGMOD Conference. (1999) 49–60

3. Egenhofer, M.: Approximation of geopatial lifelines. In: SpadaGIS, Workshop on
Spatial Data and Geographic Information Systsems. (2003)

4. Ester, M., Kriegel, H.P., Sander, J., Xu, X.: A density-based algorithm for discov-
ering clusters in large spatial databases with noise. In: KDD. (1996) 226–231

5. Faloutsos, C., Lin, K.L.: Fastmap: A fast algorithm for indexing, data-mining and
visualization of traditional and multimedia datasets. In: SIGMOD Conference.
(1995) 163–174

6. Gaffney, S., Smyth, P.: Trajectory clustering with mixtures of regression models.
In: KDD. (1999) 63–72

7. Güting, R.H., Schneider, M.: Moving Objects Databases. Morgan Kaufmann
(2005)

Fig. 8. Result of clustering Milan data with k=4 overlayed with the road network.

8. Hägerstrand, T.: What about people in regional science? Papers of the Regional
Science Association 24 (1970) 7–21

9. Han, J., Kamber, M.: Data Mining: Concepts and Techniques. Morgan Kaufmann
(2000)

10. Ketterlin, A.: Clustering sequences of complex objects. In: KDD. (1997) 215–218
11. Kuijpers, B., Othman, W.: Modelling uncertainty of moving objects on road net-

works via space-time prisms. International Journal of Geographical Information
Science. To appear in 2009

12. Miller, H.: Modeling accessibility using space-time prism concepts within geo-
graphical information systems. International Journal of Geographical Information
Systems 5 (1991) 287–301

13. Miller, H., Wu, Y.: Gis software for measuring space-time accessibility in trans-
portation planning and analysis. GeoInformatica 4 (2000) 141–159

14. Nanni, M.: Clustering Methods for Spatio-Temporal Data. PhD thesis, Computer
Science Departrment, University of Pisa (2002)

15. Nanni, M., Pedreschi, D.: Time-focused clustering of trajectories of moving objects.
Journal of Intelligent Information Systems 27(3) (2006) 267–289

16. Nanni, M., Kuijpers, B., Körner, C., May, M., Pedreschi, D.: Spatiotemporal data
mining. In: Mobility, Data Mining and Privacy. (2008) 267–296

17. Pfoser, D., Jensen, C.S.: Capturing the uncertainty of moving-object representa-
tions. In: Advances in Spatial Databases (SSD’99). Lecture Notes in Computer
Science (1999) 111–132

18. Rinzivillo, S., Pedreschi, D., Nanni, M., Giannotti, F., Andrienko, N., Andrienko,
G.: Visually driven analysis of movement data by progressive clustering. Informa-
tion Visualization 7 (2008) 225–239

19. Vlachos, M., G., D., George Kollios, G.: Discovering similar multidimensional
trajectories. In: ICDE. (2002) 673–684

20. Weisstein, E.: Wolfram mathworld. (2007)
http://mathworld.wolfram.com/DijkstrasAlgorithm.html.

21. Wolfson, O.: Moving objects information management: The database challenge.
In: NGITS. (2002) 75–89

