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Abstract

Consider the location-scale regression model ¥ = m(X) + a(X)e, where the error ¢ is independent of the covariate X,
and m and ¢ are smooth but unknown functions. We construct tests for the validity of this model and show that the
asymptotic limits of the proposed test statistics are distribution free. We also investigate the finite sample properties of the
tests through a simulation study, and we apply the tests in the analysis of data on food expenditures.
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1. Introduction

Consider the nonparametric location-scale regression model
Y = m(X) 4+ o(X)e, (1.1)

where Y'is the variable of interest, X is a covariate, the error ¢ is independent of X, and m and ¢ are smooth but
unknown location and scale curves, respectively. The location curve m is not restricted to the conditional mean
E(Y|X =), but can equally well represent the conditional trimmed mean curve, the median curve, etc.
Similarly the scale curve o is not restricted to the conditional standard deviation. Let (X, Yy),...,(X,, Y,) be
n independent replications of (X, Y).

This model has been studied by many authors over the last years. The estimation of this model has been
considered in Akritas and Van Keilegom (2001), Van Keilegom and Veraverbeke (2002), Cheng (2004), Miiller
et al. (2004a,b), among others, whereas Dette et al. (2007), Neumeyer et al. (2006), Van Keilegom et al. (2007)
and Pardo-Fernandez et al. (2007) studied various testing problems under this model.

Although the independence of the error and the covariate is a quite weak and common assumption, in
several applications, especially in the recent econometrics literature, it is considered too strong as an
assumption. An appropriate testing procedure for the validity of this model is therefore in demand. In
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Einmahl and Van Keilegom (2007) a difference-based testing approach is proposed for the homoscedastic
model Y = m(X) + ¢, with ¢ independent of X. In the present paper we consider another approach, applicable
to the more general model (1.1). Although model (1.1) has been used and studied frequently, a procedure for
testing the validity of this model is, to the best of our knowledge, not available. Our approach is based on the
estimation of the unobserved errors, and we use Kolmogorov—Smirnov, Cramér-von Mises and
Anderson—Darling type test statistics based on the estimated errors and the covariate to test the independence
between the error and the covariate.

Observe that the tests developed in this paper can be easily adapted for testing the validity of the
homoscedastic model Y = m(X) + ¢, with ¢ independent of X. This is also a very relevant testing problem; we
will pay attention to it in Sections 3 and 4. Also note that the results in this paper will be presented for random
design, but can be readily adapted to fixed design. In that case, interest lies in the fact whether or not the error
terms ¢p,..., &, are identically distributed.

The paper is organized as follows. In the next section, we will construct the test statistics and present the
main asymptotic results, including the asymptotic distribution of the test statistics. In Section 3 some
simulation results will be shown. The analysis of data on food expenditures is carried out in Section 4. The
assumptions and some technical derivations are deferred to the Appendix.

2. Main results

Define Fx(x) = P(X <x), F.(y) = P(e<y), F(y|x) = P(Y <y|X = x) and Fx.(x,y) = P(X <x,¢<y), and let
Dy be the support of the covariate X. The probability density functions of these distributions will be denoted
with lower case letters. Assume that m and ¢ are, respectively, a location and scale functional. This means that
we can write m(x) = T(F(-|x)) and a(x) = S(F(-|x)) for some functionals 7" and S, such that

T(Fay+4(1¥) = aT(Fy(|1x))+b and  S(Fay4p(-1x)) = aSFy(-]x)),

for all a=0 and b € R, where F,y,;(-|x) denotes the conditional distribution of aY + b given X = x (see also
Huber, 1981, pp. 59, 202). It follows (see e.g. Van Keilegom, 1998, Proposition 5.1) that if model (1.1) holds
for a certain location functional m and scale functional ¢, then it holds for all location functionals 777 and scale
functionals &, in the sense that the new error & = (Y — /(X))/&(X) is still independent of X. Hence, we can
and will assume that m and ¢ are given by

1 1
m(x):/0 F~Y(s|x)J(s)ds, az(x):/ F~'(s]x)*J(s) ds — m?(x), 2.1

where F~ l(s|x) inf{y : F(y|x)=s} is the quantile function of Y given x and J is a given score function
satisfying fo J(s)ds =1 (e.g., the choice J = 1 leads to m(x) = E(Y|X = x) and o2 (x) = Var(Y|X = x)).

Our tests will be based on the difference Fy ;(x, y) — Fx(x)F;(y) for appropriate estimators Fy, F; and F X
of Fy, F; and Fy,, respectively. First, let

n
Fy(x)=n""> I(X;<x)
i=1

be the empirical distribution function of X. To estimate the distribution of &, estimate m(x) and ¢?(x) by

Lo L
M@:/F(mw@m ﬁﬁ:/F(WW@M—M@, (2.2)
0 0
where
Fylx) =) Wilx,a)I(Yi<y) (2.3)
i=1

is the Stone (1977) estimator and the W(x,a,) (i = 1,...,n) are the Nadaraya—Watson weights
K((x — X;)/ay)

Wi(x,a,) = Z]{?:l[(((x — X))/ an)
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(with K a given kernel function and (a,),n @ bandwidth sequence). Now define & = {Y; — m(X,)}/6(X;) for
the resulting residuals, and let

Fi) =n7' 3 _1Gi<p). (2.4)
i=1
Finally, Fx .(x,y) is estimated by
N 1
Fya(x,p) == I(Xi<x,5<y).
n=

To test the null hypothesis, we define the following test statistics:

Tuxs = /1 sup |[Fxs(x,y) — Fx(\)F:(»)l, 2.5
X,y
Thom =n / (Fyp(x,y) — FEx(x\)F2(»))* dF x(x) dF3(p), (2.6)
(Fy3(x,y) — Fx(x)F;(»))* - A
n = = — = ~ d d K . 2.7
T =1 | RN = Fr- o1 = Frgy YO 9F0) =0

(For a distribution function F, we denote with F_ its left continuous version.)

These statistics are similar to the ones considered in Hoeffding (1948), Blum et al. (1961) and de Wet (1980)
for testing independence between two random variables, except that here we have replaced the unknown errors
g byé& (i=1,...,n). As we will see below, the limiting distribution of these test statistics is the same as in the
case where the ¢; are observed, and hence the tests are asymptotically distribution free.

In the first theorem we obtain an i.i.d. representation for the difference F xi(x,y) — Fx(x)F3(»), x € Dy,y €
R (weighted in an appropriate way), on which all three test statistics are based. Based on this result, the weak
convergence will then be established. The assumptions mentioned below are given in the Appendix.

1
Theorem 2.1. Assume (A), (K), (J) and (F). Then, under Hy, for 0</3<§,

1 A A A A .
sup |——— {Fx3(x,y) = Fx(0O)F:(y) — (Fxo(x,)) = Fxo(x, ) = Fx(X)(Fo(y) = Fo(y))
X}EYEDIRDX N(XaJ’)

—F,(0)(Fx(x) — FX(X))}‘
= op(n~'7?),

with

A 1 n
FXf.(xay) = ZZI(X[<x58i<y)’
i=1

A 1 <&
Fuy) =3 1<),
i=1

and

N(x,y) = Fx()F(y)(1 = Fx(x0))(1 = Fe(y)).
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Proof. Write
NG, y) HE y(x, p) — Fx()F3(0)] = [Fyo(x, ) — Fx(x)F(»)]}
= N, ») HF 30, 9) = Fxo(x,0)] = Fx(O[F:(0) — F.0)] = Fs0IFx(x) — Fx(x)])
= N, ») P (Fxo(x,p) = Fxo(x,9) = Fx(0)(F(y) — Fo(») — Fa0)(Fx(x) — Fx(x))

+ N ety U XG<x) = PG <y) — 1<)

— N(x,») PIFx(x) — Fx(OI[F:(0) — F.(0)]. (2.8)

From Lemma A.1 it follows that the second term on the right-hand side of (2.8) is equal to (using the notation
of that lemma)

NG, ) P(Fx(x) = Fx(O)Fa(y) — Fo(») + op(n~"/?),

uniformly in x and y. This term is op(n~'/?), since by the Chibisov—O’Reilly theorem (see, e.g., Shorack and
Wellner, 1986, p. 462),

Fy(x) = Fy(x) | _ “1)2
M o — Froof| - O
and since
Fi() - F.(0)
= op(1), 2.9
SPEm0 = FopP| ~ P 29

which can be shown in a similar way as in the beginning of the proof of Lemma A.1. Using again Lemma A.1,
the third term of (2.8) can be written as

Ny IEx(x) = Fx(OIUE) = Fa0)} + (F2(0) = F0)}] + op(n™'/?)
= op(n~'/?),
uniformly in x and y. Hence, the result follows. [

The next result follows readily from Theorem 2.1, by using standard empirical process theory.

Theorem 2.2. Assume (A), (K), (J) and (F). Let W be a 4-sided tied-down Wiener process on [0, 1%, defined by
Wolu,v) = W(u,v) —uW(l,v) —oW(u,1) + uwW(,1), u,v €[0,1], where W is a standard bivariate Wiener
process. Under Hy, for 0<f< %, the process
vgﬁmﬁdﬁ—ﬁﬁﬂﬁwﬂ
N(x,y)
converges weakly to Wy(F x(x), Fe(y))/N(x, y)/} .

, xe€Dy, yeR,

As a consequence, we find the limiting distribution of the three test statistics. Recall that these limits are
distribution free and identical to the ones in the classical case, i.e. when m and ¢ are not estimated, but known.

Theorem 2.3. Assume (A), (K), (J) and (F). Then, under Hy,

d
Thxs— sup |Wo(u,0)l,

O<uypv<l

Trcn — // W(u, v) dudv,

W2(u,v)
"AD_)//uv(l —Ou)(l —) dud.

Proof. The result for T, s follows readily from Theorem 2.2 and the continuous mapping theorem. The result
for T, cy follows from Theorem 2.2, Lemma A.1, (2.9) and the Helly-Bray theorem.
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Now we present the proof for T, 4p. From the Skorohod construction and Theorem 2.2 it follows that
(keeping the same notation for the new processes)

fT(x ) = WolFx(), EQ)| ® (2.10)
x,y N(x, y)ﬁ
where T(x,y) = Fy;(x,y) — Fx(x)F;(y) and 0<ﬂ<%. In what follows we will show that
2
// nt” (’“ y) dFy(0)dF3() / WO(?((;“); O ar 0 dF.) 5o @10

where N(x, y) = Fx(x)ﬁé(y)(l — Py ()1 = (). Define 4, = (Fy (34, Fy/ (1 = n=/%) x (F; (17,
F, (1 —n=3/%). The left-hand side of (2.11) can be written as

// T (x,9) — WAF (), F.() zy(x,y)“ dFy(x)dFiy)
A N(x, ' NG ) N,y
N / N(x,y) = N(x,y) W(Fx(x), F,(»)) N(x,»)"* dF y(x) dF5()
4 N, p)™° N,y NS Nx,p)/

WaFEX (). Fi0) (o) apoy - W2AF (), Fu(1))
o T ey dhwdke - ] ST AR ar o)

nT ( :y) [ R
S O

i=1

The term T’} is op(1) by (2.10) and Lemma A.2. For showing that 75 = op(1) use is made of Lemmas A.1
and A.2 and the Chibisov—O’Reilly theorem. The convergence in probability to 0 of 75 + T4 follows from the
Helly—Bray theorem. Remains to consider 7's. We will only show that

I’ZT (x y) R N _P)
//Bn FX(X)F ) dFx(x)dF:() =0,

where B, is the intersection of A and (—oo,m;) x (—oo,m,), with m; and m, the medians of F X and F,,
respectively; the other parts can be dealt with similarly. First consider (with ¢, = F (n_3/ ), d, = F (n_3/ )

b ) o
/ / FeF o) dF3(0) Ay (x)

i (ey) + FA0E )
<2”/ / FrE0)

dF3() dFy(x)

<4an(Cn)F§(dn)
<4n(n73/4 + n71)2 — 0.
Next, consider

my dn nT ()C y) "A .
/ / P GE0)AF (9

m dn . R A )
<2n/ 1 / (;:X(y)) + Fx(x)FgO/)> dF;(y)dF y(x)
<n(logn™* + )™ + 07!y — 0.

Finally, the integral over (—oo, ¢,) x (d,,m,) can be dealt with in a similar way. O
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3. Simulations

The test statistics considered in the previous section are asymptotically distribution free, and hence the
asymptotic critical values of the tests can be obtained by simulation or from tables. However, for finite sample
sizes simulations show that these asymptotic critical values do not respect well the size of the test (for o = 0.05
and » at most 200, the size is about 0.005 or even smaller). Hence, this approximation is not of much use in
practice when the sample size is not very large. This is maybe not so surprising, given that the estimators of m
and ¢ converge at a slow ‘nonparametric’ rate, and hence, even though the effect of estimating these functions
disappears asymptotically, the estimators do affect the rejection probabilities substantially for finite n.

Therefore, a bootstrap procedure is a useful alternative and can be performed in the following way. Fix B
andletb=1,...,B.

Step 1: Let &, ..., be an i.i.d. sample from the distribution of the residuals i, ..., &.

Step 2: Define Y = m(X;) + 6(X)e (i=1,...,n).

Step 3: Let T ,’jf’KS, T jf’CM and T ,’jf’A p be the test statistics obtained from the bootstrap sample {(X;, Y?),
i=1,...,n}.

If we denote TZfI[?S for the order statistics of the values Tk, ..., T3% obtained in Step 3, and analogously

for T:f?M and TZ%), then T4, T 2P and 175" approximate the (1 — o)th quantiles of the
distributions of T, ks, Tn.cy and T, 4p, respectively.

We carry out two different simulation studies. In the first study, we compare the rejection probabilities of
the proposed tests with those of the tests studied in Einmahl and Van Keilegom (2007). Since in the latter
paper it is assumed that ¢ = 1, we replace ¢ everywhere by 1 in our test statistics. In Einmahl and Van
Keilegom (2007) the same type of test statistics is used as in the present paper, but the bivariate empirical
distribution function on which these statistics are based is very different. Instead of estimating the location
curve m, in that paper the smooth, unknown m is almost eliminated by taking appropriate differences of Y-
values that correspond to three neighboring X-values. The thus obtained limiting distributions of the test
statistics are not distribution free and more complicated than the ones in this paper.

Consider the following simulation set up. Suppose that X has a uniform-(0,1) distribution, m(x) =
E(Y|X = x) = x —0.5x%, 62 = Var(Y|X = x) = 0.1° and under the null hypothesis ¢ follows a standard
normal distribution. The simulations are carried out for samples of sizes n = 100 and 200 and the significance
level o = 0.05. The results are based on 250 samples and for each of them 250 bootstrap replications are
created (except under the null hypothesis, where we use 500 samples and 500 bootstrap replications). The
bandwidth a,, for estimating m, is selected by means of a least-squares cross-validation procedure; for
computing the bootstrap test statistics the same bandwidth has been used. The kernel K is equal to the
Epanechnikov kernel K(u) = 3/(4/5)(1 — 12 /5)I(u* < 5).

The following alternative hypotheses are studied. First consider

Hi4:¢elX =x~N(0,1 + ax),
with a>0. Next, let

d Wy —r,
H1’328|X:X:;,
2ry

where fovxfx, ry = 1/(bx) and >0 controls the skewness of the distribution. Note that the first and
second moment of the variable ¢ created in the latter way do not depend on x and coincide with the respective
moments under Hy. When b tends to 0, the distribution of &¢|X = x converges to its null distribution.
Finally, let

HI,C - & | X =x~ V 1 - (CX)1/412/(CX)1/49

where 0 <c¢<1 is a parameter controlling the kurtosis of the distribution. By construction, the conditional
moments up to order three of ¢ given X are constant and coincide with the respective moments under the null
hypothesis, while the fourth conditional moment does depend on X (note that the third and fourth moment do
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not need to exist). The conditional distribution of ¢ under H; ¢ converges to the conditional null distribution
of ¢ when c¢ tends to 0.

Tables 1-3 summarize the results for these three alternative hypotheses. Table 1 shows that under the
alternative hypothesis H; 4, the new method clearly outperforms the difference approach of Einmahl and Van
Keilegom (2007), except for the Kolmogorov—Smirnov test. Under the alternative H; g (Table 2), the new
approach performs better than the difference approach for small b; for larger b the difference approach is
somewhat better. Finally, the results under the alternative H, ¢, given in Table 3, show that the difference
approach gives higher power than the present approach in most cases, but for the Anderson—Darling statistic
(which is the best one for detecting this alternative) it is the other way around. In summary, we see good
behavior of the present method and we can observe that both methods perform quite different and therefore
both have their merits for detecting certain alternatives.

Next, in the second simulation study we consider the general heteroscedastic model, in which the function ¢
is supposed to be unknown. The same simulation setup is chosen as for the first study, except that we take now
n = 50 and 100, 6*(x) = (2 + x)* /100, and the results are based on 500 samples and 500 bootstrap replications.

Table 1
Power under H; 4 with known variance

a Meth. n =100 n =200

KS CM AD KS CM AD
0 Est 0.068 0.072 0.072 0.070 0.060 0.066
Diff 0.044 0.072 0.034 0.062 0.050 0.040
1 Est 0.080 0.096 0.132 0.136 0.208 0.376
Diff 0.088 0.124 0.092 0.148 0.184 0.168
2.5 Est 0.152 0.268 0.316 0.312 0.624 0.788
Diff 0.176 0.236 0.216 0.304 0.412 0.432
5 Est 0.224 0.444 0.524 0.540 0.872 0.960
Diff 0.240 0.352 0.308 0.492 0.672 0.716

10 Est 0.328 0.568 0.668 0.708 0.964 1.00
Diff 0.344 0.488 0.428 0.656 0.856 0.872

The new method is indicated by ‘Est’, the difference approach by ‘Diff’.

Table 2
Power under H, p with known variance

b Meth. n =100 n =200
KS CM AD KS CM AD

0 Est 0.068 0.072 0.072 0.070 0.060 0.066
Diff 0.044 0.072 0.034 0.062 0.050 0.040
1 Est 0.212 0.160 0.224 0.324 0.256 0.396
Diff 0.060 0.100 0.068 0.092 0.176 0.116
2.5 Est 0.392 0.236 0.344 0.568 0.328 0.468
Diff 0.120 0.216 0.116 0.224 0.348 0.232
5 Est 0.524 0.324 0.388 0.600 0.408 0.468
Diff 0.148 0.300 0.200 0.460 0.672 0.572
10 Est 0.616 0.396 0.412 0.728 0.484 0.496
Diff 0.256 0.512 0.380 0.712 0.880 0.816

The new method is indicated by ‘Est’, the difference approach by ‘Diff’.
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We consider only H; g and H; ¢, since Hy 4 is now contained in the null hypothesis. The bandwidths used to
estimate m and o are different. They are both selected by means of a cross-validation procedure; again, these
bandwidths are also used for computing the bootstrap test statistics. No competing procedures exist for testing
this general model.

The results are given in Tables 4 and 5 and show that the significance level is quite close to the nominal value
of 0.05, both for n = 50 and 100. For the alternative hypothesis H; g, the Kolmogorov—Smirnov test usually

Table 3
Power under H, ¢ with known variance

c Meth. n=100 n =200
KS CM AD KS CM AD
0 Est 0.068 0.072 0.072 0.070 0.060 0.066
Diff 0.044 0.072 0.034 0.062 0.050 0.040
0.2 Est 0.080 0.096 0.116 0.084 0.100 0.124
Diff 0.044 0.080 0.040 0.088 0.108 0.096
0.4 Est 0.108 0.100 0.160 0.112 0.128 0.216
Diff 0.052 0.088 0.048 0.132 0.180 0.156
0.6 Est 0.132 0.156 0.224 0.148 0.248 0.344
Diff 0.072 0.160 0.100 0.220 0.312 0.252
0.8 Est 0.192 0.240 0.360 0.236 0.388 0.584
Diff 0.172 0.280 0.200 0.444 0.604 0.532
1 Est 0.308 0.432 0.572 0.512 0.752 0.876
Diff 0.376 0.612 0.520 0.836 0.944 0.940

The new method is indicated by ‘Est’, the difference approach by ‘Diff".

Table 4
Power under H, 5 with unknown variance

b n=>50 n =100
KS cM AD KS cM AD
0 0.046 0.030 0.048 0.068 0.050 0.044
1 0.098 0.074 0.116 0.156 0.136 0.298
2.5 0.314 0.204 0.270 0.430 0.302 0.422
5 0.530 0.348 0.410 0.592 0.354 0.474
10 0.556 0.342 0.360 0.594 0.356 0.416
Table 5
Power under H, ¢ with unknown variance
c n=1>50 n =100
KS CM AD KS cM AD
0 0.046 0.030 0.048 0.068 0.050 0.044
0.2 0.098 0.088 0.086 0.078 0.082 0.096
0.4 0.098 0.096 0.094 0.080 0.096 0.100
0.6 0.108 0.116 0.100 0.098 0.114 0.130
0.8 0.146 0.142 0.144 0.140 0.154 0.214

1 0.258 0.242 0.262 0.272 0.366 0.478
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outperforms the two other tests, whereas for the alternative H; ¢ there is not so much difference between the
behavior of the three test statistics for n = 50, whereas the Anderson—Darling test comes out as winner for
n = 100. Note that, under both alternatives, the power of the three test statistics increases with » and ¢, except
when b increases from 5 to 10. This seems to be due to the fact that the conditional error distribution is very
skewed.

4. Data analysis

We consider monthly expenditures in Dutch Guilders (= 0.45 Euro) of Dutch households on several
commodity categories and a number of background variables. These data can be found in the Data Archive of
the Journal of Applied Econometrics, see Adang and Melenberg (1995). We use accumulated expenditures on
food and total expenditures over the year October 1986 through September 1987 for households consisting of
two persons (n = 159) and want to regress two responses, namely

Y, =
Y, =

share of food expenditure in household budget,
log(expenditure on food per household)

to the regressor X = log(total expenditures). Scatterplots of these responses versus the regressor are given in
Fig. 1. We want to use our tests to see if model (1.1) is appropriate. The bandwidths for estimating m and ¢
are, as in the simulation section, determined by means of a cross-validation procedure. The P-values of the
tests are presented in Table 6.

The table shows that model (1.1) is violated by Y (except for the Kolmogorov—Smirnov test, whose P-value
is borderline), but not by Y,. Next, we like to test whether Y, satisfies the more restrictive homoscedastic
model Y, = m(X) + ¢, with ¢ independent of X. The P-values given in the last column of Table 6 indicate that
the homoscedastic model is valid too and can be used for an analysis of the log food expenditure data. This is
in agreement with the findings in Einmahl and Van Keilegom (2007).

_ - o
(o) o (o)
— Q o o
064 2 904 o  I8% ég: ggo o
_|© = ° 0, %%o ) %3 Q© o °
0 2 o opSuBEes
e g -1 o %,oocg@o R e ©
a % 0% 88,0%0 © ®
o °
8 g 8.0 o
i kel
- o
2 _
§ - o
7.0
I I I I I
9.5 10.0 105 11.0 115 9.5 10.0 105 110 115

log (total expenditure) log (total expenditure)

Fig. 1. Scatterplot of Y, versus X (left) and of Y, versus X (right).

Table 6
P-values for the household data for the heteroscedastic and homoscedastic model

Test Y, Y,

Hetero Hetero Homo
KS 0.071 0.369 0.378
CM 0.011 0.315 0.371
AD 0.011 0.477 0.638
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Appendix A

The asymptotic results given in Section 2 require the following assumptions.

(A) The sequence (), satisfies na* — 0 and na’**(loga;')™" — oo for some §>0.

(K) The probability density function K has compact support, [uK(u)du =0 and K is twice continuously
differentiable.

) (@) J(s) =1(0<s<1) or (ii) there exist 0<sp<s1<1 such that sy < inf{s € [0, 1] : J(s)#0}, 51 = sup{s €
[0,1] : J(s)#0} and infxeDXinfSOgsgslf(F’l(s|x)|x) >0 and J is twice continuously differentiable on the interior
of its support, fol J(s)ds =1 and J(s)=0 for all 0<s<1.

(F) (1) The support Dy of X is a bounded interval, Fy is twice continuously differentiable and
infyep,f 3 (1) > 0.

(i1) F(y|x) is differentiable in y and tw1ce differentiable in x and the derivatives are continuous in (x, ).
Moreover, sup, ,|y|f(y]x) <oo and supu|yq kF(y|x)|<oo for k =1,2.

(ii1) For every y € (0, 1) there exists an o € (0, 1), such that

sup max('yls l)fz;(zly + 22)
ylzp=l<ulz|<a min(FE(y), 1 - Fa(}’))y

<00,

and

sup  LEUE) i FL0) 1 — () <o,
vl -li<alni<a Jo()
(iv) infep, a(x)>0.

Note that condition (F) (iii) is only needed for the Anderson—Darling statistic and controls the denominator
of that statistic. This condition is satisfied for error distributions encountered in practice, in particular for the
normal distribution (used as null distribution in the simulation section) and for the Student z-distribution.

In addition to F,, F, and F';, we will need F :(v) = P{Y — m(X)}/6(X) < y|m, 6), where (X, Y) is independent of
(X1, Y)),...,(X,, Y,). The proofs of Section 2 are based on the two following crucial results.

Lemma A.1. Assume (A), (K), (J) and (F). Then, for 0<ﬁ<%,
sup [F.(0)(1 = 0N P[F:0) = £o(0) = Fi(0) + F, 0l = op(n™'/?)

yeR

and

sup

XED)(
yeR

N(x,y)Pn! Z[I(Xl- <X) — Fx(OE<y) — I(e:<y) — F;(0) + F.(0)]| = op(n™"/?).

Proof. We will show the first statement. The second one can be proved in a similar way. For reasons of
symmetry we restrict attention to the case where y <F ;1(1 /2). Since 1 — F,(y) is bounded away from 0 in this
case, we only need to consider F;(y) in the denominator. In order to simplify the presentation, we will present
the proof for the case ¢ = 1 and known. If this is not the case, the estimator ¢ can be handled in much the

same way as the estimator 7.
Choose 0<d; < (3 — B)/(3+ B). Write

Fi(y) P(e<y + i(x) — m(x)|iir) — P(e<y)
Fo)'™1 Ft = / F ()™

(m(x) — m(x)) dF x (x),

dFy(x)

fo(E(x)
F,(»'™
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for some &,(x) between y and y + ria(x) — m(x). Since sup,, . <,/ (v + z)/Fg(y)l_(sl < oo (for some a>0) and
sup, |m(x) — m(x)| = op(1) (see Proposition 4.3 in Akritas and Van Keilegom, 2001), the above is op(1),
uniformly in y. Hence, it follows that
F,} p+0o

qup P20/
y FSO})
with d, = 0, /(1 — 01) and so it suffices to consider Fg(y)_ﬁ_‘;zn_lzzll[l(éisy) —1(&i<y) — F:(») + F.(»)].
Next, note that in a similar way (but with replacing é; by d; /(1 + J,)), we can show that

= Op(1)

sup Fig‘ (y)ﬁ+252
v | Fa(y)ft2

1
So since f§ + 252<§, it follows from the Chibisov—O’Reilly theorem that

= Op (n’l/z),

2o

- Fa(y)éz

y

sup|[F.0) P22 S i) — Fu)
i=1

and hence it suffices to show that
R [l(ﬁiSy) RCES))
F()" F0)
where a = f + J, throughout the proof. Note that 0<a<1/2. Let d,(x) = m(x) — m(x), and consider the class
Ile<y+dx))  1(e<y)
P(e<y +d(X))* P(e<y)

y<F;'(1/2), d e C{*é(Dx)},

- op(n—‘/z), (A1)

sup|n
y i=1

—F:()' ™+ Fg(y)“”}

7 = {(x, e)—> —Pe<y+d(X)' " +Pe<y)

where C {J"S(DX) (with >0 as in Assumption (A)) is the class of all differentiable functions d defined on Dy
such that ||d||;.s<o/2 (with o>0 as in Assumption (F) (iii)), where

|d'(x) — d'(xX')]
p—————.

145 = maX{SI{p |d(x)], sup Id’(X)I} + su o

x,x |x — X
Note that by Propositions 4.3—4.5 in Akritas and Van Keilegom (2001), we have that P(d, € C{*‘s(D x) = 1
as n — oo. In the next part of this proof we will show that the class & is Donsker, i.e. we will establish the
weak convergence of n*I/ZZ?zlf(Xi, &), f € 7. This is done by verifying the conditions of Theorem 2.11.9 in
van der Vaart and Wellner (1996):

On
/ V9og Npy(&, #,L5)dé — 0 for every 6, | 0, (A2)
0

nl/zE{sup lf (X, o)l <sup f (X, )| >n1/217> } — 0 for every >0, (A.3)

feF

feF

where N[i(&, 7, L5) is the bracketing number, defined as the minimal number of sets N; in a partition
F = Ujvzclg;w such that for every j=1,..., Nz

Eq sup [f(X,e) = g(X,o)l” p <& (A4)
S 9eF g

According to Theorem 2.10.6 in van der Vaart and Wellner (1996), we can deal with the four terms in the

definition of & separately. We will restrict ourselves to showing (A.2) and (A.3) for

I(e<y+d(x))

7= {0 S oy

y<F;N(1/2),d € C{*‘S(Dx)},
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since the other terms are similar, but much easier. We will assume 0<Z<1. In Corollary 2.7.2 of the
aforementioned book it is stated that m = N{j((K12)%, C1*(Dy), Ly(P)) is bounded by exp (K(Kl.s')‘2/(1+")),
with K; >0 to be determined later. Let d¥'<dl,...,d%<d" be the functions defining the m brackets for
C}+‘5(DX). Thus, for each d and each fixed y:

I(e<y +dFX)<I(e<y+dX)<I(e<y + d’(X)).

Let b=min(2a,1—2a). Define FL(y)=P(e<y+d-(X)) and let —oco=y5<ph<... <yme = +o0
(my = O(72/")) partition the line in segments having F'-probability less than or equal to K»&*/® where
K>>0 will be chosen later. Similarly, define FY(y) = P(e<y + d" (X)) and let —oo = pJ <y§ < - <y5nU =
400 (my = O(&~%/*)) partition the line in segments having FY-probability less than or equal to K,&*/°.

Let e (i=1,...,m, k=1,...,my — 1) be the subset of & defined by the functions d,-L<d<diU and
75 <y<J{.where ji, = y% and ], is the smallest of the y§ which is larger than (or equal to) y, , . Fix i, k and
fix X and ¢. We consider three cases:

Case 1: For all f € F g,/ (X,¢) = 0. The supremum in (A.4) equals zero in that case.

Case 2: For certain f € F4,f(X,e) =0 and for certain f € %z, f(X,e)#0. This happens only if
jﬁc + diL(X)<s<)7f,f + diU(X). Also, the supremum in (A.4) is bounded by F,(¢)™> in that case. Hence, the
expected value in (A.4), restricted to those (X, ¢) that belong to case 2, is bounded by

~l.%+d’.U(x)
ﬂ Fu(r) dF,(0) dF ()
;

L L
i ()

1 V. 2
=5 | [P +al ) ™ = F(k + df ) ] dFx)
1 . 1-2a - 1-2a
=15 [F R +d/ () - F, (yfk+1 +d/ (x)) } dF y(x)
1 . 1-2a - 1-2a
b [ PO i) = F (3 ) arao

1 . 1-2a N .
bt [ [Pt ) ™ = R+ dte) ™ araco

<

X

1 . . 1-2a B
- |FY ) —FF (bhn)|  + / ) ™f (Ea)(df () = df () dFx(x)
1 - N 1-2a

12, [F,L <y£k+l) — F} (erk)]
< 2K
1 —2a
and this is bounded by &> for proper choice of K| and K,, where K’ >0 and where £;(x) is between fka +

di(x) and jh | +df (x).

Case 3: For all f € F s, f(X,€)#0. This implies that k> 1 and hence F¥ (54 ) > K#*/*. Hence, the expected
value at the left-hand side of (A.4), restricted to those (X, ¢) that satisfy the condition of case 3, is bounded by

[FEG) ™ = FY G5) ™) FE(%)
L S I I 7 R £ B R 2 O e L S

={T1+ To+ T3P’ F{ (35) <3{T7 + T3 + T3} F7 (7).

P02/ L K'Y — d,«LIILl(P)a

It is easy to see that

T (58) < [FE () — FEGR)] O

and this is bounded by & for proper choice of K, >0 (consider separately a<1/4 and a>1/4). It can be shown
in a similar way that T7FF(74) <& for £ =2,3 and for Ky, K,>0 small enough. This shows that (A.4) is
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satisfied and hence
Ny@ 71,12 = o(exp (2K(1<15)—2/<‘+">)).

It now follows that (A.2) holds, since

on on 1 S
VIog NG 7, D) de<2k | (Ko V09 dz = 2K%(1<15n)5/<1+5> 0.
0 0

Next, by writing
I(e<y+d(X))

sup [/ (X, 8)|< sup Ple<y + d(X))

Je7 deC}+5(DX),—oo<y<oo

-1
= sup {/ F.(¢ — d(X) + d(x)) dFX(x)}

dec}+5(DX)
<F8(8 - a)_aa

it follows that the left-hand side of (A.3) is bounded by

nPE(F (e — ) “I(Fo(e — )™ >n'?)} = n'/? / " Fo(y — o)™ ,(») dy, (A.5)

where k, = F;l[(nl/zr])_l/a] + a. It now follows from condition (F) (iii) that (A.5) is bounded, for n large
enough, by (where y>0 is chosen such that ¢ + y<1/2 and K is some positive constant)

Kn'l? / Foly — o) “ D dF,(y — o)

o0
(nl/2n)—l/a
= Kn'/? / u @ dy
0

172 —(l—a—ry
_ Kn'/ (n'/zn) (1—a—y)/a _ O(n(2a+}’—l)/(2a)) = o(l).
l—a—vy
This shows that the class % (and hence %) is Donsker.
Next, let us calculate
Ie<y+du(X))  I(<y)
Ple<y + du (X)) P(e<y)

<EF({ [6<y+du(X))  1(E<y) }2

— P(e<y + dy(X) ™ + P(e<y)

X, d”>

The conditional expectation is equal to (suppose that d,(X) >0 for simplicity)

4

dn] : (A.6)

Pe<y + dn(X))*  Ple<y)

E|:1(8<y+dn(X)) 1(e<y) 1(e<) % d]
Fu(y + d(X)*  F.(0) "~ F(y+dX))F.0)] "
_ 1-2a 1-2a Fﬂ(y)172[1 a a
=F.(y +du(X)) ™ = Fo(y) +2m[Fs(y+dn(X)) - F.(»)]
Fg(y)172u

= (1 = 2a)F,(&,(X)) " f (&, (X))du(X) + 2a F (& X)) f (X)) du(X)

SF(&,(X) 7L (& (X)du(X)

and, by condition (F) (iii), this is bounded by Kd,(X) for some K >0, where ,(X) and Ey(X ) are between y
and y + d,(X). A similar derivation can be given when d,(X) <0. It follows that the right-hand side of (A.6) is
bounded by Ksup,|d,(x)| = op(1l), by Proposition 4.3 in Akritas and Van Keilegom (2001).

Fy(y + du(X))*



J.H.J. Einmahl, I. Van Keilegom | Journal of Econometrics 143 (2008) 88—102 101

Since the class & is Donsker, it follows from Corollary 2.3.12 in van der Vaart and Wellner (1996) that

zn:f(X,',S[) >§> =0

i=1
for each £>0. By restricting the supremum inside this probability to the elements in % corresponding to
d(X) = d,(X) as defined above, (A.1) follows. [

Lemma A.2. Assume (A), (K), (J) and (F), let n>0,0<{<1 and b, = n=1=9. Then,

w12

lim lim sup P sup
MO0 psoo feF Var(f)<n

() ’}
F ()" — 1|t = op(l
F(s}l)lgb{ () 70) op(1)
and
2001
1—F,(») = op(1).
l_ﬁiﬁlbn{( S Fap 'y =0

Proof. We only prove the first statement. The second one follows in a similar way. Choose v>0 such that
v<I1/2and (1 = {)(1 —v)<1/2. Then,

Ey() IF:0) = i)l
Fi(») F¢(Syl)1£/an F;(»)'b,™

IWa(Ey () — F3()]

sup —1|<

Fy(»)=bn

=o(l) sup

Fy(y)=bn Fé(y)v
= o(1) (Sup |ﬁ(F}ﬁzy_)vF8@))| + OP(1)> = op(1),

where the last equality follows from the Chibisov—O’Reilly theorem and the one but last equality from the
proof of Lemma A.1. Hence, it follows that

Fy(y)
Fi(y)

We next show that the supremum in (A.7) can be replaced by the supremum over {y : F :(y)=b,}. Indeed, it
follows from (A.7) that there exists a sequence J, | 0 such that

F,
P sup A"(y)— =6, | =0
Fy0)>bu | F3(p)

as n — oo. Hence,

Fi(y) (
P{ sup |———1|=¢ | <P|supg,)>p,0-60 |5
(ﬁgo»»bn Fy(y) )

Finally, consider

’ = op(1). (A7)
Fy 0)>bn

—_—

F(y) 1‘>8>+P< sup
Fi(») F3(0)>by

F:) 1‘ (5)—)0.
Fi(»)

Fi(»)
Fi(»)

sup {F 0=

F3()=bn

F,(») ‘}_ { .
—1 = F;
Fi) e A

4}+oﬂn=oﬂm

since sup | F;(»)" — F:(»)"| = op(1) and since it follows from the proof of Lemma A.1 that

Fg(y)lJrn
Fi(y)

- Fe(y)n

sup
)

= op(1). O
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