
ARTICLE IN PRESS
Contents lists available at ScienceDirect
Information Systems

Information Systems 34 (2009) 551–576
0306-43

doi:10.1

� Cor

Tel./fax:

E-m

sofie.ha

(B. Kuij
journal homepage: www.elsevier.com/locate/infosys
Spatial aggregation: Data model and implementation
Leticia Gómez c, Sophie Haesevoets a, Bart Kuijpers b, Alejandro A. Vaisman b,d,�

a Luciad NV, Belgium
b Hasselt University and Transnational University of Limburg, Belgium
c Instituto Tecnológico de Buenos Aires, Argentina
d Universidad de Buenos Aires, Argentina
a r t i c l e i n f o

Article history:

Received 25 May 2008

Received in revised form

13 December 2008

Accepted 11 March 2009
Recommended by: L. Wong
the GIS. This approach allows both aggregation of geometric components and
Keywords:

Data warehousing

OLAP

GIS

Aggregation
79/$ - see front matter & 2008 Elsevier B.V. A

016/j.is.2009.03.002

responding author at: Universidad de Bueno

+54114902 0421.

ail addresses: lgomez@itba.edu.ar (L. Gómez),

esevoets@luciad.com (S. Haesevoets), bart.ku

pers), avaisman@dc.uba.ar (A.A. Vaisman).
a b s t r a c t

Data aggregation in Geographic Information Systems (GIS) is a desirable feature, only

marginally present in commercial systems nowadays, mostly through ad hoc solutions.

We address this problem introducing a formal model that integrates, in a natural way,

geographic data and non-spatial information contained in a data warehouse external to

aggregation of measures associated to those components, defined in GIS fact tables.

We define the notion of geometric aggregation, a general framework for aggregate

queries in a GIS setting. Although general enough to express a wide range of (aggregate)

queries, some of these queries can be hard to compute in a real-world GIS environment

because they involve computing an integral over a certain area. Thus, we identify the

class of summable queries, which can be efficiently evaluated replacing this integral with

a sum of functions of geometric objects. Integration of GIS and OLAP (On Line Analytical

Processing) is supported also through a language, GISOLAP-QL. We present an

implementation, denoted Piet, which supports four kinds of queries: standard GIS,

standard OLAP, geometric aggregation (like ‘‘total population in states with more than

three airports’’), and integrated GIS-OLAP queries (‘‘total sales by product in cities

crossed by a river’’, also allowing navigation of the results). Further, Piet implements a

novel query processing technique: first, a process called subpolygonization decomposes

each thematic layer in a GIS, into open convex polygons; then, another process (the

overlay precomputation) computes and stores in a database the overlay of those layers for

later use by a query processor. Experimental evaluation showed that for a wide class of

geometric queries, overlay precomputation outperforms R-tree-based techniques,

suggesting that it can be an alternative for GIS query processing.

& 2008 Elsevier B.V. All rights reserved.
1. Introduction

Geographic Information Systems (GIS) have been
extensively used in various application domains, ranging
from economical, ecological and demographic analysis, to
city and route planning [41,49]. Spatial information in a
ll rights reserved.

s Aires, Argentina.

ijpers@uhasselt.be
GIS is typically stored in different so-called thematic layers

(or themes). Information in themes is generally stored in
Object-Relational databases, where spatial data (i.e.,
geometric objects) are associated to attribute information,
of numeric or string type. Spatial data in the different
thematic layers of a GIS system can be mapped univocally
to each other using a common frame of reference, like a
coordinate system. These layers can be overlapped or
overlayed to obtain an integrated spatial view.

OLAP (On Line Analytical Processing) [24] comprises a
set of tools and algorithms that allow efficiently querying
multidimensional databases, containing large amounts of

www.sciencedirect.com/science/journal/is
www.elsevier.com/locate/infosys
dx.doi.org/10.1016/j.is.2009.03.002
mailto:lgomez@itba.edu.ar
mailto:sofie.haesevoets@luciad.com
mailto:bart.kuijpers@uhasselt.be
mailto:bart.kuijpers@uhasselt.be
mailto:avaisman@dc.uba.ar

ARTICLE IN PRESS

L. Gómez et al. / Information Systems 34 (2009) 551–576552
data, usually called data warehouses. In OLAP, data are
organized as a set of dimensions and fact tables. In this
multidimensional model, data can be perceived as a data

cube, where each cell contains a measure or set of
(probably aggregated) measures of interest. OLAP dimen-
sions are further organized in hierarchies that favor the
data aggregation process [4]. Several techniques and
algorithms have been developed for query processing,
most of them involving some kind of aggregate precom-
putation [19] (an idea we will use later in this paper).
1.1. Problem statement

Nowadays, organizations need sophisticated GIS-based
decision support system (DSS) to analyze their data with
respect to geographic information, represented not only as
attribute data, but also in maps, probably in different
thematic layers. In this sense, OLAP and GIS vendors are
increasingly integrating their products.1 Aggregate queries
are central to DSSs. Thus, classical aggregate queries (like
‘‘total sales of cars in California’’), and aggregation
combined with complex queries involving geometric
components (‘‘total sales in all villages crossed by the
Mississippi river within a radius of 100 km around New
Orleans’’) must be efficiently supported. Moreover, navi-
gation of the results using typical OLAP operations like
roll-up or drill-down is also required. These operations are
not supported by commercial GIS in a straightforward
way. First, GIS data models were developed with ‘‘transac-
tional’’ queries in mind. Thus, the databases storing non-
spatial attributes or objects are designed to support those
(non-aggregate) kinds of queries. DSSs need a different
data model, where non-spatial data, consolidated from
different sectors in an organization, is stored in a data
warehouse. Here, numerical data are stored in fact tables
built along several dimensions. For instance, if we are
interested in the sales of certain products in stores in a
given region, we may consider the sales amounts in a fact
table over the dimensions Store, Time and Product.
Moreover, in order to guarantee summarizability [28],
dimensions are organized into aggregation hierarchies.
For example, stores can aggregate over cities which in turn
can aggregate into regions and countries. Each of these
aggregation levels can also hold descriptive attributes like
city population, the area of a region, etc. To fulfill the
requirements of integrated GIS-DSS, warehouse data must
be linked to geographic data. For instance, a polygon
representing a region must be associated to the region
identifier in the warehouse. Second, system integration in
commercial GIS is not an easy task. The GIS and OLAP
worlds must be integrated in an ad hoc fashion, in a
different way each time an implementation is required. In
this paper we address this problem, and introduce a
framework which naturally integrates the GIS and OLAP
worlds. We also describe an implementation of this
proposal, denoted Piet, and show the advantages of this
approach.
1 See Microstrategy and MapInfo integration in http://www.micros-

trategy.com/, http://www.mapinfo.com/.
1.2. An introductory example

Consider the following real-world example, which we
also use in our experiments. We selected four layers with
geographic and geological features obtained from the
National Atlas Website.2 These layers contain states, cities,
and rivers in North America, and volcanoes in the
northern hemisphere (published by the Global Volcanism
Program—GVP). Cities and volcanoes are represented as
points, rivers as polylines, and states as polygons. There is
also non-spatial information stored in a conventional data
warehouse, where dimension tables contain customer,
stores and product information, and a fact table contains
stores sales across time. Also numerical and textual
information on the geographic components exist (e.g.,
population, area), stored as usual in a GIS. In this scenario,
conventional GIS and organizational data can be inte-
grated for decision support analysis. Sales information
could be analyzed in the light of geographical features,
conveniently displayed in maps. We show that this
analysis could benefit from the integration of both worlds
in a single framework. Even though this integration could
be possible with existing technologies, ad hoc solutions
are expensive because, besides requiring lots of complex
coding, their are hardly portable. To make things more
difficult, ad hoc solutions require data exchange between
GIS and OLAP applications to be performed. This implies
that the output of a GIS query must be exported as a
dimension of a data cube, and merged for further analysis.
For example, suppose that a business analyst is interested
in studying the sales of nautical goods in stores located in
cities crossed by rivers. She has a map that comprises two
layers, one for rivers (represented as polylines) and other
for cities (represented as polygons). She also has stored
sales in a data cube, containing a dimension Store or
Geography with city as a dimension level. She would first
query the GIS, to obtain the cities of interest. Then, she
would need to ‘manually’ select in the data cube the cities
of interest, and export them to a spreadsheet, to be able to
go on with the analysis (in the best case, an ad hoc
customized middleware could help her). Of course, she
must repeat this for each query involving a (geographic)
dimension in the data cube. On the contrary, using
Piet (the system we propose in this paper), she only needs
to bind geographic elements in the maps, to the existing
data cube(s) that integrate organizational information,
and the system is ready to receive her queries. The
results are displayed for further drilling down/rolling up
(see Figs. 9 and 10 in Section 6 which discusses these
kinds of queries in detail). Further, ad hoc improvements
could be also performed during the Extraction, Transfor-
mation, and Loading (ETL) stage, like, for instance, adding
an attribute indicating if the city is crossed by a river,
avoiding computing the intersection each time a query is
posed.
2 http://www.nationalatlas.gov

http://www.microstrategy.com/
http://www.microstrategy.com/
http://www.mapinfo.com/
http://www.nationalatlas.gov

ARTICLE IN PRESS

L. Gómez et al. / Information Systems 34 (2009) 551–576 553
1.3. Contributions and paper organization

After providing a brief background on previous
approaches to the interaction between GIS and OLAP
(Section 2), we propose a formal model for spatial
aggregation that supports efficient evaluation of aggregate
queries in spatial databases based on the OLAP paradigm
(Section 3). This model is aimed at integrating GIS and
OLAP in a unique framework for decision support. We
assume that non-spatial data are stored in data ware-
houses [24], created and maintained separately from the
GIS, a so-called loosely coupled approach. We formally
define the notion of geometric aggregation that charac-
terizes a wide range of aggregate queries over regions
defined as semi-algebraic sets. We show that our proposal
supports aggregation of geometric components, aggrega-
tion of measures associated with these components, and
aggregation of measures defined in data warehouses,
external to the GIS. Although this theoretical framework is
general enough to express many interesting queries,
practical problems can be solved without the need of
dealing with geometries and semi-algebraic sets, which
can be difficult and computationally expensive. Thus, as
our second contribution, we identify a class of queries that
we denote summable (Section 4), allowing geometric
aggregation to be performed without resorting to co-
ordinates and geometric union algorithms. We formally
study summable queries, and define when a geometric
aggregate query is or is not summable.3 Usually, summa-
ble queries involve overlapping thematic layers. We show
that summable queries can be efficiently evaluated over a
new layer that contains the pre-computation of the
overlay (i.e., the spatial join) of the individual thematic
layers that are involved in a query, following the paradigm
of view materialization in OLAP [19] (Section 5). We call
this subdivision the common subpolygonization of the
plane. Our ultimate idea is to provide a working
alternative to standard R-tree-based query processing
that could be included in a query processor as another
strategy for performing spatial joins with or without
aggregation. As a particular application of these ideas, we
discuss topological aggregation queries, and sketch how
they can be efficiently evaluated using a topological
invariant instead of geometric elements.

We also present Piet, an open source implementation
of our proposal (named after the Dutch painter Piet
Mondrian), along with experimental results showing that,
contrary to the usual belief [18], precomputing the
common subpolygonization can successfully compete with
typical R-tree-based solutions used in most commercial
GIS (Section 7). The Piet software architecture is prepared
to support not only overlay precomputation for query
processing, but R-Trees and aR-Trees [33] as well. Our
implementation provides a smooth integration between
OLAP and GIS applications. Of course, this integration
3 It will become clear that the notion of summability differs from the

concept of summarizability studied in [28,44]. Summability allows

replacing an integral by a sum. However, summarizability must be

preserved for a query to be summable.
cannot prevent that queries are executed by two engines:
a GIS engine, and an OLAP one (there is no way to avoid
this with existing technology). Integration is thus pro-
vided at a higher abstraction level. Piet supports four
kinds of queries: (a) standard GIS queries; (b) standard
OLAP queries; (c) geometric aggregation queries (‘‘total
population in states with more than three airports’’); (d)
integrated GIS-OLAP queries (‘‘total sales by product in
cities crossed by a river’’). OLAP-style navigation is also
supported in the latter case. Queries can be submitted
from a graphical interface, or written in GISOLAP-QL, a
language sketched in Section 6. We finally report experi-
mental results (Section 8). Piet software, query demon-
strations, and experiments over other maps, not shown
here, are available on the project’s Web site.4

Remark 1. An extended abstract describing the imple-
mentation of Piet appeared in [10]. The present paper
substantially extends the former one, by adding a detailed
description of the formal model (only an overview was
provided in [10]) and of the implementation, a more in
depth analysis related work, and a different set of
experiments. The latter is relevant to the validation of
the approach, given the different characteristics of both
sets of maps.

2. Background and related work

In the last five years, the topic of spatial OLAP and
spatio-temporal OLAP, has been attracting the attention of
the database and GIS communities. In this section we
provide a short background on the notion of Spatial OLAP
(SOLAP), and review previous work on conceptual model-
ing and implementation, comparing this existing ap-
proaches to our proposal.

The concept of SOLAP. Vega López et al. [48] present a
comprehensive survey on spatiotemporal aggregation.
Also, Bédard et al. [2] present a review of the efforts for
integrating OLAP and GIS. Rivest et al. [42] introduced the
concept of Spatial OLAP, a paradigm aimed at being able to
explore spatial data by drilling on maps, as it is performed
in OLAP with tables and charts. They describe the
desirable features and operators a SOLAP system should
have. Although they do not present a formal model for
this, SOLAP concepts and operators have been implemen-
ted in a commercial tool called JMAP.5Related to the
concept of SOLAP, Shekhar et al. [43] introduced MapCube,
a visualization tool for spatial data cubes. MapCube is an
operator that, given a so-called base map, cartographic
preferences and an aggregation hierarchy, produces an
album of maps that can be navigated via roll-up and drill-
down operations.

Conceptual modeling. Stefanovic et al. [45] and Bédard
et al. classify spatial dimension hierarchies according to
their spatial references in: (a) non-geometric; (b) geo-
metric to non-geometric; and (c) fully geometric. Dimen-
sions of type (a) can be treated as any descriptive
4 http://piet.exp.dc.uba.ar/piet/index.jsp.
5 http://www.kheops-tech.com/en/jmap/solap.jsp.

http://www.piet.exp.dc.uba.ar/piet/index.jsp
http://www.kheops-tech.com/en/jmap/solap.jsp

ARTICLE IN PRESS

L. Gómez et al. / Information Systems 34 (2009) 551–576554
dimension. In dimensions of types (b) and (c), a geometry
is associated to members of the hierarchies. Malinowski
and Zimányi [30], in the Multidim model, extend this
classification to consider that even in the absence of
several related spatial levels, a dimension can be con-
sidered spatial. Here, a dimension level is spatial if it is
represented as a spatial data type (e.g., point, region),
allowing them to link spatial levels through topological
relationships (e.g., contains, overlaps). Thus, a spatial
dimension is a dimension that contains at least one spatial
hierarchy. This model is an extension of previous
conceptual model for OLAP introduced by the same
authors, based on the well-known Entity-Relationship
model [29]. In the models above, spatial measures are
characterized in two ways, namely: (a) measures repre-
senting a geometry, which can be aggregated along the
dimensions; (b) a numerical value, using a topological or
metric operator. Most proposals support option (a), either
as a set of coordinates [1,3,30,42], or a set of pointers to
geometric objects [45]. In particular, in [30], the authors
define measures as attributes of an n-ary fact relationship
between dimensions. Further on, the same authors
present a method to transform a conceptual schema to a
logical one, expressed in the Object-Relational paradigm
[31]. Fidalgo et al. [11] and da Silva et al. [46] introduced
GeoDWFrame, a framework for spatial OLAP, which
classifies dimensions as geographic and hybrid, if they
represent only geographic data, or geographic and non-
spatial data, respectively. Over this framework, da Silva
et al. [47] propose GeoMDQL, a query language based on
MDX and OGC6 simple features, for querying spatial data
cubes. It is worth noting that all these conceptual models
follow what we can denote a tightly coupled approach
between the GIS and OLAP components, given that the
spatial objects are included in the data warehouse. On the
contrary, we follow a loosely coupled approach, where GIS
maps and data warehouses are maintained in a separate
fashion, and bound by a matching function. We believe
that this approach favors autonomy, updating and main-
tenance of the databases. Pourabas [39] introduced a
conceptual model that uses binding attributes to bridge
the gap between spatial databases and a data cube. No
implementation of the proposal is discussed. Besides, this
approach relies on the assumption that all the cells in the
cube contain a value, which is not the usual case in
practice, as the author expresses. Moreover, the approach
also requires modifying the structure of the spatial data.
This is not the case in our proposal, which does not
require to modify existing data structures.

Implementation. Han et al. [17] use OLAP techniques for
materializing selected spatial objects, and proposed a so-
called spatial data cube. This model only supports
aggregation of such spatial objects. Pedersen and Tryfona
[38] propose pre-aggregation of spatial facts. First, they
pre-process these facts, computing their disjoint parts in
order to be able to aggregate them later, given that pre-
aggregation works if the spatial properties of the objects
are distributive over some aggregate function. This
6 Open Geospatial Consortium, http://www.opengeospatial.org.
proposal ignores the geometry. Thus, queries like ‘‘Give
me the total population of cities crossed by a river’’ are not
supported. The paper does not address forms other than
polygons, although the authors claim that other more
complex forms are supported by the method. No experi-
mental results are reported. Extending this model with
the ability to represent partial containment hierarchies
(useful for a location-based services environment), Jensen
et al. [23] proposed a multidimensional data model for
mobile services, i.e., services that deliver content to users,
depending on their location. This model also omits
considering the geometry, limiting the set of queries that
can be addressed. With a different approach, Rao et al.
[40], and Zang et al. [50] combine OLAP and GIS for
querying so-called spatial data warehouses, using R-trees
for accessing data in fact tables. The data warehouse is
then evaluated in the usual OLAP way. Thus, they take
advantage of OLAP hierarchies for locating information in
the R-tree which indexes the fact table. Here, although the
measures are not spatial objects, they also ignore the
geometric part, limiting the scope of the queries they can
address. It is assumed that some fact table, containing the
ids of spatial objects exists. Moreover, these objects
happen to be just points, which is quite unrealistic in a
GIS environment, where different types of objects appear
in the different layers. Other proposals in the area of
indexing spatial and spatio-temporal data warehouses
[33,34] combine indexing with pre-aggregation, resulting
in a structure denoted aggregation R-tree (aR-tree), an
R-tree that annotates each MBR (minimum bounding
rectangle) with the value of the aggregate function for all
the objects that are enclosed by it. We implemented an
aR-tree for experimentation (see Section 8). This is a very
efficient solution for some particular cases, specially when
a query is posed over a query region whose intersection
with the objects in a map must be computed on-the-fly.
However, problems may appear when leaf entries partially
overlap the query window. In this case, the result must be
estimated, or the actual results computed using the base
tables. Kuper and Scholl [27] suggest the possible
contribution of constraint database techniques to GIS.
Nevertheless, they do not consider spatial aggregation,
nor OLAP techniques.

In summary, although the proposals above address
particular problems, as far as we are aware of this isthe
first work to address the problem as a whole, from the
formal study of the problem of integrating spatial and
warehousing information in a single framework that
allows to obtain the full potential of this integration,
discussed in the first part of this paper, to the implemen-
tation of the proposal, presented in the second part, along
with the discussion of practical and implementation
issues, together with experimental results that validate
our approach.
3. Spatial aggregation

Our proposal is aimed at integrating, in a single model,
spatial and non-spatial information, probably produced
independently from each other. We assume, without loss

http://www.opengeospatial.org

ARTICLE IN PRESS

point point point

line
node

polyline

All All All

Geometric part

Algebraic part

polygon

All

river

month

year

All

A Time Dimension

All

region

state

OLAP part

OLAP part

hour

week

day

minute

second

Lr (rivers) Ls (schools) Le (states)

Fig. 1. An example of a GIS dimension schema.

L. Gómez et al. / Information Systems 34 (2009) 551–576 555
of generality, that non-spatial data are stored in a data
warehouse following the standard OLAP notion of dimen-
sion hierarchies and fact tables [4,22]. We denote this
approach loosely coupled, given that warehouse and spatial
data are maintained independently from each other. The
main component of the model is denoted a GIS dimension.
A GIS dimension consists, as usual in databases, in a
dimension schema that describes the dimension’s struc-
ture, and dimension instances. Each dimension is com-
posed of a set of graphs, each one describing a set of
geometries in a thematic layer. Fig. 1 shows a GIS
dimension schema, with three graphs representing three
different layers, following our running example: rivers
(Lr), volcanoes (Lv), and states (Le). We define three
sectors, denoted the algebraic part, the geometric part,
and the classical OLAP part. Typically, each layer contains a
set of binary relations between geometries of a single kind
(although the latter is not mandatory). For example, an
instance of the relationship (line, polyline) stores the
identifiers of the lines belonging to a polyline. There is
always a finest level in the dimension schema, repre-
sented by a node with no incoming edges. We assume that
this level, called ‘‘point’’, represents points in space. The
level ‘‘point’’ belongs to the algebraic part of the model.
Here, data in each layer are represented as infinite sets of
points ðx; yÞ, finitely described by means of linear algebraic
equalities and inequalities. In the geometric part, data
consist of a finite number of elements of certain
geometries. This part is used for solving the geometric
part of a query, for instance to find all polygons that
compose the shape of a country. Each point in the
algebraic part corresponds to one or more elements in
the geometric part. Note that, for example, a point may

correspond to two adjacent polygons, or to the intersection

of two or more roads. Moreover, a line may correspond to
more than one polygon. There is also a distinguished level,
denoted ‘‘All’’, with no outgoing edges.
Non-spatial information is represented in the OLAP

part, and is associated to levels in the geometric part. For
example, information about states, stored in a data
warehouse, can be associated to polygons, or information
about rivers, to polylines. Typically, these concepts are
represented as a set of dimension levels, which are part of
a hierarchy in the usual OLAP sense.

Example 1. In Fig. 1, the level polygon in layer Le is
associated with two dimension levels, state and region,
such that state! region (‘‘A! B’’ means that there is a
functional dependency from level A to level B in the OLAP
part[4]). Each level may have attributes associated, like
population or number of schools. Thus, a geometrically
represented component is associated with a dimension
level in the OLAP part. There is also an OLAP hierarchy
associated to the layer Lr at the level of polyline. Notice
that since dimension levels are associated to geometries,
it is straightforward to associate facts stored in a data
warehouse in the OLAP part, in order to aggregate these
facts along geometric dimensions. Finally, in the algebraic
part, the relationship hpoint; polygoni associates infinite
point sets with polygons.

Formally, assume there is a set of layer names L, and a
set G of geometry names, which contains at least the
following geometries: point, node, line, polyline, polygon
and the distinguished element ‘‘All’’. Each geometry G of G
has an associated domain domðGÞ. The domain of Point,
domðPointÞ, for example, is the set of all pairs in R2. The
domain of All ¼ fallg. The domain of the elements G of G,
except Point and All, is a set of geometry identifiers, gid,
i.e., gid are identifiers of geometry instances, like polylines
or polygons.

Definition 1 (GIS dimension schema). A GIS dimension

schema is tuple dGISsch ¼ hH;Fatt ;Di where H is a finite

ARTICLE IN PRESS

all

x1,y1

x2,y2

x3,y3

x4,y4

l1
l2

pl1

Layer Lr

Colorado

r (Lr, line, polyline, lid, plid)

ralg (Lr, line, x, y, lid)

α (Lr, Rivers, Ri, polyline, ’Colorado’)

Fig. 2. A portion of a GIS dimension instance in Fig. 1.

L. Gómez et al. / Information Systems 34 (2009) 551–576556
set of graphs, Fatt a set of functions, and D a set of OLAP
dimension schemas. We define these sets below.

Given a layer L 2 L, HðLÞ, is a graph where: (a) there is a

node for each kind of geometry G 2 G in L; (b) there is an

edge between two nodes Gi and Gj if Gj is composed of

geometries of type Gi (i.e., the granularity of Gj is coarser

than that of Gi); (c) there is a distinguished member All

that has no outgoing edges; (d) there is exactly one node

representing the geometry hpointi with no incoming

edges. The dimension schemas D 2 D are tuples of the

form hdname; Levels;�i , such that dname is the name of

the dimension, Levels is a set of dimension level

names, and � is a partial order between levels (see

[22]). Finally, Fatt contains partial functions (denoted Att)

mapping attributes in OLAP dimensions to geometries in

the layers.

Example 2. The GIS dimension depicted in Fig. 1 has the
schema: dGISsch ¼ hfðH1ðLrÞ, ðH2ðLvÞ, H3ðLeÞg, fAttðstateÞ,
AttðriverÞ, fRivers; Statesgi. In this schema, for example,
H1ðLrÞ ¼ ðfpoint, line, polyline;Allg, fðpoint; lineÞ, ðline,
polylineÞ, ðpolyline;AllÞgÞ. For the OLAP dimensions
Rivers and States, the Att functions in Fatt are:
Attðstate; StatesÞ ¼ ðpolygon; LeÞ (meaning that the attri-
bute states maps to polygons in layer Le), and Attðriver,
RiversÞ ¼ ðpolyline; LrÞ (i.e., the attribute river maps to
polylines in the layer Lr).

Definition 2 (GIS dimension instance). Let dGISsch ¼

hH;Fatt ;Di be a GIS dimension schema. A GIS dimension

instance is a tuple hdGISsch; ralg ; r;a; Dinsti; where (a) ralg is
a 5-ary relation representing the rollup between the
algebraic and geometric parts. Thus, it is of the form
hLi;Gj; x; y; gidi; where Li is a layer name, Gj is the geometry
in the geometric part to which point rolls up, x; y are the
coordinates of a point, and gid is the identifier of the object
associated to x; y in the geometric part; (b) r is a 5-ary
relation representing the rollup between objects in the
geometric part. It is of the form hLi;Gi;Gj; gidi

; gidj
i;where Li

is a layer name, Gi and Gj are geometries in the geometric
part such that the former rolls up to the latter (i.e., there is
an edge Gi ! Gj in HðLiÞ in dGISsch), and gidi

and gidj
are

instances of these geometries. We denote ralg and r rollup

relations. The function a maps a member in a level level in
an OLAP dimension D; to an object gid in a geometry G in a
layer L: This mapping corresponds to the functions in Fatt :

Intuitively, a provides a link between a data warehouse
instance and an instance of the hierarchy graph. Finally,
for each dimension schema D 2 D there is a dimension
instance in Dinst , composed of a set of rollup functions
[22] that relate elements in the different dimension levels
(intuitively, these functions indicate how dimension level
members are aggregated).

Example 3. Fig. 2 shows a portion of an instance of the
GIS dimension schema of Fig. 1. A member (‘Colorado’) of
the level rivers in the OLAP dimension rivers, is mapped
(through the function a) to the polyline pl1; in layer Lr. We
show four points at the point level fðx1; y1Þ; . . . ; ðx4; y4Þg

(recall that the points at this level are actually infinite and
described by algebraic expressions). We also show the
relations ralg and r; containing the association of points to
lines, and lines to polylines, respectively. For example, ralg

contains the tuple hLr ; line; x4; y4; l2i.

Elements in the geometric part in Definition 1 can be
associated with facts, each fact being quantified by one or
more measures, in the usual OLAP sense.

Definition 3 (GIS fact table). Given a geometry G in a
graph HðLÞ of a GIS dimension schema, and a list M of
measures ðM1; . . . ;MkÞ; a GIS fact table schema is a tuple
FT ¼ ðG; L;MÞ. A base GIS fact table schema is a tuple BFT ¼

ðpoint; L; MÞ that means, a fact table with the finest
geometric granularity. A GIS fact table instance is a function

ARTICLE IN PRESS

L. Gómez et al. / Information Systems 34 (2009) 551–576 557
ft mapping values in domðGÞ � L to values in domðM1Þ �

� � � � domðMkÞ: A base GIS fact table instance maps values in
R2
� L to values in domðM1Þ � � � � � domðMkÞ:

Example 4. Consider a fact table containing state popula-
tions in our running example, stored at the polygon level.
The fact table schema would be ðpolyId; Le; populationÞ;

where population is the measure. If information about, for
example, temperature data, is stored at the point level, we
would have a base fact table with schema ðpoint;

Le; temperatureÞ; with instances like ðx1; y1; Le;25Þ: Note
that temporal information could be also stored in these
fact tables, by simply adding the time dimension to the
fact table. This would allow to store temperature
information across time.

Basically, a GIS fact table is a standard OLAP fact table
where one of the dimensions is composed of geometric
objects in a layer. Classical fact tables in the OLAP part,
defined in terms of the OLAP dimension schemas can also
exist. For instance, instead of storing the population
associated to a polygon identifier, as in Example 4, this
information may reside in a data warehouse.

3.1. Geometric aggregation

We now give a precise definition of the kinds of
aggregate queries we deal with.

Definition 4 (Geometric aggregation). Given a GIS dimen-
sion as introduced in Definitions 1 and 2, a geometric

aggregation is the expression
ZZ

R2
dCðx; yÞhðx; yÞdx dy,

where C ¼ fðx; yÞ 2 R2
j jðx; yÞg,7 and dC is defined as

follows:

dCðx; yÞ ¼ 1 on the two-dimensional parts of C is a Dirac

delta function [8] on the zero-dimensional parts of C; and it

is the product of a Dirac delta function with a combination

of Heaviside step functions [21] for the one-dimensional

parts of C (see Appendix A for details). Also, j is a first-

order (FO) formula in a multi-sorted logic L over the

reals, geometric objects, and dimension level members.

The vocabulary of L contains the relations r; ralg ; and the

function a, together with the binary functions þ and � on

real numbers, the binary predicate o on real numbers and

the real constants 0 and 1.8 Also constants for layers,

dimension names, dimension level names, and geometry

names may appear in L.9 Atomic formulas in L are

combined with the standard logical operators^, _ and :
7 The sets C in Definition 4 are known in mathematics as semi-

algebraic sets. In the GIS practice, only linear sets (points, polylines and

polygons) are used. Therefore, it could suffice to work with addition over

the reals only, leaving out multiplication.
8 The FO logic over the structure ðR;þ;�;o;0;1Þ is well-known as

the FO logic with polynomial constraints over the reals. This logic is well-

studied as a data model and query language in the field of constraint

databases [37].
9 We may also quantify over layer variables, dimension level

variables, etc., but we have chosen not to do this, for the sake of clarity.
and existential and universal quantifiers over real vari-

ables, variables for geometric objects identifiers, and

variables for dimension level members. Finally, h is an

integrable function constructed from elements of f1; ftg (ft

stands for fact table), using arithmetic operations.

Note that this definition gives the basic construct for

geometric aggregation queries. More involved queries can

be written as combinations of this construct (e.g., ‘‘total

number of airports per square kilometer’’ would require

dividing the geometric aggregation that computes the

number of airports in the query region, by the aggregation

computing the area of such region).10

Example 5. The following queries refer to the example
introduced in Section 1. The layers containing cities and
rivers are labeled Lc and Lr ; respectively, although in order
to make the queries more interesting, we define cities as
polygons instead of points. The population density for
each coordinate in Lc is stored in a base fact table ftpop (we
assume it is stored in some finite way, i.e., using
polynomial equations over the real numbers). In what
follows, we abbreviate Point, Polygon and PolyLine by Pt,
Pg and Pl, respectively. Also, Ci and Ri stand for the
attributes city and river; respectively. Further, all con-
stants are capitalized, to distinguish them from variables
in our expressions. Finally, note that in the queries below,
the Dirac delta function is such that dCðx; yÞ ¼ 1; inside the
region C; and dCðx; yÞ ¼ 0; outside this region.

Q1: Total population of cities within 100 km from San

Francisco:

Q1 �

ZZ
C1

ftpopðx; y; LcÞdx dy,

where C1 is defined by the expression:

C1 ¼ fðx; yÞ 2 R
2
jð9x0Þð9y0Þð9x00Þð9y00Þð9pg1Þð9pg2Þð9cÞ

ðaðLc ;Cities;Ci;Pg; San FranciscoÞ

¼ pg1 ^ ralgðLc;Pg; x0; y0; pg1Þ ^ aðLc ;Cities;Ci;Pg; cÞ

¼ pg2 ^ ralgðLc;Pg; x00; y00; pg2Þ ^ pg2apg1 ^ ððx
00 � x0Þ2

þ ðy00 � y0Þ2p1002
Þ ^ ralgðLc ;Pg; x; y; pg2ÞÞg.

Here, aðLc;Cities;Ci;Pg; San FranciscoÞ maps the city of

San Francisco (an instance of the level Ci in dimension

Cities), to a polygon pg1 in layer Lc. The third and fourth

lines find the cities within 100 km of San Francisco, and

the relation ralgðLc;Pg; x; y; pg2Þ;with the mapping between

the points and the polygons that satisfy the condition. We

are interested in the points that belong to pg2:

Q2: Total population of the cities crossed by the

Colorado river:

Q2 �

ZZ
C2

ftpopðx; y; LcÞdx dy,
10 For the language L; as usual in relational database theory, we

assume set semantics, while in Section 8, set, bag, and mixed bag-set

semantics [6] are supported through the SQL-like query languages.

ARTICLE IN PRESS

11 This can be extended to support bag semantics [13,25], at the

L. Gómez et al. / Information Systems 34 (2009) 551–576558
C2 ¼ fðx; yÞ 2 R
2
jð9x0Þð9y0Þð9pg1Þð9cÞ

ðralgðLc ;Pl; x0; y0;aðLr ;Rivers;Ri;Pl;ColoradoÞÞ

^ aðLc ;Cities;Ci;Pg; cÞ ¼ pg1 ^ ralgðLc ;Pg; x0; y0; pg1Þ

^ ralgðLc ;Pg; x; y; pg1ÞÞg.

4. Summable queries

The framework we presented in the previous section is
general enough to allow expressing complex geometric
aggregation queries (Definition 4) over a GIS in a formal
way. However, computing these queries within this
framework can be extremely costly, as the following
discussion shows. Let us consider again Example 5. Here
ftpop is a density function. This could be a constant
function over cities, e.g., the density in all points of San
Francisco, say, 1000 people per square kilometer. But ftpop

is allowed to be more complex too, like for instance a
piecewise constant density function or even a very
precise function describing the true density at any point.
Moreover, just computing the expression ‘‘C’’ of Definition
4 could be practically infeasible. In Example 5, query
Q2; computing on-the-fly the intersection (overlay)
of the cities and rivers is likely to be very expensive.
Therefore, we identify a subclass of geometric aggregate
queries that simplifies the computation of the integral of
the functions hðx; yÞ of Definition 4. Specifically, we show
that storing less precise information (for instance, having
a simpler function ftpop in Example 5) results in a more
efficient computation of the integral. There are queries
where even if the function ftpop is piecewise constant over
the cities, there is no other way of computing the
population over the region defined by j than taking the
integral, as j can define any semi-algebraic set. An
example of a query of this kind is: ‘‘Total population
endangered by a poisonous cloud described by j; a
formula in FO logic over ðR;þ;�;o;0;1Þ)’’. Further, just
computing the population within an arbitrarily given
region cannot be performed. However, for queries Q1 and
Q2 the situation is different. Indeed, the sets C1 and C2

return a finite set of polygons, representing cities. If the
function ftpop is constant for each city, it suffices to
compute ftpop once for each polygon, and then multiply
this value with the area of the polygon. Summing up the
products would yield the correct result, without the need
of integrating ftpop over the area C1 or C2. This is exactly
the subclass of queries we want to propose, those that can
be rewritten as sums of functions of geometric objects
returned by condition ‘‘C’’. We denote these queries
summable.

Definition 5 (Summable query). A geometric aggregation
query Q ¼

RR
R2dCðx; yÞhðx; yÞdx dy is summable if and only

if:
expense of increasing the presentation formal overload, and we chose to

avoid this. Moreover, queries requiring bag semantics, like ‘‘Total number
(1)

of rivers in California and Nevada’’ (where, if a river crosses both states

must be counted twice), can be written using combinations of the basic

construct (splitting the query and adding the results), as we commented

in Section 3.1.
C ¼
S

g2G extðgÞ; where G is a set of geometric objects,
and extðgÞ means the geometric extension of g, that is,
the subset of R2 that g occupies (e.g., a polygon or a
polyline, as a subset of R2).
(2)
 There exists h0; constructed using f1; f tg and arith-
metic operators, such that

Q ¼
X
g2S

h0ðgÞ with h0ðgÞ ¼

ZZ
R2
dextðgÞðx; yÞhðx; yÞdx dy.
Working with less accurate functions for this type of
queries means that the base GIS fact table instances of
Definition 3 will be defined as mappings from values in
domðGÞ � L to values in domðM1Þ � � � � � domðMkÞ (where
the elements in domðGÞ are the geometric objects g 2 G

such that ralgðL;G; x; y; gÞÞ; instead of mappings from values
in R2

� L to values in domðM1Þ � � � � � domðMkÞ:

Note that Definition 5 implies that the three summar-
izability conditions defined by Lenz et al. [28] must be
preserved. The first two conditions (disjointness of
categorical attributes, and completeness, respectively)
are satisfied by our definition of a GIS dimension. The
third condition requires function h0ðgÞ to be summarizable
over g: The functions we use in this paper (typically sums,
averages and maximum/minimum) satisfy the third
condition in [28]. We remark that in this section (like in
the previous one) we work with set semantics. Since the
integration region is replaced by geometric identifiers, set
semantics expresses correctly the most usual summable
queries of interest.11

Example 6. Let us reconsider query Q2 from Example 5.
The function ftpop (i.e., the fact table) now maps elements
of domðPolygonÞ to populations. Note that C02returns a
finite set of polygons, indicated by their ids (denoted gid).

Q2: Total population of the cities crossed by the Colorado

river:

Q2 �
X

gid2C02

ftpopðgid; LcÞ.

C02 ¼ fgidjð9xÞð9yÞð9cÞ

ðralgðLr ;Pl; x; y;aðLr ;Rivers;Ri;Pl;ColoradoÞÞ

^ aðLc ;Cities;Ci;Pg; cÞ ¼ gid ^ ralgðLc ;Pg; x; y; gidÞÞg.

Queries aggregating over zero or one-dimensional
regions (like, for instance, queries requiring counting the
number of occurrences of some phenomena) can also be
summable. For example, counting the number of airports
over a certain region, can be expressed as Q �

P
gid2C1:

Moreover, the aggregation can also be expressed over a
fact table in the application part of the model, like in the
query ‘‘Total number of students in cities crossed by the
Colorado river’’. This query is expressed asP

Ci2C0 ft
#students
cities ðCiÞ; where the sum is performed over a

set of city identifiers (the integration region C0, which we

ARTICLE IN PRESS

Fig. 3. Deciding summability.

L. Gómez et al. / Information Systems 34 (2009) 551–576 559
omit here, since it is defined in the way we have already
explained), and the function ft#students

cities maps cities to the
number of students in them (a fact table containing the
city identifiers and, as a measure, the number of students).
This fact table is outside the geometry of the GIS, showing
that summable queries integrate GIS and OLAP in an
elegant way.

Summable queries are useful in practice because, most
of the time, we do not have information about parts of an
object, like, for instance, the population of a part of a city.
On the contrary, populations are often given by totals per
city or province, etc. In this case, we may divide the city,
for example, in a set of sub-polygons such that each sub-
polygon represents a neighborhood. Thus, queries asking
for information on such neighborhoods become summa-
ble.12

Algorithm in Fig. 3 decides if the integration region C is
of the form

S
g2G extðgÞ: If C is of this form, then the second

condition of Definition 5 is automatically satisfied. The
complexity of this algorithm is Oðg � ðsþcÞÞ; where g is
the total number of all elements of all geometries in all
layers, s is the cost of subset testing between geometric
objects involved in the computation, and c is the cost of
the union in line 5. The latter two depend on the choice of
12 Actually, we could get rid of the algebraic part of the queries if,

instead of working with the topological relations r and ralg ; we (a) store

in a relation r the geometric extension e of the objects in a layer (e.g., as a

sequence of coordinates of the vertices of a polygon, or polyline, like in

postGIS); (b) allow quantification over a second-order variable for these

extensions; (c) add topological operations to the language, like inter-

sect, or contains. Thus, a layer like Lr (assuming it only contains

polylines) could be described in a relation r by tuples of the form

hLr ; Pl; epl; plidi; where epl is a complex data type containing the extension

of the rivers (polylines) in Lr ; and plid is the id of the polyline. Then, C02
would read

C02 ¼ fgidjð9xÞð9yÞð9cÞð9eplÞð9epg Þ

ðrðLr ;Pl; epl;aðLr ;Rivers;Ri; Pl;ColoradoÞÞ

^ aðLc ;Cities;Ci; Pg; cÞ ¼ gid ^ rðLc ;Pg; epg ; gidÞ

^ intersectsðepl; epg ÞÞg.

In this expression, 9epg is a kind of second-order quantification given that

it is a variable of complex type. This provides the intuition of how

summable queries could be translated into practical languages support-

ing topological operations. At this stage of the paper we prefer the more

general approach, i.e., to work with the algebraic part of the model. In

Section 5 we describe another way of avoiding working with coordinates,

using the notion of subpolygonization.
data models and data structures used to encode geometric
objects.

Once we have established that C is a finite union of
elements g of some geometry G, it is easy to see how h0 can
be obtained from h. Indeed, for each g 2 G, we can define
h0ðgÞ as

RR
R2dextðgÞðx; yÞhðx; yÞdx dy. Since h is built from the

constant 1, fact table values and arithmetic operations,
also h0 can be seen to be constructible from 1, fact table
values and arithmetic operations. The decision algorithm
can be easily turned into an algorithm that produces, for a
given ‘‘C’’, an equivalent description as a union of
elements of some geometry. Once this description is
found it is straightforward to find the function h0: This is
illustrated by the aggregate queries Q1 and Q2 that are
given in both forms in Sections 3 and 4, respectively.

5. Overlay precomputation

Many interesting queries in GIS boil down to comput-
ing intersections, unions, etc., of objects that are in
different layers. Hereto, their overlay has to be computed.
Query Q2 in Section 4 is a typical example where cities
crossed by rivers have to be returned. The on-the-fly
computation of the set ‘‘C’’ containing all those cities, is
costly because most of the time we need to go down to the
algebraic part of the system, and compute the intersection
between the geometries (e.g., states and rivers, cities and
airports, and so on). Therefore, we study the possibilities
and consequences of precomputing the overlay operation
and show that this can be an efficient alternative for
evaluating queries of this kind. R-trees [14], and aR-trees
[33,34] can also be used to efficiently compute these
intersections on-the-fly. In Section 8 we discuss this issue.

Haesevoets et al. [15,16] define affine-invariant trian-
gulations of the plane based on the fact that any set of
(both ways unbounded) lines, partitions the plane in a set
of convex polygons and show that this partition is
invariant under affine transformations of the plane.
Definition 6 extends these notions to all geometric
components in a thematic layer.

Definition 6 (The carrier set of a layer). The carrier set Cpl

of a polyline pl ¼ ðp0; p1; . . . ; pðl�1Þ; plÞ consists of all lines
that share infinitely many points with the polyline,
together with the two lines through p0 and pl; and
perpendicular to the segments ðp0; p1Þ and ðpðl�1Þ; plÞ,
respectively. Analogously, the carrier set Cpg of a polygon

ARTICLE IN PRESS

Fig. 4. The carrier sets of a point, a polyline and a polygon are the dotted

lines.

Fig. 5. The common subpolygonization of a layer.

L. Gómez et al. / Information Systems 34 (2009) 551–576560
pg is the set of all lines that share infinitely many points
with the boundary of the polygon. Finally, the carrier set

Cp of a point p consists of the horizontal and the vertical
lines intersecting in the point. The carrier set CL of a layer L

is the union of the carrier sets of the points, polylines and
polygons appearing in the layer. Fig. 4 illustrates the
carrier sets of a point, a polyline and a polygon.

The carrier set of a layer induces a partition of the plane
into open convex polygons, open line segments and
points. In Section 5.2 we give more detail about this
subdivision, and discuss complexity issues.

As some of the open convex polygons are unbounded,
we consider a bounding box B� B in R2, containing all
intersection points between lines (in practice, we consider
the bounding box as an additional layer). Also, in what
follows, a line segment is given as a pair of points, and a
polyline as a tuple of points.

Definition 7. Let CL be the carrier set of a layer L, and let
B� B in R2 be a bounding box. The set of open convex
polygons, open line segments and points, induced by CL,
that are strictly inside the bounding box, is called the
convex polygonization of L, denoted CPðLÞ.

In our proposal, the thematic layers in a GIS application
are overlayed by means of the common subpolygonization

operation that further subdivides the bounding box B� B

according to the carrier sets of the layers involved.

Definition 8 (Subpolygonization). Given two layers L1 and
L2; and their carrier sets CL1

and CL2
; the common

subpolygonization of L1 according to L2, denoted
CSPðL1; L2Þ is a refinement of the convex polygonization
of L1, computed by partitioning each open convex polygon
and each open line segment in it along the carriers of CL2

.

Definition 8 can be generalized for more than two
layers, denoted CSPðL1; L2; . . . ; LkÞ: It can be shown that the
overlay-operation on planar subdivision induced by a set
of carriers is commutative and associative. The proof is
straightforward, and we omit it.

Example 7. Fig. 5 shows thecommon subpolygonization
of a layer Lc containing one city (the pentagon with corner
points a, b, c, d and e), and another layer, Lr , containing one
river (the polyline pqr). Note that the subpolygonization
generates many empty polygons containing no informa-
tion whatsoever. We take advantage of this fact to
optimize the process (see Section 7).

The question that naturally arises is: why do we use the
carriers of geometric objects in the computation of the
overlay operation, instead of just the points and line
segments that bound those objects? There are several
reasons for this. First, consider the situation in the left
frame of Fig. 6. A river rqp originates somewhere in a city,
and then leaves it. The standard map overlay operation
divides the river into two parts: one part, rq, inside the
city, and the other one, qp, outside the city. Nevertheless,
the city layer is not affected. On the one hand, we cannot
leave the city unaffected, as our goal is in fact to pre-
compute the overlay. On the other hand, partitioning the
city into the line segment rq and the polygon abcd without
the line segment rq results in an object which is not a
polygon anymore. Such a shape is not only very unnatural,
but, for example, computing its area may cause difficul-
ties. With the common subpolygonization we guarantee
convex polygons. Many useful operations on polygons

become very simple if the polygons are convex (e.g.,
triangulation, computing the area, etc.). Also, many
interesting affine invariants can be defined for convex
polygons [12]. Another reason for the common subpoly-
gonization is that it gives more precise information. The
right frame of Fig. 6 shows the polygonization of the left
frame. The partition of the city into more parts, depending
on where the river originates, allows, for instance, asking
for parts of the city with fertile and dry soil, depending on
the presence of the river in those parts. As a more concrete
example, consider the query:

Q3: Total length of the part of the Colorado river that

flows through the state of Nevada. The following expression

may solve the problem:

Q3 �
X

gid2C04

ftlengthðgid; LrÞ,

where C03 is the set:

C03 ¼ fgidjð9xÞð9yÞð9g1Þ

aðLr ;Rivers;Ri;Pl;ColoradoÞ ¼ g1 ^ ralg

ðLr ;Pl; x; y; g1Þ ^ ralgðLe;Pg; x; y;aðLe; States; St;Pg;NevadaÞÞ

^ ralgðLr ;Pl; x; y; gidÞ ^ rðLr ;Pl;Pg; gid; g1ÞÞg

ARTICLE IN PRESS

Fig. 6. Common subpolygonization vs. map overlay.

L. Gómez et al. / Information Systems 34 (2009) 551–576 561
The expression Q3 above gives the correct answer to the
query when the river is such that the polyline represent-
ing it lies within the state boundaries. For instance, it
would not work if the river is represented as polyline with
a straight line passing through Nevada, because we would
not know the length inside that state. When this is not the
case, a common subpolygonization would solve the
problem. Otherwise, the river must be partitioned in
advance.
Fig. 7. Updated dimension schema.
5.1. Using the common subpolygonization

From a conceptual point of view, we characterize the
common subpolygonization of a set of layers as a schema
transformation of the GIS dimensions involved. Basically,
this operation reduces to updating the graphs of Defini-
tion 1. For this, we base ourselves on the notion of
dimension updates introduced by Hurtado et al. [22], who
also provide efficient algorithms for such updates. These
updates allow, for instance, inserting a new level into a
dimension and its corresponding rollup functions, or
splitting/merging levels. The difference here is that in
the original graph we have relations instead of rollup
functions.

Consider the hierarchy graphs H1ðL1Þ and H2ðL2Þ

depicted on the left-hand side of Fig. 7. After computing
the common subpolygonization, the hierarchy graph is
updated as follows: there is a unique hierarchy (remem-
ber that CSPðL1; L2Þ ¼ CSPðL2; L1Þ) with bottom level Point,
and three levels of the type Node (a geometry containing
single points in R2), OPolyline (open polyline), and
OPolygon (open polygon). We do not explain the update
procedure here, we limit ourselves to show the final
result. Note that now we have all the geometries in a

common layer (in the example below we show the impact
of this fact). The right-hand side of Fig. 7 shows the
updated dimension graph. As a consequence of the
subdivision in open polygons, open polylines and points,
besides the relations r and ralg ; we also have functions,
which we call rollup functions, of the form f ðGj;Gk; gidÞ;

where Gk is a geometry (e.g., a polygon) that originated Gj
(e.g., an open polygon), and gid is an instance of Gj. Also, a
point will belong only to an open polygon or open
polyline. Note that, since the subpolygonization lies in a
single layer, we do not need layer as an argument of the
rollup functions.

We now investigate the effects of the common
subpolygonization over the evaluation of summable
queries. Specifically, we propose (a) to evaluate summable
queries using the common subpolygonization; and (b) to
precompute the common subpolygonization. Precompu-
tation is a well-known technique in query evaluation,
particularly in the OLAP setting. As in common practice,
the user can choose to precompute all possible overlays,
or only the combinations most likely to be required. The
implementation we show in the next section supports
both policies. So far, we have expressed the integration
regions C in terms of theelements of the algebraic part of
the GIS schema. However, the common subpolygoniza-
tion, along with its precomputation, allows us to get rid of
this part, and only refer to the ids of the geometries
involved, also for computing the query region, that can be
now expressed in terms of open polygons (OPg), open
polylines (OPl) and points. Thus, query Q3, ‘‘Total length of
the part of the Colorado river that flows through the state

ARTICLE IN PRESS

L. Gómez et al. / Information Systems 34 (2009) 551–576562
of Nevada’’, can be computed in a precise way as follows:

C03 ¼ fgidjðaðRivers;Ri;Pl;ColoradoÞ ¼ f ðOPl;Pl; gidÞ

^ rðOPl;Pg; gid;aðStates; St;Pg;NevadaÞÞÞg.

5.2. Complexity

Let GSch be the GIS dimension schema on the left-hand
side of Fig. 7. Let GInst be an instance containing a set of
polygons R, a set of points P and a set of polylines L.
Moreover, let the maximum number of corner points of a
polygon and the maximum number of line segments
composing a polyline be denoted nR and nL; respectively.
The carrier set of all layers, i.e., the union of the carrier
sets for each layer separately, (see Definition 6) then
contains at most N ¼ 2jPj þ jLjðnL þ 2Þ þ jRjnR elements.
These carriers represent a so-called planar subdivision, i.e.,
a partition of the plane into points, open line segments
and open polygons. Planar subdivisions are studied in
computational geometry [7]. It is a well-known fact that
the complexity of a planar subdivision induced by N

carriers is OðN2
Þ.

Property 1 (Complexity of planar subdivision). Given a

planar subdivision induced by N carriers: (i) the number of

points is at most13 NðN � 1Þ=2; (ii) the number of open line

segments is at most N2; (iii) the number of open convex

polygons is at most N2=2þ N=2þ 1. The complexity of the
planar subdivision is defined as the sum of the three

expressions above.

It follows that, if we precompute the overlay operation,
in the worst case, the instance G0Inst of the updated schema
becomes quadratic in the size of the original instance GInst .
However, as different layers typically store different types
of information, the intersection will be only a small part of
G0Inst . Also, several elements of G0Inst will not be of interest
to any layer and can be discarded.

We now addressthe complexity of computing the
planar subdivision, given a bounding box. Such a bound-
ing box can be constructed in time quadratic in the
number of carriers [7]. Typically, during its construction, a
planar subdivision is stored in a doubly connected edge list.
In a planar subdivision, each line segment or edge is
adjacent to at most two open polygons. Accordingly, each
edge is split into two directed half-edges, denoted twins,
each one adjacent to a different polygon. We assume half-
edges adjacent to the same polygon are given, and
directed in counterclockwise order. As a half-edge is
directed, we can say it has an origin and a destination.
Finally, a doubly connected edge list consists of three
collections of records, one for the points, one for the open
polygons, and one for the half-edges. These records store
the following geometrical and topological information: (i)
The point record for a point p stores the coordinates of p,
and a pointer to an arbitrary half-edge that has p as its
origin. (ii) The record for an open polygon o stores a
pointer to some half-edge adjacent to it. (iii) The half-edge
13 Equality holds in case the lines are in general position, meaning

that at each intersection point, only two lines intersect.
record of a half-edge e
!

stores a pointer to its origin, its
twin, and the face it is adjacent to. It also stores pointers
to the previous and next edges on the boundary of the
incident open polygon, when traversing this boundary in
counterclockwise order. Given a set of N carriers, a doubly
connected edge list can be constructed in OðN2

Þ time [7].
Furthermore, for each element of the planar subdivision,
in order to compute the new rollup functions, we need to
check which objects of GInst it belongs to. Checking one
element in the subdivision against GInst can be done in
logarithmic time by preprocessing GInst , as described in
[9]. When a layer is added to the GIS, for example, the
common subpolygonization needs to be updated. The
following result holds [7].

Lemma 1. Let S1 and S2 be planar subdivisions of complexity

m1 and m2, respectively. The overlay of S1 and S2 can be

constructed in time Oðm log mþ k log mÞ, where m ¼ m1 þ

m2 and k is the complexity of the overlay.

5.3. An application: topological geometric aggregation

In Section 4 we introduced summable queries to avoid
integrals that may not be efficiently computable. At this
point, the question that arises is: ‘‘What information do
we store at the lowest level of the geometric part?’’ Should
we store all the information about coordinates of nodes
and corner points defining open convex polygons, or do
we completely discard all coordinate information? De-
pending on the purpose of the system, there are several
possibilities. A straightforward way of getting rid of the
algebraic part of a GIS dimension schema is to store the
coordinates of nodes, end points of line segments and
corner points of convex polygons. A closer analysis reveals
that this information might not be necessary for all
applications. For example, queries about intersections of
rivers and cities, or cities adjacent to rivers, do not require
coordinate information, but rather topological information.
To formalize the ‘‘depending on the purpose of the system’’
statement above, we need the notion of genericity of
queries, first introduced by Chandra and Harel [5], and
later applied to spatial databases [26,36]. In a nutshell, a
query is generic if its result is independent of the internal
representation of the data.

Topological or isotopy-generic queries are useful gener-
icity classes for geometric aggregation queries. For
instance, query Q2 (Example 5) or ‘‘Number of states
adjacent to Nevada’’, are topological geometric aggrega-
tion queries. If the purpose of the system is to answer
topological queries, topological invariants [35,37] provide
an efficient way of storing the information of one layer or
the common subpolygonization of several layers. This
invariant is based on a maximal topological cell decom-
position, which is, in general, hard to compute. Thus, in
order to compute the topological invariant we use the
common subpolygonization, which happens to be a
refinement of the decomposition.

Fig. 8 shows the topological information on the
subpolygonization of two layers, one containing a city
and the other containing a (straight) river. A topological
invariant can be constructed from the subpolygonization

ARTICLE IN PRESS

a
b

c
d

I

II

III

1

2

3

4

5

Fig. 8. Topological information. Nodes are indicated by a, b, y, open

curves by 1, 2, y. Faces are labelled I, II, y.

L. Gómez et al. / Information Systems 34 (2009) 551–576 563
as follows. Cells of dimension 0, 1 and 2 are called vertices,
edges (these are different from line segments), and faces,
respectively. The topological invariant is a finite structure
consisting of the following relations: (1) unary relations
Vertex, Edge, Face and Exterior Face. The latter is a
distinguished face of dimension 2, i.e., the unbounded
part of the complement of the figure; (2) a binary relation
Regions providing, for each region name r in the GIS
instance the set of cells making up r; (3) a ternary relation
Endpoints providing endpoints for edges; (4) a binary
relation Face–Edge providing, for each face (including the
exterior cell) the edges on its boundary; (5) a binary
relation Face–Vertex providing, for each face (including the
exterior cell) the vertices adjacent to it; (6) a 5-ary
relation Between providing the clockwise and counter-
clockwise orientation of edges incident to each vertex. For
example, the relation Face–Edge includes the tuples
ðI;2Þ; ðI;4Þ; Face–Vertex includes ðI; bÞ; ðI; cÞ; and relation
Between, the tuples ð ;1;5;2Þ and ð ;5;2;4Þ; indicating
the edges adjacent to vertex b in counter-clockwise
direction. Thus, for answering summable queries, we can
use the relations representing the topological invariant
and the rollup functions, instead of the coordinates of the
points in the algebraic part, provided that we add the
relations described above, as extra information attached
to the hierarchy instance. For instance, the query:
‘‘Number of states adjacent to Nevada’’ requires topologi-
cal information about adjacency between polygons and
lines given by the Face–Edge relation.
6. GIS-OLAP integration

The framework introduced in Section 3 allows a
seamless integration between the GIS and OLAP worlds.
In our proposal, denoted Piet (after Piet Mondrian, the
painter whose name was adopted for the open source
OLAP system we also use in the implementation), we
achieve this integration by means of two mechanisms: (a)
a metadata model, denoted Piet-Schema; and (b) a query
language, denoted GISOLAP-QL, where a query is com-
posed of two sections: a GIS section, denoted GIS query,
with a specific syntax, and an OLAP section, OLAP-Query,
with MDX syntax.14 The idea underlying the choice of
14 MDX is a query language initially proposed by Microsoft as part of

the OLEDB for OLAP specification, later adopted as a de facto standard by

most OLAP vendors. See http://msdn2.microsoft.com/en-us/library/

ms145506.aspx.
combining the two languages was to keep the GIS and
OLAP standards as much as possible, even at the cost of
losing semantic abstraction.

6.1. Piet-Schema

Piet-Schema is a set of metadata definitions that
include: storage location of the geometric components
and their associated measures, the sub-geometries corre-
sponding to the subpolygonization of the layers in a map,
and the relationships between the geometric components
and the OLAP information. Piet uses this information to
answer the queries written in the language we describe in
Section 6.2. Metadata are stored in XML documents
containing three kinds of elements: Subpolygoniza-

tion, Layer, and Measure.15

The Subpolygonization element (identified with a
tag of the same name) includes the location of the
instances of each sub-geometry (sub-node, sub-polygon
or sub-line) in the data repository (in our implementation,
the PostGIS database where the map is stored). It also
includes the name of the table containing the instance of
each sub-geometry, the names of the key fields, and the
identifiers allowing to associate elements of the original
geometries with the elements of the corresponding sub-
geometries.

The XML element Layer contains information of each
of the layers that compose a map, and their relationship
with the subgeometries and the data warehouse. This
includes the name of the layer, the name of the table
storing the actual data, the name of the key fields, the
geometry and the description. There is also a list Proper-
ties which details the facts associated to geometric
components of the layer. An element Subpolygoniza-

tionLevel indicates the subpolygonization levels that
can be used (for instance, if it is a layer representing rivers,
only point and line could be used). Finally, the relationship
(if it exists) between the layer and the data warehouse is
defined in the element OLAPRelation, that contains, for
this layer, the name of the OLAP dimension table where
the associated objects are stored, the hierarchy level for
these objects, and the table associating the geometric
objects and the OLAP dimension levels (in other words,
the function a). Finally, an element OLAPTable contains
the MDX statement that inserts a dimension in the
original GISOLAP-QL expression. The last component of
Piet-Schema definition is a list of measure elements
where the measures associated to geometric components
in the GIS dimension are specified, together with the
aggregate functions that they support.

6.2. The GISOLAP-QL query language

GISOLAP-QL has a very simple syntax, allowing to
express integrated GIS and OLAP queries. For the OLAP
15 In what follows we denote sub-geometries the geometries that are

originated by the subpolygonization process (e.g., a polyline originates

sub-lines, or a polygon originates sub-polygons). Also, we denote

indistinctly geometric elements or geometric objects the instances of a

geometry.

http://msdn2.microsoft.com/en-us/library/ms145506.aspx
http://msdn2.microsoft.com/en-us/library/ms145506.aspx

ARTICLE IN PRESS

L. Gómez et al. / Information Systems 34 (2009) 551–576564
part of the query we keep the syntax and semantics of
MDX. A GISOLAP-QL query is of the form:
wo
GIS-Query j OLAP-Query
A pipe (‘‘j’’) separates two query sections: a GIS query
and an OLAP query. The OLAP section of the query applies
to the OLAP part of the data model (namely, the data
warehouse) and is written in MDX. The GIS part of the
query has the typical SELECT FROM WHERE SQL form,
except for a separator (‘‘;’’) at the end of each clause:
SELECT list of layers and/or measures;
FROM Piet-Schema;
WHERE geometric operations;
The SELECT clause is composed of a list of layers and/or
measures, which must be defined in the Piet-Schema of
the FROM clause. The query returns the geometric
components (or their associated measures) that belong
to the layers in the SELECT clause, and verify the
conditions in the WHERE clause. The FROM clause just
contains the name of the schema used in the query. The
WHERE clause in the GIS-query part consists in conjunc-
tions and/or disjunctions of geometric operations applied
over all the elements of the layers involved. The expres-
sion also includes the kind of sub-geometry used to
perform the operation (this is only used if the subpoly-
gonization technique is selected to solve the query).
Although any typical geometric operation can be sup-
ported, our current implementation supports the ‘‘inter-
section’’ and ‘‘contains’’ operations. Accepted values for
subgeometry are ‘‘Point’’, ‘‘LineString’’ and ‘‘Polygon’’.16 For
example, the expression contains (layer.usa_states,
layer.usa_rivers, subplevel.Linestring) computes the states
which contain at least one river, using the geometric
objects of type linestring generated and associated during
the overlay precomputation. Finally, the WHERE clause can
also mention a query region (the region where the query
must be evaluated).

Example 8. The query ‘‘description of rivers, cities and
store branches, for branches in cites crossed by a river’’
reads in GISOLAP-QL:

SELECT layer.usa_rivers, layer.usa_cities, layer.usa_
stores;
FROM Piet-Schema;
WHERE intersection(layer.usa_rivers, layer.usa_
cities,subplevel.Linestring)
and contains(layer.usa_cities, layer.usa_stores,
subplevel.Point);

This query returns the components r; s; and c in the

layers usa_rivers, usa_stores and usa_cities, respectively,

such that r and c intersect, and s is contained in c (i.e., the
16 For instance, when computing store branches close to rivers, we

uld use linestring and point.
coordinates of the point that represents s in layer

usa_stores are included in the region determined by the

polygon that represents c in layer usa_cities). In other

words, if L is a list of attributes (geometric components) in

the SELECT clause, I ¼ fðr1; c1Þ; ðr2; c2Þ; ðr3; c3Þg is the result

of the intersection operation, and C ¼ fðc1; s1Þ; ðc2; s2Þg

is the result of the contains operation, the semantics of

the query above is given, operationally, by the expression

PLðItCÞ:

The query ‘‘number of branches by city’’ uses a

geometric measure defined in Piet-Schema. The query

reads:

SELECT layer.usa_cities,measure.StoresQuantity;
FROM Piet-Schema;
WHERE intersection(layer.usa_cities,layer.usa_stores,
subplevel.Point);
6.3. Spatial OLAP with GISOLAP-QL

Users of GIS-based DSSs usually need to perform OLAP
operations involving a data warehouse associated to
geographic objects in maps. Thus, they would write ‘‘full’’
GISOLAP-QL queries, i.e., queries composed of the GIS and
OLAP parts (obviously, a real-world system should provide
her with report-writing tools, based on the query
language). A GISOLAP query is simply an MDX query that
receives as input the result returned by the GIS portion of
the query. Consider the dimensions Store, Promotion
Media, and Product, and assume that the following
hierarchy (specified in Piet-Schema) defines the Store

dimension: store ! city ! state ! country ! All. The
query ‘‘total number of units sold and their cost, by
product, promotion media (e.g., radio, TV) and store’’
reads:

SELECT layer.usa_states; FROM Piet-Schema;
WHERE intersection(layer.usa_states,layer.usa_stores,
subplevel.point);

j

select [Measures].[Unit Sales], [Measures].[Store
Cost],[Measures].[Store Sales]
ON columns

f([Promotion Media].[All Media],[Product].[All
Products])g ON rows

from [Sales]
The GIS-query returns the states which intersect store
branches at the point level. The OLAP section of the query
uses the measures in the data warehouse, in order to
return the requested information. In this example, first,
the GIS section of the query returns three identifiers, 1, 2,
and 3, corresponding, respectively, to the states of
California, Oregon and Washington. These identifiers
correspond to three ids in the OLAP part of the model,
stored in a Piet mapping table. Then, an MDX sub-
expression is built for each state, traversing the different

ARTICLE IN PRESS

Fig. 9. Query result for the full GISOLAP-QL example query.

L. Gómez et al. / Information Systems 34 (2009) 551–576 565
dimension levels (starting from All down to state).
The information is obtained from the XML element
OLAPTable in the Piet-Schema. Finally, the MDX clause
Children17 is added, allowing to obtain the children
of each state in the hierarchy (in this case, the cities).
The sub-expressions for the three states in this query are
linked to each other using the MDX clauses Union and
Hierarchize.18 The final MDX is:
dim

elem
Hierarchize(Union(Union(f[Store].[All
Stores].[USA].[CA].Childreng,
f[Store].[All Stores].[USA].[OR].Children)g;
f[Store].[All Stores].[USA].[WA].Childreng)))
19 http://www.postgresql.org/.
20 http://postgis.refractions.net.
The MDX subexpression is finally added to the OLAP-
query section of the GISOLAP-QL statement. The resulting
expression is:

select f[Measures].[Unit Sales], [Measures].[Store
Cost],[Measures].[Store Sales]g
ON columns

Crossjoin(Hierarchize(Union(Union(f[Store].[All
Stores].[USA].[CA].Childreng,
f[Store].[All Stores].[USA].[OR].Childreng),
f[Store].[All Stores].[USA].[WA].Childreng)),
f([Promotion Media].[All Media], [Product].[All
Products])g)
ON rows

from [Sales]

Our Piet implementation allows the resulting MDX
statement to be executed over a Mondrian engine (see
Section 7 for details) in a single framework. Fig. 9 shows
the result for our example. We can see three dimensions:
Store (obtained through the geometric query), Promotion
Media, and Product. The results are shown starting from
the ‘‘city’’ level. A user can then navigate this result
(drilling-down or rolling-up along the dimensions) to
reach the desired granularity. Fig. 10 shows an example,
drilling down starting from Seattle.

7. Implementation

In this section we describe our implementation. We
first present the software architecture and components,
and then discuss the algorithmic solutions for two key
aspects of the problem: accuracy and scalability. The
17 Children returns a set containing the children of a member in a

ension level.
18 Union returns the union of two sets, Hierarchize sorts the

ents in a set according to an OLAP hierarchy.
general system architecture is depicted in Fig. 11. A Piet

Administrator defines the data warehouse schema, loads
the GIS (maps) and OLAP (facts and hierarchies) informa-
tion into a data repository, and creates a relation between
both worlds (maps and facts), also defining the informa-
tion to be included in each layer. The repository is
implemented over a PostgreSQL database.19 GIS data are
stored and managed using PostGIS,20 which adds support
for geographic objects to the PostgreSQL database, and
implements all of the Open Geospatial Consortium
specification except some ‘hard’ spatial operations (the
system was developed with the requirement of being
OpenGIS-compliant21).

A graphic interface is used for loading GIS and OLAP
information into the system and defining the relations
between both kinds of data. The GIS part of this
component is based on JUMP,22 an open source software
for drawing maps and exporting them to standard
formats. Facts and dimension information are loaded
using a customized interface. For managing OLAP data, we
extended Mondrian,23 in order to allow processing queries
involving geometric components. The OLAP navigation
tool was developed using Jpivot.24

A Data Manager processes data in basically two ways:
(a) performs GIS and OLAP data association; (b) precom-
putes the overlay of a set of geographic layers, adapts the
affected GIS dimensions, and stores the information in the
database. The query processor delivers a query to the
module solving one of the four kinds of queries supported
by our implementation (shown at the bottom of Fig. 11).
Of course, new kinds of queries can be easily added. For
example, the topological queries explained in Section 5.3
are not supported by our current implementation. How-
ever, geo-ontologies [32] can be used to implement the
topological relations for query processing. These kinds of
queries, introduced in Section 1, are: (a) standard GIS
queries; (b) standard OLAP queries; (c) geometric aggre-
gation queries; (d) integrated GIS-OLAP queries. We give
examples of each one of them in Section 8.
7.1. Piet components and functionality

The Piet implementation consists of two main mod-
ules: (a) Piet-JUMP, which includes (among other utilities)
a graphic interface for drawing and displaying maps, and a
back-end allowing overlay precomputation via the com-
mon subpolygonization and geometric queries; (b) Piet-
Web, which allows executing GISOLAP-QL and pure OLAP
queries. The result of these queries can be navigated in
standard OLAP fashion.

Piet-JUMP Module. This module consists of a series of
‘‘plug-ins’’ added to the JUMP platform: the Precalculate
21 OpenGIS is a OGC specification aimed at allowing GIS users to

freely exchange heterogeneous geodata and geoprocessing resources in a

networked environment.
22 http://www.jump-project.org/.
23 http://mondrian.sourceforge.net.
24 http://jpivot.sourceforge.net.

http://www.postgresql.org/
http://postgis.refractions.net
http://www.jump-project.org/
http://mondrian.sourceforge.net
http://jpivot.sourceforge.net

ARTICLE IN PRESS

Fig. 10. Drilling down starting from the result of Fig. 9.

Geometric

User

datadata
MetadataPrecomputedGIS + OLAP

Data Loader

queriesqueries queries
GISOLAP

queries
GIS-OLAP

PIET
Administrator

PIET Server

Repository
Processed Data

Data Manager

Raw Data
Repository

Transform

Processor
Query

Precompute

Fig. 11. The Piet Architecture.

L. Gómez et al. / Information Systems 34 (2009) 551–576566
Overlay, Function Execution, GIS-OLAP association, and OLAP

query plug-ins. In what follows we briefly describe the
modules in order to give the reader a clear idea of the
functionality of the system, and how the techniques
described in Section 5 are implemented.

The Precalculate Overlay plug-in computes the overlay
of a set of selected thematic layers. The information
generated is used by the other plug-ins. Besides the set of
layers to overlay, the user must create a layer containing
only the ‘‘bounding box’’. For all possible combinations of
the selected layers, the plugin performs the following
tasks:
(a)
 Generates the carrier sets corresponding to the
geometric objects in the layers. This process creates,

ARTICLE IN PRESS

2

supp

L. Gómez et al. / Information Systems 34 (2009) 551–576 567
for each possible combination, a table containing the
generated carrier lines.
(b)
 Computes the common subpolygonization of the layer

combination. In this step, the new geometry levels in
the schema are obtained, namely: nodes, open poly-
lines, and open polygons. This information is stored in
a different table for each geometry, and each element is
assigned a unique identifier.
(c)
 Associates the original geometric objects to the newly
generated ones. This is the most computationally
expensive process. The JTS Topology Suite25 was
extended and improved (see below) for this task.
The information obtained is stored in the database (in
one table for each level, for each layer combination) in
the form hid of an element of the subpolygonization, id of

the original geometric elementi pairs.

(d)
 Propagates the values of the density functions to the

objects in the subpolygonization. This is performed in
parallel with the association process explained above.
Finally, for each combination of layers, we find all the
elements in the subpolygonization that are common to
more than one original geometric object. In the database,
a table is generated for each layer combination, and for
each geometry in the subpolygonization (i.e., node, open
line, open polygon). A tuple in each table contains the
unique identifier of a geometric object, and the unique
identifier of the object in the subpolygonization.

The Function Execution plug-in computes a density
function defined in a thematic layer, within a query region

(or the entire bounding box if the query region is not
defined). The result is a new layer with the geometric
objects in the subpolygonization and their corresponding
function values. Along with the selected query region, a
density function is also defined. Two kinds of subpolygo-
nizations can be used: full subpolygonization (when all

the layers are overlayed) or partial subpolygonization
(when the overlay involves only a subset of the layers). In
the second case the process is faster, but precision may be
unacceptable, depending on how well the polygons fit the
query region.

The GIS-OLAP association plug-in associates spatial
information to information in a data warehouse. This
information is used by the ‘‘OLAP query’’ plugin and the
Piet-Web module. A table contains the unique identifier of
the geometric object, the unique identifier of the corre-
sponding object in the data warehouse, and, optionally, a
description of such object.

The OLAP query plug-in joins the two modules that
compose the implementation. For a given spatial query
and an OLAP model, the plugin generates and executes an
MDX query that merges both kinds of data, and is then
passed on to an OLAP tool.

Piet-Web Module. This module handles GISOLAP-QL
queries, spatial aggregation queries, and even pure OLAP
queries. In all cases, the result is a dataset that can be
navigated using any OLAP tool. This module includes: (a)
5 JTS is an API providing fundamental geometric functions,

orting the OCG model. See http://www.vividsolutions.com/jcs/.
the GISOLAP-QL parser; (b) a translator to SQL; (c) a
module for merging spatial and MDX queries through
query re-writing, as explained in Section 6.

7.2. Robustness and scalability issues

As with all numerical computation using finite-preci-
sion numbers, geometric algorithms included in Piet may
present problems of robustness, i.e., incorrect results due
to round-off errors. Many basic operations in the JTS
library used in the Piet implementation have not yet been
optimized and tuned. Thus, we extended and improved
this library, resulting in the so-called Piet-Utils library.
Additionally, the subpolygonization of the overlayed
layers generates a huge number of geometric elements.
In this setting, scalability issues must be addressed, to
guarantee performance in practical real-world situations.
Thus, we propose a partition of the map using a grid,
which optimizes the computation of the subpolygoniza-
tion while preserving its geometric properties.

7.2.1. Robustness

We address separately the computation of the carrier
lines and the subpolygonization process.

Computation of carrier lines. In a Piet environment,
geometric elements are internally represented using the
vector model. The JTS library is composed of objects of
type geometry. Some examples of instances of these
objects are: POINT (378 145), LINESTRING (191 300, 280
319, 350 272, 367 300), and POLYGON (83 215, 298 213,
204 74, 120 113, 83 215). Each geometric component
includes the name and a list of vertices, as pairs of ðX;YÞ
coordinates.

The first step of the subpolygonization process is the
generation of a list containing the carrier lines produced
by the carrier sets of the geometric components of each
layer. The original JTS functions may produce duplicated
carrier lines, arising from the incorrect overlay of
(apparently) similar geometric objects. For instance, if a
river in one layer coincides with a state boundary in
another layer, duplicated carrier lines may appear due to
mathematical errors, and propagate to the polygonization
step. The algorithm used in Piet eliminates these dupli-
cated carrier lines after the carrier set is generated.

We also address the problem of minimizing the
mathematical errors that may appear in the computation
of the intersection between carrier lines in different
layers. First, given a set of carrier lines L1; L2; . . . ; Ln; the
intersection between them is computed one line at a time,
picking a line Li; i ¼ 1;n� 1; and computing its intersec-
tion with Liþj; jX1: Thus, the intersection between two
lines Lk; Ls is always computed only once. However, it is
still possible that three or more lines intersect in points
very close to each other. In this case, we use a boolean
function called isSimilarPoint, which, given two
points and an error bound (set by the user), decides if
the points are or are not the same (if the points are
different they will generate new polygons). There is also a
function addCutPoint which receives a point p and a list
P of points associated to a carrier line L: This function is

http://www.vividsolutions.com/jcs/

ARTICLE IN PRESS

L. Gómez et al. / Information Systems 34 (2009) 551–576568
used while computing the intersection of L with the rest of
the carrier lines. If there is a point in P, ‘‘similar’’ to p; then
p is not added to P (i.e., no new cut point is generated).
The points are stored sorted according to their distance to
the origin, in order to speed-up the similarity search.

As an example, consider three carrier lines: L1; L2 and
L3: P1 is the point where L1 intersects L2 and L3. Also
assume that the algorithm that generates the sub-nodes is
currently usingL2 as pivot line (i.e., L1 was already used,
and L3 is still waiting). The algorithm computes the
intersection between L2 and L3; which happens to be a
point P3 very close to P1: If the difference is less than a
given threshold, P3 will not be added to the list of
cutpoints for L2: The same will happen for L3:

Subpolygonization: The points where the carrier sets
intersect each other generate objects denoted sub-lines.
From these sub-lines, sub-polygons are computed. This
information is stored in the postGIS database. The sub-
polygons are produced using a JTS class called Polygonizer.
Our improvements to the JTS library ensure that no
duplicated sub-lines will be used to generate the sub-
polygons. Further, the sub-lines that the Polygonizer
receives do not include the lines generated by the
bounding box.

The most costly process is the association of the sub-
geometries to the original geometries. For this computa-
tion we also devised some techniques to improve the
functions provided by the JTS library. For instance, due to
mathematical errors, two adjacent sub-polygons may
appear as overlapping geometries. As a consequence, the
JTS intersection function provided by JTS would, erro-
neously, return True. We replaced this function with a new
one, a boolean function denoted OverlapPg (again,
‘‘error’’ is defined by the user), which receives two
objects and a given error threshold, and returns True if
their overlapping area is larger than such threshold.

7.2.2. Scalability

The subpolygonization process is a huge CPU and
memory consumer. Even though Property 1 shows that
the planar subdivision is quadratic in the worst case, for
large maps, the number of sub-geometry elements
produced may be unacceptable for some hardware
architectures. This becomes worse for a high number of
layers involved in the subpolygonization. In order to
address this issue, we do not compute the common
subpolygonization over an entire map. Instead, we further
divide the map into a grid, and compute separately the
subpolygonization within each rectangle in the grid. This
scheme produces sub-polygons only where they are
needed. For instance, in our running example, we have a
layer with volcanoes in the northern hemisphere. The
density of the volcanoes is higher in the western region,
and decreases toward the east. Therefore, a huge portion
of the map, without any object of interest, would be
affected by the carrier lines generated by the subpolygo-
nization. Besides, a carrier line generated by a volcano in
the west would impact a region in the east. It would be
more natural that the influence of a carrier line remains
within the ‘‘neighborhood’’ of the geometric object that
generates it. The grid subdivision solves these problems.
Reducing the number of geometric objects generated by
the subpolygonization, of course, also reduces the size of
the final database. Also note that the squares in the grid
could be of different sizes. In addition, it would be
possible to compute the polygonization of the squares in
the grid in parallel, provided the necessary hardware is
available. As a remark, note that the grid partition also
allows the refinement of a particular rectangle, if, for
instance, this rectangle is overloaded with geometric
objects. Finally, note that geographies can be updated.
For instance, a city may grow, a country may be split or
even integrated with another one. Since these changes, in
general, only affect a portion of a map, only the common
subpolygonization for the affected rectangles must be
recomputed, and the rest of the map would remain
unchanged.

Implementing and using the grid. The grid partition is
implemented as a relational table, denoted gis_quadrant,
containing the geometry and identifier of each rectangle
(i.e., the table contains as many tuples as rectangles are in
the grid). In addition, a table is generated for each layer,
containing only the non-empty grid partitions. In our
running example, we have a table volcanoes_grid, where
only the squares containing a volcano are stored (about
10% of the total grid). This dramatically reduces the
subpolygonization time (which uses these tables, instead
of the original ones), as we report in Section 8. The grid
partitioning improves, in many cases, query processing.
Since the map overlays are precomputed, query evaluation
reduces to compute aggregations over the tables containing

these overlays. When attribute information is needed, a
join with the tables storing the result of the subpolygo-
nization process is also needed. Due to grid partitioning,
these tables only contain the subpolygons of interest,

speeding up query execution time. When a query must
be executed constrained to a query region defined at
running time (Fig. 12), the intersection between the grid
and the query region must becomputed on-the-fly, which
impacts in the query execution times, as we show in
Section 8. Nevertheless, the grid partitioning allows that
to just compute the intersection for the affected rectan-
gles, obtaining an important improvement in the perfor-
mance of these queries.

The size of the grid is defined in a trial-and-error
iterative process. This process starts with a size that is
chosen according to the kinds of maps at hand, until we
obtain a grid that results in an acceptable subpolygoniza-
tion time (of course, the available hardware plays an
important role here). As an example, in our experiments of
Section 8, we used a grid has one thousand squares
(20� 50), having started from a grid of four squares
(2� 2).
8. Experimental evaluation

We discuss the results of a set of tests, aimed at
providing evidence that the overlay precomputation
method, for a wide class of geometric queries (with or
without aggregation), outperforms other well-established
methods like R-tree [14] and aggregation R-tree (aR-tree)

ARTICLE IN PRESS

Fig. 12. Query regions for geometric aggregation.

Table 1
Average subpolygonization times.

Number of layers Average execution time

4 4 h 54 min 55.83 s

3 3 h 4 min 1.03 s

2 1 h 20 min 45.08 s

Table 2
Total subpolygonization times.

Number of layers Total execution time

4 4 h 54 min 55 s

3 12 h 16 min 4 s

2 8 h 4 min 30 s

L. Gómez et al. / Information Systems 34 (2009) 551–576 569
[33] indexing. The main goal of our experiments is to
study under which conditions one strategy behaves better
than the other ones. This can be a first step toward a query
optimizer that can choose the better strategy for any given
GIS query. We are aimed at showing that our approach is a

valid and promising one, and not to compare Piet in the

current implementation stage with a state-of-the-art com-

mercial GIS.

We ran our tests on a dedicated IBM 3400� server
equipped with a dual-core Intel-Xeon processor, at a clock
speed of 1.66 GHz. The total free RAM memory was 4.0 GB,
and we used a 250 GB disk drive. The tests were run over
the real-world maps. There are four layers, containing
rivers, cities and states in United States and Alaska, and
volcanoes in the northern hemisphere, containing, re-
spectively, the following number of objects: 353 (of type
multilinestring), 1767 (points), 151 (polygons), and 719
(points), (in the original map, many of the states where
divided in subpolygons, resulting in the 151 objects
reported). Non-spatial information is stored in a data
warehouse, with dimensions customer, stores and pro-
duct, and a fact table contains store sales across time (we
introduced this warehouse in Section 1). The size of the
warehouse in 60 MB. Also numerical and textual informa-

tion on the geographic components exist (e.g., population,
area), stored as usual in the GIS. We defined a grid for
computing the subpolygonization, dividing the bounding
box in rectangles, as shown in Fig. 12. The size of the grid
is 20� 50 squares (i.e., 1000 squares in total). We remark
that we also tested Piet using other kinds of maps, and in
all cases the results we obtained were similar to the ones
reported here.26

We performed five kinds of experiments: (a) sub-
polygonization; (b) geometric queries without aggrega-
tion (GIS queries); (c) geometric aggregation queries; (d)
26 See http://piet.exp.dc.uba.ar/piet.
geometric aggregation queries including a query region;
(e) full GISOLAP-QL queries.

Tables 1 and 2 show the execution times for the
subpolygonization process for the 1000 squares, from
the generation of carrier lines to the generation of the
precomputed overlayed layers. The grid strategy achieves
an important performance improvement in computing the
common subpolygonization, against the alternative of
using the full map (i.e., without grid partitioning), close to
an order of magnitude. Table 1 shows the average
execution times for a combination of 2, 3 and 4 layers.
For example, the third line means that a combination of
two layers takes an average of 1 h and 20 min to compute.
Table 2 is interpreted as follows. The second line in this
table tells that computing all possible three-layer combi-
nations, takes about 12 h. Analogously, the third line
informs that computing all possible two-layer combina-
tions takes more than 8 h. Note that the first line of Tables
1 and 2 is the same: they report the total time for
computing the overlay of the four layers (i.e., there is only
one layer). In spite of the time required by the process,

http://piet.exp.dc.uba.ar/piet

ARTICLE IN PRESS

L. Gómez et al. / Information Systems 34 (2009) 551–576570
note that precomputing the subpolygonization is per-
formed off-line, in the same way view materialization is
computed usually in OLAP. Also, since we use the grid
partitioning strategy, updates are likely to be performed
within a reasonable time window (see discussion in
Section 7). Table 3 reports the maximum, minimum, and
average number of elements in the sub-geometries in the
grid rectangles, for the combination of the four layers. We
also compared the sizes of the database before and after
computing the subpolygonization: the initial size of the
database is 166 MB. After the precomputation of the
overlay of the four layers, the database occupies 621 MB.
Although this seems to be an important increase in
databases size, all possible layer overlay combinations
were materialized, with no compression of any kind (i.e.,
the worst case). If needed, a partial materialization
strategy (along the lines of [19]) can be applied. Note
that even though the size of the database is moderate, we
believe that the maximum number of sub-geometries per
rectangle is high enough for making the experiments
Table 3
Number of sub-geometries in the grid for the 4-layers overlay.

Sub-geometry Max. Min. Avg.

of carrier lines per rectangle 616 4 15

of points per rectangle

(carrier lines intersection in a rectangle) 107 880 4 452

of segment lines per rectangle

(segments of carrier lines in a rectangle) 212 256 4 868

of polygons per rectangle 104 210 1 396

Table 4
Geometric queries.

Query Method Code

Q1: List the states that

contain at least one volcano

PostGIS without spatial

indexing

SELECT DIS

volcano.ge

PostGIS with spatial

indexing

SELECT DIS

&& volcano

Piet SELECT DIS

Q2: List the states and the

cities within them

PostGIS without spatial

indexing

SELECT sta

city.geome

PostGIS with spatial

indexing

SELECT sta

city.geome

Piet SELECT p1.

Q3: List states and the cities

within them, only for states

crossed by at least one river

PostGIS without spatial

indexing

SELECT DIS

contains(st

river WHE

PostGIS with spatial

indexing

SELECT DIS

&& city.geo

(SELECT st

AND inters

Piet SELECT DIS

(SELECT p2

Q4: List states crossed by al

least ten rivers

PostGIS without spatial

indexing

SELECT p1.

p2.geomet

PostGIS with spatial

indexing

SELECT p1.

AND inters

count(p2.p

Piet SELECT p1.

count(disti
significant, also considering that we work with real-world
maps.

For tests of type (b), we selected four geometric queries
that compute the intersection between different combi-
nations of layers, without aggregation. The queries were
evaluated over the entire map (i.e., no query region was
specified). Table 4 shows the queries and their expressions
in the three query languages. Note that we have chosen to
show, in Tables 4 and 5, the SQL translations of the Piet
queries. In this way, the tables containing the overlay
precomputation (with prefix gis_pre_), and the subpoly-
gonization tables (with prefix gis_subp_) are displayed.
We first ran the queries generated by Piet against the
PostgreSQL database. We then ran equivalent queries with
PostGIS, which uses an R-tree implemented using GiST—

Generalized index search tree—[20]. Finally, we ran the
postGIS queries without indexing for the postGIS queries.

Remark 2. Although we cannot claim that PostGIS is the
best implementation of R-trees, we believe that it is
appropriate to compare it against our implementation. It
is a well-established and recognized product, and profes-
sional developers have participated in its implementation.
On the contrary, Piet is still at a proof-of-concept stage.
Thus, we believe this is a fair comparison.

The following are the conditions under which the tests
were run: (a) all the layers were indexed (see Fig. 17 for
index sizes); (b) all PostGIS queries have been optimized
analyzing the generated query plans in order to obtain the
best possible performance; (c) all Piet tables have been
indexed over attributes that participate in a join or in a
TINCT state.piet_id FROM state, volcano WHERE contains(state.geometry,

ometry)

TINCT state.piet_id FROM state, volcano WHERE state.geometry

.geometry AND contains(state.geometry, volcano.geometry)

TINCT p1.state FROM gis_pre_point_9 p1

te.id, city.id FROM state, city WHERE contains(state.geometry,

try)

te.piet_id, city.piet_id FROM state, city WHERE state.geometry &&

try AND contains(state.geometry, city.geometry)

state, p1.city FROM gis_pre_point_11 p1

TINCT state.piet_id , city.piet_id FROM state, city WHERE

ate.geometry, city.geometry) AND state.id in (SELECT state.id FROM state,

RE intersects(state.geometry, river.geometry))

TINCT state.piet_id , city.piet_id FROM state, city WHERE state.geometry

metry AND contains(state.geometry, city.geometry) AND state.piet_id in

ate.piet_id FROM state, river WHERE state.geometry && river.geometry

ects(state.geometry, river.geometry))

TINCT p1.state, p1.city FROM gis_pre_point_11 p1 WHERE p1.state IN

.state FROM gis_pre_linestring_7 p2)

piet_id FROM state p1, river p2 WHERE intersects(p1.geometry,

ry) GROUP BY p1.piet_id HAVING count(p2.piet_id) 4 ¼ 10

piet_id FROM state p1, river p2 WHERE p1.geometry && p2.geometry

ects(p1.geometry, p2.geometry) GROUP BY p1.piet_id HAVING

iet_id) 4 ¼ 10

state FROM gis_pre_linestring_7 p1 GROUP BY p1.state HAVING

nct p1.river) 4 ¼ 10

ARTICLE IN PRESS

Table 5
Geometric aggregation queries.

Query Method Code

Q5: Total number of

rivers along with the

total number of

volcanoes in California

PostGIS without

spatial indexing

SELECT count(DISTINCT river.piet_id), count(DISTINCT volcano.piet_id) FROM volcano, river, state

WHERE state¼‘California’ AND contains(state.geometry, river.geometry) AND

contains(state.geometry, volcano.geometry)

PostGIS with

spatial indexing

SELECT count(DISTINCT river.piet_id), count(DISTINCT volcano.piet_id) FROM volcano, river, state

WHERE state¼‘California’ AND river.geometry && state.geometry AND volcano.geometry &&

state.geometry AND contains(state.geometry, river.geometry) AND contains(state.geometry,

volcano.geometry)

Piet SELECT count(DISTINCT p1.river), count(DISTINCT p2.volcano) FROM gis_pre_linestring_3 p1,

gis_pre_point_4 p2, state s WHERE p1.state ¼ p2.state AND s.state¼ ‘California’ AND p2.state ¼

s.piet_id

Q6: Average elevation of

volcanoes by state

PostGIS without

spatial indexing

SELECT avg(elev), state.piet_id FROM volcano, state WHERE contains(state.geometry,

volcano.geometry) GROUP BY state.piet_id

PostGIS with

spatial indexing

SELECT avg(elev), state.ID FROM volcano, state WHERE volcano.geometry && state.geometry AND

contains(state.geometry, volcano.geometry) GROUP BY state.piet_id

Piet SELECT avg(p1.elev), p2.state FROM gis_subp_point_4 p1, gis_pre_point_4 p2 WHERE

p1.originalgeometryID ¼ p2.volcano GROUP BY p2.state order by p2.state

Q7: Average elevation of

volcanoes by state, only

for states crossed by at

least one river.

PostGIS without

spatial indexing

SELECT avg(elev), state.Piet_id FROM volcano, state WHERE contains(state.geometry,

volcano.geometry) AND state.PIET_id in (SELECT state.Piet_id FROM state, river WHERE

intersects(state.geometry, river.geometry) GROUP BY state.Piet_ID

PostGIS with

spatial indexing

SELECT avg(elev), state.Piet_id FROM volcano, state WHERE contains(state.geometry,

volcano.geometry) AND state.geometry && volcano.geometry AND state.Piet_id in (SELECT

state.Piet_id FROM state, river WHERE intersects(state.geometry, river.geometry) AND

state.geometry && river.geometry) GROUP BY state.piet_id

Piet SELECT avg(p1.elev), p2.state FROM gis_subp_point_4 p1, gis_pre_point_4 p2 WHERE

p1.originalgeometryID ¼ p2.volcano AND p2.state IN (SELECT state FROMgis_pre_linestring_3)

GROUP BY p2.state

Q8: Total length of the

part of each river which

intersects states

containing at least one

volcano with elevation

higher than 4300

PostGIS without

spatial indexing

SELECT length(intersection(state.geometry, river.geometry)), river.Piet_id FROM river, state

WHERE intersects(state.geometry, river.geometry) AND state.Piet_id in (SELECT state.Piet_id from

state, volcano WHERE contains(state.geometry, volcano.geometry) AND volcano.elev 44300)

PostGIS with

spatial indexing

SELECT length(intersection(state.geometry, river.geometry)), river.Piet_id FROM river, state

WHERE river.geometry && state.geometry AND intersects(state.geometry, river.geometry) AND

state.Piet_id in (SELECT state.Piet_id from state, volcano WHERE state.geometry &&

volcano.geometry AND contains(state.geometry, volcano.geometry) AND volcano.elev 44300)

Piet SELECT SUM(length(p1.geometry)), p2.river FROM gis_subp_linestring_3 p1, gis_pre_linestring_3

p2 WHERE p1.uniqueID ¼ p2.uniqueID and p1.originalgeometryID IN (SELECT p4.state FROM

gis_subp_point_1 p3, gis_pre_point_4 p4 WHERE p3.originalgeometryID ¼ p4.volcano AND

p3.elev 44300) group by p2.river

L. Gómez et al. / Information Systems 34 (2009) 551–576 571
selection; the size of the indexes totals 400 Mb, for all
combinations of subpolygonization tables; (d) in all cases,
queries were executed without the overhead of the
graphic interface; (e) the queries were ran 10 times for
each method, and we report the average execution times;
(f) full subpolygonization was used for Piet queries.

Fig. 13 shows the execution times for the set of geometric
queries. We can see that Piet clearly outperforms postGIS
with or without R-tree indexing. The differences between
Piet and R-tree indexing range between seven and eight
times in favor of Piet; for PostGIS without indexing, these
differences go from ten to fifty times.

For tests of type (c), we selected four geometric
aggregation queries that compute aggregations over the
result of some geometric condition which involves the
intersection between different combinations of layers.
Table 5 depicts the expressions for these queries. Fig. 14
showsthe results. Piet outperformed postGIS in queries Q5
through Q7 (ranging between four and five times faster
with respect to indexed PostGIS), but was outperformed in
query Q8. This has to do, probably, with the complicated
shape of the rivers combined with the number of carrier
lines generated in regions with high density of volcanoes.
Note, however, that, even in this case, execution times
remain compatible with user needs. Piet’s performance
could be improved reducing the size of the grid rectangles
only for high density regions, taking advantage of the
flexibility of the grid partition strategy. We did not use
this feature, given that the improvement would only apply
to this particular case, and thus, results would not be
comparable.

For the experiments of type (d), we ran the following
three queries adding a query region. We worked with the
query regions shown in Fig. 12.

Q9: Average elevation of volcanoes by state, for volcanoes

within the query region.

ARTICLE IN PRESS

180.00

160.00

140.00

120.00

100.00

80.00

60.00

40.00

20.00

0.00
Postgis without Spatial

Indexing
Postgis with Spatial

Indexing
PIET

Query Method

Ti
m

e
(m

s)

159.77

08.07

71.35
61.90

69.80
58.42

22.48
12.54

1.48 3.17 8.13 8.18

Q1
Q2
Q3
Q4

Geometric Queries

Fig. 13. Execution time for geometric queries.

Fig. 14. Execution time for geometric aggregation queries.

L. Gómez et al. / Information Systems 34 (2009) 551–576572
Q10: Average elevation of volcanoes by state only for the

states crossed by at least one river, considering only

volcanoes within the query region.

Q11: For each state show the total length of the part of

each river which intersects it, only for states within the query

regions, containing at least one volcano with elevation

greater than 4300 m.

The query expressions are of the kind of the ones given
in Tables 4 and 5, and we omit them for the sake of space.
The results are shown in Figs. 15 and 16. We denote query
regions #1 and #2 the smaller and larger regions in Fig. 12,
respectively.

Figs. 15 and 16 show the results. We can see that for
the small query region, Piet still performs better than
PostGIS (indexed or not) for queries Q10 and Q11. For Q9,
performances were similar for the three methods. On the
contrary, for the larger region, Piet delivered better
performance for Q9 and Q10, but for Q11 PostGIS with
R-tree outperformed Piet (since this query is similar to Q8
above, the reasons of this result are likely to be the same).
We note that, in the presence of query regions, Piet pays
the price of the on-the-fly computation of the intersection
between the query region and the subpolygonization. We
indexed the overlayed subpolygonization with an R-tree,
with the intention of speeding-up the computation of the
intersection between the query region and the sub-
polygons, but the results were not satisfactory and we
discarded this strategy. As a final remark, we implemen-
ted an optimization in Piet: taking advantage of the grid
partition, only the rectangles that intersect were the

ARTICLE IN PRESS

Fig. 15. Geometric aggregation within query region # 1.

Fig. 16. Geometric aggregation within query region # 2.

Table 6
Precision in Piet.

Object ID Exact length Computed by Piet Diff. (%)

55 0.594427175 0.59442717 0

250 1.33177252 1.272456 4.7

251 0.2424391242 0.24243912 0

252 0.67318281 0.6731828 0

253 0.5103286611 0.510328661 0

254 0.0955072453 0.09550724 0

258 0.636150619 0.59679889 6.7

index on geometry # tuples # pages disk space (KB)

City 1767 12 98

Volcano 719 5 40

River 353 3 24

State 151 1 8.2

Fig. 17. Disk space used by the R-tree or aR-tree indexing techniques.

L. Gómez et al. / Information Systems 34 (2009) 551–576 573
region boundaries were considered (i.e., the algorithm
that computes the intersection only analyzes the relevant

rectangles).
Precision of Piet Aggregation. We have commented

above that, in some cases, we may lose precision in Piet
when we aggregate measures defined over geometric
objects. This problem appears when the object associated
to measure to be aggregated does not lie within the query
region (this also occurs in aR-trees, as we comment
below). We ran a variation of query Q8: ‘‘length of rivers

within a query region’’. Here, the boundary of the region is
crossed by some rivers, and we measured the difference
between the lengths computed by Piet and by postGIS
(the latter always gives the exact result). Table 6 shows
the results. The object ID represents the river being
measured.

For all the rivers, except the ones with IDs 250 and 258
(crossed by the query region), the result returned by Piet
is exact. When this is not the case, the error is less than
7%. Notice that this error could be fixed in Piet assuming
the overhead of computing the exact length (inside the
query region) of the segments that are intersected by the
region boundaries. Thus, we think precision is acceptable
given that, on the one hand, errors can appear only when a
query region is intersected by an object that is being
measured, and, on the other hand, the error can always be
fixed at the expense of an overhead, that varies in each
situation.

Aggregation R-Trees. The aR-tree stores, for each mini-
mum bounding rectangle (MBR), the value of the
aggregation function for all the objects enclosed by the
MBR. For our experimental evaluation, we implemented
the aR-tree and ran two geometric aggregation queries,

ARTICLE IN PRESS

Fig. 18. Piet vs. aR-tree and R-tree.

L. Gómez et al. / Information Systems 34 (2009) 551–576574
with or without a query region. Fig. 17 shows the space
used by the R-tree and the aR-tree indexes (the space is
approximately the same in both cases), for each map layer.
We can see that, as expected, the space required by
indexing is considerably smaller than for storing the
overlay precomputation. We report the results obtained
running two queries:

Q6: ‘‘Average elevation of volcanoes by state’’ (a geo-
metric aggregation, with no query region defined); and

Q12: ‘‘Maximum elevation of volcanoes within a query

region in California’’.
The height of the aR-tree was h ¼ 2, with six minimum

bounding rectangles (MBR) in the first level. Fig. 18 shows
the results. We can see that for Q6, Piet is still much better
than the other two methods. However, in the presence of a
query region, aR-tree and R-tree are between 15% and 20%
better than Piet. Again, on-the-fly computation of the
query region makes the difference. However, we remark
that the reported results were obtained in situations that
favor aR-trees, since the queries deal with points.
Aggregation over other kinds of objects that do overlap
the query region may not be so favorable to aR-trees, given
that base tables must be accessed, or otherwise, precision
may be poor. The main benefit of aR-trees with respect to
R-trees comes from pruning tree traversal when a region
is completely included in an MBR, because, in this case,
they do not need to reach the leaves of the index tree
(because the values associated to all the geometries
enclosed by the MBR have been aggregated). However, if
this is not the case, the aR-tree must reach the leaves, as
standard R-trees do, and the aR-tree advantages are lost.

Finally, we ran several tests of type (e). We already
explained that GISOLAP-QL queries are composed of a GIS
part and an OLAP part, expressed in MDX. The times for
computing the GIS part (the SQL-like expression) were
similar to the ones reported above. Note that in this case,
there is no tool to compare Piet against to. We measured
the total time for running a query, composed of the time
needed for building the query, and the query execution
time. As an example, we report the result of the following
query:

Q13: Unit Sales, Store Cost and Store Sales for the
products and promotion media offered by stores only in
states containing at least one volcano. The GISOLAP-QL
query reads:

SELECT layer.state; FROM PietSchema; WHERE

contains

(layer.state,layer.volcano,subplevel.

point);

j

SELECT [Measures].[Unit Sales],

[Measures].[Store Cost], [Measures].[Store

Sales]

ON columns, ([Promotion Media].[All Media],

[Product].[All Products])

ON rows

FROM [Sales]

The query assembly and execution times are:
Assembly (ms)
 Execution (ms)
 Total (ms)
2023
 60
 2083
8.1. Discussion

Our results showed that the overlay precomputation of
the common subpolygonization appears as an interesting
alternative to other more traditional methods, contrary to
what has been believed so far [18]. In addition, the class of
queries that clearly benefit from overlay precomputation
can be identified by a query processor, and added to any
existing GIS in a straightforward way. We summarize our
results as follows:
�
 For pure geometric queries, Piet (i.e. overlay precom-
putation) clearly outperformed R-trees.

�
 For geometric aggregation over the entire map (i.e.,

when no query region must be intersected at run time
with the precomputed sub-polygons), Piet clearly
outperformed the other methods in almost all the
experiments.

�
 When a query region is present, indexing methods and

overlay precomputation deliver similar performance.

ARTICLE IN PRESS

L. Gómez et al. / Information Systems 34 (2009) 551–576 575
As a general rule, the performance of overlay pre-
computation improves as the query region turns
smaller.

�
 Piet always delivered execution times compatible with

user needs.

�
 The cost of integrating GIS results and OLAP navigation

capabilities through the GISOLAP-QL query language
(i.e., merging the GIS part results with the MDX
expression) goes from low to negligible.

�
 For very large and complicated maps, with large query

regions, aR-trees have the potential to outperform the
other two techniques.

9. Conclusion

In this paper we introduced a formal model that
integrates GIS and OLAP applications in an elegant way.
We formalized the notion geometric aggregation, and
identified a class of queries, denoted summable, which
can be evaluated without accessing the algebraic part of
the GIS dimensions.

We proposed to precompute the common subpolygoni-

zation of the overlay of thematic layers as an alternative
optimization method for evaluation of summable queries.
We sketched a query language for GIS and OLAP integra-
tion, and described a tool, denoted Piet, that implements
our proposal. The results of our experimental evaluation
(carried out over real-world maps) show that precomput-
ing the common subpolygonization can, for several kinds of
geometric queries, outperform traditional query evalua-
tion methods. We believe this is a relevant result, given
that, up till now it has been thought that overlay
materialization was not competitive against traditional
search methods for GIS queries [18]. In addition, it is
straightforward to add overlay precomputation to existing
query optimizers, as an alternative query processing
strategy.

Our future work has two main directions: on the one
hand, we think there is still room to improve the
performance of query processing using overlay precom-
putation. On the other hand, we are looking forward to
apply the concepts presented in this paper in the Moving
Objects Databases setting.
Appendix A

A simple example of a one-dimensional Dirac delta
function [8] (or impulse function) daðxÞ for a real number a

can be lime!1 f aðe; xÞ; where f aðe; xÞ ¼ e if a�

1=2epxpaþ 1=2e and f aðe; xÞ ¼ 0 elsewhere. For a two-
dimensional point ða; bÞ in R2, we can define the two-
dimensional Dirac delta function dða;bÞðx; yÞ as
lime!1 f ða;bÞðe; x; yÞ, with f ða;bÞðe; x; yÞ ¼ e2 if a�

1=2epxpaþ 1=2e and b� 1=2epypbþ 1=2e and
f ða;bÞðe; x; yÞ ¼ 0 elsewhere.

If C is a finite set of points in the plane, then the delta

function of C, dCðx; yÞ, is defined as
P
ða;bÞ2C dða;bÞðx; yÞ. It has

the property that
R R

R2 dCðx; yÞdx dy is equal to the
cardinality of C. Intuitively, including a Dirac delta
function in geometric aggregation, allows to express
geometric aggregate queries like ‘‘number of airports in
a region C’’. If C is a one-dimensional curve, then the
definition of dCðx; yÞ is more complicated. Perpendicular to
C we can use a one-dimensional Dirac delta function, and
along C, we multiply it with a combination of Heaviside
step functions[21]. The one-dimensional Heaviside step
function is defined as HðxÞ ¼ 1 if xX0 and HðxÞ ¼ 0 if xo0.
For C, we can define a Heaviside function HCðx; yÞ ¼ 1 if
ðx; yÞ 2 C and HCðx; yÞ ¼ 0 outside C. As a simple example,
let us consider the curve C given by the equation y ¼ 0 ^
0pxpS. The function dCðx; yÞ, in this case, can be defined
as d0ðyÞ � HðxÞ � HðS� xÞ. The one-dimensional Dirac delta
function d0ðyÞ takes care of the fact that perpendicular to
C, an impulse is created. The factors HðxÞ and HðS� xÞ take
care of the fact that this impulse is limited to C. In this
case, it is easy to see that

R R
R2 dCðx; yÞ dx dy is the length of

C and in fact this is true for arbitrary C. For arbitrary C, the
definition of dC is rather complicated and involves the use
of HCðx; yÞ. We omit the details. Intuitively, this combina-
tion of functions allows to express geometric aggregate
queries like ‘‘Give me the length of the Colorado river’’.

References

[1] Y. Bédard, T. Merret, J. Han, Fundamentals of spatial data ware-
housing for geographic knowledge discovery, Geographic Data
Mining and Knowledge Discovery, 2001, pp. 53–73.

[2] Y. Bédard, S. Rivest, M. Proulx, Spatial online analytical processing
(SOLAP): concepts, architectures, and solutions from a geomatics
engineering perspective, in: Wrembel-Koncilia (Ed.), Data Ware-
houses and OLAP: Concepts, Architectures and Solutions, IRM Press,
2007, pp. 298–319 (Chapter 13).

[3] S. Bimonte, A. Tchounikine, M. Miquel, Towards a spatial multi-
dimensional model, in: DOLAP’05, 2005, pp. 39–46.

[4] L. Cabibbo, R. Torlone, Querying multidimensional databases, in:
Proceedings of the DBPL’97, East Park, Colorado, USA, 1997, pp.
253–269.

[5] A.K. Chandra, D. Harel, Computable queries for relational data
bases, J. Comput. Syst. Sci. 21 (2) (1980) 156–178.

[6] S. Cohen, Equivalence of queries combining set and bag-set
semantics, in: Proceedings of the PODS’06, ACM Press, New York,
2006, pp. 70–79.

[7] M. De Berg, M. Van Kreveld, M. Overmars, O. Schwarzkopf,
Computational Geometry: Algorithms and Applications, second
ed., Springer, Berlin, 2000.

[8] P. Dirac, The Principle of Quantum Mechanics, Oxford University
Press, Oxford, 1958.

[9] H. Edelsbrunner, L.J. Guibas, J. Stolfi, Optimal point location in a
monotone subdivision, SIAM J. Comput. 15 (2) (1986) 317–340.

[10] A. Escribano, L. Gómez, B. Kuijpers, A. Vaisman, Piet: a GIS-OLAP
implementation, in: DOLAP’07, 2007.

[11] R. Fidalgo, V. Cesário Times, J. Da Silva, F. Fonseca, Geodwframe: a
framework for guiding the design of geographical dimensional
schemas, in: DaWaK, 2004, pp. 26–37.

[12] J. Flusser, Affine invariants of convex polygons, IEEE Trans. Image
Process. 11 (9) (2002) 1117–1118.

[13] S. Grumbach, T. Milo, Towards tractable algebras for bags,
J. Comput. Syst. Sci. 52 (3) (1996) 570–588.

[14] A. Gutman, R-trees: a dynamic index structure for spatial searching,
in: Proceedings of the SIGMOD’84, 1984, pp. 47–57.

[15] S. Haesevoets, B. Kuijpers, Time-dependent affine triangulation of
spatio-temporal data, in: Proceedings of the ACM-GIS’04, Washing-
ton, DC, USA, 2004, pp. 57–66.

[16] S. Haesevoets, A triangle-based logic for affine-invariant querying of
two-dimensional data, in: Proceedings of the CDB’04, Paris, France,
2004, pp. 53–74.

[17] J. Han, N. Stefanovic, K. Koperski, Selective materialization: an
efficient method for spatial data cube construction, in: Proceedings
of PAKDD’98, 1998, pp. 144–158.

[18] J. Han, M. Kamber, Data Mining, Concepts and Techniques, Morgan
Kaufmann Publishers, Los Altos, CA, 2001.

ARTICLE IN PRESS

L. Gómez et al. / Information Systems 34 (2009) 551–576576
[19] V. Harinarayan, A. Rajaraman, J. Ullman, Implementing data cubes
efficiently, in: Proceedings of the SIGMOD’96, Montreal, Canada,
1996, pp. 205–216.

[20] J. Hellerstein, J. Naughton, A. Pfeffer, Generalized search trees for
database systems, in: VLDB, 1995, pp. 562–573.

[21] R. Hoskins, Generalised Functions, Ellis Horwood Series: Mathe-
matics and its Applications, Wiley, New York, 1979.

[22] C. Hurtado, A. Mendelzon, A. Vaisman, Maintaining data cubes
under dimension updates, in: Proceedings of the IEEE/ICDE’99,
1999, pp. 346–355.

[23] C. Jensen, A. Kligys, T. Pedersen, I. Timko, Multidimensional data
modeling for location-based services, VLDB J. 13 (1) (2004) 1–21.

[24] R. Kimball, The Data Warehouse Toolkit, Wiley, New York, 1996.
[25] A. Klug, Equivalence of relational algebra and relational calculus query

languages having aggregate functions, J. ACM 29 (3) (1982) 699–717.
[26] B. Kuijpers, D.V. Gucht, Genericity in spatial databases, in: J.

Paredaens, G. Kuper, L. Libkin (Eds.), Constraint Databases, Springer,
Berlin, 2000, pp. 293–304 (Chapter 12).

[27] G. Kuper, M. Scholl, Geographic information systems, in: J.
Paredaens, G. Kuper, L. Libkin (Eds.), Constraint Databases, Springer,
Berlin, 2000, pp. 175–198 (Chapter 12).

[28] H. Lenz, A. Shoshani, Summarizability in OLAP and statistical data
bases, in: Proceedings of the Ninth International Conference on
Scientific and Statistical Database Management, August 11–13, 1997,
Olympia, Washington, USA, IEEE Computer Society, 1997, pp. 132–143.

[29] E. Malinowski, E. Zimányi, OLAP hierarchies: a conceptual perspec-
tive, in: CAiSE, 2004, pp. 477–491.

[30] E. Malinowski, E. Zimányi, Representing spatiality in a conceptual
multidimensional model, in: GIS, 2004, pp. 12–22.

[31] E. Malinowski, E. Zimányi, Logical representation of a conceptual
model for spatial data warehouses, Geoinformatica 11 (4) (2007)
431–457.

[32] O. Nigro, S.G. Cisaro, D. Xodo, Data Mining with Ontologies:
Implementations, Findings and Frameworks, Idea Group, 2007.

[33] D. Papadias, P. Kalnis, J. Zhang, Y. Tao, Efficient OLAP operations in
spatial data warehouses, in: Proceedings of the SSTD’01, 2001,
pp. 443–459.

[34] D. Papadias, Y. Tao, P. Kalnis, J. Zhang, Indexing spatio-temporal
data warehouses, in: Proceedings of the ICDE’02, 2002, pp. 166–175.

[35] C.H. Papadimitriou, D. Suciu, V. Vianu, Topological queries in spatial
databases, in: Proceedings of the PODS’96, ACM Press, New York,
1996, pp. 81–92.
[36] J. Paredaens, J.V. den Bussche, D.V. Gucht, Towards a theory of
spatial database queries, in: Proceedings of the PODS’94, New York,
1994, pp. 279–288.

[37] J. Paredaens, G. Kuper, L. Libkin (Eds.), Constraint databases,
Springer, Berlin, 2000.

[38] T. Pedersen, N. Tryfona, Pre-aggregation in spatial data warehouses,
in: Proceedings of the SSTD’01, 2001, pp. 460–480.

[39] E. Pourabas, Cooperation with geographic databases, in: M.
Raffanelli (Ed.), Multidimensional Databases, Idea Group, 2003,
pp. 166–199 (Chapter 13).

[40] F. Rao, L. Zang, X. Yu, Y. Li, Y. Chen, Spatial hierarchy and OLAP-
favored search in spatial data warehouse, in: Proceedings of the
DOLAP’03, Louisiana, USA, 2003, pp. 48–55.

[41] P. Rigaux, M. Scholl, A. Voisard, Spatial Databases, Morgan
Kaufmann, Los Altos, CA, 2002.

[42] S. Rivest, Y. Bédard, P. Marchand, Toward better support for
spatial decision making: defining the characteristics of spatial,
on-line analytical processing (SOLAP), Geomatica 55 (4) (2001)
539–555.

[43] S. Shekhar, C. Lu, X. Tan, S. Chawla, R. Vatsavai, Mapcube: a
visualization tool for spatial data warehouses, in: H. Miller, J. Han
(Eds.), Geographic Data Mining and Knowledge Discovery (GKD),
Taylor & Francis, London, 2001, pp. 74–109.

[44] A. Shoshani, OLAP and statistical databases: similarities and
differences, in: Proceedings of the ACM TODS, 1997.

[45] N. Stefanovic, J. Han, K. Koperski, Object-based selective materi-
alization for efficient implementation of spatial data cubes, IEEE
Trans. Knowl. Data Eng. 12 (6) (2000) 938–958.

[46] J.d. Silva, A. Cesário Times, V. Salgado, An open source and web
based framework for geographic and multidimensional processing,
in: SAC, 2006, pp. 63–67.

[47] J.d. Silva, A.S. Castro Vera, A. Oliveira, R. Fidalgo, A. Salgado, V.
Times, Querying geographical data warehouses with GEOMDQL, in:
SBBD, 2007, pp. 223–237.

[48] I. Vega López, R. Snodgrass, B. Moon, Spatiotemporal aggregate
computation: a survey, IEEE Trans. Knowl. Data Eng. 17 (2) (2005)
271–286.

[49] M.F. Worboys, GIS: A Computing Perspective, Taylor & Francis,
London, 1995.

[50] L. Zang, Y. Li, F. Rao, X. Yu, Y. Chen, An approach to enabling spatial
OLAP by aggregating on spatial hierarchy, in: Proceedings of the
DaWak’03, Prague, Czech Republic, 2003, pp. 35–44.

	Spatial aggregation: Data model and implementation
	Introduction
	Problem statement
	An introductory example
	Contributions and paper organization

	Background and related work
	Spatial aggregation
	Geometric aggregation

	Summable queries
	Overlay precomputation
	Using the common subpolygonization
	Complexity
	An application: topological geometric aggregation

	GIS-OLAP integration
	Piet-Schema
	The GISOLAP-QL query language
	Spatial OLAP with GISOLAP-QL

	Implementation
	Piet components and functionality
	Robustness and scalability issues
	Robustness
	Scalability

	Experimental evaluation
	Discussion

	Conclusion
	Appendix A
	References

