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ABSTRACT

A common problem in moving object databases �MOD) is
the reconstruction of a trajectory from a trajectory sample
�i.e., a finite sequence of time-space points). A typical solu-
tion to this problem is linear interpolation. A more realistic
model is based on the notion of uncertainty modelled by
space-time prisms, which capture the positions where the
object could have been, when it moved from a to b. Often,
object positions measured by location-aware devices are not
on a road network. Thus, matching the user’s position to
a location on the digital map is required. This problem is
called map matching. In this paper we study the relation be-
tween map matching and uncertainty, and propose an algo-
rithm that combines weighted k-shortest paths with space-
time prisms. We apply this algorithm to two real-world case
studies and we show that accounting for uncertainty leads
to obtaining more positive matchings.

Categories and Subject Descriptors

F.2 [Analysis of algorithms and problem complex-

ity]: Miscellaneous; H.2.8 [Database applications]: Spa-
tial databases and GIS

General Terms

Algorithms
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1. INTRODUCTION
The most popular location-aware devices nowadays are

GPS-based. Even though most people use GPS as a navi-
gational tool, it can also be used to record the position of a
moving object �e.g., a car, a pedestrian) for data analysis.
We can analyze the trajectories of a person and study why
that person preferred a particular route over another. The
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main disadvantage with GPS coordinates is that they are
not exact, i.e., they do not always map to a road. There-
for, every GPS device accounts for these errors by mapping
the exact street driven on instead of just modeling the GPS
coordinates received from a satellite. Many algorithms were
devised for this task, as we discuss in Section 1.3. The pro-
cess of matching GPS positions to a road network is called
map matching.

One particular model for the management of the uncer-
tainty of the moving object’s position in between sample
points is provided by the space-time prism model. In this
model, it is assumed that aside from the time-stamped loca-
tions also some background knowledge, in particular a �e.g.,
physically or law imposed) speed limitation at certain loca-
tions is known. The space-time prism between two consecu-
tive sample points is defined as the collection of space-time
points where the moving objects could have passed, given
the speed limitation. The chain of space-time prisms con-
necting consecutive trajectory sample points is called a life-

line necklace [1] �see Figure 1). Whereas space-time prisms
were already conceptually known in the time geography of
Hägerstrand in the 1970s [4], they were introduced in the
area of GIS by Pfoser [8] and later studied by Egenhofer
and Hornsby [1, 5], and Miller [6].

In this paper we present an algorithm that uses a combina-
tion of weighted k-shortest path algorithms and space-time
prisms to solve the map matching problem and apply this
algorithm to two real-world case studies.

1.1 Problem statement and case study
An emergency service in a small European city �± 15k

street segments) discovered that new employees did not know
the city very well and it took them longer than experienced
employees to arrive at the place of intervention. The experi-
enced drivers are able to transfer knowledge to new drivers
such as, avoid streets with schools or to take advantage of
tram lanes, but there is also subconscious knowledge. The
emergency services wants to discover this knowledge using
the most recent knowledge discovery techniques [2].

In the scenario above, a typical problem that arises is
that about ninety-five percent of the points fall off the roads
actually taken and that sometimes it is ambiguous to which
road segment they should be matched. Thus, there is a need
to map points to the road network. This problem is called
map matching and will be the focus of this paper.



1.2 Contribution and paper organization
The main contribution of this paper is a map matching

algorithm that uses a combination of a techniques that han-
dle uncertainty in trajectory data �more precisely, via space-

time prisms), and a weighted k-shortest paths algorithm.
In Section 1.3 we review related work on map matching.

Section 2 presents the theoretical basis of our work, mainly
studying how uncertainty in road networks is addressed us-
ing the notion of space-time prisms. In Section 3 we discuss
different techniques and technical problems of map match-
ing, and introduce our algorithm. In Section 4 we report on
experimental results.

1.3 Related work
Map matching algorithms can be classified into three cat-

egories: �a) Geometric [10, 11]: geometric information of
the original road network and not topological information is
considered; �b) Topological [3, 9]: the geometry of the net-
work as well as the connectivity and contiguity of the links
are considered; �c) Probabilistic [7]: these algorithms define
an elliptical or rectangular confidence region. The error re-
gion is superimposed on the road network to identify a road
segment. If the error region contains more than one street,
probabilistic algorithms perform a weighted search on the
candidate streets.

The algorithm we present in this paper can be consid-
ered a variant of a probabilistic techniques �Section 3.2) and
topological techniques �Section 3.3).

2. AMODELFORMOVINGOBJECTDATA

WITH UNCERTAINTY
In this paper, we consider moving objects in the two-

dimensional �x� y)-space R2 and describe their movement
in the �t� x� y)-space R×R2, where t is time �we denote the
set of the real numbers by R).

Moving objects, which we assume to be points, produce a
special kind of curves, which are parameterized by time and
which we call trajectories.

In practice, trajectories are only known at discrete mo-
ments in time. This partial knowledge of trajectories is
formalized in the following definition. To stress that some
t� x� y-values �or other values) are constants, we will use sans
serif characters.

�efinition 1. A trajectory sample is a finite set of time-

space points ����� x�� y�)� ��1� x1� y1)� . . . � ��� � x� � y� )}� on

which the order on time� �� < �1 < · · · < �� � induces a

natural order.

Often, in practical applications, more is known about tra-
jectories than merely some sample points. For instance,
background knowledge like a physically or law imposed speed
limitation at location might be available. The speed lim-
its that hold between two consecutive sample points can
be used to model the uncertainty of a moving object’s lo-
cation between sample points. For modeling uncertainty,
time geography [4] introduced space-time prisms � Pfoser et
al. [8] introduced this in moving object database literature
as beads). We now formalize the concepts above.

The space-time prism between two sample points p =
�tp� xp� yp) and q = �tq� xq� yq), with tp ≤ tq, and maximal
speed vmax ≥ 0 is the set of all points �t� x� y) ∈ R×R2 that

p

t

x

y

q

Figure 1: A space-time prism and a lifeline necklace.

satisfy the following constraints
�
<

:

�x− xp)
2 + �y − yp)

2 ≤ �t− tp)
2v2

max

�x− xq)
2 + �y − yq)

2 ≤ �tq − t)2v2

max

tp ≤ t ≤ tq.

It describes the set of space-time locations where the moving
object could have been between sample points p and q. We
denote this set by Pr�p� q� vmax) or Pr�tp� xp� yp� tq� xq� yq�

vmax). The projection of a space-time prism on the �x� y)-
plane is an ellipse.

Figure 1 illustrates the notion of a space-time prism and
a chain of space-time prisms, a lifeline necklace [1], in time-
space.

3. MAPPING TO A ROAD NETWORK
A part from being discrete, the data from GPS devices can

also contain gaps, e.g., because of tunnels. Measurements of
locations can be �far) off-road or just between two roads.

In this section we describe a map-matching algorithm that
uses space-time prisms, for handling problems of real-world
data. This algorithm is summarized in pseudodcode in List-
ing below. In Section 3.1 we will explain Lines 6-11, how
to select the region where the car could have been. Sec-
tion 3.2 will describe Line 13, making a weighted road net-
work. Finally in Section 3.3 we will describe the k-shortest
path algorithm on Line 16.

1 Input :
2 T := array o f sample po in t s ;
3 G := road network ;
4

5 Gpart := empty road network ;
6 For i := 1 tot �|T | − 1)�
7 P := c a l c u l a t e part o f G where the
8 route between T [i] and T [i + 1]
9 could have been ;

1� Gpart := Gpart ∪ P ;
11 }
12

13 Gscore := Ca lcu la te a weighed
14 road network from T and Gpart ;
15

16 K := s e t o f candidate route s
17 based on Gscore ;
18

19 Return the route in K

2� with h ighe s t s co r e ;
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Figure 2: Projection of a space-time prism over the

road network� for two points a and b.

3.1 Using space­time prisms to limit the scope
For example, in our case study, given the time between

two consecutive recorded points, and a maximal speed, a
car could have been in many possible locations, given by the
projection of the space-time prisms over the plane. Even
though, in fact, this projection is an ellipse, for simplicity we
compute a bounding box given by two points R�x1� y1) and
U�x2� y2) �see Figure 2). The point R is computed as follows:
x1 is the farthest point on the X-axis that can be reached
moving away from b driving at maximum speed vmax. Anal-
ogously, y1 is the is the farthest point on the Y-axis that can
be reached moving away from b driving at maximum speed
vmax. The point U is computed as follows: x2 is the farthest
point on the X-axis that can be reached moving away from
a driving at maximum speed vmax. Analogously, y2 is the is
the farthest point on the Y-axis that can be reached moving
away from a driving at maximum speed vmax.

It is known that GPS data can also contain outliers. These
are handled with these space-time prisms, because if the
distance between two consecutive points is so that one can
not reach the next point in time with the given maximum
speed, the space-time prism would be empty and thus no
roads will be added.

We select the largest maximum speed allowed on the road
network.

3.2 Assigning a score to a road network
In previous section, we limited the total road network G

to a road network Gpart �the part of G where the car could
have been). We will now create a weighted road network
Gscore, using Gpart. Initially Gscore is Gpart where every
road segment gets a score of 0. For every sample point p

we look at the n closest road segments in Gpart. The score
of the closest road segment to p will be increased with n,
the score of the second closest road segment to p will be
increased with n− 1, and so on.

3.3 Weighted shortest path computation
We adapt Yen’s algorithm [12] to rank the shortest paths

between a pair of nodes, using a scoring algorithm discussed
in Section 3.2, to give weight to the edges in a road network.
In our adaptation of the algorithm, a score is calculated for
each shortest path �as described in Section 3.2); if this score
is greater or equal to that of the shortest path calculated
at the beginning, it is added to the result list. We return
the path with the highest score. The complexity of the al-
gorithm is O�n3). Calculating the spur paths from each
node is O�n) and using a shortest-path algorithm �Dijkstra)

O�|V |2+|E|) with |V | number of vertices �intersections) and
|E| the number of streets �edges).

The output of the k-shortest path algorithm depends on
the choice of start and end road segment. However, the
choice of start and end segment is one aspect of a map
matching algorithm. To increase the chance of choosing the
the correct road segments as start or end segment, we altered
the k-shortest path algorithm.

We can now elaborate the Line 16 in above Listing of our
implementation:

K := i s empty s e t o f route s ;
S1 := s e t o f road segments i n s i d e space−time

prism o f the f i r s t two po in t s o f L ;
S2 := s e t o f road segments i n s i d e space−time

prism o f the l a s t two po in t s o f L ;
�or every segment r1 in S1�
�or every segment r2 in S2�
While the re are s h o r t e s t route s l e f t �

R := c a l c u l a t e s h o r t e s t route
between r1 and r2 based �score

and in a way such that R �∈ K ;
K := K ∪R ;

} } }

4. EXPERIMENTS
In this section we report the experimental results obtained

by applying the algorithm. For these experiments we used a
naive geometric map matching algorithm to compare with.

4.1 Setup of experiments
A simple approach to map matching consists of using a ge-

ometric algorithm that computes the road segments closest
to the GPS coordinates �measuring the perpendicular dis-
tance from the point to the segment), and matches a point to
that road segment. In this way, a trajectory sample that lies
within the road is obtained. In spite of its simplicity, which
makes it very �computationally) efficient, this method has
some drawbacks, given the characteristics of real-world data
discussed above. In our experiments, these drawbacks some-
times prevent from obtaining a matched trajectory �e.g., if
there are large gaps in the data).

The experiments were run on a Compaq 8510p machine,
Core�TM)2 Duo CPU T8100 Intel processor, at 2,1 GHz,
with 4 GB DDR RAM.

We used two datasets. The first corresponds to our emer-
gency service case study presented throughout the paper.
The emergency service started recording when they got a
call for an intervention, and they stopped recording when
they arrived at the intervention site. Every route is a se-
quence of GPS coordinates �GPS points), stored in �x� y� t)
form, where �x� y) represents the location and t is the time
where the object was at this location. It is worth noting
that a great portion of the available data had to be dis-
carded, mainly for two reasons: �a) they contained less than
10 GPS points; �b) they contain more than 3400 GPS points,
indicating that, most likely, the users did not turn off their
device as requested. We can see then, that this dataset con-
tains very precise measurements. Our second dataset corre-
sponds to traffic in the Italian city of Milan, recorded during
a week. Here, GPS coordinates are recorded at irregular in-
tervals, i.e., data are more imprecise.



4.2 Results
We ran several experiments, aimed at: �a) revealing the

possible sensitivity of the space-time prisms method to the
selection of the maximal speed �i.e., the size of the space-
time prisms). We investigated how this affects precision and
execution time, on two datasets of different characteristics;
�b) comparing the space-time prisms method against a sim-
ple geometric method, which, likely, runs faster, at the ex-
pense of obtaining less reconstructed trajectories. The re-
sults are shown in Tables 1 and 2. We report the maximum,
minimum, and average execution times �we exclude the time
for loading the data), for the two datasets, using the geo-
metric algorithm and the new uncertainty-based algorithm,
referred to as STP �space-time prism) in the first column.
For the latter, we used the maximum speed as a parameter,
ranging from 40km/h to 120km/h.

Table 1 shows that for the space-time prism method with
maximum speed 120 km/h and the one with 80 km/h, the
results are very similar. However, the difference is significant
when the maximum speed is 60 km/h. Note that the speed
limit in the city ranges from 50 km/h and 70 km/h. The
results suggest then, that the trajectories were not recorded
during an urgent intervention that requires driving faster
than these limits. Looking at the maximum execution time
in Table 1, one can see that our algorithm using a maximum
speed of 80 km/h does not only give much better results
then the naive algorithm, it is also faster. The explanation
for this is, that our algorithm considers less roads. Then,
since execution times are better for a maximum speed of 80
km/h, it would be better, in this case, to use this speed for
analysis.

For the Milan data �Table 2), results were different, due
to the fact that the GPS data was not as dense as in the
first case. In consequence, the space-time prisms between
two points are larger, and include more roads, which the
algorithm has to process. The Milan GPS data consists of
three types of trajectories. The first type are trajectories
that do not enter the center of the city �e.g. people that
park their car and use the public transport in the center).
The second type are trajectories that come from outside the
city and enter the center. The last type are the trajectories
recorded within the center of the city itself. When we look
at the results we notice that when the speed limit decreases,
the number of trajectories that can be reconstructed also
decreases. This is because the GPS points are further away
from each other, compared with our first dataset.
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D. Papadias, and F. H. Lochovsky, editors, SSD,
volume 1651 of Lecture Notes in Computer Science,
pages 111–132. Springer, 1999.

[9] M. A. Quddus, W. Y. Ochieng, L. Zhao, and R. B.
Noland. A general map matching algorithm for
transport telematics applications. GPS Solutions,
7�3):157–167, 2003.

[10] G. Taylor, G. Blewitt, D. Steup, S. Corbett, and
A. Car. Road reduction filtering for gps-gis navigation.
In Proceedings of 3rd AGILE Conference on

Geographic Information Science, pages 114–120, 2001.

[11] C. E. White, D. Bernstein, and A. L. Kornhauser.
Some map matching algorithms for personal
navigation assistants. Transportation Research C,
8:91–108, 2000.

[12] J. Y. Yen. Finding the lengths of all shortest paths in
n-node nonnegative-distance complete networks using
1

2
n3 additions and n3 comparisons. J. ACM,

19�3):423–424, 1972.


