
Made available by Hasselt University Library in https://documentserver.uhasselt.be

A Giffler-Thompson genetic algorithm for the static job-shop scheduling problem

Peer-reviewed author version

Moonen, Mark & JANSSENS, Gerrit K. (2007) A Giffler-Thompson genetic algorithm

for the static job-shop scheduling problem. In: Journal of Information and

Computational Science, 4(2). p. 629-642.

Handle: http://hdl.handle.net/1942/10029



A Giffler-Thompson Focused Genetic Algorithm for the

Static Job-Shop Scheduling Problem

Mark Moonen a, Gerrit K. Janssens b,∗,
aCentre for Industrial Management, Katholieke Universiteit Leuven, Celestijnenlaan 300A, B-3001

Heverlee-Leuven, Belgium
bHasselt University - Campus Diepenbeek, Agoralaan, B-3590 Diepenbeek, Belgium

Abstract

As the job shop scheduling problem is a difficult problem in combinatorial optimisation, a lot of research
has been devoted to obtaining lower bounds for its objective function, in constructing branch-and-bound
algorithms and in developing efficient heuristics and meta-heuristics. Several genetic algorithms have
been developed for the job-shop scheduling problem. The design of the genetic algorithms for the
problem under study varies in the way of encoding a solution and in the use of its various operators.
In this design of the genetic algorithm a crossover operator is developed based on principles set by
Giffler and Thompson to generate active schedules. Two alternative designs are tested on a number
of benchmark problems. While performing well in general, the genetic algorithm performs rather poor
on benchmark problems, which are known in the literature as extremely hard to solve. The genetic
algorithm, as presented here, makes use of a parameter, which is believed to have an important influence
on performance of the algorithm and of which an intelligent setting of its value might lead to promising
results for the most difficult job-shop scheduling problems.

Keywords: Job-shop scheduling; Static; Genetic algorithm

1 Introduction

The job-shop scheduling problem (JSP) is known to be one of the hardest combinatorial optimisa-
tion problems [17]. Mathematical programming techniques are of little use as they could be used
only to solve play-toy problems. Mathematical programming formulations of the problem have
been proposed as an integer programming problem [3, 4], a mixed-integer programming problem
[5, 6], and a dynamic programming problem [33].

Because of this intractability, heuristics may serve as a valid alternative. Conventional heuristics
make use of a priority rule or a dispatching rule, i.e. a rule is used to select an operation on a

∗Corresponding author.
Email addresses: Mark.Moonen@cib.kuleuven.be (Mark Moonen), Gerrit.Janssens@uhasselt.be (Gerrit

K. Janssens).

1



machine from a list of unscheduled operations. Popular priority rules include: Shortest Processing
Time first, Earliest Due Date first, Least Slack first, Critical Ratio, etc. (see e.g. [25], chapter 15).
The quality of the solution obtained by these simple heuristics however is questionable. In [20]
it is proposed that an effective priority rule has to be dynamic such that it takes into account
additional information not available to the static rule and reflects the status of jobs, from time to
time as the schedule progresses. While being more complex in computation compared to a simple
priority rule, the ‘shifting-bottleneck’ algorithm [2] is considered to be the most powerful among
all heuristics. Priority rules fit into a class of heuristic algorithms for the JSP, which generate
non-delay schedules [34].

A good schedule may be used further in procedures, which try to improve this solution. Proba-
bilistic local search methods such as Simulated Annealing, Tabu Search and Genetic Algorithms
have been used to solve the job-shop scheduling problem. In this research we develop a new
genetic algorithm for the JSP. Other implementations of genetic algorithms for the JSP will be
discussed in later sections.

Our work deals with the classical job-shop model. There are N different jobs {J1, J2, . . . , JN} to
be scheduled on M different machines {M1,M2, . . . , MM}. The execution of a job i on a machine
j is called an operation oij. The operation order of a job on the machines is pre-specified. Each
operation oij is characterised by the required machine and the fixed processing time pij.

Other constraints on jobs and machines are:

• a job does not visit the same machine twice,

• no precedence requirements exist amongst operations of different jobs,

• an operation, once started, cannot be interrupted,

• each machine can process only one job at a time,

• neither release times nor due dates are specified.

In general the job-shop scheduling problem is to determine the operation sequences on the ma-
chines in such a way that they are compatible with the sequence requirements and in order to
optimise a performance criterion [16]. In most cases the makespan, i.e. the time required to com-
plete all jobs, is chosen as the performance criterion.

Davis [11] is generally recognised as the first publication mentioning the use of genetic algo-
rithms to solve the job-shop scheduling problem. In order to design a genetic algorithm for the
job-shop scheduling problem decisions have to be taken on: the representation of a solution, the
operators, the creation of an initial population, the parent selection mechanism, the reproduction
mechanism, and the use of elitism.

A first step in the design of a genetic algorithm (GA) consists of defining an appropriate represen-
tation of the solutions. Gen and Cheng [19] list nine representations for the job-shop scheduling
problem, obtained from the literature. A distinction is made between direct and indirect represen-
tation approaches. Direct approaches encode a schedule into a chromosome and GAs are used to

2



evolve the chromosomes in order to obtain better schedules. Indirect approaches encode a sequence
of rules or procedures into a chromosome. GAs are used to evolve the chromosomes in order to ob-
tain better sequences. A solution is obtained by using the sequence of instructions encoded in the
chromosome. For the reader’s reference we list nine types of representations including a reference
where further details may be found. They are: the operation-based representation [14], job-based
representation [27], preference-list-based representation [12], job-pair-relation-based representa-
tion [31], disjunctive-graph-based-representation [35], completion-time-based representation [37],
machine-based-representation [13], random key representation [8], and priority-rule-based repre-
sentation.

In the design of a genetic algorithm, the design of the crossover operator is of major importance.
Within a specific algorithm the operator has to be adapted according to the representation of
the chromosome and other algorithm-specific elements. N-point crossover and uniform crossover
are classical types of crossover operators and are of relevance in this problem too. Their specific
details will be discussed further on. The inversion operator serves as a re-ordering operator. In
practice a sequence between two points within the chromosome is reversed. This operator has
shown to be less successful in our type of problems. The mutation operator, which is used to
induce some population diversity, may also be of use in our type of problem.

Most GA research focuses on static job-shop scheduling problems, where all jobs have ready
times equal to zero. In a dynamic job shop jobs arrive at known (resp. unknown) epochs in
the future. The problems are called deterministic (resp. stochastic) dynamic job-shop scheduling
problems. Genetic algorithms have been used in several studies of the dynamic job-shop schedul-
ing problems. The design of the genetic algorithms for this type of problems is quite different
amongst the various authors, which makes a comparison difficult. The authors, who study the
stochastic version of the problem, make use of a method, which is proposed in [32]. They approach
the stochastic problem as a sequence of deterministic problems. When, due to a stochastic event,
a new job arrives to the system, a new deterministic problem is formulated.

Hart and Ross [24] design a heuristic-based genetic algorithm in which a chromosome encodes both
the choice of an algorithm to generate the set of schedulable operations as the choice of a heuristic
to choose the operation to be executed first. The algorithm is called the ‘heuristically-guided GA’
(HGA). Fang [15] develops an algorithm both for deterministic and stochastic job-shop scheduling
problems. He makes use of an indirect representation, which at crossover and mutation always
produces legal offspring, similar to [22] for the Travelling Salesman Problem. Vazquez and Whit-
ley [36] construct an order-based Giffler & Thomson genetic algorithm (OBGT-GA). It is a hybrid
algorithm, which makes use of a direct representation and in which order-based techniques are
used to produce active and non-delay schedules. The order-based techniques have as main goal
the repair of illegal offspring. Bierwirth and Mattfeld [10] also use an indirect representation for
their genetic algorithm, called Precedence Preservative Crossover, in order to solve both deter-
ministic and stochastic problems. Their approach allows re-scheduling without a cold start, each
time a new job arrives. A similar genetic algorithm with the same re-scheduling characteristics,
has been proposed in [30].

3



2 A Giffler-Thompson Focused Crossover Operator

Three types of feasible job shop schedules are distinguished:

Semi-active schedules No operation can start earlier without altering the machine sequence.

Active schedules No operation can start earlier without delaying another operation or without
violating the precedence constraints.

Non-delay schedules No machine is kept idle when there is an operation that can start on this
machine.

All other schedules are infeasible as they violate the precedence constraints or other assumptions
of the JSP. Figure 1 shows the relation between the different types of schedules. From this figure
it is clear that all non-delay schedules are active schedules, and that all active schedules are
semi-active schedules. French [16] states however that the optimal schedule (for minimising
the makespan) is always an active schedule. This observation allows a reduction of the search
space considerably, which is of high value given the NP-hardness of the JSP [18]. Giffler and

Fig. 1: Schedule Types

Thompson [21] developed a recursive procedure to generate active schedules in a systematic way.
The presentation of the Giffler-Thompson (GT) algorithm makes use of the following symbols:

• ok is the operation k (1 ≤ k ≤ nm).

• pk is the operation time of operation ok.

• Pt is the partial schedule of the (t− 1) scheduled operations.

• St is the set of operations that can be inserted in the schedule at iteration t. Operations,
which should be performed before the operations in St, are already included in the schedule
Pt.

• ρk is the earliest time at which operation ok from St can start.

• bk is the earliest time at which operation ok from St can be terminated, i.e. bk = ρk + pk.

4



With these symbols defined, the Giffler-Thompson algorithm proceeds as follows:

Step 1 Let t = 1 and P1 = {}. S1 is the set of all operations without predecessors.

Step 2 Find b∗ = minok∈Sk
{bk} and the machine M∗ at which ok with b∗ is executed. When

there are multiple M∗, choose arbitrarily.

Step 3 Choose an operation oj from St such that:

• operation oj needs machine M∗, and

• ρj < b∗

Step 4 Continue to next iteration by:

• adding oj to Pt, resulting in Pt+1

• removing oj from St and creating St+1 by adding the successor of oj to St+1 (unless oj is
the last operation)

• t = t + 1

Step 5 If St 6= {} go to step 2. Else Stop.

At each iteration the GT procedure generates a conflict set St from which an operation is chosen
and scheduled. The recursive GT procedure is repeated until all operations are scheduled. This
algorithm generates feasible active schedules. The precedence order is preserved. Steps 2 and 3
of the GT algorithm assure that no operation can start earlier, while respecting the precedence
constraints, without delaying another operation, resulting in an active schedule. By considering
all operations in St one can create all active schedules and the relevant search space.

By modifying steps 2 and 3 of the GT algorithm (see below) also non-delay schedules may be
generated, in such a way that a machine is never idle when there is an operation ready to be
executed on that machine.

Step 2 Find ρ∗ = minok∈Sk
{ρk} and the machine M∗ at which ok with ρ∗ is executed. If multiple

M∗ exist, choose arbitrarily.

Step 3 Choose an operation oj from St such that:

• this operation oj needs machine M∗, and

• ρj = ρ∗

Using the non-delay (ND) variant of the GT algorithm reduces the search space even further [7].
The reduced search space however comes at a cost, as the danger exists that the optimal solution
is excluded from consideration. Della Croce et al. [12] found that in some cases a non-delay
scheduler improves the solution quality while in other cases an active scheduler might be more
appropriate.

Within the context of genetic algorithms, the GT algorithm and its non-delay variant are used to
convert chromosomes to feasible schedules [36]. Crossover or mutation may result in chromosomes

5



which do not respect the precedence constraints. The GT algorithm forces false chromosomes
into a correct schedule. Other genetic algorithms apply the GT or the ND algorithm to translate
a chromosome with indirect representation to a feasible active or non-delay schedule (see e.g. [24]).

Hart and Ross [24], among others, point out that the size of the conflict set (CS) varies through-
out the consecutive loops of the GT procedure. The operation that eventually will be scheduled
during a loop of the GT algorithm, is selected from the conflict set St. If the CS contains only
one operation, this operation will be scheduled. But more operations in the CS leads to a choice.
Crossover at a gene with only one operation in the CS will result in the same operation being
scheduled at this position. Therefore Hart and Ross [24] advise to avoid these genes as a crossover
point and focus on the genes with a large CS.

Fang [15] however remarks that the more decisive genes are located in the beginning of a chro-
mosome. The more the end of a chromosome is approached, the higher the chance that the genes
are redundant. Their meaning is fixed by the scheduling of the preceding operations.

We develop a new crossover operator, which we indicate as a Giffler-Thompson Focused (GTF)
crossover, that takes into account both findings. Our presentation of the new operator assumes
chromosomes with a permutation representation of all operations, i.e. every operation has its own
number and the order of these operations in the chromosome determines the order in which they
are scheduled. The representation belongs to the operation-based representations.

The GTF operator combines an order-based crossover operator with a one-point crossover op-
erator. An order-based crossover operator selects a number of genes from one parent and copies
them to the offspring. The missing genes are taken from the second parent in the order that they
appear in this parent. A one-point crossover operator generates randomly a crossover point. It
leaves the part of the chromosome before this point unchanged and exchanges the part behind the
crossover point between the two parents. Some researchers have modified the one-point crossover
operator by “directing” the choice of the crossover-point.

Our approach also “directs” the crossover operator. We choose the first gene with the largest CS as
the crossover point. We incorporate the crossover operator in a strategy similar to neighbourhood-
search-based mutation ([19], p. 219). This means that the crossover operator does not generate a
fixed number of offspring, but that the number of (intermediate) offspring equals the size of the
conflict set. The GTF crossover operator may be presented as:

Step 1 Choose a first parent (P1).

Step 2 Determine for P1 the gene with the largest CS. Let p∗ be the locus of this gene, CS∗

the conflict set and |CS| be the number of operations in CS∗.

Step 3 Generate |CS| intermediate offspring. The first part of these intermediate offspring are
the genes before p∗ of P1.

Step 4 For the |CS| offspring the operation at p∗ are the operations from CS∗.

Step 5 The following genes are taken from a parent P2 in the order as they appear in P2, with
P2 different for each intermediate offspring and P2 <> P1.

6



The working of the GTF operator is illustrated by the following example:

Step 1:

P1 = 1 3 5 6 4 2 9 8 7

Step 2:

Assume that CS* occurs at gene 4 (p*) with |CS| = 3 and CS*={6, 4, 9}
Step 3:

Offspring 1: 1 3 5

Offspring 2: 1 3 5

Offspring 3: 1 3 5

Step 4:

Offspring 1: 1 3 5 6

Offspring 2: 1 3 5 4

Offspring 3: 1 3 5 9

Step 5:

P2 = 5 4 3 1 9 7 8 2 6

Offspring 1: 1 3 5 6 4 9 7 8 2

Offspring 2: 1 3 5 4 9 7 8 2 6

Offspring 3: 1 3 5 9 4 7 8 2 6

An ideal GA should be able to preserve a high degree of diversity within the population in
order to perform an efficient search [23]. In order to avoid premature convergence of the popu-
lation we cannot insert all intermediate offspring into the population. By doing this we would
destroy the genetic diversity. The GA would be directed into a specific direction of the search
space eliminating other possibly interesting areas of the search space. Therefore step 6 is added
to our GTF operator procedure in which only the best intermediate offspring is inserted into the
population.

Step 6:

Return the best chromosome from the |CS| intermediate offspring.

Essentially the GTF crossover operator exploits problem specific information generated during
the application of the GT algorithm, knowing that hybridisation of a GA can improve the per-
formance.

3 Implementation and Experimental Design

The performance of the GTF operator, which has been described in section 2, is evaluated by
an implementation in a GA. The implementation of the GA is largely inspired on the work by
Bierwirth and Mattfeld [10] and by Bierwirth [9].

7



Two experimental settings are analysed. In the first setting the Precedence Preservative Crossover
(PPX) operator is used (see [9, 10]). This setting serves as a benchmark to evaluate a second
setting in which we use the GTF crossover operator in combination with the PPX operator.

The implementation of the first setting is described in detail. Later the modifications, which
are required to analyse the GTF operator, are explained.

3.1 First experimental setting

An operation-based representation is used for a chromosome in which each operation has a unique
number. The ordering of the operations is used to build an active schedule using the GT algorithm.

The GA starts from a randomly generated population. Because the objective is to minimise the
makespan, parent selection is based on inverse proportional fitness. Two parents reproduce to
generate one offspring. A generation-to-generation reproduction strategy is followed [26]. Parents
in the old generation can reproduce and generate offspring until the new population is completely
filled up. Once filled up, the new population replaces the old one. To avoid that the solution
quality decreases over the different generations, elitism is applied. This means that if the best
solution of the new generation is worse than the best solution of the old generation, the latter
solution replaces the worst solution of the new generation.

The PPX-operator is used as a crossover operator. The mutation operator picks an operation
from the chromosome and inserts it at a randomly chosen position in the chromosome. As the
genetic operators do not take into account precedence relationships, offspring chromosomes do not
necessarily respect these precedence relationships. To solve this problem Bierwirth and Mattfeld
apply a technique called ‘forcing’ [10]. If, in an iteration of the GT algorithm, an operation is
found that cannot be scheduled due to the precedence constraints, the GT algorithm takes the
next operation until it finds an operation that does respect the precedence constraints. Every
iteration this technique is repeated, in such a way that the resulting chromosome satisfies the
precedence constraints. Finally, the resulting sequence of operations is translated into a feasible
and legal chromosome.

The values of crossover and mutation probabilities are taken from [10]. The crossover proba-
bility Pc is set to 0.8 and the mutation probability Pm equals 0.2. In most designs Pm is set to
a low value. A value of 0.2 might seem rather high but Bierwirth and Mattfeld argue that the
effective percentage is lower because the application of the mutation operator often results in
illegal offspring [10]. The population consists of 100 chromosomes and the algorithm runs for 150
generations (see also [9]). In figure 2 we give the general outline of the GA.

3.2 Second experimental setting

The second setting is similar to the first setting, but it differs in the choice of the crossover
operator. If the GA decides to execute a crossover operation, it chooses with a probability Pgtf

for the GTF-operator and with a chance (1 − Pgtf ) for the PPX-operator. We do this because
the GTF operator generates and evaluates each time |CS*| offspring while the PPX-operator only
produces one. Setting Pgtf equal to one results in a low number of generations, not allowing the

8



Fig. 2: GA Outline

GA to explore the search space adequately. In our experiments we set Pgtf arbitrarily equal to
0.5. The GA with the GTF operator generates and evaluates more offspring in one generation.
To come to an honest comparison we allow this GA to evaluate only as much chromosomes as
the GA without GTF, i.e. 15.000 chromosomes.

3.3 Benchmark problems

Both genetic algorithms are tested on a number of benchmark problems known from the literature.
All benchmark problems are n by m static benchmark problems, with n the number of jobs and
m the number of machines. They include:

• the 10x10 orb01-orb10 problems from [1],

9



• the 20x10 la26-la30 from [29],

• the 15x15 la36-la40 from [29],

• the 50x10 swv11-swv20 from [34].

Both genetic algorithms are implemented in C++ and run on a AMD1800+ PC with 256 MB
memory. Both genetic algorithms are run for the benchmark problems for 10 independent runs.

4 Results and Discussion

In table 1 the results of the experiment are presented. It shows the average makespan over 10
runs, and the procentual difference between the averages for both settings. To assess whether the
averages from both set-ups are significantly different, a t-test on a 5% significance level on the
averages is performed. In table 1 the significant differences are marked with an asterisk.

For the second setting the table also gives the average number of generations and the run-time
of the GA (in seconds). Additionally the optimal or best-known solutions for the benchmark
problems, taken from [28], are indicated. The last column gives the procentual difference between
setting 2 and the optimal or best-known solutions.

On a total of 30 benchmark problems the second experimental setting outperforms 26 times
the first setting. For these 26 benchmark problems this difference is significantly on a 5% sig-
nificance level. In three cases where the GTF-approach does not perform significantly better,
(benchmarks swv16 to swv18), both algorithms consistently generate the optimal solution. Only
for a single benchmark problem (swv20) the PPX-approach outperforms the GTF-approach, but
not significantly.

Using the GTF-operator in combination with the PPX-operator reduces on average the required
makespan with 2.8%, indicating the usefulness of the GTF-operator. A comparison of the results
obtained with the known optimal solutions shows that both approaches do not perform so well,
except for the benchmark problems swv16, swv17, swv18 and swv20 where the GTF-approach
obtains the optimum in all runs. This comes as no surprise as these benchmark problems are
known to be very easy to solve. The worst results are achieved for the benchmark problems
swv11-swv15, which have the reputation to be notoriously difficult to solve.

These moderate results, as compared to known optimal and best-known solutions, might be
explained by the elementary implementation of the GA. Although largely inspired by the imple-
mentation of [10] we did not consider the generation of hybrid schedules. Bierwirth and Mattfeld
indicate that this procedure might positively influence the solution quality [10].

In table 2 an overview is given of the average number of generations the GTF approach uses. A
general relationship exists between the number of jobs and the number of generations the GA
performs within the allowed number of chromosome evaluations. A larger number of jobs goes
with a smaller number of generations. This is due to the fact that the GTF crossover operator
creates as much intermediate offspring as there are operations in the largest conflict set. A higher

10



number of jobs leads to a higher probability that there are more operations in this conflict set. For
the benchmarks swv11-swv20 the number of generations is extremely low. This result indicates
that the value of the parameter Pgtf should be set with great care. By varying the value of Pgtf

the number of generations in a given time frame can be controlled.

5 Conclusions and Future Research

In this paper a new crossover operator has been developed, called the Giffler-Thompson Focused
(GTF) crossover, which exploits problem specific information generated by the Giffler-Thompson
algorithm. The development of this operator is inspired by a finding of Hart and Ross who remark
that the conflict sets generated during subsequent iterations of the GT-algorithm vary in size, and
that genetic operators should best focus on genes with large conflict sets [24]. Our GTF crossover
therefore sets as a crossover point the gene with the largest conflict set in the GT-algorithm,
generates a number of offspring equal to the number of operations in the conflict set and returns
the best candidate.

Our operator is tested on a number of benchmark problems known in literature and its per-
formance is tested to a setting in which we use the PPX-operator developed by Bierwirth and
Mattfeld [10]. Our operator always outperforms the PPX-operator except for one benchmark
problem. Compared to the known optimal or best-known solutions the proposed GA does not
perform very well, which may be due to the fact that the implementation of the GA is rather
elementary. The experimental setting allows however to assess the value of the GTF-operator.
The proposed GTF-operator is flexible as it can be adapted for the dynamic JSP and it can be
integrated in different GA applications for the JSP. It also allows for multiple objective functions.

We believe that opportunities for improvement exist in the design of the GA. In our experi-
ment the value of Pgtf has been arbitrarily fixed at 0.5. We showed that a relation exists between
the value of Pgtf and the number of generations performed in a given time frame. A high value
of Pgtf reduces the number of generations due to an increased number of jobs to evaluate in one
generation, maybe limiting the GA to perform a thorough investigation of the search space. It
might be useful to vary the value of Pgtf during the optimisation process. The process could
start with a low value of Pgtf and increase it with the number of generations or when the GA
converges, resulting in a more thorough search.

Also a more intelligent choice of the crossover point might improve the results. In our exper-
iment we always chose the first largest conflict set. Integration with a tabu list of crossover points
also might guide the GTF crossover operator to the more interesting parts of a chromosome,
avoiding a premature population convergence.

References

[1] D. Applegate, W. Cook, A computational study of the job-shop scheduling problem, ORSA Journal
on Computing 2 (1991) 149-156.

[2] J. Adams, E. Balas and D. Zawack, The shifting bottleneck procedure for job shop scheduling,

11



Management Science 34 (1988) 391-401.

[3] E. Balas, An additive algorithm for solving linear programs with zero-one variables, Operations
Research 13 (1965) 517-546.

[4] E. Balas, Discrete programming by the filter method, Operations Research 15 (1967) 915-957.

[5] E. Balas, Machine sequencing via disjunctive graphs: An implicit enumeration algorithm, Opera-
tions Research 17 (1969) 1-10.

[6] E. Balas, Machine sequencing: disjunctive graphs and degree-constrained subgraphs, Naval Re-
search Logistics Quarterly 17 (1970) 941-957.

[7] K. Baker, Introduction to Sequencing and Scheduling, John Wiley & Sons, New York, 1974.

[8] J. Bean, Genetic algorithms and random keys for sequencing and optimization, ORSA Journal on
Computing 6 (1994) 154-160.

[9] C. Bierwirth, A generalized permutation approach to job shop scheduling with genetic algorithms,
OR Spektrum 17 (1995) 87-92.

[10] C. Bierwirth and D.C. Mattfeld, Production Scheduling and Rescheduling with Genetic Algo-
rithms, Evolutionary Computation 7 (1999) 1-17.

[11] L. Davis, Job shop scheduling with genetic algorithms, in: Grefenstette J. (Ed.), Proceedings of the
First International Conference on Genetic Algorithms, Lawrence Erlbaum Associates, Mahwah,
NJ, 1985, pp. 136-140.

[12] F. Della Croce, R. Tadei and G. Volta, A genetic algorithm for the job shop problem, Computers
and Operations Research 22 (1995) 15-24.

[13] U. Dorndorf. and E. Pesch, Evolution based learning in a job shop scheduling environment, Com-
puters and Operations Research 22 (1995) 24-40.

[14] H. Fang, P. Ross and D. Corne, A promising genetic algorithm approach to job-shop scheduling,
rescheduling, and open-shop scheduling problems, in: S. Forrest (Ed.), Proceedings of the Fifth
International Conference on Genetic Algorithms, Morgan Kaufmann, San Mateo, 1993, pp. 375-
382.

[15] H. Fang, Genetic Algorithms for solving production scheduling problems, Ph.D. Thesis, Depart-
ment of Artificial Intelligence, University of Edinburgh, Scotland, 1994.

[16] S. French, Sequencing and Scheduling: An Introduction to the Mathematics of the Job-Shop, Wiley
& Sons, Chichester, England, 1987.

[17] M. Garey, D. Johnson and R. Sethi, The complexity of flow-shop and job-shop scheduling, Math-
ematics of Operations Research 1 (1976) 117-129.

[18] M.R. Garey and D.S. Johnson, Computers and Intractability: A Guide to the Theory of NP-
Completeness, W.H. Freeman & Co., New York, 1979.

[19] M. Gen and R. Cheng, Genetic Algorithms and Engineering Design, John Wiley & Sons, New
York, 1997.

[20] W.S. Gere, Heuristics in job-shop scheduling, Management Science 13 (1966) 167-190.

[21] J. Giffler and G.L. Thompson, Algorithms for solving production scheduling problems, Operations
Research 8 (1960) 487-503.

[22] J. Grefenstette, R. Gopal, B. Rosmaita and D. Van Gucht, Genetic algorithms for the TSP, in: J.
Grefenstette (Ed.), Proceedings of the First International Conference on Genetic Algorithms and
their Applications, Lawrence Erlbaum, Hillsdale, NJ, 1985, pp. 160-168.

[23] J. Grefenstette, Incorporating problem specific knowledge into genetic algorithms, in: L.D. Davis
(Ed.), Genetic Algorithms and Simulated Annealing, Pitman, London, 1987.

12



[24] E. Hart and P. Ross, A Heuristic Combination Method for Solving Job-Shop Scheduling Problems,
in: A. Eiben, T. Bck, H. Schwefel, M. Schoenauer (Eds.), Parallel Problem Solving from Nature
V, Springer Verlag, Berlin, 1998, pp. 845-854.

[25] J. Heizer. and B. Render, Production and Operations Management: Strategies and Tactics (3rd
ed.), Allyn & Bacon, Boston, 1993.

[26] J. Holland, Adaptation in Natural and Artificial Systems, The University of Michigan Press, Ann
Arbor, 1975.

[27] C. Holsapple, V. Jacob, R. Pakath and J. Zaveri, A genetic-based hybrid scheduler for generating
static schedules in flexible manufacturing contexts, IEEE Transactions on Systems, Man and
Cybernetics 23 (1993) 953-971.

[28] A. Jain and S. Meeran, A state-of-the-art review of job-shop scheduling techniques, Technical
report, Department of Applied Physics, Electronic and Mechanical Engineering, University of
Dundee, Scotland, 1998.

[29] S. Lawrence, Resource constrained project scheduling: an experimental investigation of heuris-
tic scheduling techniques (Supplement), Graduate School of Industrial Administration, Carnegie-
Mellon University, Pittsburgh, Pennsylvania, 1984.

[30] S.-C. Lin, E.D. Goodman and W.F. Punch, Investigating parallel genetic algorithms on job shop
scheduling problems, in: P.K. Angeline, R.G. Reynolds, J.R. McDonnell, R. Eberhart (Eds.),
Evolutionary Programming VI, Springer, Berlin, 1997, pp. 383-393.

[31] R. Nakano and T. Yamada, Conventional genetic algorithms for job-shop problems, in: R. Belew, L.
Booker (Eds.), Proceedings of the Third International Conference on Genetic Algorithms, Morgan
Kaufman, San Mateo, 1991, pp. 447-479.

[32] N. Raman, R.V. Rachamadagu and F.B. Talbot, Real-time scheduling of an automated manufac-
turing center, European Journal of Operational Research 40 (1989) 115-132.

[33] V. Srinivasan, A hybrid algorithm for the one machine sequencing problem to minimize total
tardiness, Naval Research Logistics Quarterly 18 (1971) 317-327.

[34] R. Storer, S. Wu and R. Vaccari, New search spaces for sequencing problems with application to
job shop scheduling, Management Science 38 (1992) 1495-1510.

[35] H. Tamaki and Y. Nishikawa, A paralleled genetic algorithm based on a neighborhood model and
its application to the jobshop scheduling, in: R. Männer, B. Manderick (Eds.), Parallel Problem
Solving from Nature II, Springer Verlag, Berlin, 1992, pp. 573-582.

[36] M. Vazquez and L.D. Whitley, A Comparison of Genetic Algorithms for the Dynamic Job Shop
Scheduling Problem, in: L.D. Whitley, D.E. Goldberg, E. Cantú-Paz, L. Spector, I.C. Parmee, H.-
G. Beyer (Eds.), Proceedings of the Genetic and Evolutionary Computation Conference (GECCO-
2000), Morgan Kaufmann, 2000, pp. 1011-1018.

[37] T. Yamada and R. Nakano, A genetic algorithm applicable to large-scale job-shop problems in: R.
Männer, B. Manderick (Eds.), Parallel Problem Solving from Nature II, Springer Verlag, Berlin,
1992, pp. 281-290.

13



Table 1: Results on Benchmark Problems
Setting 1 Setting 2 Time(sec) Bound S2 vs opt
Average Average % # gener

orb01 1202.0 1182.4 ∗1.7% 47.3 1.5 1059 11.7%
orb02 976.4 950.5 ∗2.7% 54.1 1.5 888 7.0%
orb03 1227.7 1144.7 ∗7.3% 51.9 1.5 1005 13.9%
orb04 1116.3 1088.5 ∗2.6% 33.5 1.5 1005 8.3%
orb05 997.1 957.7 ∗4.1% 47.9 1.5 887 8.0%
orb06 1163.9 1118.4 ∗4.1% 45.7 1.5 1010 10.7%
orb07 433.0 424.0 ∗2.1% 54.0 1.5 397 6.8%
orb08 1056.9 1000.5 ∗5.6% 47.6 1.5 899 11.3%
orb09 1009.2 988.9 ∗2.1% 33.5 1.5 934 5.9%
orb10 1081.4 1035.7 ∗4.4% 47.7 1.5 944 9.7%

la26 1338.3 1317.9 ∗1.5% 43.6 5.5 1218 8.2%
la27 1457.0 1401.7 ∗3.9% 45.5 5.5 1235 13.5%
la28 1394.0 1355.1 ∗2.9% 45.7 5.5 1216 11.4%
la29 1417.3 1357.3 ∗4.4% 36.2 5.7 1152 17.8%
la30 1465.6 1432.4 ∗2.3% 36.1 5.7 1355 5.7%
la36 1421.9 1378.3 ∗3.2% 50.2 5.4 1268 8.7%
la37 1583.5 1564.5 ∗1.2% 43.3 5.5 1397 12.0%
la38 1387.9 1363.8 ∗1.8% 49.4 5.5 1196 14.0%
la39 1426.0 1390.9 ∗2.5% 52.2 5.4 1233 12.8%
la40 1354.0 1339.0 ∗1.1% 54.9 5.5 1222 9.6%

swv11 4080.7 3929.4 ∗3.9% 16.9 51.0 2983 31.7%
swv12 4085.2 3940.2 ∗3.7% 19.5 49.0 2972 32.6%
swv13 4158.7 3969.3 ∗4.8% 16.5 50.0 3104 27.9%
swv14 3972.1 3856.8 ∗3.0% 16.6 49.5 2968 29.9%
swv15 3964.4 3824.7 ∗3.7% 15.3 49.2 2885 32.6%
swv16 2924.0 2924.0 0.0% 21.3 44.9 2924 0.0%
swv17 2794.0 2794.0 0.0% 19.8 45.6 2794 0.0%
swv18 2852.0 2852.0 0.0% 23.0 45.4 2852 0.0%
swv19 3033.0 2921.1 ∗3.8% 21.7 43.4 2843 2.7%
swv20 2823.6 2825.3 -0.1% 20.7 45.6 2823 0.1%

Table 2: Number of Generations using the GTF-approach
jobs machines # generations

orb01-orb10 10 10 46.3
la26-la30 20 10 41.4
la36-la40 15 15 50.0

swv11-swv20 50 10 19.1

14


