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Abstract—This paper presents an overview of the multiobjective 

shortest path problem (MSPP) and a review of essential and recent 
issues regarding the methods to its solution.   The paper further 
explores a multiobjective evolutionary algorithm as applied to the 
MSPP and describes its behavior in terms of diversity of solutions, 
computational complexity, and optimality of solutions.  Results show 
that the evolutionary algorithm can find diverse solutions to the 
MSPP in polynomial time (based on several network instances) and 
can be an alternative when other methods are trapped by the 
tractability problem. 
 

Keywords— Multiobjective evolutionary optimization, genetic 
algorithms, shortest paths. 

I. INTRODUCTION 
S in the case of the single-objective shortest path 
problem, the multiobjective shortest path problem has 

been studied extensively by various researchers in the fields of 
optimization, route planning for traffic and transport design 
[1] and information and communications network design [2], 
[3]. The MSPP is an extension of the traditional shortest path 
problem and is concerned with finding a set of efficient paths 
with respect to two or more objectives that are usually in 
conflict.  For example, the problem of finding optimal routes 
in communications networks involves minimizing delay while 
maximizing throughput or finding efficient routes in 
transportation planning that simultaneously minimize travel 
cost, path length, and travel time.  The concept of optimization 
in the MSPP or in a multiobjective problem in general is 
different from the single-objective optimization problem 
wherein the task is to find a solution that optimizes a single 
objective function.  The task in a multiobjective problem is 
not to find an optimal solution for each objective function but 
to find an optimal solution that simultaneously optimizes all 
objectives. And in most cases, no single optimal solution 
exists, only a set of efficient or nondominated solutions. 

A variety of algorithms and methods such as dynamic 
programming, label selecting, label correcting, interactive 
methods, and approximation algorithms have been 
implemented and investigated with respect to the MSPP [4]. 
The problem is known to be NP-complete [5]. It has been 
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shown that a set of problems exist wherein the number of 
Pareto-optimal solutions is exponential which implies that any 
deterministic algorithm that attempts to solve it is also 
exponential in terms of runtime complexity at least in the 
worst case. But some labeling algorithm studies [6], [7] 
dispute this exponential behavior.  They show that the number 
of efficient paths is not exponential in practice.  Other authors 
avoid the complexity problem by developing new methods 
that run in polynomial time. For instance, Hansen [8] and 
Warburton [9] separately develop fully polynomial time 
approximation schemes (FPTAS) for finding paths that are 
approximately Pareto-optimal.  Interactive procedures [10], 
[11] similarly avoid the problem of generating the complete 
set of efficient paths by providing a user-interface that assists 
the decision-maker to focus only on promising paths and 
identify better solutions according to preference. 

Given the wealth of literature in multiobjective algorithms 
for the MSPP, there still seems to be a lack of reported review 
in evolutionary algorithm (EA) applications in relation to the 
MSPP. Several of the most recent alternative methods focus 
mostly on execution speed comparisons of different MSPP 
algorithms but analysis of the salient issues in multiobjective 
performance analysis such as runtime complexity, diversity, 
and optimality of nondominated solutions are almost omitted. 
In order to demonstrate a clearer picture of the advantages and 
disadvantages of EAs in optimization, this paper attempts to 
investigate a multiobjective evolutionary algorithm as applied 
to the MSPP.  The paper is organized as follows. Section II 
gives a brief background of the MSPP. Section III reviews 
related literature. Section IV presents a multiobjective 
evolutionary algorithm for the MSPP. Experimental 
conditions and results are discussed in Section V  and Section 
VI presents the conclusion. 

II. BACKGROUND 
Given a directed graph G = (V, E), where V is set of vertices 

(nodes) and E the set of edges (arcs)  with cardinality |V| = n 
and |E| = m and a d-dimensional function vector c:E→ [ℜ+]d .  
Each edge e belonging to E is associated with a cost vector 
c(e).     A source vertex s and a sink vertex t are identified.   A 
path p is a sequence of vertices and arcs from s to t.  The cost 
vector C(p) for linear functions of path p is the sum of the cost 
vectors of its edges, that is  C(p) = Σ e∈p c(e) whereas C(p) = 
mine∈p c(e) for min-max functions. Given the two vertices s 
and t, let P(s, t) denote the set of all s-t paths in G.  If all 
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objectives are to be minimized, a path p∈P(s, t) dominates a 
path q∈P(s, t) iff Ci(p) ≤ Ci(q), i = 1,…,d and we write p p  q. 
A path p is Pareto-optimal if it is not dominated by any other 
path and the set of nondominated solutions (paths) is called 
the Pareto-optimal set.  The objective of the MSPP is to 
compute the set of nondominated solutions that is the Pareto-
optimal set P of P(s,t) with respect to c. 

The problem of the single-source multiobjective shortest 
path is to find the set of all paths from s to all other vertices in 
G, i.e. to find the Pareto-optimal set of P(s,t) , ∀t∈V \{s}.  
Figure 1 illustrates an example of a directed graph with 3 
objective functions that have to be minimized simultaneously. 
The corresponding efficient paths from the source node s to all 
other nodes are : for t=1 that path is s→1; for t =2, s→1→2; 
for  t = 3, s→1→2→3; for  t = 4, ,  s→1→2→4; for  t = 5, 
s→1→2→4→5 and s→1→2→3→5. 

 

 
Fig.1 Example of a graph with 3 objectives to be minimized.  There are 2 
efficient paths from  s→ 5 : s→1→2→4 →5 and s→1→2→3→5. 

III. LITERATURE REVIEW 
Martins and Santos [12] outline a labeling algorithm for the 

multiobjective shortest paths problem and presents an analysis 
in terms of finiteness and optimality concepts and reports that 
any instance of the MSPP is bounded if and only if there are 
no absorbent cycles in the network. They show a set of 
networks wherein the labeling algorithm only determines 
nondominated labels.  On the contrary, Mooney and 
Winstanley [13] state that Martins’ labeling algorithm works 
well in theory but is prohibitive in practice in terms of its 
implementation due to memory costs.  

A recent study by Gandibleux et al. [6] reports a concise 
description of the MSPP and clearly narrates the most salient 
issues to its solution.  Their study recalls Martins’ labeling 
algorithm and attempts to improve it. Their new algorithm 
extends Martins’ algorithm by introducing a procedure that 
can solve MSPP that have multiple linear functions and a max 
min function.  Since it is an extension of Martins’ algorithm, 
the generation of all nondominated paths remains intractable 
in polynomial time. However, experimental results of their 
study say otherwise. Their algorithm is tested on a variety of 
test instances and results show that in terms of size and 
complexity, optimizing simultaneous linear and max min 
functions does not behave exponentially. They also show that 

their algorithm is not sensitive to different cost ranges and that 
density and network size increase the number of efficient 
solutions.  An independent study by [7] also shows that the 
cardinality of efficient paths in a bicriteria shortest path 
problem is not exponential as long as the instances are 
bounded by potential characteristics as defined in their 
experiment.  They conclude with emphasis that it is still 
preferable to work with complete information rather than 
falling back on approximations. 

Guerriero and Musmanno [14] examine several label-
selection and node-selection methods that can find Pareto-
optimal solutions to the MSPP with respect to execution time. 
The performance of the different algorithms was measured 
using random and grid networks and results show that label-
selection methods are generally faster than node-selection 
methods and that parallel computing is necessary in the design 
of efficient methods. 

While some researchers focus on exhaustive solutions or on 
improvements thereof, other researchers are more concerned 
with better runtime solutions. Tsaggouris and Zaroliagis [15] 
present an improved fully polynomial time approximation 
scheme (FPTAS) for the multicriteria shortest path problem 
and a new generic method for obtaining FPTAS to any 
multiobjective optimization problem with non-linear 
objectives.  They show how their results can be used to obtain 
efficient approximate solutions to the multiple constrained 
path problem and to the non-additive shortest path problem.  
Their algorithm builds upon an iterative process that extends 
and merges sets of node labels representing paths which 
departs from earlier methods using rounding and scaling 
techniques on the input edge costs. The algorithm resembles 
the Bellman-Ford method but implements the label sets as 
arrays of polynomial size by relaxing the requirements for 
strict Pareto optimality. 

Granat and Guerriero [1] introduce an interactive procedure 
for the MSPP based on a reference point labeling algorithm. 
The algorithm converts the multiobjective problem into a 
parametric single-objective problem whereby the efficient 
paths are found. The algorithm was tested on grid and random 
networks and its performance was measured based on 
execution time. They conclude that an interactive method, 
from their experimental results, is encouraging and does not 
require the generation of the whole Pareto-optimal set (which 
avoids the intractability problem). Likewise, [10] suggests an 
interactive method that incorporates an efficient k-shortest 
path algorithm in identifying Pareto-optimal paths in a bi-
objective shortest path problem.  The algorithm was tested 
against other MSPP algorithms on 39 network instances. They 
conclude that their k-shortest path algorithm performs better in 
terms of execution time. 

From a different perspective, evolutionary algorithms (EAs) 
have been extensively analyzed in single objective 
optimization problems but only a few researchers have applied 
EAs to the multiobjective shortest path problem either as the 
main problem or as a sub-problem in relation to route 
planning, traffic and transport design, information systems 
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and communications network design.  Gen and Lin [2] use a 
multiobjective hybrid genetic algorithm (GA) to improve 
solutions to the bicriteria network design problem (finding 
shortest paths) with two conflicting objectives of minimizing 
cost and maximizing flow.  The paper shows how the 
performance of a multiobjective genetic algorithm can be 
improved by hybridization with fuzzy logic control and local 
search. The results show a positive effect of hybridization, 
that is, an improvement in the convergence of the Pareto front. 

Kumar and Banerjee [3] present an algorithm for  
multicriteria network design (shortest paths and spanning 
trees) with two objectives of optimizing network delay and 
cost subject to satisfaction of reliability and flow constraints. 
They tested an evolutionary algorithm approach, Pareto 
Converging Genetic Algorithm (PCGA), to design different 
sized networks and found that EAs scale better in larger 
networks than two traditional approaches namely branch 
exchange heuristics and exhaustive search. They conclude that 
the primary advantage of EAs to solve multiobjective 
optimization problems is their diversity of solutions generated 
in polynomial time. Crichigno  and Baran [17] demonstrate 
similar representations (spanning trees) to Kumar’s for a 
multicast algorithm. The basic difference between both 
algorithms is the latter adopts the Strength Pareto 
Evolutionary Algorithm (SPEA) in generating efficient 
solutions to the multicast routing problem. 

A contemporary report by [13] shows the behavior of an 
elitist genetic algorithm as applied to the MSPP in the field of 
geographic information systems (GIS).  The experiment 
compares the runtime performance (execution time) of the EA 
against a modified version of Dijkstra’s algorithm on several 
artificial and real road networks. The results show that the EA 
competes well with the modified Dijkstra approach in terms of 
execution time and that the EA converges quickly to the 
Pareto-optimal paths. 

IV. MULTIOBJECTIVE EVOLUTIONARY ALGORITHM 
Evolutionary algorithms are adaptive heuristic search 

algorithms based on the evolutionary ideas of natural selection 
and genetics. As such they represent an intelligent exploitation 
of a random search used to solve optimization problems. 
Although randomized, EAs are by no means random instead 
they exploit historical information to direct the search into the 
region of better performance within the search space. At each 
generation, a new set of approximations is created by the 
process of selecting individuals according to their level of 
fitness in the problem domain and breeding them together 
using operators borrowed from natural genetics. This process 
leads to the evolution of populations of individuals that are 
better suited to their environment than their ancestors, just as 
in natural adaptation. 

A complete discussion of multiobjective evolutionary 
algorithms (MOEA) can be found in [17]. Also, [18] gives a 
summary of current approaches in MOEA and emphasizes the 
importance of new approaches in exploiting the capabilities of 

evolutionary algorithms in multiobjective optimization. 
A number of MOEAs exist and Zitzler and Thiele’s [19] 

SPEA2 is regarded as one of the better elitist multiobjective 
evolutionary algorithms. It has three favorable characteristics. 
First, SPEA2 features an excellent fitness assignment strategy 
that accounts for an individual’s strength in terms of the 
individuals that it dominates and the strength of its 
dominators. Second, SPEA2 incorporates a density estimation 
technique which discriminates individuals efficiently, and 
third, it has an archive truncation method that prevents 
boundary solutions from elimination.  The algorithm is 
summarized below. 

Input:    N : population size 
       N : archive size 
    T : maximum number of generations 
Output:  A : non-dominated set of solutions 
Step 1: Initialization. Generate an initial population P0 and 

create the empty archive (external set) 0P  = ∅. Set t=0. 
Step 2:  Fitness assignment:  Compute the fitness values of 

individuals in tP  and tP .    Strength of an individual i 
                        |}|{|)( jijji p∧+∈= tt PPS   (1)            
where ⎜. ⎜ denotes the cardinality of a set, + stands for multi-
set union and the symbol p corresponds to the Pareto 
dominance relation extended to individuals. 

 Raw fitness           ∑
+∈

=
ijPPj
ji

p,
)()(

tt

SR             (2)                  

For each individual i the distances (in objective space) to all 
individuals j in the archive and in the population are 
calculated and stored in a list. After sorting the list in 
increasing order, the k-th element gives the distance sought, 
denoted as k

iσ . Two is added to the denominator to ensure 
that its value is greater than zero and )(iD  < 1. 
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Step 3:  Environmental Selection. Copy all non-

dominated individuals in tP  and tP  to 1+tP .  If size of 

1+tP exceeds N  then reduce 1+tP by means of the truncation 

operator, otherwise if size of 1+tP is less than N  then fill 

1+tP with dominated individuals in tP  and tP . 
Step 4: Termination. If  t ≥ T or another stopping criterion 

is satisfied then set A is  the set of decision vectors 
represented by the nondominated individuals in 1+tP . Stop. 

Step 5: Mating selection. Perform binary tournament 
selection with replacement on 1+tP  in order to fill the mating 
pool. 

Step 6: Variation. Apply recombination and mutation 
operators to the mating pool and set Pt+1 to the resulting 
population. Increment generation counter (t = t +1) and go to 
Step 2. 

 



 

 

The public-domain package, Platform and Programming 
Language Independent Interface for Search Algorithms 
(PISA) is a ready-to-use package that implements SPEA2 for 
multi-objective optimization problems [20]. The package 
makes it possible for researchers and practitioners to specify 
and implement representation-independent selection modules 
while allowing users to define problem-specific variation 
operators. This paper employs the PISA platform to 
implement SPEA2 as the selection and fitness function 
operator for the MSPP. The description of genetic 
representation and operators follows in the next section. 

A. Genetic Representation 
A chromosome or an individual consists of integer-ID 

nodes that form a path from the source node to a sink node.  
The length of the chromosome is variable and may not be 
greater than the number of nodes, n. 

B. Initial Population 
A path or a chromosome is generated randomly in an 

ordered sequence from the source node to the sink node. The 
ID of the source node s is assigned to the first locus (array 
index) of the chromosome.  The ID of a randomly generated 
node vi is assigned to the second locus such that vi belongs to 
the set of nodes connected to the source node s.  This 
procedure continues iteratively for the succeeding nodes until 
a simple path to the sink node t is created. 

Given the process to create a feasible path, the problem of 
population size N remains an issue.  It is known that the 
population size of solutions increases exponentially with the 
number of objectives in the MSPP. There are two common 
options to respond to this problem, use a large population or 
integrate a dynamic population sizing procedure in the GA. 
The latter has been implemented for single-objective EAs and 
has shown promising results but dynamic sizing remains a 
challenge to MOEAs with regard to the MSPP.  Hence there is 
no better alternative in our case but to estimate the size of the 
initial population. Deb’s [17] approximation chart for finding 
the minimum population size in relation to the number of 
objectives as a guide such that the exploration of the search 
space is used in this research. 

C. Fitness Function 
SPEA2 first assigns a strength value S(p), to each path  p 

from  the archive ( N ) and population (N)  representing the 
number of solutions p dominates. Refer to (1). Then the raw 
fitness R(p) of each path p is calculated which measures the 
strength of p’s dominators. The raw fitness acts as a niching 
mechanism but poorly performs when most paths in M=N+ N  
are non-dominated, i.e. the population forms new solutions in 
only a few clusters, in effect compromising exploration of the 
search space. Refer to (2).  This phenomenon is called genetic 
drift.   

SPEA2 introduces a density estimator (3), a fitness sharing 
mechanism to avoid genetic drift. The density estimator is 
defined as the inverse of the distance of an individual in 

objective space to the k-th  nearest neighbor. The density 
value is then added to the raw fitness value to give the final 
fitness function (4).  The run-time of computing the fitness 
function is governed by the density estimator which is 
O(M2log M) [20]. 

D. Selection 
SPEA2 offers two selection procedures, environmental and 

mating selection. The environmental selection is concerned 
with choosing individuals that will have to move on to the 
next generation archive 1+tP  from the current archive tP  
and population tP . SPEA2 maintains an archive tP  in each 
generation and is composed of the “best” individuals of a 
fixed size N  which is equal to the population size N. Two 
usual situations may occur in selection.  First, the number of 
non-dominated solutions in 1+tP is less than N .  SPEA2 
resolves this by adding the “best” dominated individuals from 

tP + tP  to 1+tP . Second, the number of non-dominated 

solutions for the next generation is greater than N . SPEA2 
uses a truncation procedure whereby the individual with the 
minimum distance to another individual is truncated until 
| 1+tP |= N .  SPEA2 implements binary tournament selection 
with replacement to fill in the mating pool. This type of 
mating selects two solutions at a time in each tournament. 
Their fitness values are evaluated and the better solution is 
placed in the mating pool.  The truncation operator dominates 
the runtime complexity of the selection procedure and takes 
O(M2logM) on the average and  O(M3) on the worst case [20]. 

E.  Recombination 
The crossover scheme is an adaptation of the one-point 

crossover.  For each pair of paths a locus is randomly selected 
from one of the chromosomes (the shorter path in terms of 
number of nodes) and the node ID of the locus is matched 
with the genes in the other chromosome.  If there is a match 
then crossover is performed otherwise two new paths are 
selected for crossover until the mating pool is empty.  It 
should be easy to see that the loci of both individuals need not 
be the same. 

F. Mutation 
In the mutation operator, a locus is randomly selected from 

the chromosome.  The algorithm proceeds by employing the 
method in the initialization process (as described previously) 
to create a new path, only the start node is replaced by the 
locus.  

V. EXPERIMENTS AND RESULTS 

A. Experimental Design 
The experiments intend to show the behavior of a 

multiobjective evolutionary algorithm as applied to the MSPP 
in terms of diversity and optimality of solutions, and 
computational complexity. The datasets are random networks 
that have been generated by [6].  Nine configurations are 



 

 

selected for the random networks: (a) number of vertices: 50, 
100, 200; (b) density of the network: 5%, 10%, 20%; (c) range 
of cost values cp(i,j):  [1, 100], p=1, 2, 3.  Five instances are 
generated for each network configuration and two objective 
configurations are considered for finding efficient paths, (3-S) 
and (2-S|1-M).  S-type objectives are sum problems that are to 
be minimized whereas M-type objectives are max-min 
problems that are to be maximized. 

The population size of 100 is estimated from [17] with the 
assumption that 5% of nondominated paths are present in the 
initial population. The probability for mutation and 
recombination is 1.0 and 0.2 respectively.  Initial tests show 
that decreasing the mutation probability and increasing the 
recombination probability reduces the number of efficient 
solutions. 

Efficient paths are found from a single source node (Node 
1) to a single sink node (Node 50, 100, 200) for each objective 
configuration.  For each network configuration, the number of 
efficient paths is computed from three different generation 
runs, 50, 100, and 200 respectively.    

B. Results 
After examination of the solutions from 270 combinations, 

Fig. 2 shows that the number of efficient paths generally 
increases as the number of generations increases. In the 3-S 
configuration, there is a growth of efficient paths as network 
density increases when the network size is 50 and 100 but this 
trend is not evident when n=200. The graph also shows that 
there are more efficient paths generated in the 2-S|1-M than in 
the 3-S configuration but the number of efficient paths 
decreases with the increase in density and network size.  

 

 
Fig. 2 Average number of paths for all resolutions 

 
In terms of the diversity of solutions, Fig. 3 and Fig. 4 show 

value path plots of a sample result from all the resolutions 
examined for the 3-S and 2-S|1-M objective configurations.  
The value path plot provides information on how good an 
algorithm is in finding diverse solutions and good trade-off 
nondominated solutions for problems having more than two 
objectives. A good spread of solutions over a range implies 
that an algorithm is good in finding diverse solutions. And a 
large change in slope between objectives implies good trade-

off nondominated solutions. Both figures show that the 
MOEA solutions are well spread over the range for objectives 
1 and 2 but not so well spread for objective 3.  Also, the 
figures illustrate that the MOEA finds good trade-off 
nondominated paths for both objective configurations. 
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Fig. 3 A value path plot for 3-S configuration, 200-node network with 20% 
density. 
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Fig. 4 A value path plot for 2-S|1-M configuration, 200-node network with 
20% density. 

 
Another issue for the evaluation of the MOEA is the 

closeness of its solutions to the Pareto-optimal solutions.  In 
the absence of the Pareto-optimal solutions of the MSPP 
instances, it is difficult to evaluate the MOEA in terms of 
proximity to the Pareto-optimal fronts.  However, the MOEA 
as shown in Fig. 2 generates more efficient paths as the 
number of generation increases regardless of density and 
network size.  This means that the MOEA nondominated 
paths improve and move to the location of the Pareto-optimal 
solutions. While there is no assurance that the nondominated 
solutions will converge to the Pareto-optimal front or the 
maximal set of efficient paths, the MOEA finds a subset of 
diverse and good nondominated trade-off solutions at each 
generation and improves as the number of generation 
increases.   

With regard to computational complexity, the MOEA is a 
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polynomial time algorithm with respect to the number of 
nodes and edges of a network. Although the CPU runtime 
takes longer as compared to the results in [6], unlike 
exhaustive algorithms, the MOEA does not suffer from 
intractability and memory problems when the density is high 
and the network size is large.   

VI. CONCLUSION 
This paper has presented the feasibility of a multiobjective 

evolutionary algorithm as applied to the multiobjective 
shortest path problem. Results show that the MOEA is a good 
alternative in finding a subset of efficient solutions to the 
MSPP. It is particularly beneficial when intractability and 
memory issues become obstructions to finding efficient 
solutions to the MSPP-related problems. 
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