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ABSTRACT: Ovariectomy induces deterioration of the trabecular structure in the femoral neck of ewes, as
depicted by MR microscopic imaging. This structural deterioration is prevented by salmon calcitonin treat-
ment.

Introduction: This study evaluated the trabecular (Tb) microarchitecture of an ovariectomy (OVX)-induced
osteoporotic model in ewes and determined the effects of salmon calcitonin (sCT), an osteoclast inhibitor, on
the Tb structure. This is the first report of OVX-induced changes in the Tb structure in the femoral neck in
the ewes and effect of sCT on the microarchitecture.
Materials and Methods: Ewes (5–8 years old, n � 28) were equally allocated into sham (Sham), OVX injected
with vehicle, or OVX injected with sCT at 50 or 100 IU, three injections per week. They were killed 6 months
after OVX. The femoral neck was examined with an MR imager at 9.4 T in axial, coronal, and sagittal planes.
An internal calibration procedure as a means of standardizing image analysis was used to adjust the segmen-
tation threshold. Data from all three planes were averaged.
Results and Conclusions: Compared with Sham, OVX induced significant changes (p < 0.0125) in the MRI-
derived femoral neck Tb structure: Tb bone volume fraction (BV/TV), –18%; Tb number, –20%; Tb sepa-
ration, +23%; number of free ends, +28%; number of nodes, –39%; number of Tb branches, –23%; mean
length of Tb branches, –19%. Compared with OVX, treatment of sCT at 100 IU significantly improved all the
Tb structural parameters to the Sham level (p < 0.0001 ∼ p � 0.0281), whereas 50 IU significantly increased
the Tb number and the mean length of the Tb branches. BV/TV explained 74% of the variation of compressive
stress of the trabecular cylinder cores of the femoral neck. Combining all structural parameters in a multi-
variate regression analysis significantly improved the explanation to 84%, and adding BMD further improved
the predictive ability of the model to 92%. We conclude that OVX induces deterioration of the MRI-derived
Tb microstructure in the femoral neck of ewes. sCT treatment prevents OVX-induced changes. The femoral
neck microarchitecture significantly correlates with its biomechanical properties. Combining microstructural
parameters with BMD further improves the prediction of bone biomechanical properties. The effects of
sCT on OVX ewes may help explain reduced fracture risk in postmenopausal osteoporotic women treated
with sCT.
J Bone Miner Res 2005;20:125–130. Published online on October 18, 2004; doi: 10.1359/JBMR.041008
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INTRODUCTION

CURRENT ASSESSMENT OF osteoporosis, a disease charac-
terized by low bone mass and bone architectural dete-

rioration, consequently increasing the risk of atraumatic
fractures,(1) is based on bone densitometry techniques such
as QCT and DXA. Although BMD is a widely used method

for assessing fracture risk and therapeutic efficacy, it does
not always predict the risk of individual fractures or of bone
strength, nor does it completely assess the impact of a par-
ticular intervention.(2–8) Changes in BMD in the spine and
hip during antiresorptive treatment are correlated with re-
duction of nonvertebral fractures.(9) However, the relation
between changes in BMD and reduction of vertebral frac-
tures during therapy is less clear. Clinical trials have shown
that the correlation of BMD increases with vertebral frac-
ture risk reduction has proved less consistent than correla-
tion of BMD decreases with greater vertebral fracture risk
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in the untreated. In the Prevent Recurrence of Osteoporot-
ic Fractures (PROOF) study, calcitonin reduced vertebral
fracture risk 33% over 5 years, although the increase in
spinal BMD was <1.5%. BMD change was statistically sig-
nificant at years 1 and 2. By the end of the trial, it was 0.6%
higher than the placebo group.(10) The Fracture Interven-
tion Trial (FIT) showed that T scores of high-risk women
treated with alendronate for 2.9 years rose at the spine, hip,
and forearm by 0.5, 0.2, and 0.1 SD, predicting fracture
reductions of 25%, 10%, and 5%, respectively, whereas
fracture decreases at these sites were 55%, 51%, and 48%
greater than seen in controls.(11) A recent reanalysis of the
FIT results determined that BMD change from baseline
accounted for only 16% of the reduction in vertebral frac-
tures in treated women.(12) The Multiple Outcomes of Ral-
oxifene Evaluation (MORE) trial concluded that only 4%
of the 30% decrease in vertebral fractures they observed in
raloxifene-treated women was attributable to the 2.6% in-
crease in spinal BMD.(13) Antiresorptive therapy may help
maintain trabecular microarchitecture. Thus, the quantita-
tive analysis of trabecular structure may help elucidate the
relationships between structural parameters and bone
strength.(14–16)

MRI, a complex technology, can clearly delineate trabec-
ular bone because bone mineral lacks free protons and gen-
erates no MR signal, whereas adjacent soft tissue and mar-
row contain abundant free protons and give a strong signal.
Using small, highly efficient coils in high-field scanners,
MRI can be performed at resolutions sufficient to discrimi-
nate individual bone trabeculae.(14) High-resolution MR
images that resolve trabecular bone structure can be ob-
tained in vitro at high magnetic field strengths.(14,17–19) We
have shown that, with appropriate sequences, it is possible
to image trabecular bone in rats in vivo and in vitro.(20,21) In
ovariectomized (OVX) rats, MRI shows differences in tra-
becular bone that are not detected by DXA, which is pro-
jectional rather than tomographic, and can not completely
eliminate the effects of cortical bone.(20,21) MRI has several
advantages in the assessment of bone structure: it gives 3D
structure in arbitrary orientations; it is nondestructive, al-
lowing multiple tests on the same sample; and it is nonin-
vasive and nonionizing.

Calcitonin, an osteoclast inhibitor, may also enhance os-
teoblastic bone formation.(22,23) It inhibits OVX-induced
increase of bone resorption in rats.(24,25) We have shown
that salmon calcitonin (sCT) preserved BMD measured by
DXA and bone strength in trabecular bone of the femoral
neck in sheep treated with sCT.(26) In postmenopausal
women injected with sCT, the initial sCT study showed
clinical efficacy.(27) It prevents trabecular bone loss when
given immediately after menopause.(28) Parenterally in-
jected sCT has beneficial effects on bone mass throughout
the skeleton, including the proximal femur, at least in pa-
tients with established osteoporotic fractures.(29) In early
postmenopausal women, sCT, given by nasal spray, inhibits
trabecular bone loss without affecting cortical bone loss,(28)

indicating that trabecular bone is probably more sensitive
to the effect of calcitonin.(30) In a multicenter, randomized,
double-blind, placebo-controlled clinical trial, calcitonin
has been shown to prevent incident vertebral fracture in

osteoporotic postmenopausal women, although its effect on
BMD was only modest.(10) Cross-sectional data have even
suggested a protective effect on hip fracture incidence.(31)

Our hypothesis is that MRI microscopy will provide ad-
ditional insight into the trabecular bone microstructure and
therefore bone quality of an osteoporotic model in ewes
and the response of this model to calcitonin therapy. The
specific aims of this study were to evaluate by MRI the
trabecular bone microstructure in an OVX-induced osteo-
porosis model in ewes and to evaluate the effects of treat-
ment on the model with sCT. From these animals, we have
reported previously a nonsignificant loss in BMD in the
femur after OVX and a significant decrease in biomechan-
ical competence in the trabecular bone cylinder specimen of
the femoral neck. Treatment with sCT, at both 50 and 100
IU, resulted in significantly greater compressive stress of
the trabecular bone cylinder compared with OVX.(26)

MATERIALS AND METHODS

Animals

Twenty-eight middle-aged (5–8 years old) ewes with a
mean body weight of 62 kg were randomly allocated to four
groups with seven animals in each group and studied
double-blindly: sham OVX injected with a vehicle (Sham),
OVX injected with a vehicle (OVX), OVX injected with
sCT at 50 IU (OVX + sCT 50), and OVX injected with sCT
at 100 IU (OVX + sCT 100). All animals were injected
subcutaneously three times per week. Three times per week
instead of daily injections were chosen because at the time
of the study there was interest in intermittent treatment.
They were housed on straw litter, had free access to an
automatic drinking trough, and received a daily diet based
on hay and a concentrated supplement for each animal of 4
g calcium, 3 g phosphate, 1 g magnesium, 2 g potassium, 1
g sodium, and 300 IU vitamin D3. All animals were entered
in the study within a 4-day period to exclude potential sea-
sonal variations. Operations were performed under
fluothame anesthesia. The animals were killed 6 months
after operation. The left femoral neck and head were ex-
cised, and muscles and fat were removed. The Institutional
Committee of Animal Research approved the research pro-
tocol.(26)

MR imaging

MR images of the femoral neck and head were obtained
in axial, coronal, and sagittal planes, using a spin echo mul-
tislice pulse sequence with TR 1 s, TE 1.8 ms, in-plane
resolution 78 �, and slice thickness 1 mm on a Varian Unity
400 NMR instrument at 9.4 T. For image analysis, MR im-
ages were transferred to a Sun/SPARC 20 Workstation
(Sun Microsystems, Mountain View, CA, USA). The im-
ages were processed with in-house semiautomated image
processing software tools developed at UCSF(32–34) using
AVS (Advanced Visual Systems, Waltham, MA, USA)
software interfaces on the workstation.

Imaging processing

The central five slices of the femoral neck were selected
for image analysis. The femoral neck was chosen because of
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its relevance to human osteoporotic hip fracture. An analy-
sis region of interest (ROI) was positioned in the trabecular
area of the femoral neck, carefully avoiding the cortical
bone and physis, or ossified remnant of the fused growth
plate.

An ‘‘internal calibration’’ procedure as a means of stan-
dardizing the analysis of images obtained at different times
and in different samples, which was described in detail pre-
viously,(32–34) was used to adjust the threshold value ap-
plied to each scan for overall differences in gray-level
brightness and contrast. Briefly, the segmentation threshold
for each image was determined from the average gray-level
values within four ‘‘calibration ROIs,’’ that is, two ROIs in
cortical bone, yielding low gray-level values, and two ROIs
in bone marrow, yielding high gray-level values, on all five
contiguous midslices, and the mean gray-level value in each
ROI was measured. The segmentation threshold for trabec-
ular bone must separate image pixels representing marrow
from those representing bone trabeculae, and therefore, lies
somewhere between the high (bright) gray-level values of
bone marrow and the low (dark) gray-level values of cor-
tical bone. A single threshold (Th) value was calculated for
all five image slices, Th � Co + �(1 − Co/Ma), where Co
and Ma denote the mean gray value of cortical bone and
bone marrow over the five slices, respectively, and � is an
operator-defined empirical constant. The factor (1 − Co/
Ma) normalizes the dynamic range of the grayscale in each
image. Averaging over all five slices, values greater than the
threshold were set to non-bone, and the remaining pixels
were set to bone, generating a binary image.

The run-length method(35) was used to calculate the tra-
becular structure from the binary ROI. Morphological mea-
surements, extrapolated from standard techniques of stere-
ology, were used to derive trabecular bone volume fraction
(BV/TV), thickness (Tb.Th), and separation (Tb.Sp). Mea-
surements of trabecular connectivity, including number of
trabecular nodes, number of free ends, number of branches,
and mean length of the branches were obtained from the
skeletonized trabecular network generated by using thin-
ning algorithms.(36) All skeletons possessed the typical
properties such as connectedness and one-pixel thickness.

The analysis was performed on MR images of all three
axial, coronal, and sagittal planes, and their results were

averaged for each specimen. The operators were blinded to
treatment for MR images acquisition and analysis.

Statistical analysis

Comparisons among groups were performed using the
ANOVA test. In the multiple comparison procedure, p <
0.0125 was considered significant after Bonferroni adjust-
ment. Relationships between the biomechanical properties,
morphometrical parameters, and BMD were assessed using
linear regression analyses. The relationship between a com-
bination of more than one parameter, namely trabecular
structural parameters and bone mineral measurements,
with the biomechanical properties was studied using multi-
variate regression analysis. In the multivariate regression
analysis, all trabecular structural parameters and bone min-
eral measurements were added into the model as predictive
variables, whereas compressive stress was the outcome vari-
able. The insignificant variables were excluded.

RESULTS

As shown in Table 1 and Fig. 1, OVX induced significant
changes in all trabecular microstructural parameters in the
femoral neck except trabecular thickness. Compared with
OVX, treatment of sCT at 100 IU significantly improved all
the trabecular microstructural parameters in the femoral
neck except trabecular bone volume fraction and trabecular
thickness, whereas at 50 IU, sCT significantly increased the
trabecular number and the mean length of the trabecular
branches.

Trabecular bone volume fraction explained 74% of the
variance in compressive stress (Fig. 2). Combining all struc-
tural parameters significantly improved the predictive abil-
ity to 84%, and adding BMD further improved the propor-
tion explained by the model to 92%. Trabecular bone
volume fraction moderately correlated with biomechanical
parameters, whereas all other trabecular microstructural
parameters modestly related with the results of the biome-
chanical testing (Table 2).

No significant differences between groups were found in
serum calcium, phosphate, alkaline phosphatase, calcitonin,
and osteocalcin (data not shown).

TABLE 1. TRABECULAR MICROSTRUCTURAL CHARACTERISTICS OF THE FEMORAL NECK

BV/TV
(%)

Tb.N
(#/mm2)

Tb.Th
(µm)

Tb.Sp
(µm)

No. free
ends (#/mm2)

No. nodes
(#/mm2)

No. branches
(#/mm2)

Branch mean
length (µm)

Sham Mean 25.3 1.98 178 378 6.34 0.447 3.70 190
SE 0.7 0.04 10 10 0.25 0.030 0.11 9

OVX Mean 20.7 1.58 171 464 8.14 0.273 2.83 154
SE 0.7 0.02 8 8 0.39 0.026 0.15 2
p (vs. Sham) 0.002 <.0001 >0.05 0.0001 0.0051 0.0025 0.0017 0.0056

OVX + CT Mean 22.2 1.77 180 426 7.10 0.356 3.07 173
50 U SE 1.3 0.04 7 20 0.10 0.025 0.11 4

p (vs. OVX) 0.3823 0.0065 >0.05 0.1500 0.0253 0.0570 0.2549 0.0035
OVX + CT Mean 25.9 2.02 178 368 6.51 0.506 3.63 185

100 U SE 1.7 0.09 8 10 0.14 0.036 0.11 5
p (vs. OVX) 0.0281 <.0001 >0.05 <.0001 0.0047 0.0007 0.0026 0.0003

p (ANOVA) 0.0337 0.0009 0.897 0.0006 0.0004 0.0003 0.0002 0.0021
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DISCUSSION

In this study, we quantified OVX induced loss of the
trabecular microstructure by 3D MR microscopic imaging
of the femoral neck of the ewes. These OVX-induced
changes in trabecular microstructure were prevented by
sCT treatment. This is the first report of MRI-derived Tb
microarchitectural deterioration in the femoral neck in-
duced by OVX and protective effects of sCT on the micro-
structure in the ewes.

Preservation of the trabecular microstructure in the
femoral neck of the estrogen-deprived ewes by sCT is not
unexpected, in view of the clinical studies of sCT in osteo-
porosis.(10,27,28,30,37) Our data are also in agreement with
other preclinical observations. In addition to its inhibitory
effects on osteoclastic bone resorption, calcitonin may en-
hance osteoblastic bone formation.(22,23) Studies in OVX
rats using traditional 2D bone histomorphometry have
shown that subcutaneous administration of calcitonin is as-
sociated with a partial inhibition of the OVX-induced in-
crease in bone resorption, without detriment effects on os-
teoid volume or mineralization lag time.(24,25) In young
adult rats, 3 U/kg subcutaneously for 40 days did not show
detrimental effects on femoral torsional mechanical prop-
erties,(38) whereas adult beagles treated with calcitonin at 8
mg/kg/day for one-half of a year had a significant decrease
in the whole lumber vertebra (L2) strength.(39) The latter
discrepant result remains enigmatic and unexplained. In the
adult OVX ewe model, we have previously reported the
positive effect of long-term intermittent administration of
sCT on femoral cortical and trabecular bone strength.(26)

To this end, torsional and compressive tests as well as reso-
nant frequency analysis were performed. After treatment
with sCT, compressive stress was found to be preserved in
the trabecular cylinder core of the femoral neck. Because
the relation between the mineral and the organic matrix
may contribute to bone biomechanical properties, crystal-
lographic parameters and crystal size and/or perfection were
measured by powder X-ray diffractometry to assess the
chemical stability and the mechanical strength of the bone

mineral. We found no changes in diffraction pattern and no
effect of OVX or sCT treatment on crystal size or perfection
parameters.(26) These results were in line with prior histo-
morphometric reports, showing no deleterious effect of sub-
cutaneously injected calcitonin on bone mineralization in
humans.(40,41) They may point to a difference between sCT
and other inhibitors of bone resorption, such as bisphos-
phonates, which bind strongly to hydroxyapatite crystals and
potentially may inhibit crystal formation and dissolution.(42)

The changes in the femoral neck trabecular microstruc-
ture after OVX and sCT treatment are more sensitively
assessed than the changes in the bone mineral measure-
ments using both DXA and dual energy quantitative CT
(DEQCT).(26) In a human study, no significant difference
was found in pQCT trabecular BMD at the distal radius in
vivo between premenopausal and postmenopausal women,
but the number of trabecular perforations significantly in-
creased in postmenopausal compared with premenopausal
women. These results indicate that increased disconnectiv-
ity may occur without a significant reduction of BMD and
that trabecular bone connectivity is more sensitive than
BMD in the detection of the early changes of postmeno-
pausal osteoporosis.(43)

The findings in this study can be explained by several
arguments. MR microscopic imaging has very high resolu-
tion, allowing pinpoint evaluation of the trabecular struc-
ture of the secondary spongiosa of the femoral neck. The
sensitivity of DEQCT could be compromised because of
relatively large field of view (FOV) and small specimen,
which would result in partial volume average of both tra-
becular and cortical bone at the endocortical junction,
masking of purely trabecular bone changes. In addition, the
bone in the epiphysis, physis, and primary spongiosa usually
changes little in response to estrogen deprivation,(19) and
these regions might be included in the measurement ROI
because of partial volume average in the DEQCT exami-
nation. Similarly, the DXA examination of the cylinder
core might also include the epiphysis, physis, and primary
spongiosa. Finally, Table 2 shows that, among correlation

FIG. 2. Relationship between trabecular bone volume fraction
and compressive stress in the femoral neck.

FIG. 1. MR microscopic images of the femoral neck and head
show that the OVX-induced loss in trabecular microstructure in
the femoral neck is prevented by the treatment of sCT.

JIANG ET AL.128



coefficients between trabecular microstructural parameters
and BMD of both DEQCT and DXA examination, bone
volume fraction has highest correlation. After Bonferroni
correction in the multiple comparison procedure, the in-
crease of bone volume fraction in the sCT-treated animals
is no longer statistically significant. The discrepancy of lack
of significant changes in bone volume fraction and in BMD
but significant changes in biomechanical properties in the
femoral neck trabecular bone after sCT treatment in this
study is in agreement with modest change in BMD but
significant reduction in vertebral fracture rate observed in
clinical trial.(10)

Our finding that a combination of microstructural param-
eters with bone mineral measurements provided the best
prediction of bone strength is in line with our earlier work
predicting the mechanical properties of trabecular bone
cubes from human vertebral bodies.(33) Previous studies
have reported modest correlations between trabecular
structural parameters as assessed by CT and BMD of the
lumbar vertebrae.(44) Similarly, modest correlations have
been reported in a study of MRI-assessed trabecular struc-
ture and CT-determined BMD.(45) Our study, along with
previous other reports,(33,44,46–48) support the concept that
structural analysis provides an additional tool to analyze
bone quality of trabecular bone. Further studies are war-
ranted to investigate the microstructure and biomechanical
properties of the cortical bone after antiresorptive therapy.

In summary, OVX induces a deterioration of the trabec-
ular microstructure in the femoral neck of the adult ewe.
These OVX-induced changes in trabecular microstructure
and biomechanical properties are prevented by the admin-
istration of sCT. The effects of sCT as observed in this animal
model may help explain the reduction in fracture risk in
postmenopausal osteoporotic women treated with sCT.
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