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Abstract  
 

Information on the time to pregnancy (TTP) was available for a sample of Danish couples in the 

age range of 20-35 years who were planning to discontinue contraception to achieve a 

pregnancy. The information was collected by follow-up over six complete menstrual cycles. The 

aim was to investigate the effect of risk factors such as smoking status, sperm concentration, 

alcohol consumption and intake of caffeine on the time to pregnancy. For this purpose, a 

proportional hazards model, an additive hazards model and a proportional hazards model with 

time varying effects were fitted. We performed goodness-of-fit for each model which indicates 

which model is appropriate to model the data.  

 

All the models revealed a similar result with regard to the significance of covariates. Alcohol 

consumptions in women and sperm concentration were found to be significantly associated with 

time to pregnancy. The result obtained from all models showed a negative impact of alcohol 

consumption of women on the monthly probability of conception. This means that the hazard of 

time to pregnancy decreases if the number of alcoholic drinks increases for the female. The study 

also revealed a significant positive effect of sperm concentration on the hazard of time to 

pregnancy. Checking the goodness-of-fit for all models showed there is a problem in the 

functional form of the covariate sperm concentration (M.ZKON0). A logarithmic transformation 

of this covariate resulted in a better fit for the additive hazards model.  

   

 

Key words: Time to pregnancy; Proportional hazards model; Additive hazards model; 

Martingale.  
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1. Introduction  

 

The most crucial event of the reproductive process is the birth of a new offspring. Fertility 

measures the frequency of this key event. The endpoint for the occurrence of new offspring is 

typically defined by a live birth. However, it may be defined in a broader sense by a clinical 

pregnancy or by a conception. Time to pregnancy (TTP) can be defined as the time elapsing 

from when a couple decides to have a child to clinically recognizable pregnancy. It can be used 

to compare fertility between groups. However, it is more widely used as a measure of 

fecundability, a related but slightly different quantity. Fecundability is defined as the probability 

of achieving conception or a recognized pregnancy per menstrual cycle (El-Shaarawi and 

Piegorsch, 2002; Curtis et al., 1997).  

Alcohol use is associated with altered levels of estrogen and progesterone and irregularities in 

the menstrual cycles and ovulation (Silva et al., 1999). Similarly a study on experimental animals 

founds that alcohol is known to decrease steroid hormone concentrations, inhibit ovulation, and 

interfere with sperm cell transportation through the fallopian tube (Sharma and Chaudhury, 

1970). Various studies have addressed the possible association between alcohol intake and 

fecundity. Most of the studies have found no effect of moderate alcohol intake, whereas a high 

intake has been associated with reduced fecundability. A large European multicentre study found 

that women with a preconceptional alcohol intake >14 drinks per week waited longer for a 

pregnancy than women with no alcohol intake (Olsen et al., 1997). Associations between alcohol 

consumption and infertility have also been reported by Hakim et al. (1998). Their prospective 

observational study for 100 menstrual cycles resulted in more than 50% reduction in the 

probability of conception during a menstrual cycle during which participants consumed alcohol. 

However, a study on Danish National Birth Cohort showed shorter waiting times for those with a 

low intake of alcohol compared with non-drinkers. They concluded that, moderate alcohol intake 

is not strongly associated with subfecundity; smaller amounts of alcohol may have a positive 

impact on the female reproductive system, perhaps by providing some stress control (Juhl et al., 

2001). A study by Curtis et al. (1997) also found no association between fecundability and 

alcohol use among women and men.  
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Male reproductive health outcome include sexual function and reproductive hormonal status. 

However, production of normal sperm has naturally been the central topic of male reproductive 

health. Sperm concentration is one of the standard evaluations of semen quality. A number of 

studies have shown a potential decrease in male fertility when a sperm concentration is very low. 

However, there is no consensus on the value of this limit. From studies in couples attempting to 

conceive, it has been found that the fertility potential of men decreased when the sperm 

concentration was under 40*106/ml (Bonde et al., 1998). Similarly a study by Slama et al. (2004) 

showed the effect of declines in sperm concentration on time to pregnancy.  

 

Cigarette smoke is well established as a reproductive toxin. Research indicates that cigarette 

smoking is harmful to a woman’s ovaries, and the degree of harm is dependent upon the amount 

and the period of time a woman smokes. Components in cigarette smoke have been shown to 

interfere with the ability of cells in the ovary to make estrogen and to cause a woman’s eggs 

(oocytes) to be more prone to genetic abnormalities. In general most of the studies support the 

conclusion of association between female smoking and prolonged time to pregnancy (Baird and 

Wilcox, 1985; Curtis et al., 1997; Suonio et al., 1990). However, the studies of Baird and 

Wilcox, (1985) and Suonio et al. (1990) resulted in no association between male smoking habit 

and time to pregnancy.  

 

The relationship between caffeine intake and fecundity is an issue of controversy. The results of 

research studies are conflicting and have shown both positive and negative effects of caffeine on 

fecundity. Hatch and Bracken (1993) found that intake of caffeine from coffee, tea, and 

caffeinated soft drinks was associated with an increased risk of a delay of conception. On the 

other hand, Hakim et al. (1998) and Curtis et al. (1997) have not found an association between 

caffeine intake and time to pregnancy.  

 

This study aims at investigating the effect of risk factors (smoking status of the female, smoking 

status of the male, sperm concentration, number of drinks for the female and a partner, and 

intake of caffeine for both female and partner) on the time to pregnancy. For this purpose, a Cox 

proportional hazards model, an additive hazards model and a Cox proportional hazards model 

with time varying effects were fitted. We performed goodness-of-fit for each model which 

indicates which model is appropriate to model the data. 
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The remainder of this report is organized as follows: Section 1.1 introduces the data set in this 

study and Section 1.2 provides the basic concepts in survival data analysis. In Section 2 we 

describe the statistical methods we applied; data exploration, proportional hazards model, 

proportional hazards model with time varying effects and additive hazards model. Main results 

of the analyses are presented in Section 3 whereas Section 4 is devoted for discussion. 

 

1.1 Data Description 
 

 

 

The data set considered in this study includes a sample of Danish trade union cohabiting 

members with in the age range of 20-35 years who were planning to discontinue contraception to 

achieve a pregnancy. Couples without previous reproductive experience who intended to 

discontinue contraception to become pregnant were eligible for enrolment.  

 

A total of 1113 couples signed up for the study. These couples were contacted regularly to 

ascertain their intent to discontinue the use of birth control to achieve a pregnancy and were 

enrolled consecutively as they stopped contraception. Discontinuation of contraception was 

defined as the date when the last pill was taken, the IUD was removed, or when condom, barrier, 

or other kinds of birth control were used for the last time. Among couples signed for the study 

122 had withdrawn their consent to participate and 153 were ineligible for other reasons, mainly 

because of previous pregnancies (N = 46) or because they had discontinued contraception before 

signing up for this study (N = 71). A sample size of 310 couples is available for this study. 

 

The intention was to start follow-up when birth control stopped and continue until a pregnancy 

was recognized or six complete menstrual cycles were recorded, whichever came first. The 

observations were censored if the couples dropped out during the study period or when follow-up 

reached six cycles without pregnancy. The variables in the study are sperm concentration of male 

in mill/ml(M.ZKON0), smoking status of the female (K.RYG), smoking status of the male 

(M.RYG), average number of drinks per week for the female (K.ALK), average number of 

drinks per week for the male (M.ALK), average intake of caffeine in mg per day for the 

female(K.COF) and for the male(M.COF).  
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During the period of follow-up, the women daily recorded sexual intercourse and menstrual 

bleeding, and a semen sample was collected during the menstrual period of each cycle. 

Participants were encouraged to give semen sample following 3 days of continence, but 

emphasized that samples obtained outside this time window would still be acceptable. Every 

month men and women filled in a questionnaire on health, occupational exposures, smoking, 

alcohol and coffee consumption, intake of medicine, and psychologic stress. The women notified 

the research team when a pregnancy was diagnosed by a physician or when a commercial 

pregnancy test was positive (Bonde et al., 1998).  

 

1.2 Survival Data Analysis: Basic Concepts 
 

  

Survival analysis examines and models the time it takes for events to occur. Let T* denote the 

survival time which is the time from a well defined time origin to the occurrence of some given 

event. The following three functions characterize the distribution of T*.  

Let f be the probability density function and F the corresponding cumulative distribution function 

of the (continuous) event time T*. The basic quantities used to describe failure time data are the 

survival function  
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A survival function is a nonincreasing function with a value of 1 for t = 0 and 0 at infinity. If T* 

is a continuous random variable, then, S(t) is a continuous, strictly decreasing function. A basic 

quantity, fundamental in survival analysis, is the hazard function. This function is defined as  
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1.2.1 Censoring  
 

 

There are certain aspects of survival data, such as censoring that generate great difficulty when 

trying to analyze the data using traditional statistical models such as multiple linear regressions. 

A censored observation is defined as an observation with incomplete information. 

 

One possible type of censoring is right censoring, which occurs when only the lower bound for 

the time of interest is known. When an observation is right censored it means that the 

information is incomplete because the subject did not have an event during the time that the 

subject was part of the study. Left censoring is when all that is known is that the individual 

experienced the event of interest prior to the start of the study, i.e., only an upper bound for the 

time of interest is available. For interval censoring, the only information available is that the 

event occurs within some interval of time (Klein and Moeschberger, 1997). The data in this 

study are right censored; only lower bound for time to pregnancy is known for some individuals. 

It turns out that handling of censoring and other types of incomplete survival data is surprisingly 

easy when basing the analysis on models for the intensity function (Martinussen and Scheike, 

2006). Next section provides a gentle introduction to counting processes and the martingale 

theory used to analyze them.  

 

1.2.2 Counting Process  

Event time data, where one is interested in the time to a specific event occurs, are conveniently 

studied by the use of certain stochastic processes. The data itself may be described as a so-called 

counting process, which is simply a random function of time t, N(t). It is zero at time zero and 

constant over time except that it jumps at each point in time where an event occurs, the jumps 

being of size 1.  
 

Assume that n independent subjects are observed over some period of time ],0[ τ . For each 

subject a counting process, Ni(t), that gives the number of events occurring before time t is 

observed together with possibly additional information in terms of p-dimensional covariates Xi. 

Models for survival data, or more generally counting process data, are very conveniently 

formulated through the intensity process )(tiλ which is defined as (Scheike, 2004) 
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Define the cumulative intensity by; ∫=Λ
t

ii dsst
0

)()( λ  such that )()()( ttNtM iii Λ−=  is a 

martingale. Let further ))(,...),(()( 1 tNtNtN n=  be an n-dimensional counting process, 

))(,...,)(()( 1 ttt nΛΛ=Λ  its compensator, ))(.,..,)(()( 1 ttt nλλλ =  an n-dimensional intensity 

process, ))(,...,)(()( 1 tMtMtM n=  the n-dimensional martingale. 

 

 

2. Statistical Methodology  
 

 

2.1 Exploratory Data Analysis  
 

In any data analysis it is always a great idea to do some univariate analysis before proceeding to 

more complicated models. To gain insight into the shape of the survival function for each group 

we plotted Kaplan-Meier curves for all categorical predictors. We also consider the test of 

equality across strata for categorical covariates using a log-rank test. A proportional hazards 

model is also fitted for each continuous covariate one by one to explore the importance of the 

effect of each covariate on the time to pregnancy in model building. In the following sections 

statistical analyses employed are discussed.  

 

2.2 Proportional Hazards Model  

 

 

The most common approach to model covariate effects on survival is the Cox proportional 

hazards model (Cox, 1972). The Cox model was introduced by Cox (1972) in the context of 

survival data, and Andersen and Gill (1982) extended it to the counting process framework and 

gave elegant martingale proofs for the asymptotic properties of the associated estimators 

(Martinussen and Scheike, 2006).  

Suppose we observe n independent and identically distributed (i.i.d.) observations )X,,( iiiT ∆ , 

where Ti is the right-censored life-time, i∆ is the indicator telling us whether Ti is an event time 
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or censoring time, and Xi is a vector of explanatory variables. The Cox model assumes that the 

intensity is of the form  

 )exp()()()( 0 βλλ T
XttYt = ,  (2.1) 

where X =(X1, . . . ,Xp) is a p-dimensional covariate vector and Y(t) is an at risk indicator which 

is one if the event is not yet occurred. The parameters of the model are the p-dimensional 

regression parameter vector β  and the non-parametric baseline hazard function )(0 tλ . If the 

covariates are time-independent the model assumes that the hazard rates for different values of 

the covariates are proportional.  

 

Statistical inference in the Cox model is primarily based on maximum partial likelihood. 

Suppose that there are n independent copies (Ni(t),Yi(t),Xi)), i = 1, . . . , n, observed in some time 

interval ],0[ τ , ∞<τ , and that each Ni(t) has intensity on the Cox form(2.1). The regression 

parameter β  is estimated as the maximizer to Cox’s partial likelihood function (Cox, 1972; 

Martinussen and Scheike, 2006)   

,
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The estimator β̂  is thus found as the solution to the score equation 0)( =βU  , where  
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If the value of β  is fixed, the Nelson-Aalen estimator of the cumulative baseline hazard function 

)(0 tΛ  can be estimated as  

).(
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1
),(ˆ

0 0

0 sNd
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t

t
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i

i tNtN )().(    

Given β̂ , as a solution to 0)( =βU , the Breslow estimate of )(0 tΛ  is given  by  
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The standard asymptotic likelihood inference tests; the Wald, likelihood ratio and score tests, are 

also valid under the Cox partial likelihood to test hypotheses about β . Let minus the derivative 

of the score with respect to β  be denoted by I( β ). We use the notation 0β  to denote the true 

value of β  in the Cox model (2.1). The first test is the usual test based on the asymptotic 

normality of the (partial) maximum likelihood estimates, referred to as Wald’s test. A test of the 

global hypothesis of H0: 0ββ =  is  

)ˆ)(ˆ()ˆ( 00

2 βββββχ −−= I
T

w  

 

which has a chi-squared distribution with p degrees of freedom if H0 is true for large samples. 

The other test statistic, called the likelihood ratio makes use of the log likelihood statistic. It also 

holds true, using standard arguments from asymptotic theory, that the likelihood ratio statistic 


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both are asymptotically chi-squared with p degrees of freedom under the null.  
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2.2.1 Goodness-of-Fit for the Cox Model 
 

As is the case for a linear or generalized linear model, it is desirable to determine whether a fitted 

Cox regression model adequately describes the data. In a usual linear regression setup, it is quite 

easy to define a residual for the fitted regression model. However, in regression models 

presented in this report the definition of the residual is not as clear-cut. A number of residuals 

have been proposed for the Cox model (Therneau and Grambsch, 2000; Klein and 

Moeschberger, 1997). Different residuals are useful for examining different aspects of the model.  

 

2.2.1.1 Test for proportional hazards assumption  

Schoenfeld (1982) proposed residuals for checking the proportional hazards assumption and the 

residuals are now commonly known as the Schoenfeld residuals. The Schoenfeld residual is the 

difference between the covariate at the failure time and the expected value of the covariate at this 

time (Therneau and Grambsch(2000), section 4.6). 

We are interested in the test of time invariant effect in the model defined by the extended Cox 

model with time-varying coefficients  

))()(exp()()()( 0 ttXttYt
T βλλ = , 

in which the relative risk parameters are allowed to depend on time so that the effect of a 

covariate can change with time. When )(tβ  is not constant, the impact of one or more 

covariates on the hazard may vary over time. But the restriction )(tβ = β implies proportional 

hazards, therefore if proportional hazards holds then a plot of  )(tβ  versus time will be a 

horizontal line. When scaled Schoenfeld residuals are defined by the product of the inverse of the 

estimated variance-covariance matrix of the kth Schoenfeld residual and the kth Schoenfeld 

residual, Grambsch and Therneau (2000) showed that  

  )(ˆ)( *

kjjkj tsE ββ ≈+ ,  
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where *

ks  is the scaled Schoenfeld residual and β̂ is a coefficient from an ordinary fit of the Cox 

model. This suggests plotting the jkjs β̂* +  versus time as a method to visualize the nature and 

extent of nonproportional hazards. 

  

The time-varying regression coefficients of the extended Cox model described above can be 

written as     

 )()( tgt jjjj θββ +=  ,           (2.4) 

where )(tg j  is a specified function of time. One typical application of this type of testing is to let 

)(tg j =log(t) (Cox, 1972) for j = 1, . . .p. The interest is in testing the hypothesis H0: θ =0 with 

),..,.( 1 pθθθ = . When the sg j '  are known functions, then the model with coefficients (2.4) is 

still a Cox model. Therefore, the score test, likelihood ratio test and Wald test can be used to test 

the hypothesis H0 (Martinussen and Scheike, 2006; Therneau and Grambsch, 2000). 

We denote the score function by TTT UUU ),( 21= , where the first component is the derivative of 

partial likelihood with respect to β , and the second component is the derivative with respect to 

θ . Similarly we denote empirical information matrix written as a block matrix reflecting two 

parameter vectors by 2,1,)( =lkklI  with its inverse denoted by 2,1,)( =lk

kl
I .The score test 

statistics may thus be written 

                                                 )0,ˆ()0,ˆ()0,ˆ()( 2

22

2 βββ UIUGT T=                                  (2.5) 

where  β̂  denotes the maximum partial likelihood estimator under the null. 

The score test statistic is asymptotically chi-square distributed with p degrees of freedom under 

the null. The GLOBAL test in R, which can be performed using the function cox.zph, 

approximates )(GT .  
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2.2.1.2 Cox-Snell residuals for assessing the overall fit of the model  

 

Residuals commonly used to assess the overall fit of the Cox model are Cox-Snell residuals 

(Box-Steffensmeier and Jones, 2004; Klein and Moeschberger, 1997). Suppose that the 

proportional hazards model (2.1) has been fitted.  

The Cox-Snell residuals are defined as  

)ˆexp()(ˆ
0 βT

iii XTr Λ=  , i = 1, . . . , n, 

where )(ˆ
0 itΛ  is an estimator of the cumulative baseline hazard rate and  β̂  is a vector of 

estimates of regression parameters of the Cox model. 

If the model is correct and the β̂ ’s are close to the true values of β  then, the ri’s should look like 

a censored sample from a unit exponential distribution.  

Indeed, if the model is correct, we have that  

  ),1(~)(ln)(]1,0[~)(1)( **** ExpTSTandUTFTS −=Λ−=  

where  

))(exp()( *

0

* βT
X

eTTS Λ−=  

Therefore )1(~)(ln)ˆexp()(ˆ
0 ExpTSXTr i

T

iii −=Λ= β  . 

To test whether the Cox-Snell residuals follow approximately a unit exponential distribution, we 

compute the Nelson-Aalen estimator of the cumulative hazard rate of ri’s ))(ˆ( ir rΛ . Then we 

check whether the plot of ))(ˆ( ir rΛ  against ri is a straight line through the origin with a slope of 

1. 
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2.2.1.3 Checking Functional Form of a Covariate  

For a given covariate we would like to see an appropriate functional form to explain the 

influence of the covariate on TTP. Lin et al.(1993) suggested an important class of test statistics 

based on the cumulative sums of martingale-based residuals.   

The martingales under the assumption that the proportional hazards model is true can be written 

as  

 

)()exp()()()( 0

0

sdXsYtNtM
T

i

t

iii Λ−= ∫ β .                          

Using estimates from the Cox model we can estimate )(tM i  as  

                                              )(ˆ)ˆexp()()()(ˆ
0

0

sdXsYtNtM
T

i

t

iii Λ−= ∫ β .                                   (2.6) 

The idea is now to look at different functional of these estimated residuals and see if they behave 

as they should under the model.  

Lin et al. (1993) defined a two-dimensional cumulative residual process as  

                                                                 ∫=
t

T

zc sMdsKztM
0

)(ˆ)(),(                                          (2.7) 

where )(tK z  is an nx1 matrix with elements I(Xi1 ≤ z ) for i = 1, . . . , n, focusing here on the 

first continuous covariate X1. In this case martingale residuals are grouped cumulatively with 

respect to follow-up time and covariate values. To summarize things further one may integrate 

over the entire time span to get a process only in z: 

  ∫=
τ

0

)(ˆ)()( tMdtKzM
T

zc   

which can be plotted against z. To assess how unusual the observed process is under the model 

one may plot it along with a few realizations under the model. To further enhance the objectivity 
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of the graphical technique, one may complement the residual plot with some test statistics which 

measure the extremity of the observed process. One may therefore compute the supremum of 

Mc(t). An unusually large value of this supremum would suggest that the functional form for the 

covariate may be inappropriate.  

 

2.3 Extended Cox Model with time-varying Regression Effects  

 

 

In medical studies, it is often expected that effects are time-varying. Since traditional models do 

not allow for a natural description of such effects, there is a need to extend these models. One 

may extend the Cox model relaxing some of the assumptions. One extension that seems natural 

is the model where the relative risk parameters are allowed to depend on time so that the effect of 

a covariate can change with time (Martinussen and Scheike, 2006; O’Quigley, 2008). The model 

assumes that the intensity has the form  

 

                ))()(exp()()()( 0 ttXttYt
T βλλ =                                                     (2.8) 

in which the regression coefficients of the Cox model have been replaced by a vector )(tβ  of 

time dependent regression functions. The baseline )(0 tλ  function still gives the intensity for an 

individual with covariates equal to zero. We will focus on modeling time-varying effects 

assuming constant covariates over time.  

With the aim of presenting inferential procedures, the focus is on the estimation of the 

cumulative regression coefficients ))()((
0

∫=
t

dsstB β . Based on )(ˆ tB  an estimator of )(sβ may 

be derived, but when focus is on inferential procedures, the cumulative regression coefficients 

are preferable to the regression coefficients (see Martinussen and Scheike, 2006, p206-207, for a 

detailed discussion).  

 

Now we focus on how to carry out inference about the time-varying regression coefficients of 

the extended Cox model. Two important hypotheses of interest are that a regression coefficient is 
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non-significant, 0)(:01 ≡tH pβ , or equivalently 0)(:01 ≡tBH p  and the hypothesis that one of the 

regression coefficient functions is constant, pp tH ββ ≡)(:02 . The following test statistics are 

proposed by Martinussen and Scheike (2006) and Scheike (2004). 

To test the hypothesis H02 one may use a test statistic depending on  )()(ˆ(2

1

tBtBn −  and then 

approximate its distribution by a resampling process (see Martinussen and Scheike, 2006, section 

6.4, for a detailed discussion). The following test statistic can be used  

                                        t
B

tBnT
p

p
t

s
τ

τ

τ

)(ˆ
)(ˆsup

],0[

2

1

2 −=
∈

.                                               (2.9)    

Similarly, a test for H01 can be based on the following test statistic  

                                            
)(ˆ

)(ˆ
sup

2
1

2
1

],0[
1

tV

tBn
T

pp

p

t
s

τ∈

=   .                                                        (2.10) 

)(ˆ tVpp  is the pth diagonal element of )(ˆ tV ,  

                                                          )(ˆ)(ˆ

1

21
tQntV

n

i

i∑
=

⊗−=                                                     (2.11) 

where for a vector Taaaa =⊗2, , 

∫
−−=

t

ii

T

i sMdsXsXsWsXntQ
0

11 )(ˆ)())()()(()(ˆ , and  

W(t) is an nxn diagonal weight matrix.  
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2.3.1 Goodness-of-Fit for the Extended Cox Model 
 

We use martingale residual techniques to validate the fit of the model. Consider the martingale  

dsssXsYtNtM
T

i

t

iii ))()(exp()()()(
0

β∫−= . 

We wish to see if the estimates thereof have a behavior consistent with model. The estimate in 

the vector form is given by 

dsstNtM

t

∫−=
0

)(ˆ)()(ˆ λ  

Based on the estimated martingales, one can construct the cumulative residual process 

(Martinussen and Scheike, 2006 section 6.9). To assess how unusual the observed process is 

under the model one may plot it along with a few realizations under the model. To further 

enhance the graphical technique one can compute the supremum of the cumulative residual 

process and approximate the quantiles of its limit distribution, under the model, by resampling. 

An unusually large value of this supremum would suggest that the functional form for the 

covariate may be inappropriate.  

 

2.4 Additive Hazards Models  
 

 

An alternative to the proportional hazard model of Cox and the non-parametric extension 

considered in the previous sections is Aalen’s additive hazard model (Aalen, 1989; McKeague, 

1988) where the intensity depends linearly on covariates. The proportional hazards model, 

discussed in the previous sections assumes that the effects of the covariates act multiplicatively 

on the unknown baseline hazard function. However, the additive hazards model is based on the 

assumption that the covariates act in additive manner on an unknown baseline hazards rate.  

 

Under the additive Aalen model, we assume that the intensity for the counting process N(t) 

conditionally on p-dimensional covariate X(t) is of the form  
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  (2.14) 
 

where )(tβ is a p-dimensional regression coefficient and )(tY at risk indicator.  

 

 

With the aim of presenting inferential procedures, focus is on estimation of the cumulative 

regression coefficients since these accommodate inferential procedures. Least-squares estimators 

are applied using the theory of counting processes.   

 

Let for n independent replicates of (Ni(t), Yi(t), Xi(t)), i = 1, . . . ,n, each Ni(t) has intensity on the 

form (2.14). For n-dimensional counting process N(t) and cumulative intensity ∫=Λ
t

dsst
0

)()( λ ,  

define the n-dimensional martingale as )()()( ttNtM Λ−= .We thus have that  

 

                                             )()()(

)()()(

tdMdtttX

tdMdtttdN

+=

+=

β

λ

                                                       (2.15) 

Since the increments of the martingale are uncorrelated and have zero mean, this equation 

suggests that the increments of dtt)(β , which we write as dB(t), can be estimated by simple 

multiple linear regression techniques by defining the generalized inverse of X(t) as the p*n 

matrix  

)()())()()(()( tWtXtXtWtXtX
T−− =  

 

where W(t) is a nxn diagonal weight matrix. 

Therefore from equation (2.15) the estimator can be written as   

                        )()()(ˆ)()()(ˆ

0

sdNsXtBtdNtXtBd

t

∫
−− =⇒=                                           (2.16) 

When X(t) has full rank for all t (asymptotically at least ), then )(ˆ tB  is essentially an unbiased 

estimator of )(tB . 

We know that the cumulative regression coefficient )(tB  is integral of regression function )(tβ . 

A crude estimate of )(tβ  is given by the slope of our estimate )(ˆ tB  but a better estimate can be 

)()()()( ttXtYt T βλ =
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obtained by using a kernel-smoothing technique (Martinussen and Scheike,2006; Klein and 

Moeschberger, 1997), which we do not pursue here.  

For the non-parametric model (2.14) one may wish to test the hypothesis, ,0)(:01 ≡tH pβ or 

equivalently ,0)(:01 ≡tBH p  that a time-varying component is significant or not. The other 

important hypothesis one wish to test is to decide whether a regression coefficient function is 

time varying or time-constant. This can be formulated as ortH p ,)(:02 γβ ≡ equivalently 

ttBH p γ≡)(:02 .  

To test if a time-varying component is non-significant (H01) the following test statistic was used.  

 

                                                  

)(ˆ

)(ˆ
sup

2

1

2

1

],0[
1

tV

tBn
T

pp

p

t
s

τ∈

=                                                             (2.17)       

 

where )(ˆ tVpp is the p th diagonal element of )(ˆ tV  defined in (2.11)  

The second hypothesis H02 can be tested by the following simple test statistics  

                                                      
τ

τ
τ

t
BtBnT pp

t
s )(ˆ)(ˆsup

],0[

2

1

2 −=
∈

  .                                         (2.18) 

The idea is that ττ /)(ˆ
pB  is an estimate of the underlying constant under the null hypothesis. The 

above test statistics have an asymptotic distribution that can be derived based on the asymptotic 

distribution of ))()(ˆ(2

1

tBtBn − (Martinussen and Scheike, 2006). The quantiles of this 

distribution are, however, difficult to obtain, and must be simulated. 
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2.4.1 Goodness-of-Fit test for Additive Hazards Model   
 

In this section we present graphical and numerical methods for checking the adequacy of the 

Aalen additive model. The procedures are derived from cumulative sums of martingale-based 

residuals over follow-up time and/or covariate values. 

The underlying martingale residuals are 

)()()()()(
0

sdBsXsYtNtM

t
T

iiii ∫−= . 

The estimate is given by  

,)()()()()()()(ˆ)()()(ˆ

000

sdNsGsdNsXsXtNsBdsXtNtM

ttt

∫∫∫ =−=−= −  

where   )()()( tXtXItG −−= . 

Based on the estimated martingale residuals, a cumulative residual process suggested by Lin et 

al. (1993) in the context of the Cox model was adopted (see Martinussen and Scheike, 2006, 

Section 5.7 and Scheike(2004), for a detailed discussion).  

One can plot this cumulative residual process against covariate values along with a few 

realizations under the model to assess how unusual the observed process is under the model. 

Further, one can compute the supremum of the cumulative residual process and approximate the 

quantiles of its limit distribution, under the model, by resampling.   
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3. Results  

3.1 Data Exploration 
 

Regarding the proportion of pregnant women at each menstrual cycle, an overview is given in 

Table 1. It is observed that at the end of the study 222(71.61%) women are pregnant. The 

proportion of pregnant women decreases across the menstrual cycles with cycle one having the 

highest proportion and cycle 6 with the lowest proportion.  

 

Table 1: Summary of number of pregnancy (percentage) across menstrual cycles.   

Event  Menstrual Cycles Total 

 1 2 3 4 5 6  

Pregnancy 63(20.32) 58(18.71) 36(11.61) 37(11.94) 15(4.84) 13(4.19) 222(71.61) 
        
Censoring 3(0.97) 1(0.32) 2(0.65) 8(2.58) 0(0) 74(23.87) 88(28.39) 

 

Among a total of 310 females 26.77% are smokers and 28.06% of the male partners are smokers. 

Mean weekly alcohol intake was 4.06 drinks with a maximum value of 39 and minimum of 0 

among women and 9.24 drinks among their male partners with value ranging from 0 to 84 drinks 

per week. M.ZKON0 (sperm concentration) is one of the covariates of interest with value 

ranging from 0(mill/ml) to 350mill/ml and a mean of 66.57mill/ml(SD=58.29).  

In survival analysis it is highly recommended to look at the Kaplan-Meier curves for the 

categorical predictors. This will provide insight into the shape of the survival function for each 

group and give an idea of whether or not the groups are proportional (i.e. the survival functions 

are approximately parallel). 

Figure 1 shows the survival curves for smokers and non-smokers for both genders, and allows a 

visual comparison of the curves. From the left panel plot we can see that the two curves are not 

parallel but separate except from the very beginning to approximately 65 days. There is no 

particular pattern for the right panel curve but the survival curves appear to be close together.  
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Figure 1: Kaplan-Meier curve for female smoking status (left panel) and male smoking status 
(right panel) 

 

We also consider the test of equality across strata for categorical covariates using log-rank test. 

For the covariate K.RYG (smoking status of female) the log-rank test of equality for the group is 

not significant with a p-value of 0.133. Moreover, the log-rank test of equality across strata for 

the covariate M.RYG has a p-value of 0.321. 

For the continuous variables we used a univariate proportional hazards model (i.e this model is 

fitted to each covariates one by one) to explore whether or not to include the predictor in the final 

model. Successive fitting of proportional hazards model to these covariates resulted in p-values 

0.141, 0.151, 0.027, 0.468 and 0.0006 for M.COF, K.COF, K.ALK, M.ALK and M.ZKON0 

successively in that order. We considered a result of univariate analysis to build our model. 

Hosmer and Lemeshow (1998) recommend to consider covariates significant at 0.25 level of 

significance in univariate analysis. We started by including covariates with p-value ≤ 0.25 and all 

pairwise interactions in the model. Then a back-ward elimination procedure and knowledge of 

importance of the covariate in affecting TTP were considered to get a final model.  

 



21 

 

3.2 Proportional Hazards Model  
 

The initial fitting of the Cox proportional hazards model to data in R yielded the following 

results in Table 2. The likelihood-ratio test for testing the null hypothesis that all s'β  are zero 

(overall effect of the covariates) is statistically significant (p-value = 0.0005). The effect of 

individual covariates is tested by Wald-test (z2). The Wald-test showed that the variable sperm 

concentration (M.ZKON0) has a significant effect on time to pregnancy. The effect of alcohol 

consumption (K.ALK) for females is also borderline significant at significance level of 0.05.  

 

       Table 2: Parameter estimates and standard error of proportional hazards model 

Variable Estimate exp(Estimate) se(Estimate) z p-value 

K.ALK -0.0276      0.973 0.0144 -1.91 0.05600 

K.RYG -0.2274      0.797 0.1582 -1.44 0.15000 

M.ZKON0 0.0038      1.004 0.0011   3.50 0.00046 

M.COF     0.0003      1.000 0.0002   1.32 0.19000 

Likelihood ratio test=20.1  on 4 df, p=0.0005  n= 310 

 

The exponentiated coefficients (also called relative risks) are interpretable as multiplicative 

effects on the intensity. For example, holding the other covariates constant, an increase in the 

number of drinks (K.ALK) by one unit decreases the monthly probability of conception by a 

factor of exp(-0.0276) = 0.973 on average. Similarly, as sperm concentration (M.ZKON0) 

increases by one unit, and all other variables are held constant, the rate of conception increases 

by 0.4%.  The negative coefficient for estimate of K.ALK means that the alcohol consumption is 

supposed to reduce the intensity of TTP. 
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3.2.1 Goodness-of-Fit for the Cox Model 
 

3.2.1.1 Test for proportional hazard assumption 

 

As mentioned, a test for the proportional-hazards assumption (PH) was obtained from cox.zph, 

which computes a test for each covariate along with a global test for the model as a whole. The 

result is presented in the following table.   

 

                               Table 3: Test for proportional hazards assumption 

 rho chisq p-value 

K.ALK 0.0826 1.95 0.163 

K.RYG -0.0992 2.16 0.142 

M.ZKON0 0.0784 1.29 0.257 

M.COF -0.0625 1.19 0.275 

GLOBAL NA 6.85 0.144 

 

The GLOBAL test suggests that there is no departure from the standard Cox form with p-value = 

0.144. Moreover the individual covariate tests support the proportional hazards assumption is 

fulfilled for all the covariates in the model.  

Figure 2, shows the plot of scaled Schoenfeld residuals versus time for all covariates in the 

model. The sold line represents a scatter plot smooth to the data points with broken lines as a 

confidence interval.  

A systematic departure from a horizontal line indicates non-proportional hazards. These plots 

also support the above test that the PH assumption is satisfied for all the covariates in the model. 
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Figure 2: Plots of scaled Schoenfeld residuals against time for each covariate in a model  

 

 

3.2.1.2 Cox-Snell residuals for assessing the overall fit of the model  

 

We see from the Cox-Snell residual plot (Figure 3) that there are no large departures from a 

straight line. This shows that the model gives a reasonable fit to the data.  
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Figure 3: Cox-Snell residuals to assess model fit 

 

3.2.1.3 Checking a functional form of a covariate 
 

 

 

 

 

Let us examine cumulative residual plots to reveal information about misspecification of the 

functional form of the continuous covariates in the model. Figure 4 shows the observed 

cumulative residuals versus continuous covariates with 50 random simulations under the null, 

which is summarized into p-values by supremum test as 0.208, 0.012 and 0.148 for covariates 

K.ALK, M.ZKON0 and M.COF respectively. The output of the supremum test for testing if the 

cumulative residuals behave as they should under the model and figure 4 clearly show that there 

are problems with the fit of the model, indicated by a p-value of 0.012 for M.ZKON0. This 

reveals that M.ZKON0 should not be included in the model on its original scale. When 

M.ZKON0 enters the model on logarithmic scale log(1+ M.ZKON0), the supremum test yields a 

p-value of 0.03 which indicates there is no improvement of the fit. 
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Figure 4: Observed cumulative residuals versus continuous covariates with 50 random 
realizations under the model 

 

3.3 Extended Cox Model 
 

The tests for non-significant effects and for time invariant effects for the extended Cox model are 

summarized in Table 4. From the table we see a significant effect of the estimated cumulative 

regression functions of K.ALK and M.ZKON0. The tests for time invariant effects show that all 

the covariates effects are not time varying. In figure 5, the estimated cumulative regression 

function is plotted against time. This gives a description of how the covariate influences the TTP 

over time.   

Table 4:  Test for non-significant and time invariant effects of estimated cumulative parameters 

 

Variable  

Test for non-significant effects Test for time invariant effects  

Test statistic p-value 

 

Test statistic  p-value 

 K.ALK                                4.90 0.000 3.1500 0.412 

M.RYG                                2.26 0.268 24.3000                 0.722 

M.ZKON0 4.80 0.000 0.7040                 0.260 

M.COF                        1.50       0.696 0.0492                 0.387 
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Figure 5: Estimated cumulative regression functions with 95% pointwise confidence intervals 
based on extended Cox model 

 

Figure 5 depicts the estimated cumulative regression coefficients with 95% pointwise confidence 

interval. If a regression coefficient is constant over time, the plot of the estimated cumulative 

regression coefficient versus time should look like a straight line. Figure 5 suggests that the 

effect of all covariates is constant with time.  

 

3.3.1 Goodness-of- Fit for Extended Proportional Hazards Model  
 

Now, we use cumulative residual plots to check how continuous covariates should be included in 

the model. Figure 6 shows the cumulative residual plots versus the covariates with 50 random 

simulations under the null. This reveals that the effect of M.ZKON0 is not well described by the 

model. The supremum test for the functional form of the covariates gives p-values of 0.216, 
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0.020 and 0.136 for K.ALK, M.ZKON0 and M.COF, respectively, which indicates that 

M.ZKON0 should not be included in the model on its original scale.   
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Figure 6: Observed cumulative residuals versus continuous covariates and 50 random 
realizations under the model.  

 

3.4 Additive Hazards Model 
 

Table 5 shows the summary of the tests for non-significant effects and for time invariant effects 

for the cumulative regression function using test statistics (2.17) and (2.18) respectively. From 

the results we see a significant effect of the covariates K.ALK and M.ZKON0. Moreover, the 

test for time invariant effects shows that all the covariates effects are not time varying. 
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Table 5: Test for non–significant and time invariant effects of additive hazards model.   

 

Variable  

Test for non-significant effects Test for time invariant effects 

Test statistic p-value Test statistic p-value 

K.ALK                                3.77 0.002 0.0252 0.321 

M.RYG                                2.36 0.240 0.1690 0.708 

M.ZKON0 3.87 0.001 0.0053 0.192 

M.COF 1.47 0.724 0.0004 0.561 

 

In figure 7, the cumulative regression function is plotted against time and gives a description of 

how the covariate influences the TTP over time.  Figure 7 depicts the estimated cumulative 

regression coefficients with 95% pointwise confidence intervals for each covariate in the model.   
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Figure 7: Estimated cumulative regression functions with 95% pointwise confidence intervals 
based on Aalen’s additive model  
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3.4.1 Goodness-of- Fit for Additive Hazards Model  
 

Now, we use cumulative residual plots to check how continuous covariates should be included in 

the model. We have three continuous covariates in our model: M.ZKON0 (Sperm concentration), 

K.ALK (number of alcohol drinks for the female) and M.COF (intake of caffeine for the male). 

Figure 8 shows the cumulative test processes with 50 random simulations under the null, which 

is summarized into p-values using a supremum test. The p-values of the supremum test for 

testing if the cumulative residual processes are consistent with the model are 0.092, 0.042 and 

0.112 for K.ALK, M.ZKON0 and M.COF respectively. This shows that there are problems with 

the fit of the model indicated by a p-value = 0.042 for M.ZKON0. We can also observe that 

cumulative residual plot of M.ZKON0 in figure 8 shows problem with the fit. This reveals that 

M.ZKON0 should not be included in the model on its original scale.  
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Figure 8: Observed cumulative residuals versus continuous covariates and 50 random 
realizations under the model.  
 

Figure 9 shows the cumulative residual plots when M.ZKON0 enters the model on a logarithmic 

scale (log(1+ M.ZKON0)). From Figure 9 we can see that the cumulative residual processes are 

consistent with the model when compared with Figure 8. Moreover, when log(1+M.ZKON0) 

enters the model, the p-value of the supremum test jumps from 0.042 to 0.148. This reveals that 

one should use Log-M.ZKON0 to get an acceptable fit for the additive hazards model.  
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Figure 9: Observed cumulative residuals versus continuous covariates and 50 random 
realizations under the model.  

Table 6 shows the summary of the tests for non-significant effects and for time invariant effects 

for the cumulative regression function when M.ZKON0 enters the model on logarithmic scale. 

The test shows a significant effect of the estimated cumulative regression functions of K.ALK 

and M.ZKON0. The tests for time invariant effects show that all the covariates effects are not 

time varying. In figure 10, the estimated cumulative regression function ( )(ˆ tB ) is plotted against 

time. The slope of these lines is a crude estimate of )(tβ . Positive slopes of the plots occur 

during periods when increasing covariate values are associated with increases in the intensity 

function. Negative slopes occur during periods when increasing covariate values are associated 

with decreases in the intensity function. 
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Table 6: Test for non–significant and time invariant effects of additive Aalen model when 
LogM.ZKON0 is used.   

 

Variable  

Test for non-significant effects Test for time invariant effects 

 Test statistic p-value Test statistic p-value 

K.ALK                                3.64               0.005 0.0220                 0.348 

M.RYG                                2.63               0.151 0.2960                 0.394 

LogM.ZKON0 6.00               0.000 0.1450                 0.173 

M.COF 1.92               0.417 0.0006                 0.328 

 

If a regression coefficient is constant over time, the plot of the estimated cumulative regression 

coefficient should look like a straight line. It appears from these plots that the effect of all 

covariates is roughly constant with time. This corresponds with the result in Table 6. 
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Figure 10: Estimated cumulative regression functions with 95% pointwise confidence intervals 
based on Aalen’s additive model when LogM.ZKON0 is used.   
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4.  Discussion and Conclusion  
 

Studies of time to pregnancy, or waiting time to conception, have proved fruitful in identifying 

male and female exposures with adverse effects on fertility. We carried out survival data analysis 

on time to pregnancy from a sample of Danish couples in the age range of 20-35 years who were 

planning to discontinue contraception to achieve a pregnancy. The aim was to investigate the 

effect of risk factors (smoking status, sperm concentration, alcohol drinks and intake of caffeine) 

on the time to pregnancy. For this purpose a Cox regression model, an additive hazards model 

and a Cox regression model with time varying effects were fitted and goodness of fit was used to 

compare this models.  

The results show that alcohol intake in women was associated with time to pregnancy. The result 

obtained from all models showed a negative impact of alcohol consumption of women on the 

monthly probability of conception. These findings are similar to the results of a study by Olsen et 

al. (1997) and Hakim et al. (1998), However, since the study design and the statistical methods 

employed are not the same, it is difficult to compare. The study also revealed a significant 

positive effect of sperm concentration on the hazard of time to pregnancy.  

 

All the models revealed a similar result with regard to the significance of covariates. A test for 

time invariant effects in the additive model and in the extended Cox model showed the effect is 

not time-varying for all covariates in the model. This supports the assumption of proportional 

hazards of Cox proportional hazards model. A test for the functional form of the continuous 

covariates showed M.ZKON0 should not be included in the model on its original scale for all 

models. However, when M.ZKON0 enters the model on logarithmic scale, the additive model 

gave appropriate fit. Therefore, when fitting an additive model, one should use log-M.ZKON0 to 

get an acceptable fit of the model. But we could not find an appropriate functional form of this 

covariate for the proportional hazards model. There is no problem with the functional form of 

other covariates.   

 

Additive and proportional hazard models postulate a different relationship between hazard and 

covariates and the subject matter rarely indicates which of the models are preferable. Even 

though these two models all can be used to investigate the effects of risk factors on time to event, 
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the Cox model has been more popular than the additive risk model. One advantage of the 

additive model is that time-varying effects are easy to estimate. This model assumes that the 

covariates act in an additive manner on an unknown baseline hazard rate. The unknown risk 

coefficients are allowed to be functions of time so that the effect of a covariate may vary over 

time. Even though there are many advantages in using the additive hazards model, it is not 

widely used. One reason for this is probably due to the fact that the model only contains 

nonparametric terms, and that the handling of these terms for inferential purposes is not fully 

developed.  
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Appendix  
 

 R – Codes  

 

project<-read.table("C:\\Documents and Settings\\DKN\\My Documents\\Summer 
project\\newdata.txt",header=T) 
TTP=project$TTP 
K.GRAVID=project$K_GRAVID 
K.ALK=project$K_ALK 
K.COF=project$K_COF 
M.COF=project$M_COF 
K.RYG=project$K_RYG 
M.RYG=project$M_RYG 
M.ALK=project$M_ALK 
MKRYG=project$MKRYG 
M.ZKON0=project$M_ZKON0 
 
# 3.1 Data exploration  

# survival functions by KM 
 
library(survival) 
library(timereg) 
fit11<-survfit(Surv(TTP, K.GRAVID)~K.RYG) 
plot (fit11,mark.time=F,lty=c(1,2),ylab="prob.non pregnant",xlab="Days elapsed") 
legend(5,0.3, c("Female non-smokers","Female smokers"), lty=c(1,2)) 
 
fit12<-survfit(Surv(TTP, K.GRAVID)~M.RYG) 
plot (fit12,mark.time=F,lty=c(1,2),ylab="prob. non pregnant",xlab="Days elapsed") 
legend(5,0.3, c("Male non-smokers","Male smokers"), lty=c(1,2)) 
 
# Log rank test  
 
survdiff(Surv(TTP, K.GRAVID)~M.RYG) 
survdiff(Surv(TTP, K.GRAVID)~K.RYG) 
 
# Univariate Cox regression 
  
fit13<-coxph(Surv(TTP, K.GRAVID)~M.COF, project) 
fit14<-coxph(Surv(TTP, K.GRAVID)~K.COF, project) 
fit15<-coxph(Surv(TTP, K.GRAVID)~K.ALK, project) 
fit16<-coxph(Surv(TTP, K.GRAVID)~M.ALK, project) 
fit17<-coxph(Surv(TTP, K.GRAVID)~M.ZKON0, project) 
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# 3.2 Cox proportional hazards Model  

 
fit21<-coxph(Surv(TTP, K.GRAVID)~K.ALK+K.RYG+M.ZKON0+M.COF, project) 
summary(fit21) 
 
# 3.2.1 Goodness of fit procedures for the cox model  

#3.2.1.1 Test for proportional Hazards assumption  

 
diag<-coxph(Surv(TTP, K.GRAVID)~K.ALK+K.RYG+M.ZKON0+M.COF, project) 
time.test<-cox.zph(diag,transform="log") 
print(time.test) 
par(mfrow = c(2, 2)) 
plot(time.test) 
 
#3.2.1.2 Cox Snell residual  

 
mr=residuals(diag,type="martingale") 
csr= K.GRAVID-mr 
r.surv=survfit(Surv(csr,K.GRAVID)~1) 
plot(r.surv$time,-log(r.surv$surv),xlab="cox-snell residual rd", ylab="cumulative 
hazard on csr") 
lines(c(0,3),c(0,3)) 
 
#3.2.1.3 Cumulative martingale residuals. 

 
fit23<-cox.aalen(Surv(TTP, K.GRAVID)~prop(K.ALK) 
+prop(K.RYG)+prop(M.ZKON0)+prop(M.COF),max.time=195,residuals=1,n.sim=1000,project) 
resids<-cum.residuals(fit23,project,cum.resid=1) 
summary(resids) 
par(mfrow = c(1, 3)) 
plot(resids,score=2) 
 
logM.ZKON0<-log(1+M.ZKON0) 
 
fit24<-cox.aalen(Surv(TTP, 
K.GRAVID)~prop(K.ALK)+prop(K.RYG)+prop(logM.ZKON0)+prop(M.COF),max.time=195,residuals
=1,n.sim=1000,project) 
resids<-cum.residuals(fit24,project,cum.resid=1) 
summary(resids) 
par(mfrow = c(1, 1)) 
plot(resids,score=2, specific.comp=2) 
 
# 3.3 Extended Cox model with time varying regression effects 

 
fit21<-timecox(Surv(TTP, K.GRAVID)~ K.ALK+K.RYG+M.ZKON0+M.COF, max.time=195,project) 
par(mfrow = c(3, 3)) 
plot(fit21,ylab="Cummulative coefficient",xlab="Time(days)") 
summary(fit21) 
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# 3.3.2 Goodness of fit  

 
fit10<-timecox(Surv(TTP, K.GRAVID)~K.ALK+M.RYG+M.ZKON0+M.COF,project,max.time=195 
,residuals=1,n.sim=1000) 
resids<-cum.residuals(fit10,project,cum.resid=1) 
par(mfrow = c(1, 3)) 
plot(resids,score=2) 
summary(resids) 
 
fit11<-timecox(Surv(TTP, 
K.GRAVID)~K.ALK+M.RYG+logM.ZKON0+M.COF,project,max.time=195,residuals=1,n.sim=1000) 
resids<-cum.residuals(fit11,project,cum.resid=1) 
par(mfrow = c(1, 3)) 
plot(resids,score=2) 
summary(resids) 
 
##3.4 Additive models  

 
fit31<-aalen(Surv(TTP, K.GRAVID)~K.ALK+K.RYG+M.ZKON0+M.COF, project,max.time=195) 
summary(fit31) 
par(mfrow = c(3, 3)) 
plot(fit31, xlab="Time(days)") 
 

# 3.4.1 Goodness of fit  

## Cumulative martingale residuals  

 
fit12<-aalen(Surv(TTP, 
K.GRAVID)~K.ALK+M.RYG+M.ZKON0+M.COF,project,max.time=195,residuals=1,n.sim=1000) 
resids<-cum.residuals(fit12,project,cum.resid=1) 
par(mfrow = c(1, 3)) 
plot(resids,score=2) 
summary(resids) 
 
fit121<-aalen(Surv(TTP, 
K.GRAVID)~K.ALK+M.RYG+logM.ZKON0+M.COF,project,max.time=195,residuals=1,n.sim=1000) 
resids2<-cum.residuals(fit121,project,cum.resid=1) 
par(mfrow = c(1, 3)) 
plot(resids2,score=2) 
summary(resids2) 
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