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Samenvatting

Interactienetwerken beschrijven een waaier van systemen uit de samenleving
en de natuur. Vaak geciteerde voorbeelden zijn het World Wide Web, een
netwerk van documenten (webpagina’s) gelinkt met elkaar via verschillende
hyperlinks (URL’s) [5, 52] en de cel [70], een netwerk van chemische (genen)
connecties via biochemische reacties.

Een biologisch netwerk kan beschreven worden als volgt. Een organisme,
zoals gist, bestaat uit genen, protëınen en andere elementen. Deze genen
en protëınen zijn de knopen in zulke netwerken en kunnen verbonden worden
met andere genen en protëınen in dat netwerk. Wanneer een gen of protëıne
zich onregelmatig gedraagt, kan een ziekte optreden. Om dit te begrijpen, is
het dus belangrijk dat deze genen/protëınen opgespoord kunnen worden.

Celdeling, bijvoorbeeld, zorgt voor het herstel van een weefsel en elke cel bevat
genen die de celdeling controleren. Indien een gen zich onregelmatig gedraagt,
en dus de celdeling bëınvloedt, kan dit leiden tot een ongecontroleerde groei
van weefsel, gekend als kanker. Deze ongecontroleerde groei kan gestimuleerd
of afgeremd worden door enerzijds externe factoren, zoals hormonen en chemis-
che substanties, en anderzijds intern door andere genen. Om deze genen te
kunnen opsporen, stellen we hun onderlinge wisselwerking voor met behulp
van een interactienetwerk. Dit modelleren we als een interactiematrix, die
voor elk koppel genen de graad van bëınvloeding tussen beide weergeeft.

De laatste decennia is het onderzoeksgebied van genetica en bio-informatica
sterk gegroeid, o.a. dankzij de ontwikkeling van microarray-technologie. Via
deze technologie is het mogelijk om gen-en protëıne-expressies—het gedrag
van genen en protëınen over de tijd—te meten.

vii
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Vele onderzoeken met betrekking tot het modelleren van gen/protëıne-inter-
acties werden reeds uitgevoerd. Voor een overzicht verwijzen we naar de
Jong [22], Bower [16] en anderen [27, 41, 58, 37]. Anders dan in deze stud-
ies, zijn wij niet gëınteresseerd in statische modellen, die gefocust zijn op co-
occurence, maar in dynamische modellen, waar de aandacht ligt op de causale
verbanden.

Probleemstelling

Realistische netwerken bevatten zeer veel knopen. Vanuit de biologie is geweten
dat gen-protëıne interactienetwerken uit een duizendtal knopen bestaan. Bi-
jgevolg zijn er miljoenen mogelijke interacties tussen deze knopen. Toch wordt
elke knoop maar bëınvloed door een beperkt aantal andere knopen. Realis-
tische netwerken kunnen dus worden voorgesteld als dunne grafen, en daarom
zijn we enkel in dit soort netwerken gëınteresseerd.

Om de interacties in zulke netwerken te kunnen identificeren, is een groot
aantal experimentele gegevens nodig. Omwille van de dure experimenten die
hiervoor nodig zijn, zijn er in de praktijk maar een beperkt aantal metingen
beschikbaar in vergelijking met het aantal knopen. We hebben dus te maken
met een ondergedetermineerd systeem. Omwille van deze beperking, kunnen
identificatieproblemen opduiken, en is het dus belangrijk om zoveel mogelijk
informatie over het onderliggende systeem te bekomen.

Ruis, zowel meetruis als systeemruis, is alom tegenwoordig in realistische data,
daarom is het belangrijk om een algoritme te ontwikkelen dat hiermee kan om-
gaan.

Naast het identificeren van dunne interactienetwerken, zijn we ook gëınteres-
seerd in de opslagcapaciteit van input-output-patronen. Voor elke input bestaat
er een output. Door het opslaan van deze patronen kan een systeem leren en
op een gepaste manier reageren op een bepaalde input.

We zijn in dit werk dus gëınteresseerd in de relatie tussen het aantal vari-
abelen en het aantal observaties, de verbondenheid, de invloed van ruis en de
opslagcapaciteit van netwerken.
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Oplossingen

Identificatie van dunne, dynamische interactienetwerken

Om een interactienetwerk te kunnen identificeren, moet een wiskundig model
opgesteld worden dat een gedetailleerde beschrijving geeft van het probleem.
Gebaseerd op differentiaalvergelijkingen zijn in dit werk twee algoritmes voor-
gesteld voor het modelleren en identificeren.

In het Single Linear Model wordt de toestandsruimte beschouwd als één geheel.
De interacties, voorgesteld door systeemmatrices, worden gemodelleerd door
middel van een lineair dynamisch systeem. Omwille van het groot aantal
onbekenden, worden oneindig veel oplossingen voor het systeem gevonden,
waarvoor de L1-minimalisatie techniek de meest dunne selecteert.

Voor het tweede model, het Piecewise Linear Model, wordt de toestandsruimte
opgesplitst in subsystemen. Hiervoor is een gewichtenmatrix gedefinieerd.
Deze geeft het lidmaatschap weer voor elke observatie tot een bepaald subsys-
teem. Als gevolg van het combineren van de systeemmatrix met de gewichten
matrix, kan elk subsysteem bepaald worden door middel van het Single Linear
Model.

Uit de experimenten kunnen we concluderen dat zowel het Single Linear Model
als het Piecewise Linear Model zeer snel zijn. Verder zijn beide modellen in
staat om een dun dynamisch interactienetwerk nauwkeurig te bepalen uit-
gaande van een beperkt aantal observaties.

Netwerk identificatie geformuleerd als een leer probleem

Om enerzijds de relatie tussen het aantal onbekenden en het aantal observaties
en anderzijds de invloed van het dunne karakter meer gedetailleerd te bestud-
eren, herformuleren we het probleem als een machine learning probleem. In
deze context moet een model geleerd worden dat het onderliggende systeem
identificeert. Daarnaast moet het model in staat zijn om te generaliseren.
Hiermee bedoelen we dat een model, dat geleerd wordt met behulp van een
oefenset, ook in staat moet zijn een valideringset, d.w.z. data niet gebruikt
door het algoritme, correct met het onderliggende systeem in overeenstemming
te brengen.

Uit de experimenten volgt dat, startend van een relatief kleine oefenset, het
leerproces een perfecte overeenstemming simuleert. Verder concluderen we
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ook dat de overgang naar generalisatie, in functie van het aantal observaties,
zeer abrupt is en dat de kwaliteit van de overeenstemming sterk afhangt van
het dunne karakter van het netwerk.

Een meer verrassend resultaat is dat voor elke component de inkomende inter-
acties onafhankelijk gëıdentificeerd kunnen worden. Hieruit volgt dat de gen-
eralisatie voor verschillende systeemgroottes, de verhouding tussen het aantal
observaties en het aantal onbekenden, berekend kan worden door middel van
het correct schalen van de systeemgrootte.

Helaas zijn beide modellen, het Single Linear Model en het Piecewise Lin-
ear Model, niet robuust zijn ten opzichte van ruis. Als een gevolg wordt de
L1-minimalisatie, dat aan de basis ligt voor beide modellen, aangepast en een
regularisatieparameter wordt toegevoegd. Deze parameter hangt af van de
systeemgrootte en zoekt naar een balans tussen voorwaarden dat het netwerk
dun is en de robuustheid van de overeenstemming met het systeem, rekening
houdend met ruis.

Opslagcapaciteit van lineaire netwerken

Naast het identificeren van dunne, dynamische netwerken en het bestuderen
van de invloed van de systeemgrootte, de mate waarin het netwerk dun is
en de ruis hebben we ook nog de input-ouput-opslagcapaciteit van netwerken
onderzocht.

Het maximaal aantal outputs dat opgeslagen kan worden hangt af van het
aantal inputs, zowel interne inputs van componenten als externe inputs van
externe invloeden zoals licht, temperatuur, enzovoort.

Om te bestuderen hoe de patronen opgeslagen worden, kan opnieuw gebruik
gemaakt worden van lineair programmeren. Uit de experimenten kan worden
afgeleid dat de opslag in drie fasen gebeurd. In de eerste fase slaat het systeem
de output op die enkel afhangt van de externe input. In de tweede fase is de
opgeslagen output afhankelijk van voornamelijk de interne input, dus van de
interacties in het netwerk. In de derde fase, tenslotte, is de opgeslagen output
het resultaat van zowel de interne als de externe input.

Voorbeeld van een toepassing

Om dit werk af te ronden, worden het Single Linear Model en het Piecewise
Linear Model toegepast op een gist data set van Spellman [70]. Deze gist, Sac-
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charomyces cerevisiae, is een eencellige schimmel die voorkomt in wijndruiven.
Deze data bevatten expressieprofielen voor meer dan 6000 genen gemeten met
behulp van microarrays op 24 tijdstippen verspreid over 5 uren.

Alvorens te starten met de identificatie van het netwerk, werden alle genen
met missende waarden en waarvoor de genexpressie niet voldoende varieert,
verwijderd. Na deze voorbereidingsstap bleven er nog 290 genen over. Verder
werden alle genen met gelijkaardige genexpressies, dus met gelijkaardig gedrag,
gegroepeerd. Dit levert ons uiteindelijk een dataset op bestaande uit 16 gen-
representatieves en 24 observaties.

Zoals verwacht kan worden uit de voorgaande studies, bevestigen de experi-
menten dat het Single Linear Model en het Piecewise Linear Model in de orig-
inele vorm, dus zonder de regularisatieparameter, geen aanvaardbare overeen-
stemmingen opleveren. De oorzaak hiervan is de aanwezigheid van ruis in de
data. Toch kunnen we besluiten dat het Piecewise Linear Model een dunne
interactiematrix oplevert.

Wanneer we het aangepaste Piecewise Linear Model, dus met de toegevoegde
regularisatieparameter, toepassen op de gist data, verkrijgen we een nog dun-
nere interactiematrix met een betere overeenstemming. Toch moeten we beken-
nen dat de kwaliteit van de overeenstemming nog steeds redelijk laag is.

Toch eindigen we met een positief gevoel. In deze thesis hebben we steeds
met grote netwerken— bestaande uit 80 tot 300 componenten — en artificiële
data gewerkt. Dit resulteerde steeds in numerieke experimenten die statistisch
relevant zijn.
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1
Introduction

1.1 Motivation

Interaction networks describe a wide range of systems in society and nature.
Frequently cited examples include the World Wide Web [5, 52], a network of
documents (web pages) connected by various hyperlinks (URL’s), and the cell,
a network of chemicals (genes) linked by biochemical reactions [70].

A biological interaction network can be described as follows. An organism,
e.g., yeast, consists out of genes, proteins, and other elements. These genes
and proteins are the nodes in such networks and can be connected to other
genes and proteins in that network. Each gene/protein has different functions
and can thereby activate or disactivate others. A gene/protein expression rep-
resents the behavior for each gene/protein at certain time instants. When one
or more genes/proteins, regardless of their interactions, behave irregular, a
disease can occur. To repair or limit the “damage”, it is thus important to
detect and understand these genes/proteins and their behavior.

For example, each organism’s cell contains genes that control the cell-division
when certain tissue needs to be repaired. When these genes act erratically, an
uncontrolled growth of tissue by cell-division ensues, known as cancer. This
uncontrolled growth can be stimulated or slowed down by external factors
such as hormones and chemical substances as well as internally by other genes.
Therefore, it is very important to trace these irregular genes and the external-
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2 Introduction

and internal factors that influence their expression level. By representing the
genes/proteins activities of an organism as an interaction network—a matrix
which contains the rate of interaction for each pair of components—tracing
these interactions can be simplified by evaluating this corresponding interac-
tion matrix.

Over the last two decades, research in the area of genetics and bio-informatics
has increased spectacularly, and the gene-protein networks are beginning to be
understood. One of the main contributing factors has been the development of
microarray technologies, which has enabled the measurement of gene/protein
expression levels and profiles on a genome-wide scale. Furthermore, from the
experiments it is known that these networks are sparse, each gene only inter-
act with a small number of other genes. This motivates us to try to identify a
dynamic, sparse interaction network from noisy measurement data, such as a
set of experimental microarray time series. Over the years, a number of differ-
ent formalisms for modeling the interactions amongst genes and proteins have
been presented. For a thorough overview, we refer to de Jong [22], Bower [16],
Guthke et al. [42], and others [27, 41, 58, 37].

In contrast to other work, we are interested in dynamical models which fo-
cus on cause-effect relations, and do not discuss static models which focus
on co-occurrence. A prerequisite for the successful reconstruction of these
networks is the way in which the dynamics of their interaction is modeled.

1.2 Problem statement

First, we consider the problem of modeling and identifying sparse, dynamic
interaction networks from a given set of observations.

Real-world networks consist of a high number of nodes or components. Hence,
there are millions of possible interactions between these components. How-
ever, this does not necessarily imply that there are also a high number of actual
interactions between the components, however. Most often, components are
influenced by only a small number of others. Therefore, we are interested in
sparsity criteria.

To identify the interactions for such networks, a very large number of ex-
perimental data is required. In practice, however, due to the high costs of
experiments, only very few measurements are performed compared to the vast
amount of unknown interactions. This means that we have to deal with a
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large number of unknowns and a small number of observations (poor data).
This substantial lack of data can give rise to an identification problem. It
thus becomes crucial to work around this by exploiting as much as possible
additional information about the underlying system.

Furthermore, noise is ubiquitous in real-world applications. Hence, it is manda-
tory to test the robustness of the algorithm to be developed.

Beside the identification of sparse interaction networks, we are also interested
in the capacity of these interaction networks to store input-output patterns.
For each input, there exists an output. By storing these patterns, a system
can learn and react appropriately to a given input. For example, the more
input-output patterns an organism can store, the more it learns, and the bet-
ter it is capable to give the best response.

Summarized, to identify interaction networks, it is important to understand
their dynamics. Hence, we are interested in the relation between the number
of components and the number of observations, the sparsity of the network,
and the influence of noise. Furthermore, we are interested in the storage ca-
pacity of sparse interaction networks.

It is useful to have an algorithm that is able to identify networks. Because per-
forming experiments is accompanied with high costs and measurement noise,
algorithms have a large advantage if they are able to deal with poor and noisy
data sets.

1.3 Preliminaries

As already mentioned, our aim is to identify and reconstruct a sparse in-
teraction network, or regulatory network, with a relatively small amount of
observations.

Let us denote the number of components, in the biological case the num-
ber of gene expression levels, by N and the interaction network by a matrix A
that contains the interaction coefficients. Because each component can inter-
act with each other component, the dimension of A is N × N . Furthermore,
we have a matrix B that contains the external stimuli coefficients. P external
influences can interact with all N components, therefore, the dimension of the
external input matrix B is N × P .
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The system matrix A is sparse, because it consists mostly of zeros. Indeed,
most components (genes/proteins) interact with only a relatively small num-
ber of other components. We use k to denote the number of non-zero entries
per row of A. This k is not constant and can thus be different for each row of
A. In our experiments, k will be the same for each row. This assumption is
not a restriction, because k will be estimated during the learning. Note that
the rate of sparsity has to be much smaller than the number of components,
k � N + P .

To identify such networks, we need a data set. For a biological network, this
data set represents microarray readings from samples taken at different time
instants. A microarray consists of an arrayed series of thousands of micro-
scopic spots, whereby each spot contains DNA of one specific gene/protein,
for an example see Figure 1.1. A microarray can be used to measure the
gene/protein activity at a certain observation. Thus, to study the changes in
expression levels, microarrays are taken at different time points.

Figure 1.1: An example of a microarray.

Matrix X ∈ R
N×M denotes the observations taken at these time instances

t1 . . . tM , such that X = x[1], . . . , x[M ]. Because of the high costs, only a very
few microarray experiments are performed. Therefore, we have to deal with
poor data: only a small number of observations are available compared to the
number of components, i.e., M � N . Hence, the system is underdetermined.
One standard approach to circumvent this problem is by dimension reduction
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through the clustering of related components. A different perspective is of-
fered by including the sparsity.

Furthermore, it is assumed that there is knowledge of the input signal u(t)
for 1 ≤ t ≤ M and accurate estimates of the state derivatives at these time
instants can be computed. The way to estimate Ẋ = ẋ[1], . . . , ẋ[M ] is by
interpolation of the state observations. The derivative ẋ(tk) can be approxi-
mated from the observations, e.g., ẋ[k] ≈ (x[k] − x[k − 1])/(tk − tk−1).

In this work, it is thus always assumed that the data matrices Ẋ, X and
U—also called empirical data—are known. Given these data, the matrices
A and B—also known as system matrices or system parameters—need to be
identified.

Noise is ubiquitous in real-world applications. Hence, it is mandatory to
test the algorithm’s robustness. For the biological network, noise represents
system and measurement noise. System noise is divided into intrinsic noise,
which varies from cell to cell and over time in a single cell, and extrensic noise,
which is global to a single cell but varies from one cell to another. Measure-
ment noise arise from the experiments. So, to complete the system’s data set,
the contribution of some system noise, ξ, is added to the output data set Ẋ,
and the contribution of some measurement noise, ζ, is added to the output
measurement set Y . They are normally distributed with zero mean and some
standard deviation σ that determines the noise level.

We will also study the identification process as a machine learning process. A
learning process is defined by Mitchell [53] as searching through a very large
space of possible hypotheses to determine one that best fits the observed data
and any prior knowledge held by the learner. Machine learning techniques are
useful first, when, large databases may contain valuable implicit regularities
that can be discovered automatically, second, in poorly understood domains
where humans might not have the knowledge needed to develop effective al-
gorithms, and, third, in domains where the program must dynamically adapt
to changing conditions.

Learning problems requires an exhaustive search of all possible subsets of fea-
tures of the chosen cardinality. If large numbers of features are available, this
is impractical. For practical learning algorithms, the search is for a satisfactory
set of features instead of an optimal set. To select such a subset of relevant
features for building a robust learning model, the term feature selection is used.
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Later in this work, we are interested in the maximum number of linearly
independent input-output patterns that can be stored in a network. A pat-
tern represents the input at a certain time instance and its optimal network
response.

1.4 Theoretical foundation

Real-world networks, studied in Chapter 2, consist of a high number of nodes
or components. For the World Wide Web, the unregulated growth of web pages
and the interactions between them leads to a huge and complex web, which
becomes a large network, close to 20 billion nodes at the end of 2005 (see [2]).
From biology, it is known that sparse gene-protein interaction networks consist
of thousands of components. Hence, there are millions of possible interactions
between these components. Therefore, to identify such sparse networks, we
have to deal with poor data.

Before we are able to identify and reconstruct sparse networks, we have to
model the interactions between the unknown components. In Chapter 3, these
interactions will be considered as reactions so that they can be represented as
a set of ordinary differential equations:

ẋ = f(x, u|θ) + ξ(t). (1.1)

Here, x(t), called the state-vector, denotes the activity of the N unknown
components at time t—possibly involving higher order time derivatives, u(t)
denotes the P controlled inputs to the system, ξ(t) denotes a stochastic Gaus-
sian white noise term with mean zero. Moreover, this expression involves a
parameter vector θ that contains the coupling constants between the compo-
nents activities.

Starting from this rate equation, we introduce and study two models, the
Single Linear Model in Section 3.2.1, and the Piecewise Linear Model in Sec-
tion 3.2.2.

First, we consider the Single Linear Model. For this model, the entire state-
space is considered as one big space, whence the systems behavior is governed
by its specific (un)stable equilibrium point, and the interactions are modeled
by a linear dynamic state-space system of the form

Ẋ = AX + BU + ξ.

This equation is a simplified form of the ordinary differential equation 1.1 with
Ẋ, X and U the known data matrices. Because the number of observations is
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much smaller than the number of unknowns, infinitely many solutions for the
system matrices A and B can be found, from which the linear programming
will select the most sparse interaction matrix A. Thus, to identify a sparse
interaction matrix, the technique of partial L1-minimization is used where the
sparsity criterion is used as a constraint.

Second, we consider the Piecewise Linear Model. The entire state-space is
being partitioned into cells or subsystems, where attractors reign. Thus, the
behavior of the state-vector can be described by motion through this collection
of subsystems, swiftly moving through subsystems of repellers, until they enter
the basin of attraction of an attractor. Under the effects of external agents
(via the external input-vector) or by stochastic fluctuations, they can leave this
subsystem, and start wandering again, thereby repeating the process. Now, a
vital assumption is that in each subsystem the behavior is governed by spe-
cific (un)stable equilibrium points. Therefore, it is possible to make a linear
approximation of the ordinary differential equation for each subsystem with
index ` as

Ẋ = A`X + B`U + c`.

By introducing a weight matrix—which represents the membership functions
of observation m to subsystem `, this piecewise linear differential equation can
be reformulated as a single linear differential equation:

Ẋ = H1X + H2U + ξ.

Therefore, the Piecewise Linear Model is computationally strong, because the
identification of the Single Linear Model is very fast. Similarly, Ẋ , X and
U are the known data matrices. H1 and H2 relate to the weight matrix and
the—unknown—system matrices such that this is no longer a linear prob-
lem. Therefore, we follow a different approach and split the problem into a
linear programming (LP) and a “matching” algorithm. Because of this, the
technique of L1-minimization can be used again, controlled by the distance
between the data and the model.

In Chapter 4, we want to generalize this process of identification and recon-
struction and reformulate it as a learning process. For our model, we have
a teacher, T = (A∗, B∗). For the teacher’s output on some input X, the
following equation holds:

T (X) = A∗X + B∗U.
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The aim is to reproduce the teacher’s output for any input perfectly after
seeing M examples, so we need a student, S = (Aest, Best), to learn. Learn-
ing means that the algorithm has to determine the subset of features used by
the teacher. In this context, the algorithm has to search for the interactions,
(Aest, Best), using the known data set (Ẋ,X,U) and the rate equation, intro-
duced above, such that (Aest, Best) is an acceptable fit for the original one,
(A∗, B∗). With an “acceptable” fit, we mean that the estimated matrix can
differ from the original one with a small but acceptable rate of error.

The unknown components of networks interact with each other, but they also
interact with external stimuli. The variety of the stimuli, e.g., for the biologi-
cal network, is immense. They can be either harmful or beneficial, obligatory
or supplementary, lethal or lifesaving. They range from (lack of) illumination,
(too low or high) temperature, (shortage of) food and water, to toxic agents
and viral or bacterial infections. The efficiency of an organism directly de-
pends on its ability to optimally react to these external inputs.

If a specific influence, from another component or from an external stimu-
lus, is presented with some regularity, it is greatly beneficial for the system
to learn and remember its best response. Response here is the output of
the system. The pair of the input and the optimal network response defines
an input-output pattern, which the interaction network has to “store” in its
“memory”. For example, the more patterns an organism can store with its
current network architecture, the better the organism is equipped to live in
its natural environment.

The potential of sparse interaction networks to store sparse input-output pat-
terns is studied in Chapter 5. This problem bears similarity to the engineer-
ing task of network identification from experimental data and is based on the
folowing equation:

Ẋ = AX + BU + ξ.

The central question in Chapter 5 thus concerns the memory capacity of a net-
work of N components which interact according to a simple linear state-space
model with P external outputs. It is assumed that the set of best responses
to a given input is available.

In Chapter 6, we will apply our identification approach on a real dataset stem-
ming from Spellman et al. [70], which is available at [1]. Yeast Saccharomyces
cerevisiae is an unicellular fungus found naturally in grapevines which is re-
sponsible for wine-making fermenting sugars and producing alcohol. For this
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data, the expressions profile of about 6000 genes are measured by microarrays
at 24 time points every five hours.

To identify and reconstruct the interactions, the Single Linear Model and
the Piecewise Linear Model will be applied on this dataset.

1.5 Numerical experiments and simulations

All experiments were performed on a PC with an Intel Pentium M processor
of 1.73 GHz and 1 GB RAM memory under Windows XP Professional. For
identification purposes, we have used the following software packages:

1. Matlab 6.5 Release 13, including the Optimization Toolbox. The lat-
ter’s routine linprog was used to solve LP problems. Its default solution
method is a primal-dual interior point method, but an active set method
can optionally be used, too. For larger problems, it turned out to be es-
sential for obtaining reasonable computation times that the LP problems
were solved by application of the active set method on the dual problem
formulation. Therefore, this method was adopted throughout all the
experiments.

2. The computer algebra package Maple 9.5. The standard implementation
of linear programming in Maple is used, which is very convenient since it
allows to specify the objective function and the constraints symbolically.

The advantage of Maple is that an LP problem is formulated in terms of
equalities and inequalities. Therefore, constraints can be adapted easily and
small experiments can be run fast. In Matlab, the LP is formulated in terms
of matrices, which are computed via a number of transformations. These
transformations take some time and errors can appear. For large experiments,
Matlab is faster.

Since results can depend on the particularities of given data and the original
system that generated it, all experiments have been performed on a number of
independent runs on randomly selected data and systems. Hence they convey
the behavior of our approach “on average”.

To measure the quality of the identification process, we will use the following
quantities:

• CPU-time, Tc;

• false positives, nfpos;
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• false negatives, nfneg;

• correlation errors, ncorr;

• zero-threshold, θz;

• system error, Ne;

• student-teacher error, S � T ;

• validation error, εval;

• generalization error, εgen;

• data error, De.

Using the internal clock, the CPU-time, Tc, is used to measure the time re-
quired to perform the full computation.

To check whether or not the student and teacher agree, we use the number of
false positives, the number of false negatives, and the correlation error. Con-
cretely, nfneg represents the number of interactions from the original system A∗

that do not occur in the resulting system, Aest, nfpos represents the number of
interactions from the resulting system that do not occur in the original system
and ncorr represents the number of components of the original and resulting
system that are significantly non-zero, but have an opposite sign. With k∗ the
number of non-zeros per row of A∗,

0 ≤ nfneg ≤ Nk∗;
0 ≤ nfpos ≤ N(N − k∗);
0 ≤ ncorr ≤ Nk∗ − nfneg.

To decide whether a component is zero or not, the zero-threshold, θz, is in-
troduced. For all experiments θz = 10−5. This means that if component
|Aij | > θz, Aij is assumed to be a non-zero component, and vice versa.

The system errors, Ne, are generated in the reconstruction by the failure of the
algorithm to identify the true non-zero elements of the original sparse inter-
action matrix A∗. The false positives and false negatives in the reconstructed
interaction matrix Aest are added up to produce the total number of system
errors:

Ne =
nfpos + nfneg + ncorr

N
.
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The student-teacher error, S � T , compares each component of the student
with the corresponding component of the teacher:

S � T =
N
∑

i=1

N
∑

j=1

z

N2
with







z = 1 if |Aesti,j
| > θz and |A∗

i,j| > θz or
|Aesti,j

| ≤ θz and |A∗
i,j| ≤ θz;

z = 0 else.

It is important that the approach is not only capable of reproducing the orig-
nal input, but it should also be able to perform well on input that was not
used by the algorithm. To test this generalization ability the validation error,
the generalization error, and the data error are defined.

The validation error, εval, is defined as the number of input-output pairs
(xv, uv, ẋv) of a validation set of size V (with 1 ≤ v ≤ V ) that is not re-
produced by the student for one independent run:

εval(A
∗
i , B

∗
i , χtri) =

V
∑

v=1

H

(

|Aestxv + Bestuv − ẋv|

|ẋv|
− εerr

)

,

with H(x) = 1 if x > 0 else H(x) = 0 and εerr the maximum deviation from
zero that is considered insignificant.

The generalization error, εgen, is defined as the ratio of the number of stu-
dents wherefore εval > 0 to the total number of independent runs:

εgen =
1

nrRuns

nrRuns
∑

i=1

H (εval (A
∗
i , B

∗
i , χtri)) ,

with χtr an independent training set for each run. Note, the validation error
is a measure for one run of the algorithm, whereas the generalization error
measures the performance of the algorithm.

The difference between the desired system output, Ẋ∗, and the resulting sys-
tem output, Ẋest, is computed by the data error :

De =
|Ẋest − Ẋ∗|

|Ẋ∗|
.

1.6 Publications

The chapters in this dissertation are based on the publications [45, 46, 47, 81,
82, 83].





2
Dynamical behavior of

interaction networks

2.1 Properties of real-world networks

The simplest and most straightforward form of a network—without apparent
design principles— is the random graph, first studied by Rapoport [65, 66, 69]
and by Erdös and Rényi [28, 29]. Most of the interesting features of real-world
networks that have attracted the attention of researchers in the last few years,
however, concern the ways in which networks are not like random graphs. In
this Section, we describe the three most prominent features that appear to be
common to networks of many different types.

2.1.1 The small-world effect

In a network with the small-world property, most pairs of vertices are con-
nected by a short path through the network. Consider an undirected network,
and let us define l to be the mean geodesic (i.e., shortest) distance between
vertex pairs in a network:

l =
1

1
2n(n + 1)

∑

i>j

dij , (2.1)

where n is the number of vertices and dij is the geodesic distance from vertex
i to vertex j. Thus for a small-world network, l is proportional to log n.

13
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The small-world effect has obvious implications for the dynamics of processes
taking place on real-world networks. For example, if one considers, e.g., the
spread of information across a network, the small-world effect implies that that
spread will be fast on most real-world networks. If it takes only a small number
of steps for a rumor to spread from any person to any other, for instance, then
the rumor will spread much faster than if it takes a hundred steps, or a million.

On the other hand, the small-world effect is also mathematically obvious.
Pool and Kochen [64] noted that, if the number of vertices within a distance
r of a typical central vertex grows exponentially with r—and this is true for
many networks, including the random graph (see Section 2.3.1), the value of
l will increase as log n. In recent years, the term small-world effect has taken
on a more precise meaning: networks are said to show the small-world effect
if the mean geodesic distance l scales logarithmically or slower with network
size for fixed mean degree. Logarithmic scaling can be proved for a variety
of network models [13, 14, 19, 23, 33] and has also been observed in various
real-world networks [4, 55]. Some networks have mean vertex-vertex distances
that increase slower than log n. Bollobás and Riordan [15] have shown that
networks with power-law degree distributions (see Section 2.1.3) have values
of l that increase no faster than log n/ log log n.

2.1.2 The network transitivity and clustering coefficient

If vertex A is connected with vertex B and vertex B is connected with vertex C,
then vertex A is connected with vertex C with high probability. This property
is called clustering or network transitivity. In the language of social networks,
the friend of your friend is likely also to be your friend. In terms of network
topology, the network contains triangles—sets of three vertices that are all
connected to each other. To quantify, a clustering coefficient C is defined:

C =
3 × number of triangles in the network

number of connected triples of vertices
, (2.2)

where a “connected triple” means a single vertex with two neighbors, which
are or are not connected with each other (see Figure 2.1). The definition
implies that C lies in the range of 0 ≤ C ≤ 1. Notice that C = 1 if and only
if the network is a clique. More concrete, C is the mean probability that two
vertices that are neighbors of the same vertex are neighbors of each other.
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Figure 2.1: Illustration of the definition of the clustering coefficient C (Equa-
tion 2.2). This network has one triangle and eight connected triples, and
therefore has a clustering coefficient of 3 × 1

8 = 3
8 .

2.1.3 The degree distribution

Not all nodes in a network have the same number of edges. The degree k of a
vertex in a network is the number of connections to that vertex. The spread
in the degrees is characterized by a distribution function pk, which gives the
probability that a randomly selected vertex has degree k.

Since in a random graph the edges are placed randomly, the majority of ver-
tices have approximately the same degree, close to the average degree k of the
network. The degree distribution of a random graph is a Poisson distribution
with a peak at pk. For most large networks, the degree distribution signifi-
cantly deviates from a Poisson distribution. In particular, for a large number
of networks, including the World Wide Web [5, 52], the Internet [30, 18, 78]
or Metabolic Networks [48, 49], the degree distribution has a power-law tail,

pk ∼ k−γ , (2.3)

with, for example, γ = 2.1 for the World Wide Web [5], γ = 2.2 for the
Internet [30] and γ = 2.2 for the Metabolic Network of Escherichia coli [49].
For more details, see also Section 2.2. Often, a histogram of the degrees of the
networks vertices is used to represent the degree distribution for that network.
Because of the power-law, histograms are usually rather noisy in the tail. An
alternative way of presenting the degree is to make a plot of the cumulative
distribution function

pk =

∞
∑

k′=k

pk′ , (2.4)

which is the probability that the degree is greater than or equal to k.
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2.2 Real-world networks

Complex network structures describe a wide variety of systems of high tech-
nological and intellectual importance. For example, a biological cell is best
described as a complex network of chemicals connected by chemical reactions;
the Internet is a complex network of routers and computers linked by various
physical or wireless links; fads and ideas spread on the social network, whose
nodes are human beings and whose edges represent various social relation-
ships; and the World Wide Web is an enormous virtual network of web pages
connected by hyperlinks. These systems represent just a few of the many ex-
amples that have recently prompted the scientific community to investigate
the mechanisms that determine the topology of complex networks. In this
Section, we describe some examples more into detail.

2.2.1 Information networks: the World Wide Web

An example of an information network is the World Wide Web. This network
represents the largest real-world network for which topological information is
currently available. Any individual can create a website with any number of
documents and links. This unregulated growth leads to a huge and complex
web, which becomes a large directed graph whose vertices are the documents
(web pages) and the edges are the hyperlinks (URLs) that point from one
document to another (see Figure 2.2). Albert, Jeong, and Barabási [5] have
found that the size of this network was close to one billion nodes at the end
of 1999, and in http://www.boutell.com/newfaq/misc/sizeofweb.html, it
is shown that this increased to 20 billion at the end of 2005.

Figure 2.2: Network structure of the World Wide Web. The nodes of the World
Wide Web are web documents, connected with directed hyperlinks (URLs).

Since the edges of the World Wide Web are directed, the network is character-
ized by two degree distributions, the out-degree and in-degree. The out-degree
distribution is the probability that a document has k outgoing hyperlinks pout
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and the in-degree distribution is the probability that k hyperlinks point to a
certain document pin. Several studies [5, 52, 17, 3] have established that both
have power-law tails. Albert, Jeong, and Barabási [5] have studied a subset
of the World Wide Web containing 325729 nodes and have found γout = 2.45
and γin = 2.1. Kumar et al. [52] used a 40-million-document crawl by Alexa
Inc., obtaining γout = 2.38 and γin = 2.1.

Despite the large number of nodes, the World Wide Web displays the small-
world property. This was first reported by Albert, Jeong, and Barabási, who
found that the average path length for a sample of 325729 nodes was 11.2
and predicted, using finite size scaling, that for the full World Wide Web of
800 million nodes that would be a path length of approximately 19. Subse-
quent measurements by Broder et al. [17] found that the average path length
between nodes in a 50-million node sample of the World Wide Web is 16, in
agreement with the finite size prediction for a sample of this size.

The directed nature of the World Wide Web does not allow them to measure
the clustering coefficient using Equation 2.2. One way to avoid this difficulty
is to make the network undirected, making each edge bidirectional. This was
the path followed by Adamic [3], who studied the World Wide Web at the
domain level using a 1997 Alexa crawl of 50 million web pages distributed
among 259794 sites. The nodes that had have only one edge were removed,
so a network of 153127 sites was left. While these modifications are expected
to increase the clustering coefficient somewhat, Adamic found C = 0.1078,
orders of magnitude higher than Crand = 0.00023, corresponding to a random
graph of the same size and average degree.

2.2.2 Biological networks: the Metabolic Network

A number of biological systems can be usefully represented as networks, for
which the network of metabolic pathways is a classic one. It is a representa-
tion of metabolic substrates and products with directed edges joining them if a
known metabolic reaction exists that acts on a given substrate and produces a
given product. Studies of the statistical properties of Metabolic Networks have
been performed by, for example, Jeong et al. [49, 63], Fell and Wagner [31],
and Stelling et al. [71].

Biochemical reactions proceed in one direction, so for each node they dis-
tinguish between incoming and outcoming links. As illustrated in Figure 2.3,
their results convincingly indicate that the probability that a given substrate
participates in k reactions follows a power-law distribution. For instance, in
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Figure 2.3: Connectivity distributions for substrates: (a) Archaeoglobus
fulgidus (archae); (b) Escherichia coli (bacterium); (c) Caenorhabditis ele-
gans (eukaryote), shown on a log-log plot, counting separately the incoming
(In) and outgoing links (Out) for each substrate (the parameter kin (kout)
corresponds to the number of reactions in which a substrate participates as a
product (educt)); (d) the connectivity distribution averaged over all 43 organ-
isms. [49]

Escherichia coli, the probability that a substrate participates as an educt in k
metabolic reactions follows incoming degree distribution, with γin = 2.2 and
the probability that a given substrate is metabolised by k different metabolic
reactions follows a similar distribution, with γout = 2.2.
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Understanding the large-scale structure of cellular networks cannot only pro-
vide valuable and perhaps universal structural information, but could also lead
to a better understanding of the dynamical processes that generated them.

To study the small-world character, the shortest biochemical pathway averaged
over all pairs of substrates is called the network diameter. For non-biological
networks examined by Barabási and Albert [6] and Watts and Strogatz [80],
the average connectivity of a node is fixed, which implies that the diameter
of a network increases logarithmically with the addition of new nodes. For
Metabolic Networks, this implies that a more complex bacterium with more
enzymes and substrates, such as Escherichia coli, would have a larger diameter
than a simple bacterium, such as Mycoplasma genitalium. They find, however,
that the diameter of the Metabolic Network is the same for all 43 organisms,
irrespective of the number of substrates found in the given species. This is
unexpected and is possible only if, with increasing organism complexity, indi-
vidual substrates are increasingly connected to maintain a relatively constant
metabolic network diameter. Further, they find that the average number of
reactions in which a certain substrate participates increases with the number
of substrates found within a given organism.

2.2.3 Social networks: the Scientific-Collaboration Network

A social network can be defined as a set of people or groups of people with some
pattern of contacts or interactions between them. Examples are the patterns
of friendship between individuals, business relationships between companies,
and the network of collaborations between scientists, where two nodes are con-
nected if the two scientists have written an article together. To uncover the
topology of this complex network, Newman [55] studied four databases span-
ning physics, biomedical research, high-energy physics, and computer science
over a five-year window (1995–1999).

All these networks show a small average path length, but a high clustering
coefficient, as summarized in Table 2.1. The degree distribution of the collab-
oration network of high-energy physicists is an almost perfect power law with
an exponent of 1.2, while the other databases display power laws with a larger
exponent in the tail.

Barabási et al. [9] investigated the collaboration network of mathematicians
and neuroscientists publishing between 1991 and 1998. The average path
length of these networks is around lmath = 9.5 and lnsci = 6, their clustering
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coefficient being Cmath = 0.59 and Cnsci = 0.76. The degree distributions of
these collaboration networks are consistent with power laws with degree ex-
ponents 2.1 and 2.5, respectively.

Network Size k l lrand C Crand Reference

LANL 52909 9.7 5.9 4.79 0.43 1.8 × 10−4 [55]
MEDLINE 1520251 18.1 4.6 4.91 0.066 1.1 × 10−5 [55]
SPIRES 56627 173 4.0 2.12 0.726 3 × 10−3 [55]
NCSTRL 11994 3.59 9.7 7.34 0.496 3 × 10−4 [55]
Math. 70975 3.9 9.5 8.2 0.59 5.4 × 10−5 [9]
Neurosci. 209293 11.5 6 5.01 0.76 5.5 × 10−5 [9]

Table 2.1: The general characteristics of several co-authorship networks. The
number of nodes, the average degree k, the average path length l and the
clustering coefficient C are indicated. For a comparison, the average path
length lrand and clustering coefficient Crand of a random network of the same
size and average degree is introduced. [55, 9]

2.3 Network structures

One of the most interesting developments in the understanding of complex
networks was the discovery that, for most large networks, the degree distri-
bution significantly deviates from a Poisson distribution. This has initiated a
revival of network modeling in the past few years, resulting in the introduction
and study of three main classes of modeling paradigms: the random networks,
the small-world networks, and the scale-free networks.

2.3.1 Random networks

A random network is a network of nodes that are connected with each other
by a random number of edges.

They are the simplest and most straightforward realization of a complex net-
work and were first studied by Solomonoff and Rapoport [69] and Erdös and
Rényi [28] who proposed a simple model Gn,p of a random network: starting
with n vertices, connect every pair of nodes with probability p to create a net-
work with approximately pn(n − 1)/2 edges distributed randomly. Actually,
Gn,p is the ensemble of all such networks in which a network having m edges
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appears with probability pm(1 − p)M−m—the probability that a node is con-
nected with m other nodes against the probability that this is not true—where
M = n(n − 1)/2 is the maximum possible number of edges.

Many properties of the random graph are exactly solvable in the limit of
large graph size, as was shown by Erdös and Rényi in a series of papers in the
1960s [28, 29]. Typically, the limit for large n is taken holding the mean degree
z = p(n − 1) constant, in which case the model clearly has a Poisson degree
distribution, since the presence or absence of edges is random, and hence the
probability of a vertex having degree k is

pk =

(

n
k

)

pk(1 − p)n−k ≈
zke−z

k!
, (2.5)

with the last approximation tending towards equality in the limit for large n
and fixed k.

The random graph reproduces well one of the principal features of real-world
networks, namely the small-world effect. The mean number of neighbors a
distance d away from a vertex in a random graph is zd, and hence the value of
d needed to encompass the entire network is zl ≈ n. Thus, a typical distance
through the network is l = log n/ log z, which satisfies the definition of the
small-world effect given above. Rigorous results to this effect can be found in,
for instance, articles by Bollobás [13, 14].

However, in almost all other respects, the properties of the random graph
do not match those of networks in the real world. The random graph has a
low clustering coefficient: the probability of connection of two vertices is p
regardless of whether they have a common neighbor, and hence C = p, which
tends to zero as n−1 in the limit for large system size [80]. The model also has
a Poisson degree distribution [78].

Random networks are extended in a variety of ways to make them more realis-
tic. These are called generalized random graphs. Examples are directed graphs
and bipartite graphs. These extensions deal with the problem of the degree
distribution, but they still have a shortcoming in that they fail to capture the
common phenomenon of transitivity.
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2.3.2 Small-world networks

A small-world network is a network in which most nodes are not neighbors of
one another, but most nodes can be reached from any other one by a small
number of steps.

To create a small-world network, Watts and Strogatz [80] created the small-
world model. The idea is to build a network on a low-dimensional regular
lattice and then adding or moving edges to create a low density of shortcuts
that join remote parts of the lattice to one another.

Starting from a low-dimensional lattice of n vertices with some boundary con-
ditions, e.g., a ring, and connecting each vertex with its k nearest neighbors,
we get a system as in Figure 2.4, with nk edges. The small-world network is
then created by rewiring a small fraction of edges. Therefore, for each edge,
with probability p, one end of that edge will be removed to a new location
chosen uniformly at random from the lattice, except that no double edges or
self-edges are ever created. This process is illustrated in Figure 2.4.

Regular Small-world Random

p = 0 p = 1
Increasing randomness

Figure 2.4: The random rewiring procedure of the Watts-Strogatz model,
which interpolates between a regular ring lattice and a random network with-
out altering the number of nodes or edges. We start with n = 20 nodes,
each connected to its four nearest neighbors. For p = 0, the original ring is
unchanged; as p increases, the network becomes increasingly disordered until,
for p = 1, all edges are rewired randomly. [80]

Figure 2.4 illustrates that the model interpolates between a regular lattice,
p = 0, and a random graph, p = 1. For p = 0, the clustering coefficient is
C = (3k − 3)/(4k − 2), which tends to 3/4 for large k. The regular lattice,
however, does not show the small-world effect because the mean geodesic dis-
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tance between vertices tends to n/4k for large n. When p = 1, each vertex is
connected to a new random neighbor. The geodesic distances are of the order
of log n/ log k, but the clustering coefficient is very low, C ≈ 2k/n. However,
Watts and Strogatz showed by numerical simulation that there exists a sizable
region in between these two extremes for which the model has both low path
lengths and high transitivity (see Figure 2.5).

Figure 2.5: The clustering coefficient C and mean vertex-vertex distance l in
the small-world model of Watts and Strogatz as a function of the rewiring
probability p. For convenience, both C and l are divided by their maximum
values, which they assume when p = 0. Between the extremes p = 0 and
p = 1, there is a region in which clustering is high and mean vertex-vertex
distance is simultaneously low. [80]

Barrat and Weigt [11] computed the clustering coefficient for small-world mod-
els as

C =
3(k − 1)

2(2k − 1)
(1 − p)3. (2.6)

The degree distribution of the small-world models does not match most real-
world networks very well and is rather complicated. The full expression ex-
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plained in [11] is

pj =

min(j−k,k)
∑

n=0

(

k
n

)

(1 − p)npk−n (pk)j−k−n

(j − k − n)!
e−pk, (2.7)

for j ≥ k and pj = 0 for j < k.

The disadvantage of this model is that a vertex can become disconnected
from the rest of the network. To avoid this, a variant of the model has been
proposed by Monasson [54] and by Newman and Watts [57] where no edges
are rewired. Instead, shortcuts are added to randomly chosen vertex pairs.

2.3.3 Scale-free networks

A scale-free network is a network with a power-law degree distribution, at
least asymptotically.

The network models discussed thusfar assume that one starts with a fixed
number n of vertices that are then randomly connected or rewired, without
modifying n. In contrast, most real-world networks describe open systems
that grow by the continuous addition of new nodes. Starting from a small
nucleus of nodes, the number of nodes increases throughout the lifetime of the
network by the subsequent addition of new nodes. For example, the World
Wide Web grows exponentially in time by the addition of new web pages, and
the research literature constantly grows by the publication of new papers.

Further, network models discussed so far assume that the probability that
two nodes are connected is independent of the nodes degree, i.e., new edges
are placed randomly. Most real networks, however, exhibit preferential at-
tachment, such that the likelihood of connecting to a node depends on the
nodes degree. For example, a web page will more likely include hyperlinks to
popular documents with already high degrees, because such highly connected
documents are easy to find and thus well known, or a new manuscript is more
likely to cite well-known and thus much-cited publications than less-cited and
consequently less-known papers.

These two ingredients, growth and preferential attachment, inspired the in-
troduction of the Barabási-Albert model, which led for the first time to a
network with a power-law degree distribution.
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The construction of a scale-free network proceeds as follows. Starting from a
network with n0 nodes, at every time step, add a new node and connect this
node with n others already present in the network (n ≤ n0). The probability
for connecting the new node to node i depends on the degree ki of that node
i. After t time steps, this procedure results in a network with t + n0 nodes
and tn edges. Numerical experiments indicate that this network evolves into a
scale-invariant state with the probability that a node has k edges following a
power-law with an exponent γBA = 3 (see Figure 2.6). The scaling exponent
is independent of n, the only parameter in the model.
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Figure 2.6: Numerical simulations of network evolution: (a) Degree distri-
bution of the Barabási-Albert model, with N = n0 + t = 300000 and ◦,
n0 = n = 1; �, n0 = n = 3; �, n0 = n = 5; and M, n0 = n = 7. The slope of
the dashed line is γ = 2.9, providing the best fit to the data. The inset shows
the rescaled distribution p(k)/2n2 for the same values of n, the slope of the
dashed line being γ = 3; (b) p(k) for n0 = m = 5 and various system sizes,
◦, N = 5100000; �, N = 150000; �, N = 200000. The inset shows the time
evolution for the degree of two vertices, added to the system at t1 = 5 and
t2 = 95. Here n0 = n = 5 and the dashed line has slope 0.5. After Barabási,
Albert, and Jeong [7].
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Some power-law degree distributions have been observed in a range of net-
works, for example, the World Wide Web [5, 8], the Internet [18, 78] and
Metabolic Networks [48, 49], which are shown in Figure 2.7.

Figure 2.7: Cumulative degree distributions for six different networks. The
horizontal axis for each panel is vertex degree k (or in- degree for the citation
and Web networks, which are directed) and the vertical axis is the cumulative
probability distribution of degrees, i.e., the fraction of vertices that have degree
greater than or equal to k. The networks shown are (a) the collaboration
network of mathematicians [39]; (b) citations between 1981 and 1997 to all
papers cataloged by the Institute for Scientific Information [67]; (c) a 300
million vertex subset of the World Wide Web, circa 1999 [17]; (d) the Internet
at the level of autonomous systems, April 1999 [18]; (e) the power grid of
the western United States [80]; (f) the interaction network of proteins in the
metabolism of the yeast Saccharomyces cerevisiae [48].

2.4 Dynamical interaction networks

To identify a regulatory network, a valid mathematical model that gives a de-
tailed description of the given problem must be developed. There exist a lot of
different methods to create such a model. Some methods find their foundation
in the theory of statistics, others are based on differential or stochastic equa-
tions. Mathematics is thus a necessary tool for the modeling of a regulatory
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network. For example, activation can be considered as a positive feedback
loop and repression as a negative feedback loop. In this Chapter, a literature
review is given of some widely used techniques.

2.4.1 Bayesian networks

In the formalism of Bayesian belief networks, studied by [32, 60], the structure
of a regulatory system is represented graphically as a directed acyclic graph.
Each vertex i in this graph corresponds with some random variable Xi and
edges indicate conditional dependencies between these random variables. For
genetic regulatory networks, Xi is defined as the expression level of gene i and
edges indicate regulatory interactions between genes. An edge from gene 1 to
gene 3 means that gene 1 regulates the gene expression of gene 3. A certain
value of Xi is written as xi. The graph defines the joint probability distribu-
tion over the variables. The joint probability distribution assigns probabilities
to each possible assignment of values (x1, . . . , xN ) to (Xi, . . . ,XN ).

The probability of a node i in a Bayesian network is dependent of all nodes in
the Markov blanket for that node i (the Markov blanket contains the imme-
diate parents, the children, and the co-parents of these children). We say that
gene 1 is a parent of gene 3 if there is a directed path from gene 1 to 3. As
an example, consider gene 4 in Figure 2.8. Here, the edges indicate that gene
4 is dependent of gene 1, 2, 3, and 6, but independent of gene 5. This means
that, once the expression level of gene 1, 2, 3, and 6 are known, no additional
information about the expression level of gene 4 can be obtained from gene 5.

Figure 2.8: A Bayesian belief network.
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The Markov condition implies that the conditional probability distributions
of a bayesian network represent a factorization of the joint probability distri-
bution as a product of conditional probability distributions of each variable
(x1, . . . , xn) given its parents in the graph:

P (x1, . . . , xN ) =

N
∏

i=1

P (xi|parents(Xi)). (2.8)

Learning Bayesian networks is attractive because of its solid basis in statistics.
Moreover, Bayesian networks can be used when only incomplete knowledge
about the system is available and the conditional independence assumptions
restrict the search space. However, it is not possible to model feedback rela-
tions between nodes because an acyclic directed graph is used. Generalizations
such as the dynamical Bayesian network can be used to overcome this problem.

2.4.2 Boolean networks

Boolean networks were proposed by Kauffman [50, 51]. In these networks,
the expression for each component is either on or off. This means that for all
components i, the expression level xi is either 0 or 1. The state of the network
is defined as a vector x = (x1, . . . , xN ). The state of the system at time t
is written as x(t). The transition from x(t) to x(t + 1) is given by a set of
boolean functions bi (x (t)) (1 ≤ i ≤ N) where bi defines the new expression
level for component i based on the current state of the network. A sequence
of states (x(t), x(t + 1), . . . , x(t + N)) connected by transitions is a trajectory.
As an example, a boolean network is given in Figure 2.9. Suppose that at
time t = 0 the state of the system is (0, 0, 0). The trajectory of transitions is
then given in Table 2.2. When t = 5, the network is in the same state as on
t = 2. We say that the network has reached a cycle.

Because all expression levels are 0 or 1, the number of states in the state
space is finite, which yields that the number of states in a trajectory will be
finite as well. This means that all initial states of a trajectory will eventually
reach a steady state or a cycle.

The disadvantage of this network type is that the expression level of the com-
ponents can take only two values so the component is considered to be either
on or off. Also, transitions between the activation states of the components are
assumed to occur synchronously. For real life applications, this assumption is
not valid.
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Figure 2.9: Example of a boolean network.

t x1(t) x2(t) x3(t)

0 0 0 0

1 0 1 1

2 1 0 1

3 1 0 0

4 0 0 1

5 1 0 1

Table 2.2: A trajectory of the boolean network
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Figure 2.10: Kinetics of a regulatory network.

2.4.3 Ordinary differential equations

Ordinary differential equations (ODEs) are differential equations where the
unknown function depends on a single independent variable. A general ODE
has the form

ẋ =
∂x

∂t
= f(x). (2.9)

Here, x(t) is called the state-vector in our case, the activity of the unknown
components at time t. The function f(x) is called a rate equation and ex-
presses the production rate of a component in the network as a function of the
production rate of other components. If we define the kinetics of a component
as the change in production rate and the production rate of component i as
xi, the kinetics of each component i in the network is given by the following
ODE:

ẋi =
∂xi

∂t
= fi(x) (1 ≤ i ≤ N), (2.10)

with x = (x1, . . . , xN )T and fi a nonlinear function. When the fis are non-
linear, one speaks of nonlinear ordinary differential equations. If necessary, fi

can be extended such that it is not only a function of the production rates,
but it also incorporates some external stimulus u(t). ODEs have been widely
used to analyze genetic regulatory systems, see [20, 43] for introductions. To
illustrate the formalism of the rate equation, consider Figure 2.10. The gene
expression level of gene a is repressed by the production rate of metabolite K
(observe the negative feedback loop). If x1 is the concentration level of gene
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a, x2 is the production rate of the enzyme (protein) A and when x3 is used to
denote the production rate of K, the following ODEs represent the kinetics of
the network:







ẋ1 = −λ1x1 + r(x3);
ẋ2 = −λ2x2 + w21x1;
ẋ3 = −λ3x3 + w32x2.

(2.11)

The factors λi are called the degradation constants or decay rates. These
terms are used to state that the production rates of genes, proteins, and small
molecules decrease by themselves in time. The terms wij are the production
constants or influence rates from j on i. The function r : RN

≥0 → [0, 1] is
the so-called regulation function and is used to model positive and negative
feedback loops. When there is a negative feedback loop between component j
and i, component j represses the production rate of component i. The higher
the production rate of j, the stronger the production rate of i is repressed.
For the regulation function r, this means that it should be a function that
decreases when xj increases, i.e., formally, ∂r/∂xj < 0. Similarly, when the
production rate of j activates the production rate of i (positive feedback loop),
∂r/∂xj > 0.

Ordinary differential equations are widely used in mathematics and engineer-
ing. One disadvantage, however, is that in most cases they can not be solved
analytically.

Piecewise linear differential equations

Ordinary differential equations use differential regulation functions. However,
in real-life applications, the components have a more switch-like behavior, i.e.,
they are activated or they are not activated. More precisely, observations in
regulatory networks have led to the belief that the rate of activation of a gene,
as a function of the concentration of a regulatory protein, often follows a steep
sigmoidal curve. To simulate this behavior, piecewise-linear differential equa-
tions (PWLDEs) use step functions as regulation functions. These functions
are defined as







s+(xj , θij) =

{

0 if xj < θij;
1 if xj > θij;

s−(xj , θij) = 1 − s+(xj, θij).
(2.12)

In these formulas, θij is called the threshold and defines when component i
will be activated/repressed in function of the production rate xj . Figure 2.11
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Figure 2.11: A steep sigmoid curve and s+.

shows a steep sigmoidal curve and the positive step function s+. The general
form of a PWLDE is

∂xi

∂t
= −λixi + gi(x) (1 ≤ i ≤ N). (2.13)

As was the case with ODEs, the λis are the degradation constants [74, 73, 36].
The function gi is defined as

gi(x) =
∑

l∈L

wilbil(x). (2.14)

Here, L is the set with indices of the components that repress or activate
component i, wil represents the interaction coefficients (influence rates) and
bil(x) is a piecewise-linear function composed of additions and products of step
functions. As an example, consider the network consisting of three genes in
Figure 2.12. Let x1, x2, x3 be the gene expression levels of gene 1, 2, and 3,
then the PWLDEs that model this network are:







ẋ1 = −λ1x1 + w12s
+(x2, θ12);

ẋ2 = −λ2x2 + w21s
−(x1, θ21) + w23s

−(x3, θ23);
ẋ3 = −λ3x3 + w31s

−(x1, θ31) + w33s
−(x3, θ33).

(2.15)

The mathematical advantage of PWLDEs over ODEs is that by substituting
the nonlinear equations rates of the ODEs by piecewise-linear functions (ap-
proximation of the sigmoid functions by step functions), the solution of the
system of equations can be found analytically.
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Figure 2.12: A regulatory system consisting of three genes.





3
Identification of sparse

dynamic interaction networks

3.1 Requirements of the model

The success of the reconstruction model depends on different factors. Prerequi-
site is the way in which the dynamics of the interactions are modeled. We will
focus on dynamical models, and not discuss static models where the relation
between the unknown components are considered fixed in time. The dynami-
cal models we study in this work are the Single Linear Model (Section 3.2.1)
and the Piecewise Linear Model (Section 3.2.2). In many engineering applica-
tions, the number of observations M available for system identification (also
known as reverse engineering) and model validation is usually much larger
than the system order N , which represents the number of components. In
our work, however, we want to deal with poor data, where M � N . This
substantial lack of data can give rise to an identifiability problem, in which
case a large subset of the model class is entirely consistent with the observed
data and no unique model results. Since conventional techniques for system
identification are not well suited for dealing with such situations, it becomes
important to work around this by exploiting as much additional information
as possible about the underlying system, in particular the relation between
the number of observations and the number of components, the sparsity of the
regulatory network and the influence of output noise (see Sections 3.2.1, 3.2.2,
and Chapter 4).

35
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3.2 Modeling of the identification problem

To be able to identify and reconstruct a sparse and dynamic regulatory net-
work, we need to model the interactions between the unknown components.
Therefore, they will be considered as reactions so that they can be represented
as rate equations, i.e., as a set of ordinary differential equations introduced in
Section 2.4.3:

ẋ = f(x, u|θ) + ξ(t), (3.1)

with

• x(t) the state-vector that represents the activity of the N unknown com-
ponents at time t;

• u(t) the P controlled inputs to the system, with P the number of external
stimuli;

• ξ(t) the stochastic Gaussian white noise term with mean zero; and

• θ a representation of the coupling constants between the components
activities.

Before we are able to identify the network, we have to model our problem.
Therefore, we introduce and study some models to identify the network start-
ing from Equation 3.1.

First, we have the Single Linear Model of Peeters and Westra [61]. In this
work, the entire state-space is considered as one big space. Thus, the system’s
behavior is governed by its specific (un)stable equilibrium point, and the in-
teractions are modeled by a linear dynamic state-space system.

In realistic situations, this model is too simple, however. As was pointed
out by Øyehaug et al. [59], real-world systems tend to behave in a switch-like
manner, and they determine the switching timepoints using complex modeling.

In contrast, we will determine the switching timepoints by identifying sparse
piecewise linear systems. As a consequence, our focus is on modeling the
subsystems between the switching points rather than on the dynamics of the
switching points themselves, as in, e.g., Plahte et al. [62]. Thus, a Piece-
wise Linear Model is introduced. The entire state-space is being partitioned
into subsystems, each described by a differential equation (see Figure 3.1).
Each subsystem has an equilibrium which can be unstable or stable. If the
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equilibrium is unstable, the state vector increases exponentially in time and
the equilibrium is called a repeller. Otherwise, the equilibrium is stable and
is called an attractor. Therefore, the behavior of the state vector can be
described by motion through this collection of subsystems, swiftly moving
through subsystems of repellers, until they enter the basin of attraction of
an attractor. Under the effects of external agents (via the external input-
vector) or by stochastic fluctuations, they can leave this subsystem and start
wandering again, thereby repeating the process. Now, a vital assumption is
that in each subsystem the behavior is governed by specific (un)stable equi-
librium points, and, therefore, it is possible to make a linear approximation of
Equation 3.1 for each subsystem.

Figure 3.1: The dynamic system can switch over underlying stable states. R:
repeller and A: attractor.

3.2.1 The Single Linear Model

We implicitly assume that f is a sufficiently smooth function. In that case,
for sufficiently small deviations around the equilibrium value of x, xeq, and for
small u, we can approximate f in a Taylor expansion as

ẋ(t) ≈ (x − xeq)
∂f

∂x
+ u

∂f

∂u
≡ Ax(t) + Bu(t) + c, (3.2)

with A the interaction matrix A ∈ R
N×N , B the external input matrix

B ∈ R
N×P , and c some small constant. Note that u is the input vector

which is selected in such a way that it is small relative to the rate of change
of x. In this setting, we use a first-order approximation.

In case of sparse genetic regulatory systems, there are tens of thousands of
genes and hundreds of thousands—if not millions—of proteins. Besides the
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fact that many of these genes and most of these proteins are currently un-
known, and besides the randomizing effect of intrinsic and extrinsic noise,
purely from the sheer magnitude of the data it would be completely impos-
sible to implement realistic chemical-physical models and perform computa-
tional simulations. For this reason, the work in Peeters and Westra [61], Yeung
et al. [85], and Eigen [25] is based on a straightforward and computationally
manageable model. The dynamic interaction between gene/protein expres-
sion levels in a sparse regulatory network is modeled as a stochastic system of
coupled linear differential equations:

ẋi(t) =

N
∑

j=1

aijxj(t) +

P
∑

p=1

bipup(t) + ξi(t) − λixi(t), (3.3)

with

• aij the influence rate from gene j on gene i;

• xj(t) the expression of gene j at time t;

• bip the external stimuli rate from input p on gene i;

• up(t) the expression of external stimuli from input p at time t;

• ξi(t) any stochastic uncertainty for gene i at time t; and

• λi the decay rate.

Such models can be studied in the broader and more flexible context of a
state-space system:

• continuous time:
{

ẋ(t) = Ax(t) + Bu(t) + ξ(t);
y(t) = Cx(t) + Du(t) + ζ(t),

(3.4)

• discrete time:
{

ẋ[k + 1] = Ax[k] + Bu[k] + ξ[k];
y[k] = Cx[k] + Du[k] + ζ[k],

(3.5)

with
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• x(tk) ≡ x[k], the state of the system at time t (N × 1 entries);

• u(tk) ≡ u[k], the external stimuli at time t (P × 1 entries); and

• y(tk) ≡ y[k], the output of the system at time t (N × 1 entries).

Peeters and Westra’s attention goes to the continuous-time, linear state-space
model where x(t) = (x1(t), . . . , xn(t))T , n = N , p = N , and (A,B,C,D) =
(A,B, IN , 0).

Since C = IN and D = 0, the output y(t) is the same as x(t). Further-
more, the state of the system contains the N gene expression levels. The
equation of interest in the state-space model is therefore

ẋ(t) = Ax(t) + Bu(t), (3.6)

ignoring the stochastic uncertainty term for now. We will come back on the
importance of this term in the experimental Section and in Chapter 4.

The system matrices A and B need to be identified such that the output of the
resulting model fits the available data from the microarray experiments well.
The available data or observations taken at time instants t1, . . . , tM are given
by X = x[1], . . . , x[M ] and define the state of the system at time instant t (by
definition of the state of the system). Furthermore, it is assumed that there
is knowledge of the input signal u(t) for 1 ≤ t ≤ M and accurate estimates of
the state derivatives at these time instants can be computed. The way to es-
timate Ẋ = ẋ[1], . . . , ẋ[M ] is by interpolation of the state observations, which
is a disadvantage of the model. The derivative ẋ(tk) can be approximated
from the observations, such as ẋ[k] ≈ (x[k] − x[k − 1])/(tk − tk−1). Rewriting
Equation 3.6 in matrix form yields

Ẋ = AX + BU. (3.7)

It is thus assumed that the matrices Ẋ, X and U are available as empirical
data. We will refer to this matrices collectively by D. In this work, matrices
in Equation 3.7 will be treated in a row-by-row fashion. We denote the un-
known, sparse i-th row of A by the row-vector αi, the unknown i-th row of
B by the row-vector βi and the known i-th row of Ẋ by the row-vector δi.
Using the fact that (AX)T = XT AT and (BU)T = UT BT yields the following
decoupled set of N linear systems of equations of size M × (N + P ) (with
M the number of observations, P the number of external inputs and N the
number of unknowns):

[

XT UT
]

[

αT
i

βT
i

]

= δT
i (1 ≤ i ≤ N). (3.8)
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This is a linear system of equations of the form

Dχ = R (3.9)

with

• D =
(

XT UT
)

, D ∈ R
M×(N+P );

• R = δT
i , R ∈ R

M ; and

• χ =
(

αi, βi

)T
, χ ∈ R

N+P .

Here, D and R are known and we want to find χ. This χ defines a column of
the state-space matrices, A and B, and needs to be as sparse as possible as
a consequence of the underlying biology. The question of computing a sparse
solution to a consistent underdetermined linear system of equation Dχ = R
has received some attention [34, 35, 85].

In the literature [34, 35] and some of the references therein, results are given
which state conditions under which optimal sparse solutions can be obtained
by the technique of L1-minimization. This technique can be used to find a
sparse vector in the solution space S of Dχ = R. This method involves two
steps. First, S is the set of vectors χ which minimize ‖Dχ − R‖2. Hence, S
is the set of vectors χ which satisfy Dχ = Rproj, with Rproj the orthogonal
projection of R on the columnspace of D. This is true because the shortest
distance from vector R to the columnspace of D is of course orthogonal and
Dχ is a vector in this columnspace. So, S can be computed by singular value
decomposition where D = Q1

∑

QT
2 . Second, it is well known that this prob-

lem can be reformulated as an LP problem. Thus, the difficult combinatorial
problem of finding a vector in S having as many values equal to zero as possi-
ble is avoided and replaced by finding a vector χ ∈ S for which ‖χ‖1 is minimal.

However, in this case, only the first N elements of χ have to be sparse, because
the βi part of χ need not be sparse a priori. Therefore, the matrix C = [IN 0]
is introduced. Searching for the vector χ ∈ S for which ‖Cχ‖1 is minimal
gives us the best sparse αi part of χ and can be formulated as

min
χ∈R(N+P )

‖Cχ‖1

s.t. Dχ = Rproj.

This technique is called partial L1-minimization and can be rewritten in the
form:

min
A∈R(N×N)

‖A‖1

s.t. AX + BU = Ẋ.
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L1-minimization versus L0-minimization and L2-minimization

In the target function, ‖A‖1 denotes the 1-norm of the system matrix A, i.e.,
‖A‖1 =

∑

i,j |Ai,j|. This choice is motivated by the sparsity constraint on the
networks to be identified. If the interaction matrix is fitted correctly, it will
be sparse. Hence, we prefer solutions with as few non-zero components as
possible.

The minimization of the 0-norm, L0-minimization, can be used also to get
the optimal sparse solution. ‖A‖0 =

∑

i,j |Ai,j|
0, with 00 = 0, thus, the 0-

norm denotes the number of non-zero components. But this 0-norm can only
be computed by explicit enumeration, it is unsuitable in practice due to the
ensuing combinatorial explosion.

J. J. Fuchs [34, 35] has described conditions under which the 1-norm is an
acceptable approximation for the 0-norm. These conditions are optimality,
separability and sparsity. Though these conditions do not strictly apply here,
we find that this 1-norm succeeds in numerical simulations. For more details
about this technique, see [61] and [84].

Furthermore, the 1-norm is also an acceptable approximation for the 2-norm,
‖A‖2 =

∑

i,j |Ai,j|
2. The technique of L1-minimization will automatically set

many entries of the solution to zero, whereas L2-minimization would spread
out the error over all components, thus creating many small components.

Numerical experiments

To investigate the performance of the partial L1-minimization approach pro-
posed in this section, several numerical experiments have been conducted to
address the following research questions:

• Is it possible to identify the system matrices, A and B, based a relatively
small number of available observations, such that M � N?

• How does the quality of the identification depend on the number of
unknown components, N(N + P )?

• Is the algorithm robust against measurement/external noise, ξ?

• Does the quality of the identification depend on the sparsity of the sys-
tem?

In line with the definitions above, we use the parameters N , M , and P to
quantify the size and complexity of the input. In addition, the sparsity of a
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solution vector (a row of the interaction matrix) is measured by the number
of nonzero entries and denoted by k (which should be much less than N). To
complete the system’s data set, some stochastic Gaussian white noise is added
to the input data set. It is normally distributed with zero mean and some
standard deviation σ that determines the noise level. To quantify the quality
of the resulting approximation Aest of the original A∗, two performance mea-
sures are introduced: the system error, Ne, and the CPU-time, Tc.

The minimal number of observations For a certain number of unknown
components, a sufficient number of measurements has to be available. There-
fore, the minimal number of measurements required for a certain number of
unknowns, denoted by Mmin, has been determined. This is the number of mea-
surements so that the total system error Ne is acceptably small, Ne < 10−5.
Figure 3.2 represents the values for Mmin as a function of the number of un-
knowns. For comparability reasons, the number of unknown components in

Figure 3.2: Minimal number of required measurements Mmin as a function of
the number of unknowns N + P with P = 1 and a sparsity k = 1.

the following experiments has been fixed to N = 150 and the number of ex-
ternal inputs to P = 1. Consequently, the associated minimal number of
measurements has been fixed to Mmin = 90 (see Figure 3.2).
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Noise The noise level σ is an other factor where the system error Ne depends
on. To test the system’s robustness w.r.t. measurement noise, some stochastic
Gaussian white noise ξ with mean zero and some standard deviation σ will be
added to the output data Ẋ . This standard deviation or noise level lies in the
range of 0 ≤ σ ≤ 1. Figure 3.3 shows how this noise level influences the error
rate in our approach. For low noise levels, σ < 0.065, the system is robust,
Ne < 1. But, as to be expected, for bigger noise levels, the error increases if
the noise level increases, and vice versa.

Figure 3.3: The system error Ne as a function of the noise level σ, with
N = 150, P = 1, M = Mmin, and k = 1.

Sparsity A basic assumption in the approach is the sparsity of the under-
lying coupling matrix, represented by the number of non-zero entries per row,
k. If k rises above a certain threshold, the performance of the approach is
abruptly and severely affected (see Figure 3.4).

For relatively moderate noise levels and a high degree of sparsity—i.e., a small
number k of non-zero elements in the rows of matrix A∗—the approach allows
one to reconstruct a sparse matrix with great accuracy from a relative small
number of observations M � N . For example, A∗ with rows of 150 com-
ponents of which all but 3 are equal to zero, can be efficiently reconstructed
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Figure 3.4: Number of errors Ne as a function of the number of non-zero
elements per row k with N = 150, P = 1, and M = Mmin.

from just 90 independent measurements (see Figure 3.5). Figure 3.5 shows
an initial increase, followed by a decrease. Finally, above a certain threshold
value for M , the error Ne is zero. To explain this phenomenon, remember that
the system error Ne is the sum of the false positives, the false negatives, and
the correlation error in the interaction matrix. The false positives correspond
to the non-zero values in the matrix Aest that should be zero, vice-versa for
the false negatives, and the correlation error correspond to the non-zeros of
Aest and A∗ that have an opposite signs.

Turning back to Figure 3.5, the initial increase is caused by false positives.
Indeed, as long as M < M ′

min, where M ′
min is the minimal number of re-

quired measurements in the case of a single row, k ≈ M ′
min. As soon as M

reaches M ′
min, the system becomes completely determined, whence k drops to

its proper value. Observe that M ′
min < Mmin due to the absence of effects

related to the composition of rows, for more details see Section 4.1. Notice
that the false negatives decrease monotonously over the entire range of M .

CPU-time Figure 3.6 shows the CPU time, Tc, used by the algorithm as
a function of the number of unknowns N . This function is exponential. It is
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Figure 3.5: The system error Ne as a function of the number of measurements
M , with N = 150, P = 1 and k = 1.

nearly flat for small values of N , but increases fast as a function of N . From
this illustration we can conclude that the Single Linear State Space Model is
very fast.

3.2.2 The Piecewise Linear Model

Now, our aim is to obtain the local interaction matrices for each subsystem
A`, that all directly relate to the regulatory network. Again, the matrices
B` provide information on the coupling of unknown components to specific
inputs. Now, a vital assumption is that in each subsystem the behavior is
governed by its specific (un)stable equilibrium point. In that case, it is possible
to approximate the dynamics of Equation 3.1 in cell `—for x near the `-th

equilibrium x
(`)
eq and small u—(except the noise term) as

ẋ(t) ≈
∂f(x

(`)
eq , u)

∂x
(x − x(`)

eq ) +
∂f(x

(`)
eq , u)

∂u
u ≡ A`x(t) + B`u(t) + c`. (3.10)

Thus, the qualitative behavioral dynamics of the interactions between the un-
known components is characterized as predominantly linear behavior near the
stable equilibria—called the steady states, interrupted by abrupt transitions
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Figure 3.6: The CPU time, Tc, used by the reconstruction approach (in sec-
onds) as a function of the number of unknowns N .

where the system quickly relaxes to a new steady state, either externally in-
duced or by process noise.

General dynamics of switching subsystems

In what follows, let us assume a dynamical input-output system Σ that switches
irregularly between K linear time-invariant subsystems {Σ1,Σ2, . . . ,ΣK}.

Let S = {s1, s2, . . . , sK−1} denote the set of—unknown—switching times, i.e.,
the time instants t = s` when the system switches from subsystem Σ`, to
Σ`+1. Similarly as with the single linear networks, we assume empirical data
X = (x[1], . . . , x[M ]), U = (u[1], . . . , u[M ]), and Ẋ = (ẋ[1], . . . , ẋ[M ]) at M
sampling times T = {t1, t2, . . . , tM}, representing full observations of the N
states and P inputs, and x[k] ≡ x(tk). The interval between two sample
instants is denoted as τk = tk+1 − tk. Here, we assume that the system is
sampled on regular time intervals, i.e., that the sample intervals are equal to
τ . Within one subsystem Σ`, the effect of the inputs u(t) is represented as a
state-space system of first-order differential (for continuous time systems) or
difference equations (for discrete time systems), using an internal vector x(t)
spanning the so-called subspace:
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• continuous time:
{

ẋ(t) = A`x(t) + B`u(t) + ξ(t);
y(t) = C`x(t) + D`u(t) + ζ(t),

(3.11)

• discrete time:
{

ẋ[k + 1] = A`x[k] + B`u[k] + ξ(t);
y[k] = C`x[k] + D`u[k] + ζ(t),

(3.12)

with x[k] ≡ x(tk).

In the context of piecewise linear systems of gene-protein regulatory systems,
the dynamics is slightly different to the case of single linear systems [61]. In
our context, we assume that we observe all N genes, and that C` = IN with
IN the N × N identity matrix and D` = 0 for all `. In the case of continuous
time and in the absence of noise, this system can be written as

ẋ(t) = A`x(t) + B̃`ũ(t), (3.13)

with B̃` =
(

B`| − A`x
(`)
eq

)

, ũT = (uT , 1), where x
(`)
eq indicates the equilib-

rium point of the `-th subsystem and A` and B` refer to Equation 3.10. We
will use this linear expression, and from here on drop the tilde. A general
disadvantage is that the time evolution of the different genes/proteins, i.e.,
xν(t), ν = 1, . . . , n, will strongly correlate, thus obscuring their true rela-
tion. This can be avoided by using Equation 3.13 with time series of triplets
µ[k] ≡ (x[k], u[k], ẋ[k]) with a sufficient amount of statistically independent
and varying inputs u(tk). Practically, this opens the way to combining dis-
tinct empirical sets. However, a practical disadvantage of Equation 3.13 is
that the derivative ẋ(tk) can only be approximated from the measurements,
such as ẋ[k] ≈ (x[k] − x[k − 1])/(tk − tk−1).

We furthermore assume that the system matrices in these equations are con-
stant during intervals [s`, s`+1[, and abruptly change at the transition between
the intervals at t = s`+1. We assume that on the time scale τ , the system has
relaxed to its new state. This means that we do not observe mixed states,
which would severely complicate the problem of identification, e.g., see [79].
This is accomplished by defining weights Wk,` as the degree to which obser-
vation k belongs to subsystem Σ`. If observation µ[k] belongs to system Σ`,
then Wk` = 1. Non-integer values in [0,1] can be interpreted as the fuzzy
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membership of observation k to system Σ`. Since we assume that the sub-
systems {Σ1,Σ2, ..,ΣK} act disjointly and subsequently, the result can be im-
proved by matching the weights to a block function structure; i.e., Wkl = 1 for
tk ∈ [sl, sl+1[ and Wkl = 0 elsewhere. This may, however, not take into account
that the same subsystem can be revisited at different switching intervals. To
solve this, some postprocessing step can be done. These considerations lead
to the following constraints CMK on W :

CMK(W ) :











































W1,1 = 1;
WM,K = 1;
∀k,` Wk,` ∈ [0, 1];
∀k

∑

` Wk,` = 1;
∑M−1

k=1 |Wk+1,1 − Wk,1| = 1;

∀`=2..(K−1)

∑M−1
k=1 |Wk+1,` − Wk,`| = 2;

∑M−1
k=1 |Wk+1,K − Wk,K| = 1.

(3.14)

Combining the system matrices {A,B} with the subsystem weight-
matrix W

The assumption that the switching times between the linear subsystems are
completely known suits various experimental conditions, as, for instance, when
toxic agents are administered. In many biological situations, however, the ex-
act timing between subsystems is not known, as during embryonic growth and
in many metabolical processes.

When a sufficiently accurate record of estimates of the state derivatives Ẋ is
available, we can simply rewrite this problem as a special case of the method
described in the case of a single linear problem [61]. In fact, by exploiting the
data D = {X,U, Ẋ}, the problem can be stated as a linear equation in terms
of new matrices H1 and H2 as

Ẋ = H1X + H2U. (3.15)

In this equation, the matrices H1 and H2 relate to the—unknown—system
matrices {A1, B1, . . . , AK , BK} and ditto unknown weights {Wkl} as

vec(H1) = Wkr · vec(A); (3.16)

vec(H2) = Wkr · vec(B), (3.17)
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with vec(Y ) the vector of Y , if Y ∈ R
N×N then vec(Y ) ∈ R

N2×1. The
matrices A, B, and Wkr are composed as follows:

A =







A1
...

AK






; B =







B1
...

BK






; (3.18)

Wkr = W ⊗ IN2 =







W1,1IN2 · · · W1,KIN2

...
...

...
WM,1IN2 · · · WM,KIN2






,

where ⊗ is the Kronecker-product and IN2 is the N2 × N2 identity matrix.
Note that Equation 3.15 is no longer a linear problem, as the unknown matrices
A, B, and Wkr appear in a non-linear way in the equation. This equation
is exactly of the type of single linear networks as in Section 3.2.1 and [61].
Therefore, its solution method is fully applicable, so that an efficient and
accurate algorithm is available for solving this problem in terms of H1 and
H2. However, the problem has now shifted to solving two additional non-
linear equations:

Wkr � A = H1; (3.19)

Wkr � B = H2, (3.20)

where A, B, and Wkr have to be solved from the known—i.e., computed—
matrices H1 and H2. We use the operation � to represent the relations in
Equation 3.16 and 3.17 more concisely.

Equations 3.16 and 3.17 are an underdetermined set of equations that can
only be solved by additional information, such as assuming sparsity for A,
and a block structure for Wkr, as defined in Equation 3.14.

Identification of PWL models with unknown switching and regular

sampling from poor empirical data

We will now focus on the general case, that the data X, their derivatives Ẋ,
and the external inputs U are available as empirical data D. In this case,
the objective of system identification is to compute concurrently the system
parameters A, B, and weights Wkr (and hence the switching times S). Equa-
tion 3.15 provides us with the general state-space equations for a PWL system.
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In practical experimental conditions, white process and measurement noise
adds to the right-hand side. The fit between the empirical data and the
system model can be quantified by the weighted difference between observed
and expected expression profiles expressed as a linear Lp-criterion:

Esys(A,B,W |D) =
∑

k,l

Wkl‖Alx[k] + Blu[k] − ẋ[k]‖p. (3.21)

The criterion furthermore involves the relation between the k-th observation
and the `-th subsystem Σ`; namely the weight Wk` and the distance dk` be-
tween observed and the expected value of observation k relative to subsystem
model Σ`.

In order to handle the underdetermined character of the problem, we further-
more exploit the property of sparsity and allow for hierarchy of the interaction
networks. Namely, the interaction matrix is row-sparse, but the columns need
not be sparse. In the case of a hierarchical component, the associate column
will contain many non-zero components. Under some conditions, this prob-
lem is equivalent to minimization of the L1-norm of the rows of A` and B` as
argued by J. J. Fuchs [35]. This implies a global minimization such as

Esparse (A|D) =
∑

`

‖vec(AT
` )‖1 ≡ ‖A‖1, (3.22)

under the constraints that {X,U, Ẋ} satisfy Equation 3.15.

The problem of estimating the system parameters can thus formally be defined
as the search for the vectors Aest, Best, and West that globally minimize E .
This can be formulated as a quadratic programming problem, as follows:

QP: given the data D, compute the system matrices A, B and the weight
matrix W :

(Aest, Best,West) = arg min(A,B)∈RN(P+N) ,W∈RKM E(A,B,W |D)

subject to:
{

E(A,B|D) = λ1Esys(A,B,W |D) + λ2Esparse (A|D) + λ3Esparse (B|D);
CMK(W ),

(3.23)

for selected λ’s with: λ1 + λ2 + λ3 = 1, and the constraints CMK(W ) in Equa-
tion 3.14.
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This is a regularized (or scalarized) convex quadratic optimization problem
that is not well posed, because it has a nonsingular Jacobian at the optimum,
and becomes ill-conditioned as the approach iterates optimality. Instead of
this quadratic programming problem, we will therefore study the following
two coupled linear programming problems associated to the original QP:

LP1: given the weight matrix W̃ compute the system matrices (Aest, Best):

(Aest, Best) = arg min(A,B)∈RN(P+N) E(A,B, W̃ |D)

subject to:
E(A,B|D) = λ1Esys(A,B,W |D) + λ2Esparse (A|D) + λ3Esparse (B|D);

(3.24)

LP2: given system matrices (Ã`, B̃`) apply the L1-norm d̃kl = ‖ẋ[k]− Ã`x[k]−
B̃`u[k]‖1 to compute the weight matrix West:

West = arg minW∈RKM Esys(Ã, B̃,W |D) =
∑M−1

k=1

∑K
l=1 d̃klWkl

subject to:
CMK(W ).

(3.25)

The algorithm to estimate the system parameters {A,B} and W consists of
iteratively solving the two optimizations LP1 and LP2 subsequently, until the
criterion has sufficiently converged.

Construction and control of the subsystem weightmatrix

For small values of the regularization terms in E in LP1 (Equation 3.24),
i.e., λ2, λ3 � λ1, and a simultaneous, extreme underdetermined system, i.e.,
#Σ` � N , the tandem {LP1,LP2} proposed above, runs into problems. The
problem amounts to the degree of freedom that formulation LP1 offers to
match empirical data D with system Σ = (A,B) in order to minimize the dis-
tance to the model space d(D,Σ). It is well known that at least Mmin ∝ log(N)
measurements are required for a good reconstruction of sparse matrices A and
B; see for instance [34, 35, 85]. Therefore, when #Σ` � Mmin, the heavily
underdetermined system has a high degree of freedom to match the data with
the model. This will cause the tandem {LP1,LP2} to halt as the criterion
d(D,Σ) ≈ 0 has been reached.

Avoiding this problem requires (i) the restriction of the maximum number
of subsystems to K < M/ log(N), and (ii) the careful control of the weight
matrix w during the iteration, such that each subsystem Σ` has at least Mmin

elements, i.e., #Σ` ≥ Mmin. For this reason, the following iteration is per-
formed for initializing the weight matrix. (For an example, see Figure 3.7.):
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1. Assign the current measurement k to 1, and the current system ` to 1.
Initialize W to the M × K null matrix: W = 0.

2. The first Mmin measurements are assigned to the current—i.e., first—
subsystem: W11 = 1, . . . ,WMmin,1 = 1. Now the current measurement k
is set to Mmin + 1.

3. The current measurement, µk = (x[k], u[k], ẋ[k]), belongs to the current
subsystem Σ` if d(µk,Σ) is minimized by  = `. In that case: (i) it
is assigned to the current system by setting Wk` = 1, and (ii) the next
measurement is considered, i.e., k is increased, and step 3 is repeated.

4. If another system Σ is closer to µk, then this system is assigned to
the current system: ` = , and measurement k is considered as the
first of Mmin measurements assigned directly to this subsystem, i.e.,
Wk` = 1, . . . ,Wk+Mmin−1,` = 1, k is set to k + Mmin, and step 3 is
repeated.

This iteration process is continued as long as there are unassigned measure-
ments. When the final subsystem has less then Mmin elements, these are
discarded. Finally, all measurements will belong to some subsystem, while W
obeys all constraints defined in Equation 3.14. One of the advantages of this
matching algorithm is that it requires no advance knowledge of the number of
subsystems.

A tandem algorithm for network reconstruction using the subsystem
weight matrix

The procedure for constructing and managing the subsystem weight matrix
w, defined earlier in this section, allows for an efficient tandem approach to
solving the identification problem.

The non-linear problem Ẋ = H1X + H2U , defined in Equation 3.15, can
be solved in terms of H1 and H2, but not in terms of A, B, and Wkr, because
it is a bilinear problem in terms of A and B for fixed Wkr. For these reasons,
we again split the problem and follow a tandem approach as discussed in Sec-
tion 3.2.2.

However, in the present tandem, the construction of the subsystem weight
matrix W is performed by the matching approach defined above, rather than
by the LP2 defined in Equation 3.25. Both amount to a solution obeying the
weight constraints in Equation 3.14, but the matching algorithm will prevent
too underdetermined systems that will prematurely halt the iteration as they
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Figure 3.7: Construction of the weight matrix. (a) The first Mmin measure-
ments are assigned to subsystem Σ1 and the current measurement Mmin + 1
will be dealt with (as in step 3). (b) The next measurement k = Mmin + 2 is
considered and for this one it is concluded that an other subsystem Σ2 is closer.
(c) The next Mmin number of measurements is added to this new subsystem
and step 3 will be repeated until all measurements belong to a subsystem. In
the final figure all measurements—except for one—belong to some subsystem.

generate a fictitious match with the model. The computation of the system
matrices (A,B) is again performed by the robust L1 identification in LP1,
with λ1 = 0, and λ2 = λ3. The tandem is controlled by the distance between
the data and the model: d(D,Σ)) = Esys(A,B,Wkr|D), as defined in Equa-
tion 3.21. If this quantity has converged below a pre-specified threshold, the
iteration is terminated.

Numerical experiments

With our experiments, we want to address the following research questions:

1. Is it possible to identify the system matrices, A and B, based a relatively
small number of available observations, such that M � N?

2. How does the quality of the identification depend on the number of
unknowns?

3. Is the algorithm robust against measurement/external noise?
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4. Does the quality of the identification depend on the sparsity of the sys-
tem?

5. How does the number of observations depend on the number of subsys-
tems?

The numerical experiments consist of the comparison of the reconstructed net-
work with the—known—original network structure, and they clearly reveal the
range where the approach is effective.

In line with the definitions above, we use the parameters N , M , P and K
to quantify the size and complexity of the input. In addition, sparsity of the
local interaction matrix A is measured by the number of non-zero entries per
row and denoted by k (which should be much smaller than N). To complete
the system’s data set, some stochastic Gaussian white noise is added to the
input data set. It is normally distributed with zero mean and some standard
deviation σ that determines the noise level. To quantify the quality of the re-
sulting approximation Aest of A∗, two performance measures are introduced:
the system error, Ne, and the CPU-time, Tc.

Because the computation of the system matrices A and B is performed again
by the robust L1 identification of the LP1, for questions 1 till 4, we can refer
to the experimental results of the Single Linear State Space Model of Sec-
tion 3.2.1.

For a certain number of genes, a sufficient number of measurements has to
be available for each subsystem. In Section 3.2.1, the minimal number of mea-
surements required for a certain number of genes, denoted by Mmin, has been
determined. This is the number of measurements so that the total system
error, Ne, is acceptably small (see Figure 3.2). This required minimal num-
ber of measurements is taken into account for the performance of the next
experiments.

Multiple subsystems Some experiments concerning multiple subsystems
were performed. Figure 3.8 shows the accuracy of the partitioning of the
available measurements into different subsystems. The error measure δ shown
in Figure 3.8 is defined as the cumulative distance in terms of time stamps
between erroneously classified measurements and the switching point of the
class they belong to, relative to the total number of measurements. In the
experiment illustrated by Figure 3.8, two subsystems were identified.
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Figure 3.8: The distribution of the error measure δ for partitioning M =
200 measurements into subsystems, with N = 150. Two subsystems were
identified.

CPU-time From Section 3.2.1, we know that the LP1, the identification of
the system matrices A and B, is very fast. Now for the multiple subsystems, we
additionally need to compute the weight matrix and this will be repeated until
d(D,Σ)) is acceptable. The next experiment represents the CPU-time, Tc for
two subsystems and shows that, even for the tandem-process, the performance
is rather fast.

3.3 Conclusions

Starting from the general ordinary differential equation, we presented two
methods to model and identify sparse dynamic regulatory networks from poor
data. First, we have the Single Linear Model where the entire state-space
is considered as one big space and the interactions are modeled by a linear
dynamic state-space system. To get the most sparse solution, linear program-
ming is used. Second, a Piecewise Linear Model is introduced. The entire
state-space is partitioned into subsystems, where attractors and repellers reign.
Going into detail learned us that each subsystem can be considered as a Sin-
gle Linear System. Both, the Single Linear Model and the Piecewise Linear
Model turned out to be very fast.
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Figure 3.9: The CPU time, Tc, used by the reconstruction algorithm (in sec-
onds) as a function of the number of unknowns N for an approach with two
subsystems, K = 2.

We can conclude that both the Single Linear and the Piecewise Linear Models
resulted in an efficient and fast algorithm that are able to accurately estimate
a sparse dynamic interaction matrix from poor data. Unfortunately, both
approaches are not robust with respect to noise.



4
Network identification as a

learning problem

4.1 The Machine Learning Approach

In this Chapter, we generalize our problem. We want to learn a model that
fits the underlying system, capable of generalization. This corresponds to the
student-teacher setting in machine learning. Given a training set generated
by a teacher, the algorithm should return a network, refered to as the student,
that fits the teacher. Furthermore, the student should also perform well on
a validation set, input that was not used by the algorithm. In this setting,
it is natural to link network identification to feature selection. Only very few
components influence the expression level of any given component, so one can
restate the problem as selecting exactly those few among the large amount of
components under consideration. Hence, the results presented here will not
only be applicable to network identification, but also to feature selection.

To translate the problem of network identification formally into machine learn-
ing terminology, we assume that a training set of M input/output pairs
χtr = {(xm, um, ẋm) | 1 ≤ m ≤ M} is given, where xm, ẋm ∈ R

N and
um ∈ R

P . The components of the input vectors xm are independently and
identically distributed so that the elements of the training set are linearly in-
dependent. Since the data is assumed to be generated by some interaction

57
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network, this network will be denoted by T = (A∗, B∗) where A∗ ∈ R
N×N

and B∗ ∈ R
N×P . In this context, we refer to T as the unknown teacher. For

each (xm, um, ẋm) ∈ χtr, ẋm = A∗xm + B∗um, i.e., ẋm is the output produced
by the teacher T on input xm and some external stimuli um. In general, the
teacher’s output Ẋ∗ ∈ R

N×M on some input X ∈ R
N×M and U ∈ R

P×M is
computed as follows:

Ẋ∗ = T (X) ≡ A∗X + B∗U. (4.1)

Moreover, we consider sparse networks. Therefore, we assume there exists
k∗ � N such that, for each row of the matrix A∗, k∗ components are non-
zero. Since the matrix A∗ models the interactions in the network, a non-zero
value of A∗

i,j indicates that component j of input X influences component i

of the output Ẋ∗. So, the sparsity constraint implies that each component of
the output is determined by k∗ components of the input.

4.1.1 The learning algorithm

The learning algorithm should return a network S = (Aest, Best), referred to
as the student, with Aest ∈ R

N×N and Best ∈ R
N×P , that reproduces the

training set χtr: ẋm = Aestxm + Bestum for m = 1, . . . ,M . However, the
student should also perform well on input that was not used by the algo-
rithm, i.e., the algorithm should be able to generalize beyond the training
set χtr. To test the student’s generalization ability, we use a validation set
χv = {(xv , uv, ẋv) | 1 ≤ v ≤ V } such that ẋv = A∗xv + B∗uv for each
v = 1, . . . , V .

The validation error, εval, is defined as the number of input-output pairs
(xv, uv, ẋv) of a validation set of size V (with 1 ≤ v ≤ V ) that is not re-
produced by the student for one independent run:

εval(A
∗
i , B

∗
i , χtri) =

V
∑

v=1

H

(

|Aestxv + Bestuv − ẋv|

|ẋv|
− εerr

)

,

with H(x) = 1 if x > 0 else H(x) = 0 and εerr the maximum deviation from
zero that is considered insignificant.

The generalization error, εgen, is defined as the ratio of the number of stu-
dents wherefore εval > 0 to the total number of independent runs:

εgen =
1

nrRuns

nrRuns
∑

i=1

H (εval (A
∗
i , B

∗
i , χtri)) ,
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with χtr an independent training set for each run. The learning task can now
be formulated as follows: the algorithm should produce a student S given χtr

such that εgen is minimal.

The algorithm we use is a reformulation of the problem in terms of linear
programming: the objective is to minimize ‖Aest‖1 subject to the M con-
straints ẋm = Aestxm + Bestum. This choice is motivated by the sparsity
constraint on the networks to be identified. If the student S reproduces the
teacher T , the result must be sparse, hence we prefer solutions with as few
non-zero components as possible.

The constraints can be written more explicitly as

N
∑

i=1

Aesti,j
xj,m+Besti,p

up,m = ẋi,m, j = 1, . . . , N ; p = 1, . . . , P ; m = 1, . . . ,M.

(4.2)

Hence, each row of A and B is a solution to a set of M equations and can
be determined independently, an observation to which we will return later on.
For M ≤ N , infinitely many solutions can be found, from which linear pro-
gramming will select the most sparse. Trivially, for M = N + 1, the set of
equations will have a unique solution: the teacher T . This implies that one
can expect a generalization error εgen ≈ 1 for very small training sets, i.e.,
M � N , while εgen ≈ 0 for M ≈ N . We may conclude that εgen will be a
function of the training set size M . We denote the number of patterns such
that εgen = 1/2 by Mgen, the generalization threshold.

Although the generalization error is a good measure to evaluate the student’s
quality, it will nevertheless be useful to consider a measure to compare the stu-
dent’s structure to that of the teacher. Since our setting is that of identifying
interaction networks, the presence or absence of such an interaction in the in-
ferred model S is important. This can be characterized by the following three
quantities: the number of false negatives, nfneg, the number of false positives,
nfpos, and the number of correlation errors, ncorr. These three quantities mea-
sure the quality of the identification process. By definition, 0 ≤ nfneg ≤ Nk∗,
0 ≤ nfpos ≤ N(N−k∗) and 0 ≤ ncorr ≤ Nk∗−nfneg. Note that these error mea-
sures can all be zero, even if the student does not generalize well, i.e., εgen > 0.
Also notice that 0 ≤ nfneg + nfpos + ncorr ≤ N2. Therefore, we aggregate these
three measures into the operator S �T = (N2 −nfneg −nfpos −ncorr)/N

2 that
measures the quality of the identification.
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4.1.2 Relation to feature selection

From Equation 4.2, it is clear that the problem of identifying the interac-
tions within a network modeled by the matrix A∗ can be decomposed into
identifying the N rows of that matrix. Since, apart from the sparsity con-
straint, interactions in the teacher are completely random, these rows can be
determined independently. We can now shift the perspective slightly and re-
formulate the original problem in terms of N simpler ones: given an input
vector x ∈ R

N , which of the N components of x will effectively contribute
to the output ẋ ∈ R

N? This can be viewed as a feature selection problem,
since the sparsity of the teacher implies that only very few components will
contribute. As for network identification, we can define the generalization er-
ror for feature selection, εfs

gen. This εfs
gen represents the ratio of the number

of students wherefore εval(a
∗, b∗, χtri) > 0 to the total number of independent

runs. With a∗ ∈ R
N and b∗ ∈ R

P . At this point, it is useful to note that the
generalization error can be interpreted as the probability that the student will
not compute the correct output on a random input. The probability that N
independent feature selection problems will all compute the correct answer is
thus given by (1− εfs

gen)N , which allows us to compute the generalization error

for network identification εgen from that for feature selection εfs
gen as follows:

εgen = 1 − (1 − εfs
gen)N . (4.3)

This relation will be verified experimentally in Section 4.1.3.

4.1.3 Numerical experiments

By means of experiments, we will consecutively address the following research
questions that arise naturally in this context:

1. Is it possible to identify T with a training set that contains less than
N + 1 input-output pairs? If so, what is the value of the generalization
error εgen as a function of the training set size?

2. How does the generalization error εgen depend on the teacher’s sparsity?

3. What is the evolution of the similarity of the student to the teacher when
compared with the teacher as a function of the training set size?

4. Is the algorithm robust against noise?

5. How does the generalization error εgen scale with the system size N?
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To facilitate the discussion, we first introduce some convenient notation. The
ratio of the training set size to the system size is denoted by α = M/N . In
particular, αgen = Mgen/N . The fraction of non-zero components per row of
a system is denoted by κ = k/N . In particular, κ∗ = k∗/N . The amplitude
of the noise should be considered relative to the amplitude of the signal, i.e.,
we define σ = σnoise/σẋ, where σẋ is the standard deviation of the output
vectors’ components ẋi,m. The kT non-zero components of the teacher A∗, the
components of B∗, and of the input xm are drawn from an uniform distribution
over ] − 1, 1[.

Generalization error

To determine the generalization error, we randomly generate a set of M input
vectors and a random teacher system so that we can compute the output to
obtain a training set χtr. The algorithm produces a student, for which we
calculate the generalization error. Since its value depends on the particular
selection of input and teacher, we independently repeat this procedure many
times to compute the average. Figure 4.1 shows the observed generalization
error, εgen, as a function of the training set size α.
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Figure 4.1: The generalization
error εgen as a function of the
training set size α for N = 80
(◦), N = 160 (2) and N = 300
(.) for κ∗ ≈ 0.03.
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Figure 4.2: The generalization
error for feature selection εfs

gen as
a function of the training set size
α for N = 80 (◦), N = 160 (2)
and N = 300 (.) for κ∗ ≈ 0.03.

This result is surprising in two respects: first, the generalization error decreases
to zero for a training set size α < 1, and second, the transition towards gener-
alization is quite abrupt. It is also clear from Figure 4.1 that the transition is
increasingly abrupt for increasing system size N . It is instructive to relate the
generalization error εgen for network identification to that for feature selection
εfs
gen in Figure 4.2. The latter figure illustrates that αfs

gen, the training set size
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Figure 4.3: The observed (2) ver-
sus the computed (◦) generaliza-
tion error εgen as a function of α
for N = 80, κ∗ ≈ 0.03. The curve
representing εfs

gen (.) is given as
reference.
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Figure 4.4: The generalization
threshold αgen as a function of
the sparsity κ∗ for N = 80 (◦)
and a few values for N = 160 (2).
The generalization threshold for
feature selection αfs

gen (.) is given
as reference.

α for εfs
gen = 1/2, is independent of the system size N and that εfs

gen converges
to a step-function for N → ∞. So, we observe a first-order phase transition
between a regime for α < αfs

gen where the student simply reproduces the train-

ing set, and another regime for α > αfs
gen where he is able to reproduce the

teacher’s output perfectly.

The relation between the generalization error for the network identification
problem εgen and that for feature selection εfs

gen, given by Equation 4.3, is
illustrated in Figure 4.3. It is clear that εgen for the network identification
problem can reliably be estimated from εfs

gen for the feature selection problem.

Values beyond αgen are less reliable since inaccuracies for εfs
gen are amplified

considerably due to the mathematical form of Equation 4.3.

Note that in our experiments, k is equal for each row. But, this k does not
need to be constant and can thus vary for each row of A. Since the probability
to generalization depends on the sparsity (see the next Section of sparsity),
we will represent the sparsity of the matrix as the maximum sparsity over all
rows. As a consequence, αgen for the matrix will be over estimated, which is
a “safe” error.



4.1. The Machine Learning Approach 63

Sparsity

The next question concerns the relation between the sparsity of the teacher
and the generalization threshold. For a non-sparse teacher, i.e., κ∗ ≈ 1, one
would need a training set of size α ≈ 1 since each of the N +1 components has
to be determined. However, as Figure 4.1 illustrates, the fact that the teacher
is sparse simplifies the identification process considerably. Figure 4.4 shows
the generalization threshold αgen for network identification as a function of
κ∗. It is clear that training sets of increasing size α are required to facilitate
the transition to the generalization regime as κ∗ increases, i.e., as the sparsity
decreases. As expected, for κ∗ ≈ 1, we have that αgen ≈ 1. It is clear that the
advantage sparsity offers to the efficiency of the learning algorithm virtually
vanishes for κ∗ ≈ 0.5. However, it is very pronounced for κ∗ < 0.2. As
before, these results have been obtained for many independent instances of
the training set and teacher.

Learning process

To gain a better understanding of the learning process, i.e., the evolution
of the student with respect to the teacher as a function of the training set
size, we first consider a fixed training set and teacher. Thereto, define a
sequence of training sets χm for m = 1, . . . ,M such that χm ⊂ χm+1 and
|χm+1| = |χm| + 1. These sets are used to determine a sequence of students
Sm for m = 1, . . . ,M . Figure 4.5 shows SαN � T as a function of the training
set size α. For αN = 1, the number of false negatives is NκT and the number
of false positives is 0. For increasing α, the number of false positives increases
approximately linearly with α, while the number of false negatives decreases
very slowly. The plot illustrates clearly that the transition to generalization
is very sudden: at αgen, i.e., SαgenN � T = 1. Figures 4.6 and 4.7 confirm that
the scenario sketched above is indeed the typical behavior when it is averaged
over many independent training sets and teachers. The latter plot illustrates
the explanation given above for the behavior of SαN � T .

Scaling with system size

How the system scales with the system size has already been illustrated in
Figures 4.1, 4.4, 4.6, and 4.7. However, it is Figure 4.2 that provides the most
insight. It turns out that the generalization error curves for various system
sizes can be computed by applying the correct scaling on the system size α.
Suppose we have a curve for εfs

gen versus α for system size N0, then the curve
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Figure 4.5: The learning process
characterized by Sm � T as a
function of the size of the train-
ing set m/N for an individual
run.
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Figure 4.6: The learning process
characterized by Sm � T as a
function of the size of the train-
ing set m/N , system sizes N =
80 (◦), N = 160 (2) and N = 300
(.) for κ∗ ≈ 0.03.

for system size N can be obtained by scaling:

α(N) = αfs
gen +

√

N0/N
(

α(N0) − αfs
gen

)

. (4.4)

The result is shown in Figure 4.8 for system sizes N = 80 and N = 160 with
sparsity κ∗ = 0.03. The curve computed for N = 160 by scaling that for
N = 80 is in very good agreement with the one observed for that system size.

4.2 The impact of measurement noise

Gene/protein expression is a stochastic or noisy process. On the one hand, this
noise is due to randomness in transcription and translation and comes about
in two ways. The inherent stochasticity of biochemical processes such as tran-
scription and translation generates intrinsic noise. In addition, fluctuations in
the amounts or states of other cellular components lead indirectly to variation
in the expression of a particular gene and thus represent extrinsic noise. For
more details, see [26, 72]. In general, the amount of protein produced by a
particular gene varies from cell to cell. Therefore, the system noise is divided
in two components: extrinsic noise, which is global to a single cell but varies
from one cell to another, and intrinsic noise, which varies from cell to cell and
over time in a single cell. Fluctuations in even one single component may
potentially affect the performance of the entire system. Furthermore, there is
experimental noise on microarray data which are used for this process; see [77].
Remark that similar considerations apply to other application domains.



4.2. The impact of measurement noise 65

0.05 0.1 0.15 0.2 0.25
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

Figure 4.7: Measures nfneg (2,
N = 80 dotted line, N = 160
solid line), nfpos (◦, N = 80 dot-
ted line, N = 160 solid line) and
ncorr (., N = 80 dotted line,
N = 160 solid line) as a func-
tion of the training set size α for
κ∗ ≈ 0.03.
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Figure 4.8: Figure 4.2 using
Equation (4.4) for N = 80 (◦),
N = 160 (2) computed, N = 160
observed (.), κ∗ ≈ 0.03.

In this work, regulatory networks are identified from poor data. As mentioned
above, noise is ubiquitous, thus it is of large importance that the approach is
robust towards this—intrinsic, extrinsic, and measurement—noise.

To test the robustness of the Single Linear and Piecewise Linear algorithm,
some system (intrinsic and extrinsic) noise ξ will be added to the output data
set Ẋ and some measurement noise ζ will be added to the output measure-
ment set Y (see Sections 3.4 and 3.11). They are normally distributed with
zero mean and some standard deviation σ that determines the noise level.

For the identification of sparse regulatory networks from poor and noisy data,
the following equation is thus of interest:

Ẋ = AX + BU + ξ.

In line with the notations used before, matrix X represents the input data,
matrix A represents the interactions between the unknown components and
matrix B is the input matrix with the external inputs defined by the matrix U .
To select the most sparse and robust solution, the technique of L1-minimization
was used and thus this equation is reformulated as the following linear pro-
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gramming (LP) problem:

min
A∈R(N×N)

‖A‖1

s.t. AX + BU = Ẋξ,

where Ẋξ = (1 + ξ)Ẋ , with ξ ∈ N(0, σ).

Figure 4.9 shows the relative deviation of the respective output of student
and teacher δẋ as a function of the noise level σ. As can be expected for a
linear system, the quality is acceptable for low noise levels only. In particular,
σ < 0.01 still yields a reasonably accurate output. The breakdown for higher
noise levels is illustrated by Figure 4.10 which shows a very large increase in
the number of false positives nfpos for an increasing noise level σ. Although
these components are very small, they nevertheless allow perfect identification
of the network.
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Figure 4.9: Deviation of the stu-
dent and teacher output δẋ as a
function of the noise level σ on
the training set.
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Figure 4.10: nfneg (2), nfpos (.)
and ncorr (◦) as a function of the
noise level σ for N = 80, κ∗ ≈
0.03.

The goal is thus to find an approximate and stable solution for the introduced
LP above. This Section proposes a method to obtain an approximate solution
to make our identification approach robust with respect to noise. Therefore, a
regularization parameter is introduced to the LP. This parameter makes it pos-
sible to introduce additional information in order to solve this noise problem
by imposing certain distributions on the optimalization terms.
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4.2.1 The Tikhonov regularization

The standard approach to solve an underdetermined system of linear equations
is of the form

min
χ∈R(N+P )×N

χ (4.5)

s.t. Dχ = R,

with

• D =
(

XT UT
)

, D ∈ R
M×(N+P );

• R = ẊT
ξ , R ∈ R

M×N ; and

• χ =

(

AT

BT

)

, χ ∈ R
(N+P )×N .

This approach seeks to minimize the residual ‖Dχ − R‖2 where ‖.‖2 is the
Euclidian norm. In this case, however, R is noisy. So, although this approach
has a solution, solving it directly will not give the right solution.

In order to reliably find a solution, as to control the effect of noise, a regular-
ization technique can be used. A simple form of regularization was proposed
by Tikhonov [75], which introduced a trade-off between fitting the data and
reducing a norm of the solution. This Tikhonov regularization proposes to
minimize χ by solving

min ‖Dχ − R‖1 + λ‖χ‖1, (4.6)

with λ > 0 called the additional regularization parameter and can be inter-
preted as a penalty for model complexity.

4.2.2 Including the regularization parameter into network re-

construction

The goal is to find an approximated stable solution. Therefore, the presence
of noise and sparsity have to be taken into account.

The solution is sparse if A is the null-matrix and the solution is robust with
respect to noise if ‖Ẋξ − Ẋ∗‖

p
= ‖Ẋξ − AX − BU‖

p
≈ 0, with Ẋξ the sys-

tem output with some stochastic Gaussian white noise, Ẋ∗ the desired system
output, and ‖.‖p a suitable Lp-norm. Note that, if ‖Ẋξ − Ẋ∗‖

p
= 0, then
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Ẋξ = Ẋ∗, and thus the estimated system Ẋest which should fit Ẋ∗, will con-
tain noise as well. Hence, to get a robust system, the difference between both
systems has to be very small but non-zero. Both conditions are important to
reconstruct sparse interaction networks from poor and noisy data.

Given the empirical data D = (X, Ẋ, U), the L1-minimization presented in
Chapter 3 (see Equation 4.5) satisfies both conditions. Given the nature of this
LP, the solution satisfies the robustness of the fit, because ‖Ẋξ − AX − BU‖1 ≈
0. But, as shown in the noisy data experiment of Section 4.1.3, the solution
is non-sparse, because κ∗ � κ∗ − (nfneg − nfpos − ncorr)/N

2. Again, κ∗ is the
fraction of non-zero components per row of the desired interaction matrix A∗,
N is the number of unknowns and nfneg, nfpos, and ncorr are the number of
false negatives, false positives, and correlation errors, respectively.

Therefore, the L1-minimization of the original approach (see Equation 4.5)
is adapted as follows:

min ‖A‖1 + ‖Ẋξ − AX − BU‖1.

Let us denote ‖A‖1 as the sparsity term and ‖Ẋξ − AX − BU‖1 as the
fitting term. Now, the fitting is more flexible, because ‖Ẋξ − AX − BU‖1
does not need to be zero. As a consequence, the LP seeks a balance between
the sparsity and the robustness. In this situation, the minimization of both
terms have the same priority. Note that this equation is less strict then the
original one.

In order to give preference to a particular solution with desirable properties,
the regularization parameter λ is included in this minimization:

min λ‖A‖1 + ‖Ẋξ − AX − BU‖1. (4.7)

This regularization parameter λ has a remarkable influence on the proposed
LP. The larger the parameter value, the more the sparsity term and the less
the fitting term will be emphasized. Vice versa, the smaller the parameter
(λ → 0), the less sparse and the lower the fitting term will be. Thus, in this
situation, it is important to get a good understanding about this regulariza-
tion parameter to get an acceptable estimation and balance. This is worked
out in the experimental Section 4.2.3.

As noted in Section 4.1.2, each row of the interaction matrix can be deter-
mined independently. This means that the problem of identifying the inter-
actions within a network can be decomposed into identifying N rows of that
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matrix. Therefore, we define the regularization parameter as a vector λ ∈ R
N .

Now for each λi—the regularization parameter for row i—an acceptable value
has to be stipulated such that there is a good balance between both optimiza-
tion terms.

Network reconstruction from noisy data

The learning algorithm should return a network, also called student, S =
(Aest, Best), with a sparse interaction matrix Aest ∈ R

N×N and input matrix
Best ∈ R

N×P , that reproduces the noisy training set χξtr : ẋξm
≈ Aestxm +

Bestum for m = 1, . . . ,M . For this problem as well, the student should be able
to generalize beyond the training set χξtr . To test the student’s generalization
ability, we use a validation set χξv = {(xv , uv, ẋξv

) | 1 ≤ v ≤ V } such that
ẋξv

≈ A∗xv + B∗uv for each v = 1, . . . , V .

The algorithm we use is based on the “Machine Learning” algorithm of Sec-
tion 4.1 and is a reformulation of the problem in terms of linear program-
ming: the objective is to minimize λ‖A‖1 + ‖Ẋξ − AX − BU‖1. To com-
pare the student’s structure with the teacher’s, three quantities are used:
the number of false negatives, nfneg, the number of false positives, nfpos, and
the number of correlation errors, ncorr. By definition, 0 ≤ nfneg ≤ Nk∗,
0 ≤ nfpos ≤ N(N − k∗) and 0 ≤ ncorr ≤ Nk∗ − nfneg.

Influence and estimation of the regularization parameter

If λ = 0, it can be expected that the LP seeks a non-sparse but good fit-
ting system, whereas, for larger values of λ, the LP emphasizes the sparsity
of the interaction matrix and less the quality of the fit. Therefore, the sys-
tem error Ne between the desired and the resulting system is considered to
keep the interval [λmin, λmax] as small as possible. More precisely, the false
negatives nfneg and the false positives nfpos will be considered. An increas-
ing λ ensures a transition from zero to non-zero for nfneg and vice versa for
nfpos. To obtain the interval [λmin, λmax] two quantities are defined, λ−

i and
λ+

i with λ−
i represents λi for which nfneg becomes non-zero and λ+

i represents
λi for which nfpos becomes zero. Then λmin = min{λ−

i , λ+
i |1 ≤ i ≤ N} and

λmax = max{λ−
i , λ+

i |1 ≤ i ≤ N}.

To evaluate the student’s quality, the data error De is defined as the error
between the student’s system output and the desired system output:

De =
|Ẋest − Ẋ∗|

|Ẋ∗|
.
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This data error will be a function of the regularization parameter λ. Start-
ing from a small λi, the system is robust with respect to noise, because the
fitting term ‖Ẋξ − AX − BU‖1 ≈ 0, and, thus, Dei

is small. The bigger λi

the less robust the system, and the bigger Dei
becomes. Therefore, this data

error De can be used to estimate λ such that there is a balance between both
optimization goals, sparsity and robustness.

4.2.3 Numerical experiments

In line with the definitions above, we use the parameters N and M to quantify
the size of the input and α = M/N to represent the ratio of the training set
size to the system size. The fraction of non-zero components per row of the
system matrices is denoted by κ = k/N . As before, the components of the
teacher and the input data X and U are drawn from a uniform distribution
over ] − 1, 1[.

The resulting system has to be sparse and robust with respect to noise. Both
optimization goals will be influenced by the size of the regularization param-
eter. If λ = 0, the LP seeks a non-sparse system with a small fitting term,
whereas for larger values of λ, the sparsity will be emphasised more and the
fitting term will be emphasized less. Therefore, in the first experiment, the
regularization parameter λ′

i, for each row separately, varies from 0 to 50 in
steps of 0.1. The intention is to estimate a limited and representative interval
for further experiments.

Using the L1-minimization of Equation 4.7 and λi ∈ [0, 50], the false negatives
nfneg and the false positives nfpos are considered to fix the interval [λmin, λmax].
The frequencies of λ−

i and λ+
i , for different training set sizes α1, . . . , α6, are

shown in Figure 4.11. λ−
i is the value of λi for which nfneg becomes non-zero

and λ+
i is the value of λi for which nfpos becomes zero. To get a representative

result, the experiment is run 100 times, thus 100 systems are generated for
these training set sizes α1, . . . , α6, and a fixed sparsity κ∗ ≈ 0.03. Figure 4.11
shows that the size of the interval depends on the number of unknowns N ,
whereas λmin, and hence also λmax, depends on the number of observations M .

For example, from Figure 4.11, we may conclude that the interesting interval,
for a system with N = 80, M = 40 and a sparsity κ∗ = 0.03, lies between
λmin = 6.8 and λmax = 13.8.
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Figure 4.11: The frequentie of λ−
i (lines) and λ+

i (histogram) for training set
sizes α1, . . . , α6, and a fixed sparsity κ∗ ≈ 0.03. (a) α1 = 50/100 = 0.5, (b)
α2 = 75/100 = 0.75, (c) α3 = 40/80 = 0.5, (d) α4 = 20/80 = 0.25, (e)
α5 = 30/60 = 0.5, (f) α6 = 18/60 = 0.3.

Now that an appropriate interval has been determined, a particular value for
λi, i = 1, . . . , N needs to be selected. Therefore, the optimization terms, i.e.,
the robustness of the fit and the sparsity, are considered in the next Section.

Phase transitions as a consequence of the regularization parameter

The regularization parameter λ influences the quality of the system output—
the robusteness of the fit —, and thus influences the data error De. Further-
more, the regularization parameter λ also influences the sparsity of the system
output. Thus, to determine the parameter, the data error and the sparsity
for each row i = 1, . . . , N and for each possible λ̃, λmin ≤ λ̃ ≤ λmax, needs to
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be computed. Therefore, we need a student. For this purpose, we randomly
generate a set of M noisy input vectors and a random teacher so that we can
compute the output to obtain a noisy training set χξtr .

Figure 4.12 represents the data error per row for λ̃i, λmin ≤ λ̃i ≤ λmax and
Figure 4.13 represents the sparsity per row for this λ̃i.
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Figure 4.12: The data error Dei
for row i = 1, 2, 3, 4 as a function of λ̃i,

6.8 ≤ λ̃i ≤ 13.8, with α = 40/80 and κ∗ ≈ 0.03.
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Figure 4.13: The sparsity, ki, for row i = 1, 2, 3, 4 as a function of λ̃i, 6.8 ≤
λ̃i ≤ 13.8, with α = 40/80 and κ∗ ≈ 0.03.
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From Figure 4.12, it is clear that for each row i, there is a transition for the
data error, Dei

≈ 0 to Dei
>> 0, indicating that the resulting system becomes

less robust. For the sparsity in Figure 4.13 we can conclude the same. At the
same values for λ̃i, there is a decrease for the number of non-zeros for each
specific row i. For example, for the first row, i = 1, the transition happens for
De1 = k1 ≈ 9.4 and, thus, λ̃1 ≈ 9.4. Note that λ̃1 ∈ [6.8, 13.8].

This means that, at these values for λ̃i, the equilibrium between both optimiza-
tion terms disappears. Therefore, the value of the regularization parameter is
determined as λi = λ̃i − 0.1 for each row i.

Generalization error

Now that an appropriate interval for the regularization parameter λ has been
found, we obtain a training set, χtr, as the output of M randomly generated
input vectors and a random teacher. In this Section, we want to work with a
noisy training set, χξtr . Therefore, system noise is added to the training set.
This noise is normally distributed with zero mean and a standard deviation
of σ = 0.01. From this noisy training set, the algorithm produces a student,
for which we calculate the generalization error for feature selection, εfs

gen. The

value of εfs
gen depends on the particular selection of input and teacher. There-

fore, this procedure will be repeated many times to compute the average.
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Figure 4.14: The generalization
error (with εerr = 10−5) for fea-
ture selection εfs

gen as a function
of the training set size α for N =
80 (◦), N = 100 (.), and N =
120 (2).
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Figure 4.15: The generalization
error (with εerr = 10−3) for fea-
ture selection εfs

gen
′ as a function

of the training set size α′ for
N = 80 (◦), N = 100 (.), and
N = 120 (2).

Figure 4.14 shows the observed generalization error, εfs
gen, as a function of the

training set size, α. As for the simple model in Section 4.1, Figure 4.14 il-
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lustrates that the transition to generalization is still quite abrupt. However,
Figure 4.14 shows two important differences with the simple model of Sec-
tion 4.1. First, it shows that the generalization error decreases to almost zero
for a training set size α < 1. This is due to the definition of the generalization
error:

εgen = P

(

|AestX + BestU − Ẋ∗|

|Ẋ∗|
> εerr

)

,

with εerr the maximum deviation from zero that is considered insignificant.
Since, for the fitting term, we have that ‖Ẋξ − Ẋ∗‖1 = ‖Ẋξ − AX − BU‖1 ≈
0, the threshold, εerr = 10−5, must be relaxed to be able to compare the results
with those of Section 4.1. For the adapted threshold, εerr = 10−3, the results
are shown in Figure 4.15. From this Figure, it is clear that αfs

gen
′, the training

set size α′ for εfs
gen = 1/2, is independent of the system size N and that εfs

gen

converges to a step-function for N → ∞.

Second, we need to emphasize that, for generalization, more observations are
needed, because αfs

gen
′ > αfs

gen, with αfs
gen the training set size for the model of

Section 4.1.

Furthermore, we consider a standard deviation or noise level of σ = 0.05
and σ = 0.1. From Figure 4.16, it is clear that for an increasing noise level,
αfs

gen
′ increases and the minimum value for the generalization error, min(εfs

gen),
increases as well. Still, the student is able to fit the teacher.

Learning process

Now, we consider a fixed noisy training set and teacher to compute a sequence
of students, Sm, for m = 1 . . . M , with respect to the teacher as a function of
the training set size, χm, such that χm ⊂ χm+1 and |χm+1| = |χm| + 1.

The number of false negatives, nfneg, false positives, nfpos, and the correla-
tion error, ncorr, are represented in Figure 4.17 as a function of the training
set size α. Figure 4.17 shows almost the same phenomenons as for Chap-
ter 4.1: for αN = 1, nfneg = Nk∗ and nfpos = ncorr = 0. For increasing α,
nfneg decreases slowly to zero and nfpos initially increases and than abrupt
decreases to approximately 0. Again, due to the property of the fitting term:
if nfneg = nfpos = ncorr = 0, then Ẋξ − AX − BU = 0, which means that the
noisy system is correctly identified. Here, nfneg decreases to 0.002. Thus, over
500 runs, there is one run in which one non-zero component is not identified.
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Figure 4.16: The generalization error (with εerr = 10−5) for feature selection
εfs
gen as a function of the training set size α for N = 80 and different noise

levels σ = 0.01 (.), σ = 0.05 (2), and σ = 0.1 (◦).
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Figure 4.17: The nfneg (2), nfpos (◦), and their sum nfneg + nfpos (.) as a
function of the training set size α = m/N and system size N = 80, for κ∗ ≈
0.03.

Because 0 ≤ nfneg + nfpos + ncorr ≤ N , these three measures are aggregated
into the operator S � T = (N2 − nfneg − nfpos − ncorr)/N

2 to represent the
quality of the identification and is shown in Fig 4.18. This Figure confirms
the scenario sketched above.
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Figure 4.18: The learning process characterized by Sm � T as a function of
the size of the training set α for κ∗ ≈ 0.03.

4.3 Conclusions

In this Chapter, we went into detail about the impact of the number of ob-
servations to the number of unknown components, the role of the sparsity
constraint, and the influence of noise on the identification.

First, we reformulated our programming problem in the context of machine
learning. It is quite remarkable that a simple model such as the one considered
here exhibits so many interesting features. With respect to the research ques-
tions addressed, we may conclude that the algorithm identifies a network with
N(N + P ) components using a training set size of considerably smaller size.
This can be observed from the generalization error, εgen. This error decreases
to zero for a training set size, α < 1, and is increasingly abrupt for increasing
system sizes N . To get a better understanding, the number of false negatives,
nfneg, the number of false positives, nfpos, and the correlation error, ncorr, were
considered. For αN = 1, the number of false negatives is nfneg = Nk∗, and the
number of false positives and the correlation error are nfpos = ncorr = 0. For
increasing α, nfneg decreases slowly to zero and nfpos decreases later, but fater,
to zero. In other words, the identification of the non-zeros starts immediately,
at M = 1, whereas the identification of the zeros starts later, but happens
very fast.

Furthermore, we found that the algorithm strongly depends on the sparsity.
The less sparse the teacher is, i.e., with increasing k∗, the more observations
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are required to facilitate the transition to generalization. From the experi-
ment, it turned out that, for 80 components, the algorithm performs well for
a sparsity k∗ < 0.2. Thus, for N = 80, the algorithm is able to identify an
interaction matrix with up to 16 non-zero components per row.

An interesting observation is the relation between the identification of the
interaction matrix and the independent identification of each row of this in-
teraction matrix, which is called feature selection. Experiments, performed on
the N independent feature selection problems, show that the training set size
for εfs

gen = 1/2 is independent of the system size N and that this generaliza-
tion error converges to a step-function for N → ∞. From this observation, it
turned out that the generalization error for various system sizes can be com-
puted by applying the correct scaling on the system size α.

Second, in order to deal with noise, we added the regularization parameter
to the L1-minimization. This regularization parameter makes it possible to
introduce additional information by imposing certain constraints on the opti-
mization terms. From the experiments, it was shown that the optimal value
for this parameter varied over an interval, λmin ≤ λ ≤ λmax. This interval
depends on the number of unknown components, N , and on the number of
observations, M . For increasing N , λmax increased, and for increasing M ,
both λmin and λmax increased approximately equal, such that the interval ap-
proximately keeps the same size.

Furthermore, for this new LP, we may conclude again that the algorithm
is able to identify a network with a high number of unknown components us-
ing a training set of a smaller size. From the experiments, it was clear that
the generalization error still decreases abruptly to zero for a training set size
α′ < 1 and that the training set size for εfs

gen = 1/2 is independent of the

system size N . After we compared the training set size αfs
gen

′ with those of the

L1-minimization without the regularization parameter, αfs
gen, we must deter-

mine that the generalization threshold for noisy data is larger than that for
data without noise. Furthermore, the generalization error also converges to a
step-function for N → ∞.





5
Memory capacity of linear

networks

All biological processes result from the interactions of genes and proteins with
external stimuli. Because these stimuli can cause a threat to the survival of
the organism or give a potential boost to its existence, it is important for the
organism to learn and remember its best response for that specific external
stimulus. The pair of the external stimulus and the optimal network response
will be defined as an input-output pattern. These patterns have to be stored
in the memory of the gene-protein interaction network. In this Chapter, we
are interested in the maximum number of linearly independent patterns that
can be stored in a network with N components, which interact with P inputs.

Here, it is assumed that to a certain combination of inputs U∗, there ex-
ists an optimal state of the system X∗, i.e., values of the gene expressions and
protein levels that have been attained externally, e.g., through evolutionary
learning. Given such a set of M learnt optimal input-output patterns, the
design question here is to find a sparse network structure for the interaction
matrix A and the coupling matrix B. This problem is formulated as an opti-
mization problem in a linear programming setting.

In the neighborhood of a suitable smooth equilibrium, the activity of the
components, represented by the matrix X, will develop according to the in-
teraction matrix A and the input matrix B with the external inputs, defined

79
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by the matrix U , as

Ẋ = AX + BU + ξ(t). (5.1)

Here, ξ(t) represents white Gaussian noise with mean zero and standard de-
viation 1. Such Single Linear Models allow for a limited set of behaviors, but,
here, they fully suit our purpose as a simple and transparent metaphor for
studying the number of patterns M that the system can store as a function
of the number of unknown compoments N , the number of external inputs P ,
and the sparsity in the interaction matrices A and B.

5.1 Storage of dynamic patterns of time series and

its relation to network reconstruction

In this context, we define a pattern as a time series that represents the de-
sired dynamical behavior of the state vector x(t) in response to a given input
vector u∗(t), such as a finite impulse or a harmonic signal. In this way, the
desired system outputs x∗(t) and ẋ∗(t) for a given input u∗(t) can be com-
pared with the observed outputs x(t) and ẋ(t). Suppose we have sets of M
desired input-output triples {(u∗

m, x∗
m, ẋ∗

m) | 1 ≤ m ≤ M}, which can be
used to define the three data matrices X = (x∗

1 . . . x∗
M ), Ẋ = (ẋ∗

1 . . . ẋ∗
M ),

and U = (u∗
1 . . . u∗

M ). In this setting, one could attempt to minimize the
error ‖x(t) − x∗(t)‖ as a function of the free parameters in A and B. Or,
alternatively, one could attempt to minimize the error in the time derivatives
‖ẋ(t) − ẋ∗(t)‖p = ‖ẋ(t) − Ax(t) − Bu(t)‖p, where ‖ · ‖p represents a suitable
Lp-norm. This error expresses the difference between the observed rate of
change ẋ(t) and predicted model output Ax(t) + Bu(t).

Given X, Ẋ , and U , one could compute the matrices A and B that mini-
mize this error function. In case that the problem is underdetermined, it is
useful to involve the constraint that the interaction network is sparse. In this
sparse scenario, the minimization is performed over the number of zeros in A
and B, while Equation 5.1 is considered as a constraint:

min
A,B

‖A‖1 + ‖B‖1

s.t. Ẋ = AX + BU.

As indicated above, this optimization problem coincides precisely with the
problem of reconstructing the underlying interaction network from a time
series of (e.g., microarray) measurements (see Chapter 3).
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5.2 Memory storage of static equilibrium state pat-

terns in linear networks

5.2.1 Linear state space formulation

In the static context, we assume that the system has converged to an equilib-
rium state X∗ and that Ẋ = 0. For the gene-protein interaction matrix, this
means that, to a given input U∗, there is an optimal value X∗ for the gene
expressions and protein densities in the network such that AX∗+BU∗ = 0. In
our context, a (static) input-output pattern is defined as such an input-output
pair (U∗,X∗). This pattern itself can be considered as the outcome of a long
evolutionary learning process, where the best combination of gene/protein ac-
tivations X are selected relative to the observed combination of external inputs
(e.g., toxic agents, virus infections) U .

Here, we are interested in the maximum number Mmax of linearly independent
patterns that can be stored in a network of N genes or proteins, and P external
inputs. Suppose that there exists a set of M linearly independent patterns, i.e.,
external inputs as a matrix U ∈ R

P×M with U = (u[1], . . . , u[M ]), and the as-
sociated learnt states as a matrix X ∈ R

N×M , with X = (x[1], . . . , x[M ]). For
each input-pattern pair (x[j], u[j]), Equation 5.1 implies that Ax[j] + Bu[j] =
0. For the entire set of patterns X and U , this means that the unknown
matrices A and B feature in a linear way in the resulting matrix equation:
AX + BU = 0MN . This equation can be rewritten as

(

XT UT
)

(

AT

BT

)

= OMN .

This matrix equation can be treated in a row-by-row fashion. Denoting the—
unknown—i-th row of A by the row vector αT

i , and the—unknown—i-th row
of B by the row vector βT

i , this yields the following decoupled set of N linear
systems of equations of size M × (N + P ):

(

XT UT
)

(

αT
i

βT
i

)

= 0, i = 1, 2, . . . ,M. (5.2)

This is a linear system of equations of the form

Dχ = 0, (5.3)
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with

• D =
(

XT UT
)

, D ∈ R
M×(N+P ); and

• χ =
(

αi, βi

)T
, χ ∈ R

N+P .

The objective now is to find sparse matrices A and B that satisfy this condi-
tion. However, there are two practical problems with the formulation above.
First, as Equation 5.3 holds for each combined row χ of A and B, its solution
also holds for all rows, and, therefore, A and B consist of dependent columns in
the form Ai,j = viχj, for some non-zero vector v. Second, and more seriously,
the sparse matrices A = B = 0 are a trivial but valid solution to Equation 5.3.
This can be overcome by introducing more information, such as the natural
degradation of proteins, the autocatalyzation of certain proteins, or other em-
pirically known biochemical characteristics. For instance, natural degradation
or autocatalyzation stipulates that each protein decays or grows with a specific
rate λ, and, therefore, the associated component of the gene/protein interac-
tion matrix A has the value ±λ. The known non-zero influence of an input
j on a certain component i indicates that the (i, j)−component of matrix B
is non-zero. Thus, in general, certain specified components of A and B have
non-zero values.

Moreover, there is a scaling invariance in the solution—if χ is a solution of
Dχ = 0, then λχ is also a valid solution for all λ ∈ R. The exclusion of
A = B = 0 can thus be obtained by fixing the B-part of χ to a specific value,
which expresses the value of A relative to B. This can be obtained by using
constraints such as ‖B‖1 = constant, or

∑

ij bij = constant. In this study,
this constraint is realized as

QT χ = 1, (5.4)

where the first N components, the “A-part” of Q, are zero, and the remaining
P components qi, (i = N + 1..N + P ), the “B-part”, satisfy |qi| ∈ [12 , 2]. This
vector was generated with an uniform distribution on [−2,−1

2 ] ∪ [12 , 2] and
QT ∈ R

N+P .

5.2.2 Robust estimation as an approximation to the L1-norm

of A

Because, as mentioned in Chapter 3, optimal sparse solutions can be obtained
by the technique of L1-minimization, this problem can be reformulated as
a linear programming problem. In our case, we can thus reformulate the
original quest for a sparse vector χ (associated to corresponding rows in A
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and B) as the problem of finding the minimum value of the L1-norm of χ,
i.e., ‖χ‖1, under the given constraints. As we may weigh the importance of
sparsity in A and B differently, we introduce a regularization parameter γ.
If yA denotes the first N components of χ, and yB the other P components,
the regularized minimum value of the L1-norm of χ for the given data of M
patterns for N components and P external inputs follows from the following
linear programming formulation:

χest = arg minχ∈RN+P ‖yA‖1 + γ‖yB‖1

subject to:














χ = yA + yB;
χ = 0;
QT χ = 1;
χi = ri, i = 1, . . . , C,

(5.5)

where ri represents a random non-zero constant. This defines LP1 as a regular-
ized L1-minimization problem over the affine subspace of vectors χ satisfying
the given constraints.

5.3 Numerical experiments

The formulation in Equation 5.5 allows for numerical experiments with differ-
ent settings of the model parameters X, U , M , N , and P .

The value of the number of patterns M varies between 0 and N +P −1−C, as
will be shown later in this Section. Here, C is the number of extra constraints
in LP1. The experiments were performed with a specific interest in partial
sparse solutions for A and B. We introduce kA as the number of non-zero
elements in matrix A, and, similarly, kB for B. Figure 5.1 shows two results
from such numerical experiments. The patterns X and U were drawn uniform
randomly from the interval [-1,1].

As Figures 5.1 and 5.2 clearly show, it was found that—for fixed regular-
ization parameter γ = 1—the sparsity in A and B exhibits different behavior
as the number of patterns crossed the value MC1 ≈ 0.5P . Thus, a scale-free
representation for studying the sparsity is obtained by defining:

• the relative sparsity in A: pA = kA/N ;

• the relative sparsity in B: pB = kB/P ;

• the scaled number of patterns, µ:
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– if M < MC1, then µ = M/MC1;

– if M ≥ MC1, then µ = (M + N − 1)/(2N + P − 2).

This scaling ensures that µ, pA, and pB are between 0 and 1. The scaled
variables are useful in comparing situations with different components N and
inputs P . Other values of the regularization parameter γ gave quantitatively
different results that, however, could again be scaled to become qualitatively
similar.

In these plots, the sparsity in the matrix is plotted versus the scaled num-
ber of patterns µ. The lower curve gives the relative non-zeros pA in matrix
A. It exhibits a clear transition at µ ≈ 0.5. The upper curve gives the relative
non-zeros in matrix B. In the scaled representation, these plots are almost
identical for different values of P and N , though the morphology somewhat
depends on N + P .
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Figure 5.1: The scaled matrix sparsity versus the scaled number of patterns
for N = 100 and P = 100. The solutions of the LP-approach to memory
storage in linear networks, exhibit a clear phase transition at approximately
0.5P patterns.
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Figure 5.2: The scaled matrix sparsity versus the scaled number of patterns
for N = 70 and P = 100. The solutions of the LP-approach to memory
storage in linear networks, exhibit a clear phase transition at approximately
0.5P patterns.

5.3.1 Considerations from the underlying geometry

The observed relations between the parameters kA, kB , M , N , and P can be
understood from an analysis of the underlying geometric constraints of the op-
timization process in R

N+P . For an overview of the employed matrix algebra,
consult [38]. The solution χest ∈ R

N+P to the problem lies on the intersection
between the two major constraints of the problem.

The first constraint is Dχ = 0, where D is the data matrix
(

XT UT
)

,
and the first N components of χ correspond to a row of matrix A, and the
last P components to the corresponding row of matrix B. Thus, the solution
χ lies in the (N + P − M)-dimensional linear null-subspace, or version space,
V1 of D, because there are N + P unknowns and M patterns.

Second, the solution χ is bound by the (N + P − 1)-dimensional affine space
V2 defined by QT χ = 1, where the first N components of Q are zero, and the
P remaining components qi, i = N + 1, .., N + P , satisfy |qi| ∈ [12 , 2].
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The intersection V3 = V1 ∩ V2 contains the solution χ and V3 is a (N + P −
M − 1)-dimensional affine space. Therefore, the short answer to the maxi-
mum number Mmax of patterns that can be stored is Mmax = N + P − 1.
Adding C − 1 extra constraints of the form χi = constant effectively lowers
the dimension, but does not alter the basic topology, and leads to

Mmax = N + P − C. (5.6)

The situation becomes more complex if we analyze the number of exact zeros,
kA + kB in χ, as the optimization is aimed at increasing this amount. Here,
kA denotes the number of non-zeros in the first N components of χ, and kB

in its last P components. In this formalism, the maximum sparsity in A is
obtained when kA = 0. We avoid the complication that our model represents
a situation without interactions, as the system output is entirely defined by
the interactions to the external inputs. For the original equation,

(

XT UT
)

(

αT
i

βT
i

)

= 0, (5.7)

the condition kA = 0 means that the associated row of A is zero, i.e., αi = 01,N .
Hence, UT βT

i = 0, meaning that βT
i lies in the null-space of UT . The condition

kA = 0 implies that x1 = x2 = . . . = xN = 0, which defines a P -dimensional
linear subspace V4 in R

N+P .

The intersection V3 ∩ V4 contains all fully sparse A-solutions that satisfy the
two constraints. So, the condition kA = 0 can be reached whilst V3 ∩ V4 6= ∅.
The intersection V3 ∩ V4 is defined by N + M + 1 equations with N + P vari-
ables that imply an upper bound Mup

A = P − 1 for kA = 0. However, as is
apparent from Figure 5.3, kA already abruptly starts deviating from zero at
M = MC ≈ 0.5P < Mup

A . Although, in that case, V3 ∩ V4 is not empty, the
L1-optimization process favors another solution with a smaller value of the
L1-norm of matrix A—but an unsolicited larger value for the number of non-
zeros kA. Finding a solution with kA = 0 results in solving the linear equation
Zχ = z, with

Z =





D
QT

IN 0N,P



 ; z =





0M,1

1
0N,1



 . (5.8)

This system has a consistent solution if z is a vector in the column space of Z.
If this is not the case, the affine solution space S can be described implicitly
as the solution of the consistent linear system of equations Zχ = zproj, where
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the vector zproj is the orthogonal projection of z onto the column space of Z.
An explicit description of S follows from computing the solution space of the
system Zχ = zproj, which can be achieved in a numerically reliable way by
employing singular value decomposition. Thus, S can be formally written as

χ̂ = W (Z)ξ + Z+z, (5.9)

where W (Z) is the N×dim(null(Z)) matrix whose columns consist of the basis
of the dim(null(Z))-dimensional null-space of Z, and Z+ is the pseudo-inverse
of Z. Here, ξ is a dim(null(Z))-dimensional vector that parameterizes S.
The support vector Z+z may indeed have a lower kA value than the solution
χest of the LP, as can be seen in Figure 5.3. This is an artifact of the L1-
minimization process that can favor a smaller value of the absolute value of
a non-zero component rather than a smaller value of kA. Hence, in general
criterion(χest) = ‖αest‖1 + γ‖βest‖1 < ‖α̂‖1 + γ‖β̂‖1 = criterion(χ̂).

Figure 5.3: Comparison of LP-solution (diagonal line) and the algebraic so-
lution (step function). M varies between 1 and N + P − 1 = 149. At
M = P − 1 = 49 the algebraic solution suddenly jumps from 100% to 0%
sparsity of A, while the LP-solution exhibits a 1st order phase transition at
M ≈ 0.5P = 25.

In the general case, when kA > 0, the subset in V3 that contains exactly
kA non-zeros in the first N and kB non-zeros in the last P coordinates of
χ is defined by V3 , the (N + P − kA)-dimensional linear subspace with kA

non-zeros in the first N coordinates of χ, and the (N + P − kB)-dimensional
linear subspace with kB non-zeros in the last P coordinates of χ. There are
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respectively
(

N

N − kA

)

and

(

P

P − kB

)

(5.10)

possible combinations of the form χi = 0 to realize such equations. This
defines M + 1 + N − kA + P − kB equations with N + P variables. In general
this has a solution if

kA + kB ≥ M + 1. (5.11)

This relation is indeed found empirically as shown in Figure 5.4, where kB/M
is plot against kA/M . The location of the critical value of the phase transition
Mc/P ≈ 0.5 is a function of the regularization parameter γ.

Figure 5.4: This plot exhibits the relation kB/M + kA/M = 1.

5.4 Phase transitions in the matrix sparsity define

distinct learning strategies

Using the rescaled quantities pA, pB, and µ, different experimental settings
can be straightforwardly compared. In Figure 5.5, the smoothed plot for the
relative sparsities pA = kA/N and pB = kB/P versus the scaled number of
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patterns µ is depicted for N = 100 components and P = 100 inputs, averaged
over 10000 measurements. Again, all results are shown for fixed regularization
parameter γ = 1.

This plot exhibits the typical characteristics representative for all the networks
in our context. Firstly, the behavior of pA for µC1 ≈ 0.5 changes abruptly from
constant zero to a near linear increase. Secondly, the characteristic plateau
visible in pB for µC2 ≈ 0.67 is not an artefact due to noisy measurements or
processing deficiencies, but is present in all such graphs. Next, inspection of
Figure 5.5 and numerical analysis show that both graphs converge to a line
L ≈ 0.67µ − 0.5. Finally, for µ > 1, the system of (independent) inequalities
becomes inconsistent and, therefore, has no solution. This graph therefore
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Figure 5.5: The connectivity probabilities pA = kA/N and pB = kB/P for
N = 100, P = 100, and C = 0, averaged over 10000 measurements, versus the
scaled number of patterns µ. This indicates three major regions I, II, and III,
where the network memory behaves different. The transitions occur for the
scaled µ ≈ 0.5 for the transition I to II, and µ ≈ 0.67 for II to III. In the final
phase of region III both probabilities converge to L ≈ 0.67µ − 0.5.

shows three different types of storing behavior separated by phase transitions.
The presence of phase transitions in the storage of information in linear ran-
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dom sparse networks is reminiscent of the situation for the propagation of
information through these networks.

It is well known that sparse networks under certain conditions exhibit phase
transitions. Starting from a sparse regular network, the gradual addition of
random links reduces the direct path between any pair of vertices in the
network from being very long to being very short. This change is achieved
abruptly as a phase transition to a “small-world” network, characterized by
short overall path lengths, small overall connectivity, high information pro-
cessing time, and high local clustering (see Watts and Strogatz [24], Barabasi
et al. [10], Newman [56], and Schäfer [68]). This phase transition occurs at
a critical threshold pC for the probability of rewiring a given connection in
the network. The system then changes abruptly from slow to fast information
processing.

The numbers kA and kB of non-zero elements in our random networks can
be related to this rewiring probability, as the probability that a connection
between two components exists equals pA = kA/N , and the probability that a
connection between a component and a certain input exists equals pB = kB/P .

5.4.1 Influence of the extra constraint

In the LP, i.e., Equation 5.5, explicit constraints of the form χi = constant(i),
i = 1, 2, . . . , C, were added to avoid the matrices A and B from becoming
equal to zero. This addition, however, has little impact on the behavior of the
system.

With an increasing number C of such constraints, the phase transition at
Mc disappears, until at C = N2 + NP all values of A and B are specified by
the constraints. Also, with an increasing number of constraints C, the mor-
phology to the right of Mc gradually flattens, causing the disappearance of the
transition II/III, as is evident in Figure 5.6, containing C = 10 constraints.
For C = 0 and µ below µC1, the solution to the LP yields the matrix A = 0
as solution. Thus, besides the desired patterns (χest, uest), there are many
other unsolicited equilibria, as all (y, uest) are also valid solutions, because
Aχest = Ay = 0. This condition allows all possible values for the unknown
components, because the input uest is directly coupled the desired equilibrium
χest. Biologically, this means that, here, the genes are simply not involved,
and the system is a chemical buffer that has evolutionarily learned to counter
the important stimulus “impulsively”.
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Figure 5.6: The connectivity probabilities kA/N and kB/P for N = 100 and
P = 100, with C = 10 extra constraints of the form χi = constant. This also
exhibits the strong phase transition at Mc. Right to this value, the morphology
however is flatter than for less extra constraints.

However, to the right of the critical point µC1, an increasing number of com-
ponents of A and B become non-zero. Therefore it is not necessary to impose
the extra constraints on the LP, because it does not change the behavior of pA

and pB below µC1 (except for a vertical translation), and, above µC1, there
are sufficient non-zeros in both schemes anyway.

Biologically, the genes and proteins are involved in selecting the equilibrium.
The network processes the input information, and then “decides”—computes—
the best system response χest.

5.5 Stability of the stored patterns

To study the stability of the patterns, a set of M = 64 linearly independent
patterns was created, and offered to a system with N = 100 components and
P = 6 inputs, so the vector χ contains 106 elements. In addition, C = 1 extra
constraint was used, i.e., χ1 ≤ −1/3. The associated input ui consists of the
6-bit coding of the index-number i ∈ {1, . . . , 64 = 26} of the pattern Mi.

Numerical experiments were performed such that a given input ui was offered
to the system in a random equilibrium state χ0. The subsequent convergence
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Figure 5.7: Dynamical behavior of a network which has “learned” to respond
with a system state χ1 to an input u1. This plot shows the evolution of the
distance of the actual system state χ(t) to the target system state χ1, when
an input u is created a distance r away from the input u1. In one case the
system apparently converges to a mixed pattern between the target patterns.

relative to the pattern χi is studied as a function of the distance between χ0 and
χi. This is performed by computing the evolution of χ(t) using χ̇ = Aχ+ Bui

and χ(0) = χ0. Numerical analysis shows that A only has negative eigenvalues.
However, the largest eigenvalue is just below zero, i.e., max(eigenvalues(A)) ≈
10−11. Consequently, the state vector χ(t) will converge, but not necessarily
to the pattern χi associated to the input ui. If the distance between χ0

and χi becomes too large, namely in the order of the distance between the
patterns themselves, it is likely that the state vector converges to a mixed
state somewhere between the patterns. Figure 5.7 indicates that the end
result, when offered input u2 to a system in equilibrium χ = χ1, may converge
to a state other than the target pattern χ2. Obviously, it has converged to a
mixed state somewhere in between pattern χ1 and pattern χ2. It also shows
the evolution of the distance to pattern χ1 if a random pattern is created within
an Euclidean distance r = 0.6 from pattern χ1. Furthermore, Figure 5.7 shows
that most random patterns converge to a state near pattern χ1, so close that
it is practically identical.
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5.6 Conclusions

In this Chapter, we discussed the characteristics of the (genetic/proteomic)
memory of simple linear and sparse random networks. It is found that a linear
time-invariant state space formulation provides a comprehensible and trans-
parent model that is accessible to numerical and mathematical analysis. Even
this simple model exhibits a range of complex behaviors for storing input-
output patterns in a sparse representation. Most important is the fact that
the storage of both dynamical and static patterns in sparse networks exhibit
distinct phase transitions. In the case of static input-output memory, there
are two second-order continuous phase transitions. These transitions occur for
a number of patterns that equals MC1 ≈ 0.5P and MC2 ≈ 0.3N +0.67P −0.3,
respectively, or in scaled coordinates, for µC1 ≈ 0.5 and µC2 ≈ 0.67, respec-
tively. These transitions divide the learning in three distinct regions.

In the first region, where M < MC1, all information is exclusively stored in
the input-output matrix B, so that this state represents a high degree of order.
In the second region, MC1 < M < MC2, the information is stored increasingly
in the interaction matrix A. Finally, in the third region, for M > MC2, the
information is stored evenly in both matrices.

The parameters N , P , and γ influence the behavior of the system to a dif-
ferent extent. The model is symmetrical in χ and u, as Aχ + Bu = 0, and
the criterion function is ‖A‖1 + ‖B‖1, as the regularization parameter γ was
set to 1. However, N and P have basically different influences on the behav-
ior. Using the rescaled quantities pA, pB, and µ, it was possible to obtain
an almost scale-free representation of the graphs of resulting sparsity versus
number of stored patterns. Below the first critical point MC1, the relation is
essentially scale-free. However, above this value the morphology of the graph
depends on N and P , as can be seen in Figure 5.1. Especially the plateau near
the second critical point µC2 becomes better visible for higher P . Moreover,
the first critical point itself is found to occur at approximately 0.5P , and is
therefore independent of N .

In this study, we considered only linearly independent patterns. However,
real gene-protein networks are often considered to be modular. In this case,
different sub-patterns may combine to give the global pattern. Therefore,
the global patterns are not necessarily linearly independent, but can be con-
structed from a set of linearly independent sub-patterns.
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As a final point, the stability of the stored patterns was examined. It was
found that the patterns are stable, each pattern having a well-defined basin of
attraction. However, the sizes of these basins vary with the number of stored
patterns, which is intuitively clear as the available space remains the same, so
the space-per-patterns decreases. However, even close to the patterns, there
are paths to mixed states in which some patterns are “confused”.

These simple experiments hint to some characteristics to be expected for mem-
ory storage in real-world networks, i.e., the gene-protein interaction network.
Firstly, memory storage can be understood as fixing the free model param-
eters such that a presented input matches with the desired output. In the
natural world, this learning process is performed by the actions of biological
evolution. Secondly, also in real biological information networks, it is possible
to directly couple the input to the output without altering the gene-protein in-
teractions. This creates an “instinctive” reaction to the presented input, that
only indirectly alters the states of the genes and proteins. This also includes
epigenetic memory storage, as it can be understood as a specific state vector
of the proteome without regard to the states of the genome. Thirdly, realistic
networks potentially may exhibit phase transitions as the number of stored
patterns grows. These transitions can divide the storage process in distinct
regions with their own learning strategies. Finally, even in real biological net-
works, this has led to predominantly stable patterns, just as in the context of
the Single Linear Networks studied here.



6
An example application

In this Chapter, we will apply our identification approach on a real dataset
stemming from Spellman et al. [70]. Yeast Saccharomyces cerevisiae is an
unicellular fungus found naturally in grapevines and is responsible of wine-
making fermenting sugars and producing alcohol. This data is available at
http://cellcycle-www.stanford.edu. From being budded off from its par-
ent cell, to reproducing its own offspring, each yeast cell goes through a number
of typical steps that also involve changes in gene expression, turning complete
pathways on and off. Today, the study of such phenomena is possible thanks
to the technology of microarrays that can measure the expression level of many
genes simultaniously. For this data, the expressions profile of about 6000 genes
are measured by microarrays at 24 time points every five hours.

In this approach a number of preprocessing steps are usual in litirature [40].
In the reconstruction of the yeast regulatory network, the first step is the
preprocessing of the microarray data in Section 6.1. The second step is to
group genes that behave similarly within the cell cycle. Therefore, the K-
means clustering method is proposed in Section 6.2. The third and last step is
the identification. In Section 6.3, the Single Linear Model and the Piecewise
Linear Model will be applied in order to find the gene interactions involved in
the yeast cell cycle.

95
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6.1 Preprocessing

As it happens frequently, the original matrices, resulting from the microarrays,
have various entries with missing values. This is because of the measurement
error or the construction error of the array. Furthermore, due to the high num-
ber of unknowns, we are not interested in gene expressions with low variability
and low amplitude.

6.1.1 Missing values

The dataset contains numerous genes with one or more missing values. There
are several different methods that deal with these missing values, which have
been studied by Troyanskaya et al. [76]. For example, an unreliable way to deal
with this problem is to replace missing values with a zero or with the average
expression value for that gene. The latter method, called the row average
method, assumes that the expression of a gene in one of the experiments
is similar to its expression for other experiments, but this is often not true
for microarray data. Therefore, this naive method is disregarded. In our
approach, genes with at least one missing value in their expression profiles are
removed permanently from the dataset. In this way, almost 2000 genes are
deleted.

6.1.2 Filtering to increase variance

Next, several filtering steps, based on the study of [21], were performed. Anal-
ysis of the data has revealed that some expression profiles are flat and not
significantly different from the others. This flat data indicates that the genes
associated with these profiles are not significantly affected by others. We are
interested in the genes with large changes in expression. Therefore, genes with
small variance over time are removed. More specificly, genes that have an ab-
solute expression value below 1.5, i.e., genes for which there is no expression
level higher than 1.5 or lower then −1.5, are thus removed. Furthermore, ex-
pression profiles with an amplitude in the lowest 20 percent are filtered. After
these filtering steps, 290 gene expressions remain.

6.2 Clustering

The goal of clustering is to find a partitioning C = {C1, . . . , CK} of objects
x1, . . . , xN into a number of disjoint groups, K, such that objects in one group
are similar to each other and are as different as possible from the objects in
the other groups.
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In this context, the objects are the vectors xi = xi[1], . . . , xi[M ], i.e., object i is
the measured gene expression profile of gene i. Clustering can then be used to
find the so-called co-regulated genes. Co-regulated genes are genes with simi-
lar expression profiles, for which the up- and down regulation is very similar.
When the most suitable clusters are found, for each cluster one object (gene)
is chosen out of each cluster which will represent that whole cluster. These
genes are called the cluster representatives. Once found, the next step in the
construction of the genetic regulatory network will only depend on these genes.

In the literature [12], some cluster methods are available. The wide vari-
ety in clustering algorithms is due to the fact that there is no best clustering
algorithm for a given dataset or for a specific task.

The distances between the clusters can be defined in a variety of ways. Each
distance measurement leads to different shapes of clusters.

6.2.1 K-means clustering

The K-means algorithm is an iterative clustering algorithm. The idea of this
algorithm is to start with some initial clustering of the objects and then to
reassign objects to clusters such that the score function has a better value.
This process is repeated until no improvement in the score function or no
change in the cluster memberships occurs. This process leads at least to
a local optimum. If one wants to use the K-means algorithm, the number
of clusters K should be known in advance. The basic algorithm begins by
randomly selecting K centroids and then it assigns each object to the cluster
with the centroid that is the most similar to the object. Next, the centroids
are recalculated as the mean vector of the objects in the clusters. This process
is repeated until no changes in the cluster memberships occur.

6.2.2 Selecting the number of clusters

In [44], a clear image has been obtained concerning the number of clusters
that is suitable for the K-means clustering method. They have found that
K ∈ [8, 12] for the data set of yeast.

For our approach, the number of clusters is increased to 16, which is still
a representative number. The larger K, the better the generalization error,
εgen is (see Figures 4.1, 4.2, 4.14, and 4.15). However, K is also related
to the limited number of observations M = 24 which needs to be split into
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a training set and a validation set. The smaller K, the smaller the size of
the training set and, thus, the larger the validation set is. The result of the
clustering is shown in Figures 6.1 and 6.2.
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Figure 6.1: The gene expressions per cluster, for K-means with 16 clusters.
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Figure 6.2: The gene representatives per cluster, for K-means with 16 clusters.
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6.3 Network reconstruction

After the pre-processing and the clustering steps, the yeast data can be repre-
sented by 16 clusters. Each cluster has a centroid that represents the mean of
the expression levels of the genes for that cluster. These centroids are called
the genes’ representatives and, thus, we reduced the problem to a data set of
16× 16+16 unknown components and 16× 24 measurements or observations.
In this Section, we will apply the Single Linear Model and the Piecewise Linear
Model in the context of learning as in Chapter 4. To learn, we need a training
set of T input/output pairs χtr = {(xt, ut, ẋt) | 1 ≤ t ≤ T} and a validation
set χv = {(xv , uv, ẋv) | 1 ≤ v ≤ V }.

For this application, the data matrix, X ∈ R
N×M , represents the expression

levels of the N = 16 gene representatives and the output matrix, Ẋ ∈ R
N×M ,

is estimated by interpolating these gene expressions over the 24 time points.
Note that U = 1P×M , with U ∈ R

P×M , because there is no information known
about the external stimuli.

6.3.1 The Single Linear Model

The Single Linear Model was introduced and studied in Section 3.2.1. For this
model, the entire state-space is considered as one large parameter space and
the interactions are modeled by a linear state-space system of the form

Ẋ = AX + BU + ξ,

with A and B the unknown system matrices and ξ stochastic Gaussian white
noise.

From biology, it is known that gene-protein interaction networks are sparse [85]
and so is the yeast network. As discussed before, Linear Programming (LP)
is potentially a good approach to tackle sparsity. Thus, to identify the net-
work, the Single Linear Model uses the technique of L1-minimization, where
the sparsity criteria is used as a constraint:

min
A∈R(N×N)

‖A‖1

s.t. AX + BU = Ẋ.
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Training set versus validation set

From this yeast data set, only M = 23 time step observations are available.
Note that one observation is lost due to the estimation of the output matrix,
Ẋ. To train the data, a minimal number of observations is necessary, but to
validate the result, some observations are needed too. Therefore, we first focus
on the partition of these 23 observations.

How the system scales with the system size was studied and illustrated in
Section 4.1. Therefore, the generalization error is introduced as the probabil-
ity that the student will not compute the correct output on a random input. In
Section 4.1, it turns out that the generalization error for various system sizes
can be computed by applying the correct scaling on the system size α = M/N :

α(N) = αfs
gen +

√

N0/N (α(N0) − αfs
gen). (6.1)

The generalization error for feature selection—for one row of the input data
X and Ẋ— versus α for system size N0 = 80 is represented in Figure 4.2.
Using the information of this Figure and of Equation 6.1, the generalization
error for feature selection, εfs

gen, for system size N = 16 can be computed.

If, e.g., εfs
gen = 0.1, then α(80) = 0.22. Furthermore, the scaling factor equals

√

80/16, thus, α(16) = 0.49. This means that, for M = αN ≈ 7 observations,
the interactions can be identified with 90 percent reliability. For M = 5,
M = 6, and M = 8, there is a reliability of 35, 50, and 95 percent, respec-
tively.

Numerical experiments

The training set contains Mtr randomly selected observations, such that χtr =
{(xt, ut, ẋt) | 1 ≤ t ≤ Mtr}. For this number of observations, the Single Linear
Method is able to return a pair of system matrices, (Aest, Best), that produces
the training set χtr: ẋt = Aestxt + Bestut, for t = 1, . . . ,Mtr. The data error,
De, is defined to measure the quality of the system matrices. For a train-
ing set size Mtr = 15, De = |Aestxt + Best − ẋt|/|ẋt| = 1.43 × 10−9. Here,
Mtr = 15, which is the maximum number of observations such that M < N .
For, Mtr = 15 the generalization error is zero, hence, Mtr = 15 has a reliablil-
ity of 100 percent. Thus, if the approach does not perform well, it can not be
improved by changing the value of Mtr.
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Note that, in this setting, we do not have an original system, known as the
teacher, to compare the resulting system with.

Of course, the resulting system, (Aest, Best), should also perform well on a
data set that has not been used by the algorithm. So, to test the systems
generalization ability, we use the validation set that contains the remaining
Mv = M − Mtr = 8 observations, χv = {(xv , uv, ẋv) | 1 ≤ v ≤ V }. Again, the
data error is used to show the generalization quality of (Aest, Best).

v De = |Aestxv + Best − ẋv|/|ẋv |
1 1.79
2 1.97
3 1.25
4 2.11
5 1.54
6 1.34
7 1.29
8 0.86

Table 6.1: The generalization quality of (Aest, Best).

Table 6.1 illustrates that the resulting system (Aest, Best) does not perform
well on the validation set. This is to be expected for two reasons. First, the
approach only performs well on linear systems, but, here, the gene expression
levels are inherently non-linear (see Figures 6.1 and 6.2). Therefore, the sys-
tem will be split into subsystems, so the Piecewise Linear Model will be used
(see Section 6.3.2). And, second, because of the microarray technique, we can
expect the yeast data to be noisy. However, as concluded in Section 3.2.1, the
Single Linear Model is not capable to deal with this noise. In Section 6.3.3,
we try to find a sparse result with respect to noise.

6.3.2 The Piecewise Linear Model

For the Piecewise Linear Model, the entire state-space is partitioned into sub-
systems. The general form for this model is

Ẋ = H1X + H2U, (6.2)

where H1 and H2 are related to the weight matrix and the system matrices
(Aest,`, Best,`). The weight matrix, W ∈ R

M×K, with K the number of sub-
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systems, represents the membership functions of observation m to subsystem
`. For more details, see Section 3.2.2.

To partition the entire system into subsystems, the weight matrix has to be
initialized by using the matching algorithm. For this algorithm, the number
of subsystems does not have to be known in advance. When the switching
points for each subsystem are known, the Single Linear Model can be used to
identify each subsystem.

Numerical experiments

The training set contains Mtr = 18 randomly chosen observations, such that
χtr = {(xt, ut, ẋt) | 1 ≤ t ≤ Mtr} and still enough observations are left over
to validate the resulting subsystems. To split the system into subsystems,
the weight matrix, W , has to be initialized from this training set. Therefore,
the minimal number of required observations, Mmin, has to be known. From
Section 4.1 and Section 6.3.1, we know how the system scales with the system
size and thus Mmin can be estimated.

The first Mmin observations are assigned to the first subsystem. Once an
assignment of Mmin observations to a subsystem is made, the next observa-
tion Mmin + 1 will be considered. To decide whether an observation, µk =
(x[k], u[k], ẋ[k]), belongs to a subsystem `, the distance between the observa-
tion and the current subsystem, d(µk, `), must be computed. If the distance
to the current subsystem is sufficiently small, this observation will be added to
the current subsystem, otherwise, the next Mmin observations, starting from
µk, will be added to the next subsystem ` + 1. This process is repeated until
all observations belong to a subsystem. This procedure will be refered to as
the matching algorithm. For more details, see Section 3.2.2.

Let us assume that Mmin ∈ {5, 6, 7, 8}. After a run, the corresponding possible
weight matrices are respectively as in Figure 6.3.

Figure 6.3: Split of the subsystems for Mmin ∈ {5, 6, 7, 8}.
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So, the matching algorithm for Mmin = 5 splits the system into 3 subsystems,
Mmin = 6, Mmin = 7, and Mmin = 8 are split all into 2 subsystems, see
Figure 6.3.

After the initialization of the weight matrix, the Single Linear Model will
be used to identify all subsystem matrices (Aest,`, Best,`). We measure the
quality of the identification from the validation set χv by

De,` =
|Aest,`xv,` + Best,` − ẋv,`|

|ẋv,`|
.

Note that to compute the data error for each subsystem, De,`, the validation
vectors for that specific subsystem xv,` and ẋv,` are needed . Table 6.2 shows
the data error, for each specific subsystem, and this for Mmin ∈ {5, 6, 7, 8}.
Table 6.2 illustrates that, even after splitting into subsystems, the resulting
system matrices (Aest,`, Best,`), for ` = 1 . . . K, do not perform well on the
validation set. This is to be expected, because the data is still strongly noisy,
and, as studied in Section 3.2.2, this Piecewise Linear Model is not capable to
deal with noisy data sets.

Mmin subsystem 1 subsystem 2 subsystem 3

5 1.05 0.79 2.14
6 1.22 0.77 /
7 0.98 1.04 /
8 1.25 0.92 /

Table 6.2: Data error per subsystem for Mmin = 5, Mmin = 6, Mmin = 7, and
Mmin = 8.

In Table 6.3, the sparsity, i.e., the number of non-zeros per row of Aest,`, for
each subsystem and Mmin ∈ {5, 6, 7, 8}, is shown. From Table 6.3, it is clear
that the resulting system matrices Aest,`, for ` = 1 . . . K, are relatively sparse.
Here we employ our earlier definition of sparsity, namely the number of non-
zeros per row of the connection matrix. A sparsity of 4, which yields the best
result, means that, on average, 1/4th of the unknown gene representatives
are non-zero. This is an acceptable result, because a large number of genes,
which are not significantly affected by others, were removed in the filtering
step. And the remaining non-affected gene expressions were clustered into the
same cluster.
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Mmin subsystem 1 subsystem 2 subsystem 3

5 4 4 5
6 7 6 /
7 11 5 /
8 7 7 /

Table 6.3: Sparsity per subsystem for Mmin = 5, Mmin = 6, Mmin = 7, and
Mmin = 8.

6.3.3 Dealing with noise

The data available for the identification and reconstruction of the yeast cell
cycle is a result of microarrays taken at 24 time points. To obtain each microar-
ray, a complex biological process is executed. Therefore, it can be expected
that the data contains measurement noise. Besides this measurement noise,
the system can contain also system noise, noise which occurs in and between
the cells.

As studied in Sections 3.2.1 and 3.2.2, and the experiments above, the Single
Linear Model and the Piecewise Linear Model in the current form cannot deal
with noisy data. Therefore, in Section 4.2, the original L1-minimization is
adapted and a regularization parameter is introduced:

min λ‖A‖1 + ‖Ẋξ − AX − BU‖1 (6.3)

The regularization parameter, λ, imposes certain distributions on the opti-
mization terms ‖A‖1 and ‖Ẋξ −AX −BU‖1. The first term, ‖A‖1, represents
the sparsity constraint, and the second term, ‖Ẋξ − AX − BU‖1, measures
the quality of the fit. As discussed in Section 4.2, ‖Ẋξ − AX − BU‖1 ≈ 0 to
have an acceptable fit of the original system.

Numerical experiments

From Section 4.2, it is known that a larger training set size is needed to
obtain an acceptable fit of the original system. Therefore, the experiments
are performed on a training set of size Mtr = 21. Note that 21 observations
are the absolute maximum, because only 2 observation are left over for the
validation set (Mv = 2). To split into subsystems, we perform runs for Mmin =
5, . . . ,Mmin = 10.
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For this LP, the regularization parameter, λ, needs to be identified to bal-
ance between the sparsity and the robustness of the fit. Notice that λ de-
pends on the number of unknowns and the number of observations. Ap-
plying the study introduced in Section 4.2, λmin ≤ λ ≤ λmax for N = 16,
the unknown components can be estimated. To fit each subsystem, λ for
M = Mmin, . . . ,Mtr − Mmin must be computed. The results are shown in
Table 6.4.

M λmin λmax

5 1.4 3.2
6 1.3 4.1
7 1.8 4.5
8 1.2 5.0
9 1.5 5.1
10 3.4 6.1
11 3.3 7.1
12 3.9 6.9
13 5.0 7.7

Table 6.4: Representation of λmin and λmax for N = 16 and M = 5, . . . , 13.

After performing the matching algorithm, Mmin = 5, Mmin = 6 and, Mmin =
7 are split into three subsystems. Hence, at least one subsystem does not have
a corresponding validation vector. Mmin = 8, Mmin = 9 and, Mmin = 10 are
split into two subsystems.

To represent the performance quality of the Piecewise Linear Model for this
LP, the data error for each subsystem, De,`, is defined as before and the results
are shown in Table 6.5. For each subsystem, it is shown that the data error
is somewhat lower than for the Piecewise Linear Model without the regular-
ization parameter. Figures 6.4 and 6.5 represent the robustness of the fit for
the model with Mmin = 7, which results into 3 subsystems. Of course, we
are also interested in the sparsities of the systems which are represented in
Table 6.6. It is clear that by introducing the regularization parameter, the
systems have a better sparsity.
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Mmin subsystem 1 subsystem 2 subsystem 3

5 0.70 / 0.51
6 0.84 0.69 /
7 0.73 / 1.32
8 0.61 0.98 /
9 0.59 0.97 /

10 0.83 1.02 /

Table 6.5: The data error for each subsystem for Mmin = 5, . . . , Mmin = 10
and a training set size of Mtr = 21.

Figure 6.4: Ẋ vs. Ẋest for Mmin = 7,
subsystem 1.

Figure 6.5: Ẋ vs. Ẋest for Mmin = 7,
subsystem 3.



6.4. Conclusions 107

Mmin subsystem 1 subsystem 2 subsystem 3

5 2.88 / 1.13
6 1.44 2.68 /
7 1.63 / 0.94
8 1.75 1.62 /
9 1.18 2.18 /

10 0.62 1.12 /

Table 6.6: Sparsity per subsystem for Mmin = 5, . . . , Mmin = 10 and a
training set size of Mtr = 21.

6.4 Conclusions

Data sets for real-world networks, e.g., the metabolic network, and the World
Wide Web, consist of a large number of nodes or components. In practice,
e.g., due to the high costs of microarray hardware and the unregulated growth
of the number of web pages, there are only few reliable real-world data sets
available for our framework.

In this Chapter, we considered the data set of yeast Saccharomyces cerevisiae
consisting of about 6400 genes and 24 time steps of genome-wide measure-
ments. We found that there are various gene expressions with missing values
and that some others are not interesting, because of their low variability and
low amplitude. These genes are removed from the data set. From the 6400
original genes, some 4000 were left over. Obviously, 24 measurements for 4000
genes are insufficient. Therefore, the gene expressions were clustered in such
a way that genes with the same behavior are represented by one gene repre-
sentative. In this study, K-means clustering was found to be optimal for 16
clusters. As a result, we obtained a data set of 16 gene representatives and 24
observations which have been used for the identification process.

For identification purposes, a training set of Mtr random selected observa-
tions was defined, and to measure the quality of the resulting fit, a validation
set of Mv = M − Mtr remaining observations was defined.

First, the Single Linear Method was applied with a training set size Mtr = 15,
which is the maximal number of observations such that the condition M <
N still holds. From Section 6.3.1, we concluded that the resulting system
(Aest, Best) does not perform well on a data set that has not been used by
the algorithm. On the one hand, this result is due to the non-linearity of the
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original data. To deal with this non-linearity, the data was split into linear
parts. On the other hand, the result was negatively influenced by the noise
level of the original data. In Section 3.2.1, it was shown that the Single Linear
Model cannot deal with noisy data.

Second, the Piecewise Linear Model was applied. With this model, the data
was split into parts and each subsystem was identified by the Single Linear
Model. For all the experiments, the training set size Mtr = 18 and, thus, a
validation set of Mv = M − Mtr = 5 observations was left over. Splitting
the system depended on the minimal number of required observations, Mmin

and the generalization ability of each subsystem was measured by the data
error. From Section 6.3.2, it is clear that the resulting system (Aest,`, Best,`),
with ` = 1 . . . K, is sparse, but it does not generalize beyond the training set.
For this Piecewise Linear Model, it was shown, in Section 3.2.2, that it is not
capable to deal with noise either.

Third, to fit the system with respect to noise, a regularization parameter was
added to the L1-minimization to find a balance between the sparsity and the
robustness of the system fit. Again, the Piecewise Linear Model was applied
with a training set of size Mtr = 21. By introducing the regularization parame-
ter, it became clear that the sparsity for each row of Aest,` is lower than for the
simpler LP models and the data error is, in general, somewhat lower too. But,
still, we have to conclude that the resulting system is not capable to perform
well on data that has not been used by the algorithm. This is explained by the
fact that only 16 unknowns and 23 observations were available. Until now, we
only worked with large networks, of about 80 till 300 components, on artificial
data. This resulted in numerical experiments which were statistically relevant.

The application on this Yeast data set is not novel, but it illustrates how
our algorithms can be run on practical data after doing some preprocessing
and clustering. As mentioned before, it is difficult to find data sets with a
realistic number of observations.



7
Conclusion and discussion

In this work, we were interested in the dynamical multi-agents systems, as
a means to identify their underlying sparse dynamic interaction networks.
Real-world networks, e.g., information networks, biological networks, and so-
cial networks, consist of a high number of nodes, representing the agents, and
are mostly extremely sparse. Furthermore, in practice, it is difficult to obtain
reliable real-world data. As a consequence, experimental data consist of a
high number of unknown components and only a few experimental observa-
tions compared to the amount of components. This underdetermined system
can lead to an identifiability problem, because more solutions are possible.
Therefore, we were interested in the sparsity of the network, the relation be-
tween the number of components and the number of observations, and the
influence of noise, because they define extra constraints that limit the solution
space considerably.

To identify an interaction network, a valid mathematical model that gives
a detailed description of the given problem had to be developed. There ex-
ist numerous different methods to create such a model. Some methods find
their foundation in the theory of statistics, others are based on differential or
stochastic equations. The interactions between the unknown components in
our work, are modeled by rate equations, i.e., by a set of ordinary differential
equations (ODE). Starting from this ODE, two algorithms to model and iden-
tify have been presented.

109
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First, we have considered the Single Linear Model where the entire state-space
is seen as one large space. The interactions, and thus, the system matrices
are modeled by a linear dynamic state-space system. To get the most sparse
solution, the technique of L1-minimization, which is based on linear program-
ming, is used.

Second, we have introduced a novel approach, the Piecewise Linear Model.
Here, the state-space is partitioned into different subsystems, where different
attractors reign. By combining the system matrices with a weight matrix,
which represents the membership of each observation to a particular subsys-
tem, it turned out that each subsystem can be considered as one Single Linear
System.

From our theoretical analysis in Chapter 4, and the analysis of the example-
application in Chapter application, we can conclude that the Single Linear
Model and, thus, also the Piecewise Linear Model result in efficient and fast
algorithms that are able to accurately estimate a sparse dynamic interaction
network from poor data.

To study the relation between the available number of observations and the
number of system components, to the impact of sparsity more into detail, the
problem has been reformulated in the context of machine learning. In this
setting, a model must be learned that fits the underlying dynamic interaction
system and is capable of generalization. Therefore, efficient training sets and
validation sets were defined.

As an interesting and published result, we found that for a relatively small
training set size the learning process is capable to find a perfect fit, and that the
transition towards generalization is quite abrupt. To explain this phenomenon,
the unknown components were considered. For an increasing training set size,
the non-zeros were fitted weakly whereas the fitting of the zeros occurred for
higher numbers of observations, but approximately linear with the training set
size. Furthermore, the ability to identify networks from poor data turned out
to be a consequence of the sparsity of the original regulatory network. The
less sparse the network, the more observations were needed to fit.

Besides the results concerning the system sizes and the sparsity, the exper-
iments in the context of machine learning also led to another, important con-
clusion. It turned out that each row of the linearized interaction matrix can
be determined independently. Therefore, the learning problem can be viewed
as a feature selection problem. This has led to the observation that the gen-
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eralization for various system sizes can be computed by applying the correct
scaling on the system size.

Unfortunately, our studies in the context of Machine Learning firmly establish
that both the Single Linear Model and the Piecewise Linear Model are not
robust with respect to noise. As a consequence, the L1-mimimization, which
is the basis for both models is extended and a regularization parameter is
included. The regularization parameter depends on the number of unknown
components and the number of observations, and searches for a balance be-
tween the sparsity constraint and the robustness of the fit with respect to noise.

In the context of regularization, more observations were required to find a
perfect fit than in the previous, more simple linear programming model. The
regularization algorithm is able to identify a network with a high number of
unknown components together with a training set size of considerably smaller
size. More observations were necessary to identify the zero- and non-zero com-
ponents of the system. In general, however, the behavior of our identification
methodology is comparable to the more simple L1 regression model. For an
increasing training set size, the identification of the non-zeros started directly,
but weakly, whereas the identification of the zeros occurred later, but fast and
efficient and, thus, the transition towards generalization remains still quite
abrupt.

After we had found answers to the impact of sparsity of the connectivity ma-
trix of the network structure, the relation between the number of components
and the number of observations, and the impact of noise, we were interested
in the network’s storage capacity.

For each possible combination of system inputs there exists an output vec-
tor which is the optimal network response. In the context of the environment
of the system. For example, a bacterium exposed to a toxic agent. By storing
these input-output patterns, system can learn and react on an appropriate
manner to a certain input. The more input-output patterns an organism can
store, the more it has learned, the better it is capable to give the best response
in its world. It was found that the linear programming formalism can be ap-
plied again, and that the maximal number of observations that can be stored
depends on the number of unknown components and the number of external
inputs. In addition, the storage of the patterns in sparse networks exhibits
two distinct phase transitions. These phase transitions divided the system
into three regions with different memory characteristics. In the first region,
a relatively small number of patterns are stored in the external input matrix
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and none in the interaction matrix. In the second region, information is pref-
erentially stored in the interaction matrix. And finally, in the third region,
there is no clear preference for storing information in either the external input
matrix or the interaction matrix and both matrices are now almost entirely
full.

In other words, first, the system stores output that depends exclusively on
the external inputs, i.e., light and temperature. Second, the stored output is a
result of the learning where mainly interactions between the components are
taken into account. Third, the output is a result of the learning of both, the
external input and the interactions between the components.

Finally, the Single Linear Model and the Piecewise Linear Model were applied
on a real-world data set of the yeast Saccharomyces cerevisiae. To identify the
interaction network, some preprocessing and clustering was necessary. This
resulted in a collection of 16 gene representatives with 23 independent time
step observations.

We found that the Single Linear Model and the Piecewise Linear Model were
not able to fit the interaction network. This was to be expected because of
the noisy data set and the underlying non-linearity. Nevertheless, the Piece-
wise Linear Model reconstructed a sparse network. To deal with the noise,
a regularization parameter was added to the L1-mimimization, following our
approach in Chapter 4. Now, the Piecewise Linear Model was still not able to
fit, but the fitting error was lower and the network was more sparse. These
results can be attributed to the small number of components and observations.

In this work, we worked predominantly with large networks, of about 80 till
300 components, on artificial data. This resulted in numerical experiments
which yielded statistically relevant results. The application on the yeast data
set is not novel, but it illustrates how our models can run on practical data
after performing the required preprocessing and clustering.

Summarized, in this work, we studied the dynamics of sparse, dynamic in-
teraction networks from poor data. Primarily, this means that we examined
the impact of sparsity to the network, the role of the system sizes to the net-
work, and the influence of noise. To show the applicability of this approach, a
real-world network was applied. Furthermore, we were interested in the stor-
age capacity of these sparse networks.
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Our study results in a number of remaining research questions. What comes
to our mind first involves the constraints of hierarchical construction for net-
works. In this study, we worked with sparse networks, each component is
influenced by a small number of other components. But does this imply that
a small number of components influence a high number of others? And if so,
how does this constraint influence the linear programming?

Second, to perform numerical experiments, we worked with a random inter-
action matrix wherefore the sparsity constraint must hold. It turned out that
most real-world networks are not just random, but have a small-world or scale-
free structure. The question that arises is whether our sparse networks have a
small-world structure or a scale-free structure? To test the small-world struc-
ture, the algorithm of Watts and Strogatz [80] can be used, which is able to
construct such a small-world network. To construct a scale-free network, the
algorithm of Barabási and Albert [4] can be used. Finally, to confirm, a statis-
tical relevant test, i.e., the χ2-test, needs to be performed for these simulated
networks and our sparse network.





Bibliography

[1] Cell cycle regulated yeast genes. http://cellcycle-www.stanford.edu.

[2] Www faqs: How many websites are there? http://www.boutell.com/

newfaq/misc/sizeofweb.html.

[3] L.A. Adamic and B.A. Huberman. Internet: Growth dynamics of the
world-wide web. Nature, 401:131, 1999.

[4] R. Albert and A.L. Barabási. Statistical mechanics of complex networks.
Reviews of Modern Physics, 74:47–97, 2002.

[5] R. Albert, H. Jeong, and A.-L. Barabási. The diameter of the world wide
web. Nature, 401:130–131, 1999.

[6] A.-L. Barabási and R. Albert. Emergence of scaling in random networks.
Science, 286:509–512, 1999.

[7] A.-L. Barabási, R. Albert, and H. Jeong. Mean-field theory for scale-free
random networks. Physica A, 272:173–187, 1999.

[8] A.-L. Barabási, R. Albert, and H. Jeong. The topology of the world wide
web. Physica A, 281:69–77, 2000.

[9] A.-L. Barabási, H. Jeong, E. Ravasz, Z. Néda, A. Schubert, and T. Vicsek.
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