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Introduction

1.1 Introduction

A disease or medical condition is an abnormal condition of an organism that impairs

bodily functions, associated with specific symptoms and signs. It may be caused by

external factors, such as invading organisms, or it may be caused by internal dys-

functions, such as autoimmune diseases. In human beings, “disease” is often used

more broadly to refer to any condition that causes extreme pain, dysfunction, dis-

tress, social problems, and or death to the person afflicted, or similar problems for

those in contact with the person (Johnson 2002). Diseases in general, particularly

chronic diseases, deprive individuals of their health and productive potential. From

countries perspective, chronic diseases reduce life expectancy and ultimately economic

productivity, thus depleting the quality and quantity of countries labor force (WHO

2005).

Due to the need for effective, safe, and affordable pharmaceuticals to control, cure
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or eradicate diseases, especially those that cause high mortality and morbidity, drug

regulatory agencies have been put in place to enforce a standard drug development

process. The first step of the process, referred to as drug discovery, determines the

target disease, develops hypothesis for a mechanism of treatment, as well as determine

feasibility of producing and evaluating the selected compounds. Next comes the

screening, where combination chemistry is used to obtain many possible compounds,

which are tested for activity via high throughput screening. This is followed by the

Pre-clinical phase, which is an animal study used to assess the safety and biological

activities of the selected compound, together with lethal and normal dose levels for

short and long term use. If promising results are obtained from the pre-clinical stage,

a request is made to the appropriate regulatory agency to allow human exposure to

the experimental drug. Upon approval from a regulatory agency, the investigational

new drug is then tested and evaluated through a series of clinical trials. Table 1.1

provides a summary of the drug development process, with an indication of the sample

size and or duration required at each stage.

1.2 The Concept of a Surrogate Endpoint

The drug development process is known to be complex, costly, and time-consuming

(DiMasi et al. 1994, Kaitin and Healy 2000, Kaitin and DiMasi 2000). The process is

also risky in that most compounds that undergo clinical testing are abandoned without

obtaining marketing approval (Table 1.1). The rising costs of drug development and

the challenges of new and re-emerging diseases are putting considerable demands on

efficiency in the drug candidates selection process. Thus, careful consideration of

all factors that have a significant impact on the process is needed, to appropriately

allocate research and development resources. A very important factor influencing
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the duration and complexity of the drug development process is the choice of the

endpoint, which will be used to asses the efficacy of the drug or treatment. Two main

criteria to select the endpoint are its sensitivity to detect treatment effects and its

clinical relevance to goals of the study (Fleming 1996). The relevance depends on the

purpose of the stage of the drug development in question. For example, evidence of

the biological activity of a drug in Phase II trials, or a definitive evaluation of clinical

benefit to patients in Phase III trials (Burzykwoski, Molenberghs and Buyse 2005).

Often the most sensitive and relevant clinical endpoint, which will be called the

“clinical” or “true” endpoint, might be difficult to use in a clinical trial. Thus, use of

the true endpoint in such cases might increase the complexity and or the duration of

a clinical trial, especially when measurement of such endpoints are:

• costly – for example, expensive equipment for measuring nitrogen, potassium,

and water contents in patient’s body is required to diagnose “cachexia”;

• difficult – for example, involving compound measures such as encountered in

quality-of-life;

• requires a long follow-up-time – for example, survival in early-stage cancers;

• requires a large sample size due to a low incidence of the event – for example,

short-term mortality in patients with suspected acute myocardial infarction.

To overcome these problems, a seemingly attractive solution is to replace the true

endpoint by another one, which is measured earlier, more conveniently, or more fre-

quently. Such “replacement” endpoints are termed “surrogate” endpoints (Ellenberg

and Hamilton 1989). In many health care studies, the so-called biomarkers are used

to examine organ functions or other aspects of health. An effective strategy is then

proper selection and application of biomarkers for efficacy. From a regulatory per-



4 Chapter 1. Introduction

spective, a biomarker is considered acceptable for efficacy determination only after

its establishment as a valid indicator of clinical benefit, i.e., after its validation as a

surrogate marker (Burzykowski, Molenberghs, and Buyse 2005).

These considerations naturally lead to the need of proper definitions. An important

step came from the Biomarker Definitions Working Group (2001), their definitions

nowadays widely accepted and adopted. They defined the most credible indicator or

drug response, a clinical endpoint, as a characteristic or variable that reflects how a

patient feels, functions, or survives. A biomarker is a characteristic that is objectively

measured and evaluated as an indicator of normal biological processes, pathogenic

processes, or pharmacologic responses to a therapeutic intervention. A surrogate

endpoint is a biomarker that is intended to substitute for a clinical endpoint, which

is expected to predict clinical benefit, harm, or lack thereof.

Biomarkers will continue to play an increasingly important role in improving the

effectiveness of drug research and development. This is due to, but not limited to, the

rapidly progressing understanding of the molecular basis of disease processes. Once

a proposed biomarker has been validated, it can be used to diagnose disease risk,

presence of disease in an individual, or to tailor treatments for the disease in an indi-

vidual (choices of drug treatment or administration regimes). In evaluating potential

drug therapies, a biomarker may be used as a surrogate for a clinical endpoint such

as survival or irreversible morbidity.

1.3 Controversies, Motivation, and Validation of Sur-

rogate Endpoints

Surrogate endpoints have been used in medical research for a long time, owing to

the possible benefits for the duration of a clinical trial (Fleming and DeMets 1996,
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Cardiac Arrhythmia Suppresion Trial 1989). However, in spite of the potential advan-

tages, the use of surrogate endpoints in the development of new therapies has always

been very controversial. This is partly owing to a number of unfortunate historical

instances where treatments showing a highly positive effect on a surrogate endpoints

were ultimately shown to be detrimental to the subjects clinical outcome, and con-

versely, some instances of treatments conferring clinical benefit without measurable

impact on presumed surrogates (Fleming and DeMets, 1996).

The best known case is the approval by the Food and Drug Administration (FDA)

of two antiarrhythmic drugs: encainide, and flecainide. The drugs reduced arrhythmia

but caused a more than three fold increase in overall mortality, there by stressing the

need for caution in using non-validated biomarkers in the evaluation of the possible

clinical benefits of new drugs (Cardiac Arrhythmia Suppresion Trial 1989). Another

example is the use of CD4 blood count as a surrogate endpoint for time to clinical

events and overall survival (Lagakos and Hoth 1992), in spite of concern about its

limitations as a surrogate marker for clinically relevant endpoints (DeGruttola et al.

1997).

The main reason behind failures was the incorrect perception that surrogacy simply

follows from the association between a potential surrogate endpoint and the corre-

sponding clinical endpoint. What is required to replace the clinical endpoint by the

surrogate is that the effect of the treatment on the surrogate endpoint reliably pre-

dicts the effect on the clinical endpoint. This condition was not checked in the early

attempts, consequently leading to negative opinions about the use of surrogates in

the evaluation of treatment efficacy (Fleming 1994, Ferentz 2002).

Even with the controversies as mentioned above, the use of surrogate endpoints is

still being considered due to some of the following reasons:
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• An increasing number of new drugs have well-defined mechanisms of action at

molecular level, allowing drug developers to measure the effect of these drugs

on the relevant biomarkers (Lesko and Atkinson 2001).

• There is also increasing public pressure for fast approval of promising drugs,

which will have to be based on biomarkers rather than on long-term, costly

clinical endpoints (Dunn and Mann 1999). This is especially so for diseases

that could become a serious threat to public health or the patients (quality of)

life.

• The duration and sample size of clinical trials aimed at evaluating the thera-

peutic efficacy of new drugs are often insufficient to detect rare or late adverse

effects (Jones 2001, Heise et al. 1997); using surrogate endpoints in this context

might allow one to obtain information about such effects even during the clinical

testing phase.

• Shortening the duration of clinical trials not only can decrease the cost of the

evaluation process but also limit potential problems with noncompliance and

missing data, which are more likely in longer studies (Burzykowksi, Molen-

berghs, and Buyse 2005, Verbeke and Molenberghs 2000).

• Another important point is the fact that regulatory agencies around the globe,

in particular in the United States, in Europe and in Japan, have set mechanisms

available for accelerated approval based on surrogate endpoints (Burzykowksi,

Molenberghs, and Buyse 2005).

The use of surrogate endpoints is more accepted in early phases of clinical research.

Using them to substitute for the clinical endpoint in all clinical research past a certain

point is, however, a topic of ongoing debate. Molenberghs et al.(2008), argue that
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one should be much more restraint using them as substitutes for the true endpoint in

pivotal phase III trials, since the latter might imply replacing the true endpoint by a

surrogate for all future studies as well, a far-reaching decision.

While the huge potential of surrogate endpoints to accelerate and improve the

quality of clinical trials is unquestioned, the above considerations indicate that it is

crucial to use validated surrogates (Schatzkin and Gail 2002). Like in many clinical

decisions, statistical arguments will play a major role, but ought to be considered in

conjunction with clinical and biological evidence, as well as practical and economic

considerations. Consequently, the International Conference on Harmonisation (ICH)

Guidelines on Statistical Principles for Clinical Trials states that “In practice the

strength of the evidence for surrogacy depends upon (1) the biological plausibility of

the relationship, (2) the demonstration in epidemiological studies of the prognostic

value of the surrogate for the clinical outcome and (3) evidence from clinical trials

that treatment effects on the surrogate correspond to effects on the clinical outcome”

(International Conference on Harmonisation 1998). This work focuses on the statis-

tical validation of surrogate endpoints, with a lot of emphasis on randomized clinical

trials.

Several methods have been suggested for the formal evaluation of surrogate mark-

ers. Prentice (1982) proposed a formal definition of surrogate endpoints with a set

of criteria for their validation. Freedman, Graubard, and Schatzkin (1992) supple-

mented Prentice’s proposal with the estimation paradigm, by introducing measures,

the proportion explain, which can be used to evaluate surrogate endpoints. Quan-

tification allows us consider surrogate endpoints which are, in some sense, less than

perfect but possibly strong enough to be able to still be of use. Buyse et al. (2000)

further decomposed the proportion explained into the relative effect and adjusted as-
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sociation and argued in favor of these quantities instead. These strategies are based

on a single trial setting. Thus, although appealing they rest on strong and unveri-

fiable assumptions, leading several authors (Daniels and Hughes 1997, Buyse et al.

2000) to propose methods based on information coming from several units or trials.

Using hierarchical linear models, Buyse et al. (2000) defined surrogacy in terms of the

quality of trial-level (R2
T rial) and individual-level (R2

ind) association between a poten-

tial surrogate and a clinical endpoint, both of a coefficient of determination type. A

surrogate will be said to be good when both (R2
T rial) and (R2

ind) are sufficiently high.

What is sufficiently high remains to be determined in collaboration with clinical and

biopharmaceutical arguments.

Validation of surrogate endpoints within the meta-analytic frame work of Buyse et

al. (2000) has been extended to settings involving non-Gaussian outcomes (Burzykowksi,

Molenberghs, and Buyse 2005). In the present work, we will review and investigate

the advantages and problems, especially computational issues, related with the meta-

analytic approach, with a focus on Gaussian outcomes. Additionally, we will extend

the said validation framework to a setting where the true endpoint is the ultimate

assessment in a sequence of repeated measures, considering earlier measures as a

potential surrogate endpoint.

In addition to the severe computational issues which may be encountered with

the meta-approach, different settings have led to different measures at the individual-

level. To overcome these limitations, Alonso and Molenberghs (2007) used information

theory to create a unified framework for surrogate markers evaluation base on a

measure of information, R2
h. We investigate the performance of this approach and

extend its use to settings consisting of non-Gaussian outcomes, with focus on event-

time type outcomes.
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1.4 Structure of the Thesis

This work is based on the development of marker methodology with focus on event-

time type clinical endpoints. In particular, emphasis will be given to the statistical

validation of surrogate endpoints. The general structure of the thesis is divided in

two parts.

The first part consists of four chapters dedicate to a meta-analytic validation frame-

work for surrogate markers. Chapter 2 introduces a basic set of notation to be used

throughout the thesis, motivating case studies, as well as datasets used to illustrate

some methods proposed in subsequent chapters. A concise history of surrogate marker

evaluation is covered in Chapter 3, together with a meta-analytic approach proposed

by Buyse et al.(2000) for continuous outcomes, and its extension to settings with mix-

tures of other types of outcomes. We investigate some computational issues related

to the meta-analytic approach through simulation studies in Chapter 4. In Chapter

5, we review a meta-analytic approach validation method for two repeatedly mea-

sured outcomes (specifically longitudinal outcomes), and modify it to accommodate

a mixture of longitudinal and cross-sectional outcomes. The modified version is then

applied to a setting where the true endpoint is the ultimate assessment in a sequence

of repeated measures, with subsequences of earlier measures as potential surrogate

endpoints. This is done while carefully weighing the length and cost reducing poten-

tial against loss in precision and the risk of an inappropriate decision.

The second part of the thesis consists of six additional chapters; dedicated to a

different approach to surrogacy based on information theory by Alonso and Molen-

berghs (2007). This approach leads to an intuitive interpretation, is applicable to a

wide range of situations, and provides a unified framework as some of the previous

proposals in the first part of the thesis follow as special cases of this approach. A
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brief review of the information-theoretic approach (ITA) is the focus of Chapter ??.

In Chapter ??, we investigate the performance of the information-theoretic approach

in a setting with mixed continuous clinical and binary surrogate endpoints, through

a simulation study. A limited discussion of its performance for two binary endpoints,

as well as an application to a case study are also presented. In Chapter ??, we extend

the information-theoretic approach to settings with event-time type clinical endpoints.

This extension hinges greatly on a proportional hazards assumption (Cox 1972). In

Chapter ??, we investigate the performance of the ITA in a setting with event-time

clinical endpoint and a cross-sectional continuous surrogate, when the proportional

hazards assumption is violated.

The motivation or objective for Chapter ?? is two-fold; firstly, it illustrates how

the ITA can be employed in a setting with mixed event-time and cross-sectional

endpoints. Secondly, it provides us with an idea of how robust the ITA may be to

the PH assumption. However, cross-sectional biomarkers are not the most common

biomarkers for event-time clinical endpoints. For example, let us consider a study in

advanced colorectal cancer. While a researcher waits for the occurrence of the event

of a clinical endpoint, for example death, it is customary to:

1. record the event of a biomarker, which is expected to occur before that of the

clinical endpoint. For example, progression free survival. This leads to a setting

with two event-time endpoints and is focus of Chapter ??;

2. take repeated measurements of other biomarkers (e.g. tumor size), hence possi-

ble surrogate markers, over time. Thus, yielding a longitudinal surrogate for an

event-time clinical endpoint. Applying the ITA to such a setting is the covered

in Chapter ??.
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Finally, Chapter ?? presents some conclusions, recommendations, and perspectives

on further research.
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2
Notation and Motivating

Studies

In this chapter, we begin by introducing a basic set of notation to be used throughout

the thesis, as well as datasets that will be used to illustrate the various validation

methods described in the subsequent chapters.

2.1 Notation

We adopt the following notation: T and S are random variables that respectively

denote the clinical and surrogate endpoints, C the censoring times for event-time type

endpoints, and Z is a binary indicator variable for the treatment. The fundamental

settings considered corresponds to a multi-center trial or a meta-analysis of trials.

Hence, the (T, S, Z) notation will be supplemented using indices i = 1, . . . , N for the

ith center or trial, j = 1, . . . , ni, and to denote the jth subject enrolled in the ith

13
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center or trial. Where appropriate, the indices k = 1, . . . ,K will be used to denote

the kth measurement on subject j in the ith center or trial, measured at time point

tik. Some sections and or motivating studies are based on a single trial. The variables

and indices maintain their respective description as mentioned earlier above.

2.2 Motivating Studies

This subsection provides description of data from randomized and non-randomized

clinical trials in different therapeutic areas will be used throughout many of the chap-

ters.

2.2.1 Ophthalmology: Age-related Macular Degeneration Trial

Age-related macular degeneration is a condition in which patients progressively lose

vision. This is a multi-center clinical trial with 42 centers and a total of 190 patients

with age-related macular degeneration (Pharmacological Therapy for Macular Degen-

eration Study Group 1997). Six out of the 42 trials enrolled patients only to one of

the two treatment arms. Thus, only 36 centers were available for analysis result to a

total of 183 patients, with a number of individual patients per center ranging from 2

to 18.

Patients with macular degeneration progressively lose vision. In the trial, the

patients visual acuity was assessed at different time points through their ability to

read lines of letters on standardized vision charts. These charts display lines of five

letters of decreasing size, which the patient

Patients’ visual acuity was assessed at different time points through their ability

to read lines of letters on standardized vision charts. These charts display lines of
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five letters of decreasing size, which patients had to read from top (largest letters)

to bottom (smallest letters). Each line with at least four letters correctly read is

called one ‘line of vision. The visual acuity was measured by the total number of

letters correctly read. The treatment indicator (Z) is set to 0 for placebo and to 1

for interferon-α. The surrogate endpoint S is the change in visual acuity at 6 months

after starting treatment, while the true endpoint T is the change in visual acuity at 1

year. Both the continuous and binary versions of these endpoints will be considered

in subsequent chapters. Appropriate details will be provided in the corresponding

chapters. When treated as continuous variables, the endpoints will be assumed to

follow a normal distribution.

2.2.2 A Meta-analysis of Five clinical Trials in Schizophernia

The data come from a meta-analysis of five double-blind randomized clinical trials,

comparing the effects of risperidone to conventional antipsychotic agents for the treat-

ment of chronic schizophrenia. Schizophrenia has long been recognized as a heteroge-

neous disorder with patients suffering from both ‘negative’ and ‘positive’ symptoms.

Negative symptoms are characterized by deficits in cognitive, affective and social

functions for example poverty of speech, apathy and emotional withdrawal. Positive

symptoms entail more florid symptoms such as delusions, hallucinations and disorga-

nized thinking, which are superimposed on mental status (Kay, Fiszbein, and Opler

1987).

Several measures can be considered to asses a patient’s global condition. The

Clinician’s Global impression (CGI) is generally accepted as an admittedly subjective

clinical measure of change. Here, the change of CGI from baseline will be consid-

ered as the true endpoint. It is a 7-grade scale used by the treating physician to
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characterize how well a subject has improved since baseline. The Positive and Nega-

tive Syndrome Scale (PANSS) (Kay, Opler, and Lindenmayer 1988) is another useful

and sufficiently sensitive assessment. It consists of 30 items that provide an opera-

tionalized, drug-sensitive instrument, which is highly useful for both typological and

dimensional assessment of schizophrenia (Kay, Opler, and Lindenmayer 1988). Since

the package insert in most countries recommends that risperidone is most effective at

doses ranging from 4 t0 6 mg/day, only patients that received either these doses of

risperidone or an active control are included in the dataset. Depending on the trial

treatment was administered for a duration of 4 to 8 weeks and measurements were

taken on weeks 1, 2, 3, 4, 6, and 8.

For this study, we will evaluate the change from baseline in PANSS as a surrogate

endpoint for the change in CGI from baseline. The data contains five trials and in

all trials, information is available on the investigators that treated the patients. Like

the trials, the investigators will also be considered as the units of analysis. For most

of the analysis applied to this dataset, we will restrict attention to the last observed

scores during treatment. Additionally, the repeatedly measured PANSS outcome will

be used in Chapter 5.

2.2.3 A Meta-analysis of Ten Clinical Trials in Acute Migraine

This is a meta-analysis of 10 early phase trials assessing the efficacy of several ther-

apies for the treatment of acute migraine crises. Each trial was placebo-controlled

and aimed at evaluating one of three experimental treatments. Two trials also in-

cluded an active control arm. Overall, 801 patients were available, recruited over

38 different centers, with between 1 and 86 patients enrolled per center. Severity

of headache and migraine-related symptoms were measured prior to and at several
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occasions after the dose administration. Severity was rated on a four-grade intensity

scale (0 =no, 1 =mild, 2 =moderate, 3 =severe). Clinically relevant endpoints for

efficacy included pain-free (pain score=0) and pain relief (pain score<= 1) two hours

post-dose. The main goal is to identify what symptoms are typically associated with

migraine episodes, such as, for example, nausea, vomiting, increased sensitivity to

light, i.e., photophobia, as well as to sound, i.e., phonophobia.

2.2.4 Four Meta-analysis of 28 Clinical Trials in Advanced Col-

orectal Cancer

The data are from 28 advanced colorectal cancer trials (Advanced Colorectal Cancer

Meta- Analysis Project, 1992, 1994; Meta-Analysis Group in Cancer, 1996, 1998). The

individual patient data were collected by the Meta-Analysis Group in Cancer between

1990 and 1996 to obtain an overall quantitative assessment of the value of several ex-

perimental treatments in advanced colorectal cancer. In the four meta-analyses, the

comparison was between an experimental treatment and a control treatment. The

control treatments, referred to hereafter as FU bolus, were similar across the four

meta-analyses and consisted of fluoropyrimidines (5FU or FUDR) given as a bolus

intravenous injection. The experimental treatments, referred to hereunder as experi-

mental FU, differed across the four meta-analyses and consisted of 5FU modulated by

leucovorin (Advanced Colorectal Cancer Meta-Analysis Project, 1992), of 5FU mod-

ulated by methotrexate (Advanced Colorectal Cancer Meta-Analysis Project, 1994),

of 5FU given in continuous infusion (Meta-Analysis Group in Cancer, 1998) and of

hepatic arterial infusion of FUDR for patients with metastases confined to the liver

(Meta-Analysis Group in Cancer, 1996). As noted by Daniels and Hughes (1997), the

use of an experimental treatment that varies among the trials can be defended on the

grounds of generalizability of the results of the validation process to future clinical
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trials and treatments. The experimental treatments in our example might be consid-

ered as representatives of the modifications of the standard fluoropyrimidine-based

regimen in advanced colorectal cancer.

Several of the 28 trials were multi-armed. In total, 33 randomized comparisons

were considered in the four meta-analyses. Individual patient data were available for

27 of the comparisons (in 24 studies). From now on, we shall refer to each of the

comparisons as a separate trial. The total size in the trials ranged from 15 to 382

patients. The true (T ) and surrogate (S) endpoints will be survival time and tumor

response, respectively. A binary version of S, indicating complete/partial response, as

well as a categorical version with four categories (complete response, partial response,

stable disease, progression)(World Health Organisation 1979), will be considered. The

binary indicator for treatment (Z) will be set to 0 for FU bolus and 1 for experimental

FU.

2.2.5 Advanced Colon Cancer: A Meta-analysis of 10 Clinical

Trials

Most patients with metastatic colorectal cancer die as a result of their disease. The

ultimate goal of chemotherapy is to cure the disease, or failing that, to improve patient

symptoms, quality of life, and OS. It seems justified, therefore, to use OS to assess

the efficacy of chemotherapies for advanced colorectal cancer. However, patient death

can be observed only after prolonged follow-up, and with the increasing number of

active compounds available in this disease, any effect of first-line therapies on OS may

be confounded or diminished by the effects of subsequent therapies. It is therefore of

interest to investigate whether progression free survival (PFS) could replace OS as the

primary end point in randomized trials for the treatment of patients with advanced

colorectal cancer (Buyse et al. 2007).
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These data were used in a meta-analysis of 10 randomized trials in advanced col-

orectal cancer. Individual patient data were available from 7 trials comparing flu-

ouracil (FU) + leucovorin with FU alone, with a total of 1,744 patients. Additionally,

data for 1,345 patients from 3 trials comparing fluouracil (FU) + leucovorin with

raltitrexed were available. These trials accrued patients between 1981 and 1990 with

a median follow-up of 30.4 months (Buyse et al. 2007). Survival Analyses PFS and

OS analyses were based on all randomly assigned patients using the intention-to-treat

approach. PFS was defined as the time from random assignment to progressive dis-

ease (as assessed in each individual trial) or death from any cause. OS was defined

as the time from random assignment to death from any cause.

2.2.6 Early Colon Cancer: A Meta-analysis of 11 Clinical Tri-

als

Meta-Analysis Group In Cancer (MAGIC). Modulation of fluorouracil by leucovorin

in patients with advanced colorectal cancer: an updated meta-analysis. Journal of

Clinical Oncology 2004; 22: 376675.

2.2.7 Advanced Ovarian Cancer: A Meta-analysis of Four Clin-

ical Trials

You have this data from Tomasz, therefore analyze it and add results to the appro-

priate section.

2.2.8 Stroke Study on Children with Sickle Cell Disease

The data results from a clinical trial involving 2323 children with sickle cell disease

(SCD). Stroke is the second leading cause of death in children with SCD (Stroke Pre-

vention Trial in Sickle Cell Anemia (STOP) trial). The brain and lungs are among the
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organs susceptible to serious damage in SCD. Early detection of dysfunction may allow

intervention to reduce risk of further damage. Transcranial Doppler ultrasonography

(TCD), studies have been used extensively to evaluate children with SCD (Seibert et

al. 1998). An abnormally high blood flow velocity by TCD in the middle cerebral or

internal carotid arteries is associated with an increased risk of stroke.

The unit of measure is velocity in centimeters per second, estimated by Doppler

ultrasound, from the higher of the 2 middle cerebral arteries (MCAs), and it represents

a physiological marker of the speed of blood flow in the artery. Blood flow velocity

can be increased by reduced lumen diameter, as in stenosis or vasospasm, and/or by

increased volume flow through the artery. In this study, TCD velocities are measured

for each patient repeatedly over time, with the number of repeated measurements

corresponding to the number of examinations a patient has undergone. The number

of examinations per patient range from 1 to 13. About 36% and 0.04% of the total

number of patients have 1 and 13 measurements, respectively. At each examination,

blood flow velocities are measured for each of several arterial segments in the brain.

Actually, multiple measurements are made in each segment but only the highest for

a given segment is recorded, and used to evaluate stroke risk. The following blood

velocities, as well as sensible functions of these velocities, were recorded and will be

evaluated as surrogates for time-to-stroke:

• Maximum mean TCD velocity in qualifying segments (MaxVel);

• Maximum systolic TCD velocity in qualifying segments (MaxS);

• Maximum diastolic TCD velocity in qualifying segments (MaxD);

• Maximum mean TCD velocity on right in qualifying segments (MaxR);

• Maximum mean TCD velocity on left in qualifying segments (MaxL).
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• Sum of maximum systolic and diastolic TCD velocities (MaxSD);

• Sum of maximum right and left TCD velocities (MaxRL).

In addition to the TCD velocity measures, the time to first stroke, which is the

clinical endpoint, and the age of the patients are also recorded. The data contains

information about two categories of patients. The first, consists of 301 children who

were randomized to either receive a control arm or chronic transfusion arm. Only

about 10% of them experienced stroke, i.e., 90% of the observations are censored.

We refer to this data as the Randomized SCD dataset. The second category consists

of 2193 children who were screened and only 4% of them experienced stroke. We

henceforth refer to this category as the Screened SCD dataset. The randomization

group of the children was also recorded for the randomized SCD data.

.
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3
Surrogate Markers Validation

3.1 Brief History of Surrogate Endpoint Validation

One of the most important factors influencing the duration and complexity of the

process of developing new treatment is the choice of the endpoint, which will be used

to assess the efficacy of a treatment. In Chapter 1, we identified some conditions

motivating the use of surrogate endpoints (Section 1.2) as well as controversies sur-

rounding their use (Section 1.3). Thus, necessitating the use of validated surrogate

endpoints. Several authors have argued that if a biomarker is to serve as a surrogate

for a clinical endpoint, there should be a causal relationship between them (Lagakos

and Hoth 1992, Fleming and DeMets 1996). Unfortunately, causality is generally ex-

tremely difficult to test for, and it ought to be understood that the statistical criteria,

25
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developed developed to validate a surrogate marker, provide indirect evidence only

about the causality of the relationship between the marker and the clinical endpoint.

A first source of evidence is provided by the association, at the level of the individual

patient, between the marker and the clinical endpoint. One would expect a good

surrogate endpoint to have a strong association with the clinical endpoint at the

individual level, reflecting some biological pathway from the biomarker to the clinical

endpoint. We will henceforth refer to this as individual-level surrogacy. However, a

good correlate is not automatically a good surrogate (Fleming and DeMets 1996).

Another source of evidence is needed to quantify the association, at the level of a

trial, between the effects of a treatment on the marker and on the clinical endpoint.

We will refer to this as trial-level surrogacy. As mentioned earlier, it is crucial to

validate (or more realistically evaluate) a surrogate before using it to replace a clinical

endpoint. Several formal methods for this purpose have been proposed (Prentice

1989, Freedman, Graubard, and Schatzkin 1992, Daniels and Hughes 1997, Buyse

and Molenberghs 1998, Buyse et al. 2000, Gail et al. 2000).

Prentice (1989) proposed to define a surrogate endpoint as “a response variable for

which a test of the null hypothesis of no relationship to the treatment groups under

comparison is also a valid test of the corresponding null hypothesis based on the true

endpoint.” Symbolically this definition can be written as

f(S|Z) = f(S) ⇐⇒ f(T |Z) = f(T ),

where f(X) denotes the probability distribution of random variable X and f(X|Z)

denotes the probability distribution of X conditional on the value of Z. Prentice

proposed four operational criteria to check if a triplet (T, S, Z) fulfills the definition

(Prentice 1989, Burzykwoski et al. 2005). This definition involves the triplet (T, S, Z),

hence the endpoint S is a surrogate for T only with respect to the effect of some specific
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treatment Z, except if S were a perfect surrogate for T .

Freedman, Graubard, and Schatzkin (1992) supplemented Prentice’s proposal with

the estimation paradigm, by introducing measures which can be used to evaluate

surrogate endpoints. They proposed the so-called proportion explained, PE = 1− βS

β ,

where βS and β denote the treatment effect obtained from the models f(T |S,Z) and

f(T |S) respectively. Quantification allows us consider surrogate endpoints which are,

in some sense, less than perfect but possibly strong enough to be able to still be of

use. Freedman, Graubard, and Schatzkin (1992) argue that one of Prenctice criterion

raises conceptual problems since it requires the statistical test for the treatment to

be nonsignificant after adjustment for the surrogate. Freedman proposed to calculate

the proportion of the treatment effect on the true endpoint captured by the surrogate,

PE. Freedman suggested that a good surrogate is one for which PE is close to one.

However, Buyse and Molenberghs (1998) showed that PE can be decomposed into

three different quantities: (1) the relative effect RE, which expresses the relationship

between the treatment effects on the surrogate and the true endpoint at the trial

level; (2) the adjusted association ρZ ., which is a measure of association between the

surrogate and the true endpoint at the individual level; and (3) a ratio of variances,

which is a nuisance parameter. They then proposed to evaluate the individual- and

trial-level surrogacy using adjusted association and relative effect, respectively.

Wide confidence intervals of RE are encountered in practice and a multiplicative

assumption, which can not be verified using data from a single trial, is necessary

to predict the treatment effect on T for a new trial (Buyse and Molenberghs 1998,

Buyse et al. 2000, Molenberghs et al. 2000). It therefore seems more meaningful

to view the validation problem from a hierarchical (or multilevel, or, meta-analytic)

point of view. Many authors (Freedman, Graubard, and Schatzkin 1992, Daniels
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and Hughes 1997, Albert et al. 1997, Buyse et al. 2000) propose methods based

on information coming from several units or trials to increase the accuracy of the

validation process. A first proposal, using a Bayesian approach, was given by Daniels

and Hughs (1997). Buyse et al. (2000) extended these ideas using the theory of

linear mixed-effects models. Gail et al. (2000) extended it further using generalized

estimation methodology.

Validation within the meta-analytic frame work of Buyse et al. (2000) has been

extended to non-normal settings, as well as to settings with mixed data-type endpoints

(Burzykwoski et al. 2005). In what follows, we describe the approach as proposed by

Buyse et al. (2000) and apply it to some motivating studies.

3.2 A Meta-analytic Validation Framework for Con-

tinuous Outcomes

Here, we discuss the foundations of the meta-analytic approach to the validation of

surrogate endpoints. The surrogate and true endpoints are assumed to be jointly

normally distributed. We assume to have data from N trials at our disposition, in

the ith of which ni subjects are enrolled. Let Tij and Sij be the random variables

denoting the true and surrogate endpoint for the jth subject in the ith trial, and let

Zij be the indicator variable for treatment. The approach is based on a hierarchical

two-stage model. Two distinct modeling strategies can be followed, based on a two-

stage fixed-effects representation on the one hand and random effects on the other

hand. The first stage, of the fixed-effects two-stage model, is based upon a fixed

effects model:

Sij = µSi + αiZij + εSij , (3.1)

Tij = µT i + βiZij + εT ij , (3.2)
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where µSi and µT i are trial-specific intercepts, αi and βi are trial-specific effects of

treatment Zij on the endpoints in trial i, and εSij and εT ij are correlated error terms,

assumed to be zero-mean normally distributed with covariance matrix

Σ =

(
σSS σST

σT T

)
. (3.3)

At the second stage, we assume



µSi

µT i

αi

βi




=




µS

µT

α

β




+




mSi

mT i

ai

bi




, (3.4)

where the second term on the right hand side of (3.4) is assumed to follow a zero-mean

normal distribution with covariance matrix

D =




dSS dST dSa dSb

dT T dTa dTb

daa dab

dbb




. (3.5)

A classical hierarchical, random-effects modeling strategy can also be adopted in the

following manner:

Sij = µS + mSi + αZij + aiZij + εSij , (3.6)

Tij = µT + mT i + βZij + biZij + εT ij . (3.7)

Here, µS and µT are fixed intercepts, α and β are fixed treatment effects, mSi and

mT i are random intercepts, and ai and bi are random treatment effects in trial i for

the surrogate and true endpoints, respectively. The random effects (mSi, mT i ,ai , bi)

are assumed to be mean-zero normally distributed with covariance matrix (3.5). The

error terms εSij and εT ij follow the same assumptions as in the fixed effects models

(3.1)–(3.2).
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Although the two-stage fixed-effects and the random-effects models rest on different

assumptions about the nature of the experiments being analyzed, the two approaches

yield discrepant results only in pathological situations. In this setting the two ap-

proaches are similar and the-stage procedure can be used to introduce random effects

(Laird and Ware 1982, Verbeke and Molenberghs 2000). Pragmatic arguments may

also guide the choice between random and fixed effects.

Buyse et al. (2000) argue that it is of interest to investigate how the treatment

effect on the true endpoint can be predicted by the treatment effect on the surrogate,

especially in a new trial i = 0. The authors observe that (β + b0|mS0, a0) follows a

normal distribution with mean and variance

E (β + b0|mS0, a0) = β +

(
dSb

dab

)T (
dSS dSa

dSa daa

)−1 (
µS0 − µS

α0 − α

)
(3.8)

V ar (β + b0|mS0, a0) = dbb −
(

dSb

dab

)T (
dSS dSa

dSa daa

)−1 (
dSb

dab

)
. (3.9)

Based on the idea that the conditional variance (3.9) of a “good” surrogate, at the

trial-level, is close to zero, Buyse et al. (2000) proposed to assess surrogacy at the

trial-level by the coefficient of determination:

R2
trial(f) = R2

bi|mSi,ai
=

(
dSb

dab

)T (
dSS dSa

dSa daa

)−1 (
dSb

dab

)

dbb
. (3.10)

This coefficient measures how precisely the effect of treatment on the true endpoint

can be predicted, provided that the treatment effect on the surrogate endpoint has

been observed in a new trial (i = 0). Coefficient (3.10) has two properties desirable

for its interpretation. It is unitless and, at the condition that the corresponding

variance-covariance matrix is positive definite, lies within the unit interval.

The models (3.1) and (3.2) can be referred to as the full fixed effects models and
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it is possible to simplify them. The reduced versions of these models are obtained

by replacing the fixed trial-specific intercepts, one for each endpoint, common to all

trials. The reduced mixed effect models result from removing the random trial-specific

intercepts mSi and mT i from models (3.6) and (3.7). The R2 for the reduced models

is then calculated as follows:

R2
trial(r) = R2

bi|ai
=

d2
ab

daadbb
. (3.11)

Throughout this text, we will use R2
trial to refer to R2

trial(f), unless otherwise stated. At

the individual-level, to study how an individual’s surrogate score is predictive for the

true score, Buyse et al. (2000) defined the coefficient of determination based on (3.3)

as

R2
indiv = R2

εT i|εSi
=

σ2
ST

σSSσT T

. (3.12)

R2
ind is the squared correlation between both endpoints once we have adjusted for

treatment and trial.

Following the developments reviewed above, a surrogate is termed “trial-level valid”

if R2
trial(f) (or R2

trial(r)) is sufficiently close to one, and “individual-level valid” if R2
ind

is sufficiently close to one. A surrogate is termed “valid” if it is both trial-level and

individual-level valid. Even though the measures provide a quantification of surrogacy,

there remains the important question as to how large is large. It is tough to provide

hard guidance and, arguably, decisions will have to be taken based on a number of

quantitative (statistical) and qualitative (clinical and biological) arguments combined.

3.3 Simplified Modeling Strategies

The hierarchical modeling discussed earlier is elegant, but it often poses considerable

computational challenges, particularly when the number of trials or the trial sizes are
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small (Burzykowski, Molenberghs, and Buyse 2005). In order to explore approximate

strategies with better computational properties, Tibaldi et al. (2003) suggested sev-

eral simplifications of the above strategy. These authors considered three possible

dimensions along which simplifications can be made.

3.3.1 Trial dimension

This dimension provides a choice between treating the trial-specific effects as fixed or

random. If the trial-specific effects are chosen to be fixed, a two-stage approach is

adopted. The first-stage model will take the form (3.1)–(3.2) and at the second stage,

the estimated treatment effect on the true endpoint is regressed on the treatment

effect on the surrogate and the intercept associated with the surrogate endpoint as

β̂i = λ̂0 + λ̂1µ̂Si + λ̂2α̂i + εi. (3.13)

The trial-level R2
trial(f) then is the coefficient of determination obtained by regressing

β̂i on µ̂Si and α̂i, whereas R2
trial(r) is obtained from the coefficient of determination

resulting from regressing β̂i on α̂i only. The individual-level value is calculated as

in (3.12) using the estimates from (3.3). The second option is to consider the trial-

specific effects as random. Depending on the choice made on the endpoint dimension,

two directions can be followed. The first one involves a two-stage approach with

univariate models (3.6)–(3.7) at the first stage. A second stage model consists of a

normal regression with the random treatment effect on the true endpoint as response

and the random intercept and random treatment effect on the surrogate as covariates.

The second direction is based on a full random effects (hierarchical) model as discussed

in Section 3.2.
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3.3.2 Endpoint dimension

Though natural to assume the two endpoints to be correlated, this can lead to com-

putational difficulties in fitting the models. The need for the bivariate nature of the

outcome is associated with R2
indiv, which is in some cases of secondary importance. In

addition, there is also a possibility to estimate it through the information-theoretic

approach (Alonso and Molenberghs 2007), which is the focus of the second part of

this thesis. Thus, further simplification can be achieved by fitting separate models

for the true and surrogate endpoints, the so-called univariate approach.

If in the trial dimension, the trial-specific effects are considered to be fixed, then

models (3.1)–(3.2) are fitted separately. Similarly, if the trial-specific effects are con-

sidered random, then models (3.6)–(3.7) are fitted separately, i.e., the corresponding

error terms in the two models are assumed to be independent.

3.3.3 Measurement error dimension

When the univariate approach from the endpoint dimension and/or the fixed ef-

fects approach from the trial dimension are chosen, there is a need to adjust for the

heterogeneity in information content between trial-specific contributions. One way to

do so is weighting the contributions according to trial size. Thus, the researcher can

either ignore this phenomenon or take it into account, giving rise to a weighted linear

regression model (3.13) in the second stage.

3.4 Unit of Analysis

In addition to the convergence issues which Tibaldi et al. (2003) circumvented through

the simplified modeling strategies, the choice of units also poses practical problems as

many clinical trials usually consist of few trials and many centers and or investigators.
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It is therefore imperative to extend the the framework to a three-level model, as well as

assess the impact of omitting one of the levels in such a three-way hierarchy. Cortiñas

et al. (2004) investigated several strategies to deal with these issues. The authors

observed that the performance of the strategies depends on the sample sizes, as well

as on the magnitude of variability present at different levels.

Thus, a cornerstone of the meta-analytic method is the choice of the unit of anal-

ysis such as, for example, trial, center, or investigator. This choice may depend on

practical considerations, such as the information available in the data set at hand, ex-

perts’ considerations about the most suitable unit for a specific problem, the amount

of replication at a potential unit’s level, and the number of patients per unit. From

a technical point of view, the most desirable situation is where the number of units

and the number of patients per unit is sufficiently large.

Based on results from a simulation study, Cortiñas et al. (2004) provided some

justification to the use of, e.g., centers instead of trials as the units of analysis in

practical applications of the meta-analytic approach to the validation of surrogate

markers. The next chapter provides some of the other computational issues encoun-

tered when applying the meta-analytic approach, which had not been investigated

prior to work on the thesis.

3.5 Application to a Motivating Study

Here, a motivating study in schizophrenia introduced in Chapter 2, Section (2.2.2), is

analyzed using the meta-analytic approach and the simplified modeling strategy, while

considering both trials and centers as the unit of analysis. Trial seems the natural

unit of analysis. Unfortunately, the number of trials, 5, is not sufficient to apply the

full meta-analytic approach. The use of trial as unit of analysis for the simplified
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methods might also entail problems. The second stage involves a regression model

based on only five points, which might give overly optimistic or at least unreliable

R2 values. The other possible unit of analysis for this study is ‘investigator’. There

were 176 investigators who each treated between 2 and 60 patients. The use of

investigator as unit of analysis is also surrounded with problems. Although a large

number of investigators is convenient to explain the between-investigator variability,

because there are few patients per investigators for some investigators, the resulting

within-unit variability might not be estimated correctly.

The basic meta-analytic approach and the corresponding simplified strategies have

been applied to this data set. The results are displayed in Table 4.5. Investigator and

trial were both used as units of analysis. However, as there were only five trials, it

became difficult to base the analysis on trial as unit of analysis in the case of the full

bivariate random-effects approach. The results have shown a remarkable difference in

the two cases. Consistently, in all of the different simplifications, the R2
trial values were

found to be higher when trial was used as unit of analysis as expected because the

second stage model involved a simple linear regression based on only five data points.

Furthermore, it is noted that, when investigator is used as unit of analysis, the R2
trial

values are higher when the reduced model is used as compared to the the case where

the full model used. The is an indication that the investigator-specific intercept terms

for the surrogate model do convey information and unless there is special reason, full

model is to be preferred. The opposite result observed when trials are used as unit of

analysis is also explained in the same manner.

The bivariate full random effects model does not converge when trial is used as

the unit of analysis. This might be due to lack of sufficient information to compute

all sources of variability. The reduced bivariate random effects model converged for
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both cases, but the resulting variance-covariance matrices were not positive-definite

and were ill conditioned (see Chapter 4), as can be seen from the very large value

of the condition number. Consequently, the results of the bivariate random effects

model should be treated with caution as there might be high uncertainty attached to

the results obtained based upon these ill-conditioned matrices.

If we concentrate on the results based on investigator as unit of analysis, we observe

a low level of surrogacy of PANSS for CGI, with R2
trial ranging roughly between 0.5 and

0.68 for the different simplified models. This result, however, has to be coupled with

other findings based on expert opinion to fully guarantee the validation of PANSS

as a possible surrogate for the CGI. Turning to R2
indiv, it ranges between 0.4904 and

0.5230, depending on the method of analysis, which is relatively low. To conclude,

based on the investigators as unit of analysis, PANSS does not seem a good surrogate

for the CGI.

3.6 Discussion

This chapter described an approach to provide a quantitative assessment of the value

of a surrogate. we have briefly reviewed the history of surrogate markers validation,

beginning with the definition of a surrogate and a testing paradigm, to the estimation

paradigm and the meta-analytic view. We then went on to succinctly describe a

meta-analytic approach for continuous outcomes as proposed by Buyse et al. (2000).

It evaluates the “validity” of a surrogate in terms of coefficients of determination,

which are intuitively appealing quantities in the unit interval.

Some practical issues, in particular the complexity of the required models and the

choice of analysis, associated with the implementation of this approach were also

reviewed. Fitting the models required within the meta-analytic framework by Buyse
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et al. (2000) is not always a trivial task. Tibaldi et al. (2003) eluded this through the

simplified modeling strategy, by considering simplifications along the trial, endpoint,

and measurement error dimensions.

The choice of unit of analysis in applying the meta-analytic approach is a very

important issue to be considered. There might be a large difference in the findings

depending on the unit of analysis chosen. The optimal unit of analysis is the one for

which there is a sufficient number of repetition and each unit has sufficiently large

number of individuals within it. Ideally, the choice of unit of analysis should be based

on both statistical and subject-matter considerations.

A motivating case study in schizophrenia further highlighted the importance of

considering the simplified modeling strategy, as well as the choice of analysis. While

taking these points into account, we conclude based on the investigators as unit of

analysis, that PANSS does not seem a good surrogate for the CGI.

.

.
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Table 3.1: Schizophrenia study. Results of the trial-level (R2
trial) surrogacy analysis.

Fixed effects Random effects

Unit of analysis Unweighted Weighted Unweighted Weighted

Full Model

Univariate approach

Investigator 0.5887 0.5608 0.5488 0.5447
Trial 0.9641 0.9636 0.9849 0.9909

Bivariate approach

Investigator 0.5887 0.5608 0.9898∗
Trial 0.9641 0.9636 —

Reduced Model

Univariate approach

Investigator 0.6707 0.5927 0.5392 0.5354
Trial 0.8910 0.8519 0.7778 0.8487

Bivariate approach

Investigator 0.6707 0.5927 0.9999∗
Trial 0.7418 0.8367 0.9999∗

∗: The variance-covariance matrix is ill-conditioned; in particular, at least one eigenvalue
is very close to zero.The condition numbers for the three models with ill-condition matrices,
from top to bottom are 3.415E+18, 2.384E+18 and 1.563E+18 respectively.



4
Some Computational Issues in

the Meta-analytic Approach

While we like to underscore the integrity of the meta-analytic framework of Buyse

et al. (2000), important questions remain open, apart from those already addressed

by Tibaldi et al. (2003) and Cortiñas et al. (2004) presented in the previous chap-

ter. The use of complex hierarchical models implies that different surrogacy measures

are proposed for different types of outcomes, especially at the individual level. The

second part of this thesis focuses entirely on this issue. In addition, the models con-

sidered reflect practice within later phase clinical trials, in the sense that, apart from

treatment assignment, no other explanatory information is used. It is conceivable,

especially in early phase trials and in preclinical research, that more elaborate models

be used, incorporating explanatory (baseline) covariates, biological, pharmacokinetic,

or pharmacodynamic information. There are more practical issues such as, but not

limited to, variable coding and model formulation.

39
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In Section 4.1, we investigate the effect of treatment coding and ill-conditioned

variance-covariance matrices, associated with the estimation of R2
trial(f), on the meta-

analytic approach to surrogate markers validation. Section 4.2 deals with the impact

of baseline covariates, on the meta-analytic approach to surrogate markers validation.

4.1 Treatment Coding and Ill-Conditioned Variance-

covariance Matrices

In this section, we discuss results from two simulation studies performed to investigate

the effect of the treatment coding and ill-conditioned D matrices on the meta-analytic

approach to surrogate markers validation. The first study, which we henceforth re-

fer to as Study I, investigates the relation between the treatment coding and ill-

conditioned D matrices. The second study, Study II, investigates the difference in

performance of the validation for both treatment coding, for which D is constrained

to be positive definite.

4.1.1 Treatment Coding

When there is a treatment variable included in the model, two choices need to be made

at analysis time. First, the treatment variable can be considered continuous or discrete

(a class variable). Second, when a continuous route is chosen, it is relevant to reflect

on the actual coding, 0/1 and −1/ + 1 being the most commonly encountered ones.

For models with treatment occurring as fixed effect only, these choices are essentially

irrelevant, since all choices lead to an equivalent model fit, with parameters from

one situation connected to another by simple linear transformations. Note that this

is not the case, of course, for more than three treatment arms. However, of more

importance for us here is the impact the choices can have on the hierarchical model.
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Indeed, while the marginal model resulting from (3.6)–(3.7) is invariant under such

choices, this is not true for the hierarchical aspects of the model, such as, for example,

the R2 measures derived at the trial level. Indeed, a −1/+1 coding ensures the same

components of variability operate in both arms, whereas a 0/1 coding, for a positive

definite D matrix, forces the variability in the experimental arm to be greater than

or equal to the variability in the standard arm. Both situations may be relevant, and

therefore it is of importance to illicit views on this issue from the study’s investigators.

4.1.2 Ill-conditioned Variance-covariance Matrix

When the full bivariate random effect is used, the R2
trial is computed from the variance-

covariance matrix (3.5). It is sometimes possible that this matrix be ill-conditioned

and/or non-positive definite. In such cases, the resulting quantities (R2
trial(f) or R2

trial(r))

computed based on this matrix might not be trustworthy. One way to asses the ill-

conditioning of a matrix is by computing its condition number, i.e., the ratio of the

largest over the smallest eigenvalue. A large condition number is an indication of

ill-conditioning. The most pathological situation occurs when at least one eigenvalue

is equal to zero. This corresponds to a positive semi-definite matrix, which occurs,

for example, when a boundary solution is obtained. Thus, in the validation process,

it is necessary to check the D matrix for absence or presence of these issues.

4.1.3 Simulation Study I

To asses the impact of using an incorrect treatment coding and its relation to ill-

conditioned D matrices, a small simulation involving 12 different combinations of the

number of trials and number of individuals per trial has been performed. The data
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were generated based on the following model:

Sij = 45 + mSi + (3 + ai)Zij + εSij , (4.1)

Tij = 50 + mT i + (5 + bi)Zij + εT ij . (4.2)

Here ai and bi are random treatment effects in trial i for the surrogate and true

endpoints, respectively. The random effects (mSi, mT i ,ai , bi) are assumed to be

mean-zero normally distributed with covariance matrix

D =




3 2.4 0 0
2.4 3 0 0
0 0 3 2.7
0 0 2.7 3




. (4.3)

The error terms εSij and εT ij are assumed to be zero mean random variables with

variance-covariance matrix

Σ =

(
3 2.4

2.4 3

)
. (4.4)

The chosen values for D and Σ yield R2
trial = 0.81 and R2

indiv = 0.64, respectively.

The number of trials was fixed to either 10, 20 or 50 with each trial involving either

10, 20, 40 or 60 subjects giving rise to 12 different scenarios. For each combination,

100 datasets were generated for both treatment codings. The samples were then

analyzed with the correct treatment coding, i.e., the treatment coding with which the

data were generated, as well as with the opposite coding. For each case the median

condition number and the percentage of positive definite variance-covariance matrices

are counted. The results of these simulations are displayed in Tables 4.3 and 4.4.

The simulation has revealed that, for a small number of analysis units and/or a

small number of subjects per analysis unit, the wrong treatment coding could result

in a high degree of uncertainty in the resulting variance-covariance matrix. For the

0/1 coding, the effect is noticed even when the correct coding was followed to do the
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analysis, i.e. there was high degree of uncertainty even when the data were analyzed

with the correct 0/1 coding for small sample sizes. The effect, however, seems to

vanish with increasing repetition of the unit of analysis and number of subjects per

unit of analysis. If we consider a median condition number of 100 as an arbitrary

cutoff value, we notice that we require a minimum of 20 trials to achieve a condition

number less than 100 for 0/1 coding. This number, however, reduces to only 10

trials to reach a condition number less than 100 for −1/ + 1 coding. With respect to

the positive-definitness of the variance-covariance matrix, the percentage of positive-

definite matrices increases with increase in the sample size for both treatment coding

schemes. However, the −1/ + 1 produced relatively a higher percentage of positive

definite matrices even for small samples as compared to the 0/1 coding where the

percentage of positive definite matrices is low even for moderately higher sample sizes.

Based on the results of this simulation, it seems reasonable to consider the −1/ + 1

treatment coding and chose a reasonable unit of analysis to avoid the numerical

problems and achieve positive definiteness for the variance-covariance matrix.

4.1.4 Simulation Study II

The performance of the validation within the meta-analytic framework for both treat-

ment coding, for which D is constrained to be positive definite, was assessed using

percentage-bias as well as the percentage of samples that converge. A more exten-

sive simulation, relative to Study I, involving different combinations of the number of

trials, number of individuals per trial, trial-level and individual-level surrogacy was

performed. The data were generated based on the models (4.1) and (4.2). How-

ever, the random effects (mSi, mT i ,ai , bi) are assumed to be mean-zero normally

distributed with covariance matrix
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D = 3 ∗




1 0.8 0 0
0.8 1 0 0
0 0 1

√
ρt

0 0
√

ρt 1




. (4.5)

Similarly, the error terms εSij and εT ij are assumed to be zero mean random variables

with variance-covariance matrix

Σ = 3 ∗
(

1
√

ρi√
ρi 1

)
. (4.6)

The following values of the fixed parameters were used:

N = 10, 20, and 50 for each sample;

ni = 10, 20, 60, and 100 for each trial;

ρt = 0.30, 0.50 and 0.90, resulting in trial-level surrogacy (R2
trial) values of 0.30,

0.50 and 0.90. These values are assumed to reflect a ‘poor,’ ‘moderate,’
and ‘good’ surrogate at the trial level, respectively. Investigating the per-
formance of the estimators under these conditions is essential, as a good
estimator is expected to appropriately distinguish between such surrogates;

ρi = 0.30, 0.50 and 0.90, resulting in individual-level surrogacy (R2
indiv) values of

0.30, 0.50 and 0.90, similarly to the trial-level surrogacy.

Full combination of the simulation parameters gave rise to a total of 135 sim-

ulation settings. Within each setting, 500 samples were generated. The samples

were generated using both the 0/1 and −1/1 treatment coding and analyzed with

the corresponding correct and the opposite (incorrect) coding. The percentage-bias

was calculated as the difference between a corresponding estimate and the true value

expressed as a percentage of the true value. The results of these simulations are

displayed in Tables 4.5 – Table 4.8.

In general, the percentage of samples that converged with the D martix constrained

to be positive-definite increases with increase in the number of trials and trial size, as

earlier observed in Study I. When the data was generated based on the 0/1 coding,
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the percentage of the samples that converged for the correct and incorrect analyses

ranged between (31% and 100%) and (30% and 100%), respectively. The percentage

of convergence ranged between (54% and 100%) and (50% and 100%) for the correct

and incorrect analyses, respectively, when the samples are generated base on the −1/1

coding.

*** Figure around here, fully describe the axes in the caption ***

In more detail, on the one hand, when the samples were generated with the 0/1

coding, the correct (0/1) analysis had more converged samples than the incorrect

(−1/1) analysis in only 34 of the 135 settings. Figure *** shows the distribution of

the difference in the number of converged samples between the correct and incorrect

analyses, over all settings. Note that the highest difference in the number of con-

verged samples within a setting is 15, either way. On the other hand, for samples

generated with the −1/1 coding, the correct (−1/1) analysis had more converged

samples in all 135 settings (Figure ***). Note that in some settings, for example

(R2
trial = 0.3, R2

indiv = 0.3, N = 10, ni = 10), the difference is greater than 200, which

is more than 40% of the total number of samples in each setting. Therefore in terms

of convergence, the −1/1 coding performs much better than the 0/1 coding.

Additionally, for samples generated and analyzed with the 0/1 coding, all settings

with (N = 10, R2
trial = 0.9) had median condition number > 100 (range: 109– 359).

While for samples analyzed with the −1/1 coding, all settings with R2
trial = 0.9 had

median condition number > 100 (range: 106– 519), irrespective of the values of the

other simulation parameters. Samples generated and analyzed with the −1/1 all

settings with (N = 10, R2
trial = 0.9) had median condition number > 100 (range: 100–

125). Also, for samples analyzed with the 0/1 coding, all settings with R2
trial = 0.9

had median condition number > 100 (range: 87– 217), irrespective of the values of
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the other simulation parameters. Again, the −1/1 generally yields smaller condition

numbers, leading to a well conditioned D, than the 0/1 coding.

Focusing on the percentage-bias, very similar results are observed from the cor-

responding correct and incorrect analysis, for both the 0/1 and −1/1 coding (Ta-

bles 4.5 – Table 4.8). The percentage-bias can be as high as 70% for small R2
trial

values (0.3), however, it is generally less than 20% for higher values of R2
trial. Irrespec-

tive of the treatment coding and parameter settings considered in the simulation, the

percentage-bias of estimates for R2
indiv is generally less than 0.1%. This is expected as

the treatment coding does not have substantial effect on Σ. Also, the smallest sam-

ple in the simulation has 100 subjects, which apparently may be enough to estimate

R2
indiv.

The results indicate that the treatment coding has a substantial impact on the

convergence rate and the stability of the estimated D matrix. However, for samples

that attain convergence with D constrained to be positive-definite, similar perfor-

mance with respect to percentage-bias are observed. It is therefore advisable to use

the −1/1 treatment coding when the full bivariate random effects model is used to

evaluate a surrogate endpoint. Of course, it should be confirmed that this is in line

with expert opinion for a given application. Additionally, it is essential that enough

replication be available at each level of the hierarchical data, and the models should

be fitted with D constrained to be strictly positive-definite.

4.2 Impact of Baseline Covariates

As earlier mentioned in Chapter 1 (Section 1.3), using surrogate endpoints to substi-

tute for the clinical endpoint in all clinical research past a certain point is a topic of

ongoing debate. The use of surrogate endpoint is more accepted in early phases of
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clinical research. Furthermore, the models used in early phase trials and in preclini-

cal research usually incorporate explanatory or baseline covariates. We dedicate this

section to investigating the impact of a baseline binary predictor, say for example

Gender, in a very simple setting where the effect of the baseline predictor is assumed

to be similar on both endpoints. Also, we assume that there is no interactions be-

tween the binary baseline predictor and the treatment effects. Additionally, a similar

but very limited simulation, with respect to the number of generated samples, was

performed for a continuous baseline predictor.

The data were generated based on the following model:

Sij = 45 + 3.2 ∗Genderij + mSi + (3 + ai)Zij + εSij , (4.7)

Tij = 50 + 3.2 ∗Genderij + mT i + (5 + bi)Zij + εT ij . (4.8)

Here ai and bi are random treatment effects in trial i for the surrogate and true

endpoints, respectively. The random effects (mSi, mT i ,ai , bi) and the error terms

(εSij , εT ij) are both assumed to be mean-zero normally distributed with covariance

matrices defined as in (4.5) and (4.6), respectively. Excepting the addition of the

binary baseline predictor, as shown in (4.7) and (4.8), the simulation setting is similar

to that of Study II in Section 4.1.4. Also, following the results obtained from Study

II, only the −1/1 treatment coding was employed. The generated samples were then

analyzed taking into account the effect of the baseline predictor, Correct, and ignoring

the effect of the baseline predictor, Ignored. The Correct-analysis is based on (4.7)

and (4.8), while the Ignored -analysis is based on (4.1) and (4.2). Results from the

simulation are presented in Tables 4.9 and 4.10.
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4.3 Application to a Motivating Study

The motivating study in age related macular degeneration introduced in Chapter 2,

Section 2.2.1, is analyzed using the meta-analytic approach based on both the −1/1

and the 0/1 coding of the treatment effect Zij. The only available unit of analysis

was center. There were 36 centers which treated between 2 and 18 patients. Note

that these data has been analyzed by Buyse et al (2000) with a treatment coding of

0 and 1 for the placebo and treatment arms, respectively. Here, the −1/ + 1 coding

was used and thus slightly different results are obtained.

Table 4.1: ARMD data. Results of the trial-level (R2
trial) surrogacy analysis −1/ + 1

coding.

Fixed effects Random effects

Unit of analysis Unweighted Weighted Unweighted Weighted

Full Model

Univariate approach

Center 0.6922 0.6963 0.6605 0.7959

Bivariate approach

Center 0.6922 0.6963 0.9999∗
Reduced Model

Univariate approach

Center 0.6409 0.6562 0.6772 0.7929

Bivariate approach

Center 0.6409 0.6562 0.9999∗

∗: The variance-covariance matrix is ill-conditioned; in particular, at least one eigenvalue
is very close to zero.The condition numbers for Full and Reduced Bivariate random effects
models are 1.109E+17 and 1.965E+18 respectively

The basic meta-analytic approach and the corresponding simplified modeling strate-

gies have also been applied to this dataset and the results are displayed in Table 4.1
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Table 4.2: ARMD data. Results of the trial-level (R2
trial) surrogacy analysis 0/1 coding.

A — symbol indicates non-convergence.

Fixed effects Random effects

Unit of analysis Unweighted Weighted Unweighted Weighted

Full Model

Univariate approach

Center 0.692 0.693 0.664 0.801

Bivariate approach

Center 0.692 0.693 —

Reduced Model

Univariate approach

Center 0.776 0.758 0.659 0.786

Bivariate approach

Center 0.776 0.758 —

for the −1/ + 1 coding and in Table 4.2 for the 0/1 coding. The R2
trial ranges roughly

between 0.64 and 0.8, except for the full bivariate random effects models where we

find R̂2
trial = 0.9999. However, the corresponding variance-covariance matrices were

non-positive definite and have very large condition number, a sign of high uncertainty

surrounding the latter estimate. Hence, it cannot be trusted. Based on the findings,

it is possible to say that assessment of change in visual acuity at 6 months does not

seem to be a very strong surrogate for the same assessment at 1 year.

4.4 Discussion

This Chapter investigates some computational issues that may be encountered in

practice, while employing the meta-analytic approach to surrogate markers for cross-

sectional continuous outcomes. In practice, some researchers prefer the 0/1 coding

of ‘dummy variables,’ while others prefer the −1/1. The difference in preference



50 Chapter 4. Some Computational Issues of the Meta-analytic Approach

exacerbated by the fact that these choices lead to an equivalent model fit, for models

with the ‘dummy’ occurring as fixed effects only. When the full-bivariate random-

effect models (3.1) and (3.2) are used, it is relevant to reflect on the actual coding

of the treatment variable. Indeed, results from simulation studies presented earlier

indicate that in general, convergence is attained more with the −1/1 coding relative

to the 0/1 coding. Also, for models that converged, the −1/1 coding leads to well-

conditioned D matrices, hence R2
trial, relatively faster than the 0/1 coding as the

number of trials and trial size increase.

Furthermore, the use of surrogate endpoint is more accepted in early phase trials

and preclinical research, which usual incorporate explanatory or baseline covariates.

Because the models considered include the treatment assignment as the only ex-

planatory information, it is necessary to have some idea of the possible impact of not

including baseline covariates in the surrogate endpoint validation models. To this

effect, a simulation study for a simple scenario; similar baseline covariate effect on

both endpoints and no interactions, was performed. *** Results of Simulation *****

A motivating case study in Ophthalmology supplemented results from simulation

indicating the relevance of the choice of the treatment coding. This may be a delicate

issue as it is easy to overlook.
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Table 4.3: Study I: Simulation results for −1/1 treatment coding.

simulation median condition

strategy % positive-definite number

simulation # # trials # subjects correct incorrect correct incorrect

1 10 10 42 41 3.44E+16 3.71E+17
2 10 20 66 65 178.00 403.10
3 10 40 91 91 78.36 172.86
4 10 60 98 98 81.23 158.39
5 20 10 90 90 52.43 138.62
6 20 20 97 98 43.33 102.34
7 20 40 100 100 34.87 101.55
8 20 60 100 100 32.97 84.41
9 50 10 100 100 27.55 84.56
10 50 20 100 100 26.54 80.64
11 50 40 100 100 24.28 75.01
12 50 60 100 100 24.92 72.86

.
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Table 4.4: Study I: Simulation results for 0/1 treatment coding.

simulation median condition

strategy % positive-definite number

simulation # # trials # subjects correct incorrect correct incorrect

1 10 10 10 10 5.44E+16 3.71E+17
2 10 20 25 25 4.09E+16 9.03E+16
3 10 40 57 58 304.05 1184.91
4 10 60 68 68 196.44 436.48
5 20 10 38 38 2.79E+16 6.6E+16
6 20 20 62 62 136.94 560.39
7 20 40 89 89 51.17 186.94
8 20 60 97 97 38.32 166.40
9 50 10 70 71 67.83 225.77
10 50 20 93 93 34.18 158.24
11 50 40 100 100 27.31 134.00
12 50 60 100 100 25.56 127.24
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Table 4.5: Study II: Simulation results for 0/1 treatment coding, for R2
indiv=0.3 and

R2
indiv=0.5

R2
indiv = 0.3 R2

indiv = 0.5
Correct Incorrect Correct Incorrect

N ni R2
trial R̂2

trial R̂2
indiv R̂2

trial R̂2
indiv R̂2

trial R̂2
indiv R̂2

trial R̂2
indiv

10 10 0.3 0.683 0.030 0.670 0.033 0.733 0.010 0.703 0.006
20 10 0.3 0.333 0.017 0.343 0.017 0.337 0.002 0.337 0.002
50 10 0.3 0.140 0.000 0.140 0.000 0.117 0.000 0.117 0.000
10 20 0.3 0.497 0.013 0.490 0.010 0.520 0.002 0.513 0.002
20 20 0.3 0.293 -0.003 0.293 -0.003 0.270 -0.002 0.270 -0.002
50 20 0.3 0.097 0.003 0.097 0.003 0.087 0.002 0.087 0.002
10 40 0.3 0.420 0.003 0.417 0.003 0.420 0.000 0.427 0.000
20 40 0.3 0.250 0.003 0.250 0.003 0.240 0.000 0.240 0.000
50 40 0.3 0.080 0.003 0.080 0.003 0.073 0.002 0.073 0.002
10 60 0.3 0.417 0.007 0.420 0.007 0.407 0.002 0.407 0.002
20 60 0.3 0.237 0.003 0.237 0.003 0.230 0.000 0.230 0.000
50 60 0.3 0.073 0.003 0.073 0.003 0.070 0.002 0.070 0.002
10 10 0.5 0.196 0.037 0.188 0.047 0.242 0.016 0.226 0.014
20 10 0.5 0.116 0.027 0.116 0.023 0.128 0.004 0.122 0.004
50 10 0.5 0.062 0.000 0.062 0.000 0.046 0.000 0.046 0.000
10 20 0.5 0.150 0.013 0.162 0.017 0.168 0.002 0.170 0.002
20 20 0.5 0.120 -0.003 0.120 -0.003 0.106 -0.002 0.106 -0.002
50 20 0.5 0.038 0.003 0.038 0.003 0.030 0.002 0.030 0.002
10 40 0.5 0.134 0.003 0.128 0.003 0.134 0.000 0.128 0.000
20 40 0.5 0.104 0.003 0.104 0.003 0.096 0.000 0.096 0.000
50 40 0.5 0.028 0.003 0.028 0.003 0.024 0.002 0.024 0.002
10 60 0.5 0.146 0.007 0.146 0.007 0.134 0.004 0.134 0.004
20 60 0.5 0.094 0.003 0.094 0.003 0.088 0.000 0.088 0.000
50 60 0.5 0.026 0.003 0.026 0.003 0.022 0.002 0.022 0.002
10 10 0.9 -0.056 0.050 -0.070 0.067 -0.042 0.022 -0.049 0.026
20 10 0.9 -0.069 0.037 -0.070 0.027 -0.033 0.016 -0.036 0.012
50 10 0.9 -0.016 0.013 -0.020 0.013 -0.006 0.004 -0.006 0.004
10 20 0.9 -0.057 0.027 -0.050 0.027 -0.023 0.000 -0.032 -0.002
20 20 0.9 -0.020 0.010 -0.020 0.010 -0.006 0.002 -0.008 0.002
50 20 0.9 0.003 0.003 0.002 0.003 0.004 0.000 0.004 0.002
10 40 0.9 -0.011 0.017 -0.009 0.017 -0.006 0.004 -0.004 0.002
20 40 0.9 0.002 0.007 0.001 0.007 0.004 0.002 0.003 0.002
50 40 0.9 0.006 0.003 0.006 0.003 0.004 0.002 0.004 0.002
10 60 0.9 -0.006 0.013 -0.007 0.010 -0.001 0.006 -0.002 0.004
20 60 0.9 0.008 0.003 0.008 0.003 0.006 0.002 0.006 0.002
50 60 0.9 0.003 0.003 0.003 0.003 0.002 0.002 0.002 0.002
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Table 4.6: Study II: Simulation results for 0/1 treatment coding, for R2
indiv=0.9

Correct Incorrect

N ni R2
trial R̂2

trial R̂2
indiv R̂2

trial R̂2
indiv

10 10 0.3 0.690 -0.002 0.680 -0.002
20 10 0.3 0.287 -0.001 0.290 -0.001
50 10 0.3 0.083 0.000 0.083 0.000
10 20 0.3 0.520 -0.001 0.507 -0.001
20 20 0.3 0.243 0.000 0.243 0.000
50 20 0.3 0.073 0.000 0.073 0.000
10 40 0.3 0.423 0.000 0.423 0.000
20 40 0.3 0.223 0.000 0.223 0.000
50 40 0.3 0.063 0.000 0.063 0.000
10 60 0.3 0.393 0.000 0.390 0.000
20 60 0.3 0.217 0.000 0.217 0.000
50 60 0.3 0.067 0.000 0.067 0.000
10 10 0.5 0.250 -0.002 0.230 -0.002
20 10 0.5 0.086 -0.001 0.088 0.000
50 10 0.5 0.020 0.000 0.018 0.000
10 20 0.5 0.156 -0.001 0.154 0.000
20 20 0.5 0.086 0.000 0.086 0.000
50 20 0.5 0.020 0.000 0.020 0.000
10 40 0.5 0.130 0.000 0.130 0.000
20 40 0.5 0.084 0.000 0.084 0.000
50 40 0.5 0.018 0.000 0.018 0.000
10 60 0.5 0.118 0.000 0.118 0.000
20 60 0.5 0.080 0.000 0.080 0.000
50 60 0.5 0.020 0.000 0.020 0.000
10 10 0.9 0.004 -0.001 0.000 -0.001
20 10 0.9 0.001 -0.001 0.000 -0.001
50 10 0.9 -0.002 0.000 -0.002 0.000
10 20 0.9 0.001 -0.001 -0.001 -0.001
20 20 0.9 -0.001 0.000 -0.001 0.000
50 20 0.9 -0.001 0.000 -0.001 0.000
10 40 0.9 0.001 0.000 0.001 0.000
20 40 0.9 0.000 0.000 0.000 0.000
50 40 0.9 0.001 0.000 0.001 0.000
10 60 0.9 -0.003 0.000 -0.003 0.000
20 60 0.9 0.000 0.000 0.000 0.000
50 60 0.9 0.000 0.000 0.000 0.000
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Table 4.7: Study II: Simulation results for −1/1 treatment coding, for R2
indiv=0.3 and

R2
indiv=0.5

R2
indiv = 0.3 R2

indiv = 0.5
Correct Incorrect Correct Incorrect

N ni R2
trial R̂2

trial R̂2
indiv R̂2

trial R̂2
indiv R̂2

trial R̂2
indiv R̂2

trial R̂2
indiv

10 10 0.3 0.520 0.007 0.513 0.010 0.490 -0.004 0.493 -0.004
20 10 0.3 0.240 0.007 0.240 0.007 0.230 0.000 0.230 0.000
50 10 0.3 0.083 0.000 0.083 0.000 0.080 0.000 0.080 0.000
10 20 0.3 0.403 0.003 0.403 0.003 0.403 0.000 0.403 0.000
20 20 0.3 0.233 0.000 0.233 0.000 0.227 -0.002 0.227 -0.002
50 20 0.3 0.073 0.003 0.073 0.003 0.070 0.002 0.070 0.002
10 40 0.3 0.377 0.000 0.377 0.000 0.377 -0.002 0.377 -0.002
20 40 0.3 0.227 0.003 0.227 0.003 0.223 0.000 0.223 0.000
50 40 0.3 0.067 0.003 0.067 0.003 0.067 0.002 0.067 0.002
10 60 0.3 0.367 0.007 0.367 0.007 0.363 0.002 0.363 0.002
20 60 0.3 0.217 0.003 0.217 0.003 0.213 0.000 0.213 0.000
50 60 0.3 0.067 0.003 0.067 0.003 0.067 0.002 0.067 0.002
10 10 0.5 0.162 0.010 0.166 0.010 0.162 -0.004 0.156 -0.004
20 10 0.5 0.098 0.007 0.098 0.007 0.090 0.000 0.090 0.000
50 10 0.5 0.030 0.000 0.030 0.000 0.028 0.000 0.028 0.000
10 20 0.5 0.132 0.007 0.130 0.007 0.126 0.000 0.126 0.000
20 20 0.5 0.094 0.000 0.094 0.000 0.090 -0.002 0.090 -0.002
50 20 0.5 0.024 0.003 0.024 0.003 0.022 0.002 0.022 0.002
10 40 0.5 0.118 0.000 0.118 0.000 0.118 -0.002 0.118 -0.002
20 40 0.5 0.088 0.003 0.088 0.003 0.086 0.000 0.086 0.000
50 40 0.5 0.022 0.003 0.022 0.003 0.020 0.002 0.020 0.002
10 60 0.5 0.116 0.007 0.116 0.007 0.112 0.002 0.112 0.002
20 60 0.5 0.084 0.003 0.084 0.003 0.082 0.000 0.082 0.000
50 60 0.5 0.020 0.003 0.020 0.003 0.020 0.002 0.020 0.002
10 10 0.9 -0.016 0.033 -0.020 0.047 -0.010 0.006 -0.011 0.010
20 10 0.9 -0.002 0.013 -0.002 0.010 0.001 0.000 0.001 0.002
50 10 0.9 0.003 0.000 0.003 0.000 0.001 0.000 0.001 0.000
10 20 0.9 -0.004 0.007 -0.006 0.007 -0.003 0.000 -0.004 0.000
20 20 0.9 0.004 0.000 0.004 0.000 0.003 -0.002 0.003 -0.002
50 20 0.9 0.001 0.003 0.001 0.003 0.001 0.002 0.001 0.002
10 40 0.9 0.001 0.003 0.001 0.003 0.001 0.000 0.001 0.000
20 40 0.9 0.002 0.003 0.002 0.003 0.001 0.000 0.001 0.000
50 40 0.9 0.002 0.003 0.002 0.003 0.001 0.002 0.001 0.002
10 60 0.9 0.000 0.007 0.000 0.007 -0.001 0.004 -0.001 0.004
20 60 0.9 0.002 0.003 0.002 0.003 0.001 0.000 0.001 0.000
50 60 0.9 0.001 0.003 0.001 0.003 0.001 0.002 0.001 0.002
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Table 4.8: Study II: Simulation results for −1/1 treatment coding, for R2
indiv=0.9

Correct Incorrect

N ni R2
trial R̂2

trial R̂2
indiv R̂2

trial R̂2
indiv

10 10 0.3 0.473 -0.002 0.473 -0.002
20 10 0.3 0.213 -0.001 0.213 -0.001
50 10 0.3 0.070 0.000 0.070 0.000
10 20 0.3 0.390 -0.001 0.390 -0.001
20 20 0.3 0.220 0.000 0.220 0.000
50 20 0.3 0.067 0.000 0.067 0.000
10 40 0.3 0.370 0.000 0.370 0.000
20 40 0.3 0.220 0.000 0.220 0.000
50 40 0.3 0.063 0.000 0.063 0.000
10 60 0.3 0.357 0.000 0.357 0.000
20 60 0.3 0.210 0.000 0.210 0.000
50 60 0.3 0.063 0.000 0.063 0.000
10 10 0.5 0.140 -0.002 0.142 -0.002
20 10 0.5 0.076 -0.001 0.076 -0.001
50 10 0.5 0.020 0.000 0.020 0.000
10 20 0.5 0.116 -0.001 0.116 -0.001
20 20 0.5 0.084 0.000 0.084 0.000
50 20 0.5 0.018 0.000 0.018 0.000
10 40 0.5 0.112 0.000 0.112 0.000
20 40 0.5 0.084 0.000 0.084 0.000
50 40 0.5 0.018 0.000 0.018 0.000
10 60 0.5 0.108 0.000 0.108 0.000
20 60 0.5 0.080 0.000 0.080 0.000
50 60 0.5 0.018 0.000 0.018 0.000
10 10 0.9 -0.002 -0.002 -0.001 -0.002
20 10 0.9 -0.002 -0.001 -0.002 -0.001
50 10 0.9 -0.001 0.000 -0.001 0.000
10 20 0.9 -0.006 -0.001 -0.006 -0.001
20 20 0.9 -0.001 0.000 -0.001 0.000
50 20 0.9 -0.001 0.000 -0.001 0.000
10 40 0.9 -0.002 0.000 -0.002 0.000
20 40 0.9 0.000 0.000 0.000 0.000
50 40 0.9 0.000 0.000 0.000 0.000
10 60 0.9 -0.004 0.000 -0.004 0.000
20 60 0.9 -0.001 0.000 -0.001 0.000
50 60 0.9 0.000 0.000 0.000 0.000
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Table 4.9: Simulation results for the impact of a binary baseline predictor with similar
effect on both endpoints, for R2

indiv=0.3 and R2
indiv=0.5

R2
indiv = 0.3 R2

indiv = 0.5
Correct Ignored Correct Ignored

N ni R2
trial R̂2

trial R̂2
indiv R̂2

trial R̂2
indiv R̂2

trial R̂2
indiv R̂2

trial R̂2
indiv

10 10 0.3 0.507 0.010 0.520 0.007 0.493 -0.004 0.490 -0.004
20 10 0.3 0.243 0.007 0.240 0.007 0.230 0.000 0.230 0.000
50 10 0.3 0.083 0.000 0.083 0.000 0.077 0.000 0.080 0.000
10 20 0.3 0.407 0.003 0.403 0.003 0.400 0.000 0.403 0.000
20 20 0.3 0.233 0.000 0.233 0.000 0.227 -0.002 0.227 -0.002
50 20 0.3 0.073 0.003 0.073 0.003 0.070 0.002 0.070 0.002
10 40 0.3 0.377 0.000 0.377 0.000 0.377 -0.002 0.377 -0.002
20 40 0.3 0.227 0.003 0.227 0.003 0.223 0.000 0.223 0.000
50 40 0.3 0.067 0.003 0.067 0.003 0.067 0.002 0.067 0.002
10 60 0.3 0.367 0.007 0.367 0.007 0.363 0.002 0.363 0.002
20 60 0.3 0.217 0.003 0.217 0.003 0.213 0.000 0.213 0.000
50 60 0.3 0.067 0.003 0.067 0.003 0.067 0.002 0.067 0.002
10 10 0.5 0.162 0.013 0.162 0.010 0.158 -0.004 0.162 -0.004
20 10 0.5 0.098 0.007 0.098 0.007 0.090 0.000 0.090 0.000
50 10 0.5 0.030 0.000 0.030 0.000 0.026 0.000 0.028 0.000
10 20 0.5 0.130 0.007 0.132 0.007 0.126 0.000 0.126 0.000
20 20 0.5 0.094 0.000 0.094 0.000 0.090 -0.002 0.090 -0.002
50 20 0.5 0.024 0.003 0.024 0.003 0.022 0.002 0.022 0.002
10 40 0.5 0.116 0.000 0.118 0.000 0.116 -0.002 0.118 -0.002
20 40 0.5 0.088 0.003 0.088 0.003 0.086 0.000 0.086 0.000
50 40 0.5 0.022 0.003 0.022 0.003 0.020 0.002 0.020 0.002
10 60 0.5 0.116 0.007 0.116 0.007 0.112 0.002 0.112 0.002
20 60 0.5 0.084 0.003 0.084 0.003 0.082 0.000 0.082 0.000
50 60 0.5 0.020 0.003 0.020 0.003 0.020 0.002 0.020 0.002
10 10 0.9 -0.016 0.033 -0.016 0.033 -0.010 0.010 -0.010 0.006
20 10 0.9 -0.002 0.010 -0.002 0.013 0.001 0.000 0.001 0.000
50 10 0.9 0.003 0.000 0.003 0.000 0.001 0.000 0.001 0.000
10 20 0.9 -0.006 0.010 -0.004 0.007 -0.003 0.000 -0.003 0.000
20 20 0.9 0.004 0.000 0.004 0.000 0.002 -0.002 0.003 -0.002
50 20 0.9 0.001 0.003 0.001 0.003 0.001 0.002 0.001 0.002
10 40 0.9 0.001 0.003 0.001 0.003 0.001 0.000 0.001 0.000
20 40 0.9 0.002 0.003 0.002 0.003 0.001 0.000 0.001 0.000
50 40 0.9 0.002 0.003 0.002 0.003 0.001 0.002 0.001 0.002
10 60 0.9 0.000 0.007 0.000 0.007 -0.001 0.004 -0.001 0.004
20 60 0.9 0.002 0.003 0.002 0.003 0.001 0.000 0.001 0.000
50 60 0.9 0.001 0.003 0.001 0.003 0.001 0.002 0.001 0.002
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Table 4.10: Simulation results for the impact of a binary baseline predictor with similar
effect on both endpoints, for R2

indiv=0.9

Correct Ignored

N ni R2
trial R̂2

trial R̂2
indiv R̂2

trial R̂2
indiv

10 10 0.3 0.9 0.473 -0.002 0.473 -0.002
20 10 0.3 0.9 0.213 -0.001 0.213 -0.001
50 10 0.3 0.9 0.070 0.000 0.070 0.000
10 20 0.3 0.9 0.390 -0.001 0.390 -0.001
20 20 0.3 0.9 0.220 0.000 0.220 0.000
50 20 0.3 0.9 0.067 0.000 0.067 0.000
10 40 0.3 0.9 0.370 0.000 0.370 0.000
20 40 0.3 0.9 0.220 0.000 0.220 0.000
50 40 0.3 0.9 0.063 0.000 0.063 0.000
10 60 0.3 0.9 0.357 0.000 0.357 0.000
20 60 0.3 0.9 0.210 0.000 0.210 0.000
50 60 0.3 0.9 0.063 0.000 0.063 0.000
10 10 0.5 0.9 0.142 -0.002 0.140 -0.002
20 10 0.5 0.9 0.076 -0.001 0.076 -0.001
50 10 0.5 0.9 0.020 0.000 0.020 0.000
10 20 0.5 0.9 0.114 -0.001 0.116 -0.001
20 20 0.5 0.9 0.082 0.000 0.084 0.000
50 20 0.5 0.9 0.020 0.000 0.018 0.000
10 40 0.5 0.9 0.112 0.000 0.112 0.000
20 40 0.5 0.9 0.084 0.000 0.084 0.000
50 40 0.5 0.9 0.018 0.000 0.018 0.000
10 60 0.5 0.9 0.108 0.000 0.108 0.000
20 60 0.5 0.9 0.080 0.000 0.080 0.000
50 60 0.5 0.9 0.018 0.000 0.018 0.000
10 10 0.9 0.9 -0.002 -0.002 -0.002 -0.002
20 10 0.9 0.9 -0.002 -0.001 -0.002 -0.001
50 10 0.9 0.9 -0.001 0.000 -0.001 0.000
10 20 0.9 0.9 -0.004 -0.001 -0.006 -0.001
20 20 0.9 0.9 -0.001 0.000 -0.001 0.000
50 20 0.9 0.9 -0.001 0.000 -0.001 0.000
10 40 0.9 0.9 -0.002 0.000 -0.002 0.000
20 40 0.9 0.9 0.000 0.000 0.000 0.000
50 40 0.9 0.9 0.000 0.000 0.000 0.000
10 60 0.9 0.9 -0.004 0.000 -0.004 0.000
20 60 0.9 0.9 -0.001 0.000 -0.001 0.000
50 60 0.9 0.9 0.000 0.000 0.000 0.000



5
Earlier Measures in a

Longitudinal Sequence as

Potential Surrogate for a

Later One

5.1 Introduction

Thus far, the previous chapters have focused on the methodologically appealing case

of cross-sectional normally distributed endpoints. In many practical applications,

situations abound where repeated measurements are encountered on either or both

endpoints. Repeated measures of a quantitative (bio)marker are nowadays commonly

obtained in clinical trials. When such measurements have the ability to predict,

and/or explain a large proportion of the variability of future clinical measurement

or status of a patient, then the (bio)marker may be used as a surrogate for the final
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measurements or status of a patient at the end of the study. If this is the case, such

a (bio)marker may lead to reduction of the study’s length and/or cost.

Going to a fully multivariate framework presents new challenges, as the R2 mea-

sures introduced in Chapter 3 are no longer applicable. In the cross-sectional cases,

one assumes that only one potential surrogate is available and that treatment effect

on both responses is constant. These assumptions can fail when a patient is measured

repeatedly over time. Alonso et al. (2003, 2004) extended the work by Buyse et al.

(2000) to a setting where both the surrogate and true endpoints are measured re-

peatedly over time, using models for bivariate longitudinal data. Their proposal also

enables us to evaluate surrogacy when more than one surrogate variable is available

for the analysis. It serves as a basis for the work presented in this chapter. Addi-

tionally, surrogate-marker evaluation endeavors that have been performed thus far

involved two different endpoints (Buyse et al. 2000, Burzykowski, Molenberghs, and

Buyse 2005), where one endpoint is a candidate surrogate and the other is a true

endpoint. Such endpoints may be of the same nature (e.g., both continuous, binary,

or time-to-event) or of a mixed nature (e.g., an ordinal surrogate, such as tumor

response, for a time-to-event endpoint, such as overall survival).

In contrast, the scenario under investigation here has only one endpoint, measured

repeatedly over time. We are then interested in the predictive potential of the earlier

clinical measurements for the later ones, and in particular for the last one. This can

be placed within the surrogate-marker evaluation context, by considering the accu-

mulated first few repeated measurements as potential surrogates and the outcome,

for example at the final measurement occasion, as the true endpoint. Thus, for each

patient, the surrogate is a vector of repeated measurements and the true endpoint is a

scalar. The situation where the surrogate is a single early measurement is, of course,
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merely a special case and reduces to the scenario discussed in Chapter 3.

The challenge is to determine the number of repeated measures that are required

to sufficiently adequately predict the true endpoint. It is evident that collecting more

repeated measurements enhances prediction. However, more repeated measurements

imply longer study periods and increase cost. Thus, there must be a balance between

cost and precision.

The objective of this chapter is threefold. First, existing surrogate-marker evalua-

tion procedures will be tuned to accommodate the present scenario. Second, selection

of an optimal number of repeated measurements will be effectuated using an objective

function, designed as a weighted function of financial cost and predictive precision.

The objective function allows tuning to the specific needs of a particular case study.

Third, a simulation study is conducted to investigate the performance of the proposed

procedure under different covariance structures for the repeated measures.

Section 5.2, presents a canonical correlation approach for two repeatedly measured

endpoints and its modification to the scenario of interest. Section 5.3 provides, from a

theoretical point of view, the performance of an objective function for two important

special cases, compound symmetric structure and first-order auto-regressive process.

Section ?? provides details on the design and results of our simulation study, and

provide a perspective on the conclusions that can be drawn from it. In Section 5.5,

we briefly introduce a constrained maximization problem. Section 5.7 contains the

results of the case studies’ analysis. It is not unusual for some measurement sequences

in longitudinal study to terminate early for reasons outside the control of the investi-

gator. Also, intermediate scheduled measurements might be missed. Thus, in Section

5.6, a limited simulation study was performed to get an idea of the impact of miss-

ingness on the scenarios considered in this chapter. It should be noted that focus is
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on individual level surrogacy.

5.2 Longitudinal Endpoints and Surrogacy

In Section 5.2.1, we present a concise description of the meta-analytic approach to

surrogate marker evaluation for repeated measurements, using canonical correlations

as proposed by Alonso et al. (2004). This will be followed in Section 5.2.2 by a mo-

dification to the scenario where early measurements on a longitudinal endpoints are

treated as a surrogate for the final measurement. In Section 5.2.3, the modified version

will be applied in the determination of an optimal number of repeated measurements

required to accurately predict the true endpoint. We zoom in on the development of

an objective function in Section 5.2.4.

We shall assume that information from i = 1, . . . , N trials is available, in the ith

of which, j = 1, . . . , ni subjects are included. We shall further denote the time points

at which each subject in trial i is measured as tik. Let Tijk and Sijk denote the

associated true and surrogate endpoints at time k, respectively, and Zij is a binary

indicator variable for treatment.

5.2.1 Two Repeatedly Measured Endpoints

We begin with the review of the variance reduction factor and the R2
Λ, suggested by

Alonso et al. (2003) for the case of two repeatedly measured outcomes, where after

we show how these methods can be adapted to the situation where one of the two

outcomes is cross-sectional. The authors based the calculation of surrogacy measures

on a two-stage approach (Section 3.3.1), rather than a full random-effects approach

(Section 3.2), which would take into account both the repeated measures and the

multi-trial nature of the data, in order to reduce numerical complexity. Additionally,

the two-stage approach has shown good performance in both statistical and compu-
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tational terms (Burzykowski et al. 2005). Precisely, following the ideas of Galecki

(1994), Alonso et al. (2003) considered the following joint model at the first stage for

the true and surrogate endpoints:

Tijk = µTi
+ βiZij + f(tijk) + εT ijk ,

Sijk = µSi
+ αiZij + f(tijk) + εSijk ,

(5.1)

where (µTi
, µSi

, βi, αi) are intercepts and treatment effects on the true and surrogate

endpoints, respectively, f(tijk) is a flexible function in time. In principle, it is possible

for the two endpoints to depend on time through different functions, in which case

we will have fT (tjk) and fS(tjk) for the true and surrogate endpoint respectively.

However, without loss of generality, let us assume that both depend on time through

the same function. Furthermore, note that even though in practice Tij and Sij are

frequently measured at the same time points, model (5.1) would let us approach

situations in which this condition does not hold. The error terms (εT ijk , εSijk) are

assumed to follow a zero-mean normal distribution with patterned variance-covariance

matrix

Σi =

(
ΣT T i ΣT Si

ΣST i ΣSSi

)
, (5.2)

where ΣT Ti
and ΣSSi

denote the variance-covariance matrices associated with the true

and the surrogate endpoints, respectively, and ΣT Si
= ΣT

STi
contains the covariances

between the measurements for the true and the surrogate endpoints. In some practical

settings, Σi can be modeled as the Kronecker product of a general correlation matrix

that captures the association within the sequences and an unstructured 2× 2 matrix

that captures the association between the sequences (Galecki 1994).

Due to the longitudinal nature of the endpoints, Alonso et al. (2004) extended

the ideas of Buyse et al. (2000) for capturing individual-level surrogacy, based on

coefficients of determination, to a multivariate version using the concept of canonical
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correlation. Based on model (5.2), these authors obtained the canonical correlations,

ρik from Σ−1
T Ti

ΣT Si
Σ−1

SSi
ΣT

T Si
and proposed a family of measures to evaluate surrogacy

at the individual level. This so-called Ω family is defined as

Ω =

{
ϑ : ϑ =

∑

i

∑

k

αikρ2
ik, where: αik > 0 ∀(i, k),

∑

i

∑

k

αik = 1

}
. (5.3)

An important member of the Ω family is the Variance Reduction Factor (VRF) orig-

inally introduced by Alonso et al. (2003) and defined as

V RFind =
∑

i{tr(ΣT Ti
)− tr(ΣT |Si

)}∑
i tr(ΣT Ti

)
, (5.4)

where ΣT |Si
denotes the conditional variance-covariance matrix of εTij given εSij ,

i.e. ΣT |S = ΣT T − ΣT SΣ−1
SS ΣST . Henceforth, the index i maybe dropped from the

notation, for simplicity, when particular attention is given to the individual-level

surrogacy. Furthermore, these authors have shown that the V RF satisfies a set of

properties that makes it practically applicable: (i) V RF ranges between zero and one;

(ii) V RF = 0 if and only if the true and the surrogate endpoints are independent;

(iii) V RF = 1 if and only if there exists a deterministic relationship between the

true and surrogate endpoint; and (iv) V RF = R2 in the cross-sectional setting. Note

that, at the individual level, interest lies in the prediction of the true endpoint given

the surrogate endpoint. In this regard, property (ii) shows that if the V RF equals

zero, then no sensible prediction is possible, whereas a perfect prediction is attained

if V RF equals one, as indicated by property (iii). Property (iv) establishes the link

between this approach and the one suggested by Buyse et al. (2000) for univariate

outcomes.

As can be seen from (5.4), the V RF summarizes the variability of the two endpoints

using the trace of the corresponding variance-covariance matrices. In multivariate

analysis, there is no unique way of defining a generalized variance, the trace is one of
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the classical ways of doing so, while another common definition uses the determinant.

Interestingly, using the trace or the determinant to summarize the variability of the

endpoints has important ramifications for analysis and leads to two totally separate

measures with different interpretations. To this end, Alonso et al. (2003) have sug-

gested another measure, the so-called R2
Λ, which uses this alternative definition of the

generalized variance. Like the V RF , this measure can be derived based on model

(5.1) as follows:

R2
Λ = 1− |Σ |

|ΣT T | · |ΣSS | . (5.5)

The authors have shown that this measure also enjoys desirable properties: (i) R2
Λ

is symmetric and invariant with respect to linear bijective transformations; (ii) R2
Λ

ranges between zero and one; (iii) R2
Λ = 0 if and only if the error terms are inde-

pendent; (iv) R2
Λ = 1 if and only if there exist a and b so that aTεSjk

= bTεTjk

with probability one; and (v) R2
Λ = R2 in the cross-sectional setting. All of these

properties, except the fourth one are shared with the V RF . The fourth property,

however, differs in important ways from the V RF . Indeed, whereas the V RF takes

the value 1 when there is a deterministic relationship between both endpoints, R2
Λ is

1 whenever there is a deterministic relationship between two linear combinations of

both endpoints, allowing us to uncover strong association in cases where the V RF

might fail to do so. This is not a disadvantage of one or the other proposal, but

rather underscores them focusing on different aspects. The expression for R2
Λ clearly

shows that, unlike the V RF , this measure treats both endpoints symmetrically. In

all cases, V RF or R2
Λ estimates close to one are indicative of ‘good’ surrogacy at the

individual-level, with the reverse holding for values close to zero.

At the second stage, the trial-level surrogacy can be estimated by regressing the

estimated treatment effect on the true endpoint on the treatment effect on the sur-
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rogate, as described in Section 3.3.1. Furthermore, it has been shown (Burzykwoski

et al. 2005) that the V RF can be adequately applied at the trial level when (1) the

treatment effect cannot be assumed constant over time and (2) the prediction of the

treatment effect on the true endpoint can be substantially improved by using infor-

mation about the treatment effect on an entire set of possibly relevant variables at

the same time.

5.2.2 A Longitudinal Surrogate for a Cross-sectional True

Endpoint

We now consider a setting where the surrogate endpoint is repeatedly measured over

time with K repeated measures and that the true endpoint is cross-sectional. Model

(5.1) then takes the form:

Tj = µ∗T + α∗Zj + εT j ,

Sjk = µ∗S + β∗Zj + f(tjk) + εSjk .
(5.6)

There are some important differences between (5.6) and the joint model for two

longitudinal outcomes given in (5.1). First, there is a difference in the number of

parameters when modeling the surrogate and true endpoints. Secondly, computational

issue is induced as the variance-covariance matrix of the error term (εSjk
, εTj

)T , Σ,

cannot be modeled using a Kronecker product of two matrices like suggested in Galecki

(1994), as there are no repeated measurements within the true endpoint. Thus, Σ

has to be modeled as one matrix using either a compound symmetry, first-order

autoregressive, spatial or another type of covariance structure. Nevertheless, Σ can

still be subdivided into four sub-matrices, i.e.,

Σ =

(
σT T ΣT S

ΣST ΣSS

)
, (5.7)

where σT T denotes the variance of the true endpoint, ΣT S is a (1×K) vector containing
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the covariances between the true endpoint and the surrogate endpoint at different

time points, and ΣSS is a (K × K) variance-covariance matrix associated with the

longitudinal surrogate endpoint. From (5.7), the V RFindiv for longitudinal surrogate

and a cross-sectional true endpoint can be computed as

V RFindiv =
tr(σT T )− tr(σT |S)

tr(σT T )
. (5.8)

Here, σT |S denotes the conditional variance of T given S: σT |S = σT T −ΣT SΣ−1
SS ΣST .

Using this expression, (5.8) can be re-written as

V RFindiv =
tr(σT T )− tr(σT T − ΣT SΣ−1

SS ΣST )
tr(σT T )

. (5.9)

Note that all matrices involved in the computation of V RFind are of dimension (1×1)

and hence the trace reduces to the corresponding scalar, offering the opportunity to

simplify (5.9):

V RFindiv =
σT T − σT T + ΣT SΣ−1

SS ΣST

σT T

=
ΣT SΣ−1

SS ΣST

σT T

. (5.10)

Note that V RFindiv = 0 if and only if ΣST = 0, i.e., if and only if S and T are

independent. Intuitively, (5.10) quantifies how much of the total variability of the

true endpoint is explained by the surrogate endpoint, after adjusting for treatment

effects and repeated measures of the surrogate endpoint. Resorting our attention

to R2
Λ, let us again consider model (5.6) and the corresponding variance-covariance

matrix (5.7). The R2
Λ for a longitudinal surrogate and a cross-sectional endpoint is

given by

R2
Λ, ST = 1− |Σ |

|σT T | · |ΣSS | , (5.11)

where σT T , ΣSS, and Σ are as defined in (5.7). Note that

|Σ| = |ΣSS| · |ΣT |S | = |ΣSS| · |σT T − ΣT SΣ−1
SS ΣST |,
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and, substituting this in (5.11), we obtain

R2
ΛST

= 1− |σT T − ΣT SΣ−1
SS ΣST |

|σT T |

= 1− σT T − ΣT SΣ−1
SS ΣST

σT T

=
ΣT SΣ−1

SS ΣST

σT T

, (5.12)

since all matrices involved are of dimension one. It is then obvious from (5.12) and

(5.10) that R2
Λ and V RFind are equal for a continuous longitudinal surrogate and a

cross-sectional continuous true endpoint. Henceforth, we shall focus on V RFindiv only

in this chapter.

5.2.3 The Optimal Number of Repeated Measurements

We are interested in predicting the outcome of a subject at a specified point in time

given an accumulated number of repeated measurements of the outcome at an earlier

point in time. Along this idea, let us denote by Yijk the kth measurement, k = 1 . . . K,

of subject j, j = 1 . . . ni, in trial i, i = 1 . . . Nt. We shall further assume that the

following model holds

Yijk = (β0 + b1i) + (β1 + b2i)Zij + β2tik + β3Zijtik + εijk, (5.13)

where Zij and tik are binary treatment indicator and the time at which measurements

are taken, (b1i, b2i) are trial specific effects assumed to follow a normal distribution

with mean zero and variance covariance matrix DL, and the error vector εijk is

assumed to follow a normal distribution with mean zero and variance covariance

matrix ΣL.

In many applications, assuming a constant treatment effect over time will be un-

realistic. We assume a linear treatment effect over time, constant across trial, but
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extension of which is straightforward (Alonso et al. 2004). Let us formally define our

surrogate and true endpoints, based on (5.13). Suppose we intend to investigate if the

first cumulated m measurements, where 1 ≤ m ≤ K − 1, are a good predictor for the

outcome measured at time K. Our surrogate endpoint is then the m dimensional vec-

tor of measurements S̃T
ij = (Yij1, . . . , Yijm), and our true endpoint is the measurement

YijK , i.e., Sijk = Yijk (k = 1, . . . ,m − 1) and Tij = YijK , where the indices i, j, and

k are defined as in (5.13). This leads to model (5.6) and its corresponding variance

covariance matrix (5.7), from which we can compute the measure of surrogacy of the

initial m measures for the final outcome using either (5.10) or (5.12).

The challenge is to determine the number of repeated measures that are required

to sufficiently adequately predict the true endpoint. It is evident that collecting more

repeated measurements enhances prediction. However, more repeated measurements

imply longer study periods and increase cost. Thus, there must be a balance between

cost and precision.

What makes this setting peculiar is the fact that the true endpoint is the ultimate

assessment in a sequence of repeated measures. It is then appealing to consider earlier

measures, either in isolation or several combined, as a potential surrogate endpoint.

The length and cost reducing potential has to be weighed carefully against loss in

precision and the risks of an inappropriate decision regarding a new compounds fate.

In the next section we develop a quantitative criteria to do so.

5.2.4 Cost Function and Optimal Number of Measurements

To determine the optimal number of measurements (mo), we will consider the follow-

ing cost function, introduced by Winkens et al. (2005):

FC = NC1 + NKC2. (5.14)
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Here, FC represents the fixed total financial cost, N is the total number of patients

in the study, K is the number of planned repeated measurements per subjects, C1 is

the cost of recruiting a patient to the study, and C2 is the cost per measurement and

per subject. Let R = C1/C2 be the ratio of both costs; usually the cost of recruiting

a patient to the study is higher than the cost per measurement, i.e., R > 1. We can

then re-write (5.14) as FC = NC2(R + K).

Suppose now that, instead of taking K measurements, we take m, 1 ≤ m ≤ K− 1,

measurements and use this information to predict the outcome at the Kth time point,

the financial cost for the m measurements is then given by FC(m) = NC1 + NmC2.

Thus, the proportion of the total financial cost required to take m measurement is

PFC(m) = (R + m)/(R + K). It is easy to show that the variance of the predic-

tion, based on m observations, of the outcome at the last time point takes the form

[1 − V RFind(m)]σT T . Note further that σT T is constant, irrespective of the number

of repeated measurements used as a surrogate; thus a standardized version of the

prediction variance, 1 − V RFindiv(m), will be used. Finally, a weighted linear com-

bination of the prediction variance and the financial cost can be used to define an

objective function as shown in (5.15), with weights w1 and (1 − w1), respectively.

An advantage of standardizing the prediction variance and financial cost for a given

number of repeated measurements m is the relative ease of specifying w1, compared

to using the non-standardized versions:

CPR0(m) = w1 · [1− V RFind(m)] + (1− w1) · R + m

R + K
, (5.15)

The quantity CPR0(m) balances the lack of surrogacy, 1 − V RFind(m), on the one

hand, and the proportion of total financial cost required to take m measurements,

(R+m)/(R+K), on the other hand. Retaining more measurements reduces the first

term, because the VRF will go up, but at the same time leads to an increase in the
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cost term. The relative importance attributed to the terms is captured by the weight

w1, with a user-assigned value between 0 and 1. The number mo is determined as

that minimizing CPR(m).

It goes without saying that the time of measurement, which is not explicitly ac-

counted for in (5.15), plays an important role in longitudinal data. It is therefore

sensible to consider some extensions incorporating the time of measurement. The

objective function assumes that the cost of each measurement is the same, which

may be unrealistic for some situations; for example, when patients have to stay in

a hospital or health institute, where the waiting time may incur additional costs, a

feature not accommodated by (5.15). One can therefore elect to introduce a third

term accounting for time lag:

CPRI(m) = w1 · [1− V RFind(m)] + w2 · R + m

R + K
+ w3 · tm − t0

tk − t0
, (5.16)

If the repeated measures are equidistant with time lag 4, then tm = t0 +4M and

tk = t0 +4K. Hence, (5.16) takes the form

CPRI(m) = w1 · [1− V RFind(m)] + w2 · R + m

R + K
+ w3 · M

K
. (5.17)

If in addition we assume that the waiting cost for the first measurement is zero, then:

CPRII(m) = w1 · [1− V RFind(m)] + w2 · R + m

R + K
+ w3 · M − 1

K
. (5.18)

Although extended, these objective functions assume that the cost is constant across

treatment arms, whether of a placebo, standard-therapy, or experimental nature.

When deemed unrealistic, appropriate modifications can be implemented. Arguably,

the choice of a cost function will have to balance simplicity with it being a realistic

representation of reality. In what follows, objective function (5.15) will be employed,

unless otherwise stated.
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5.3 Some Important Special Cases

In this section, we aim to aid understanding of the nature of the cost functions through

theoretical considerations for two special important cases: compound symmetry and

first-order auto-regressive process. Derivations of the results used in this section are

provided in more details in Appendix A.

5.3.1 Compound Symmetry Structure

Although stringent, the compound symmetry structure is amongst the most com-

monly used covariance structures. Assume that the covariance structure of (5.13) is

compound symmetry, i.e., ΣL = σ(1− ρ)IK + σρJK , where σ denotes the variance of

the response at each time point, ρ is the correlation between two observations, IK is

a K-dimensional identity matrix and JK is a K-dimensional square matrix of ones.

In this setting, it is trivial to show that (see Section A.1.1),

V RFindiv(m) =
mρ2

1 + (m− 1)ρ
. (5.19)

Let us study the predictive characteristics of this case. It follows that V RFindiv(m) is

an increasing function of m as far as ρ 6= 0, 1 and, therefore, the more observations

we include in S̃ij , the more precise our prediction of Tij will be. Turning to ρ, the

question is how the correlation influences the amount of information that S̃ij brings

about Tij. To usefully study this, let us calculate the additional information that one

extra observation will bring, quantified using the ratio:

g(ρ) =
V RFind(m + 1)

V RFind(m)
=

(
m + 1

m

)(
1 + (m− 1)ρ

1 + mρ

)
.

Elementary calculations show that g(ρ) is a decreasing function of ρ, therefore, the

higher the correlation the less we gain by taking additional observations, rather an

intuitive result. Indeed, if the correlation is very high, then all the measurements are
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nearly deterministically related, and having observed one or a few of them will allow

us to predict with high precision all the others. For instance, in the extreme case

when ρ = 1 the V RFind(m + 1) = V RFind(m) for all m and the first observation will

be sufficient to predict the true endpoint without error. Conversely, if ρ = 0 then all

the observations are independent and no sensible prediction is possible.

Coherent with the nature of compound symmetry, the position in the sequence of

the m observations that constitute the surrogate is totally irrelevant. From (5.15)

and (5.19), it is trivial to show that in this setting the CPR function takes the form

CPR(m) = w1 · (1− ρ)(1 + mρ)
1 + (m− 1)ρ

+ (1− w1) · R + m

R + K
, (5.20)

of which the extremes are easy to determine: (5.20) reaches its minimum at m+ and

m− when ρ > 0 and ρ < 0 respectively, where

m± = −
(

1− ρ

ρ

)
±

√
w1(R + K)(1− ρ)

1− w1
. (5.21)

Obviously, in many practical situations, m± will not be integers, in which case they

will have to be rounded. There is also a possibility for m± to assume a negative value

for some combinations of K, ρ, R, and w1. When this happens, it is recommended

that m± be set to one.

Zooming in on m+ reveals that, when less weight is assigned to the precision part

of the cost function, an increase in R has little influence on m+ but its influence

increases as more weight is assigned to precision. This is expected because when

the cost of recruiting patients is much higher than taking more measurements on

subjects, the obvious way to increase precision is through taking more measurement

per subject. Additionally, an increase in the correlation ρ between measurements

leads to a decrease in m+ when the weight assigned to precision is small to moderate.

As the weight increases, the value of m+ increases for ρ in [0; 0.5] and decreases in
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[0.5; 1]. Also, an increase in K generally leads to a slight increase in m+.

5.3.2 First-order Auto-regressive Process

In statistics and signal processing, an auto-regressive (AR) model is often used to

model and predict various types of natural phenomena. The first-order auto-regressive

(AR(1)) process is frequently encountered in longitudinal data, with ρt the correlation

between two measurements, t time units apart. Let ΣSS be an (m×m) AR(1) matrix,

ΣST = ΣT
T S = ρK−mδT

1 with δT
1 = (ρm−1, . . . , 1) and σT T = σ. It then follows that

V RFind(m) = ρ2(K−m)σδT
1 Σ−1

SSδ1. Further, using the expression for the inverse of

an AR(1) matrix (Graybill 1983), one can prove that σδT
1 Σ−1

SSδ1 = 1 and therefore

V RFind(m) = ρ2(K−m) (see Section A.1.2).

Like in the compound-symmetry case, here the V RFind(m) is an increasing function

of m. However, unlike before, it is also an increasing function of ρ, implying that the

higher ρ, the more advantageous it is to include more observations into the surrogate.

This is again a very intuitive result. This is intuitively plausible because, under

AR(1), the correlation decreases rapidly with time lag; hence it is recommendable to

consider surrogate outcomes that are collected sufficiently closely to the true endpoint.

Although this may reduce the cost of taking measurements, it implies increase in

waiting-time or duration of the study. More generally, the position of the surrogate

measures within the sequence of repeated measures is now relevant. For instance, if

we now consider as the surrogate marker a sub-sequence of m observations starting

at time point s + 1, then V RFind(s+1)(m) = ρ2(K−s−m). Obviously, V RFind(s+1)(m) ≥

V RFind(m), for s ≥ 1, and therefore considering m observations closer to the true

endpoint will result in a surrogate with more predictive power. In this scenario, the
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CPR function takes the form:

CPR(m) = w1 ·
(
1− ρ2(K−m)

)
+ (1− w1) · R + m

R + K
. (5.22)

Interestingly, (5.22) does not reach its minimum value in the interval (1,K − 1) and

therefore CPR(m) will always lead to choosing the first observation only if the cost

is the impelling criterion or choosing the entire K − 1 sequence if prediction is the

more important factor. This result also holds if the longitudinal surrogate sequence

is started at a time point different from the first one. Thus, the CPR(m) seems

to indicate that in this scenario the surrogate should contain one observation only

and therefore, the most rational choice would be to consider a value sufficiently close

to the true endpoint so that a reasonable level of precision can be achieved in the

prediction. Obviously, the closer this observation is to the true endpoint the better

the prediction will be but the longer we will have to wait. A compromise between

these two considerations should be found in this setting using external elements such

as, for example, expert opinion.

5.4 Simulation Study

The previous results are enlightening. However, many other covariance structures

commonly encountered in practice such as the Toeplitz and unstructured, amongst

others, are not analytically tractable. Moreover, even in those cases where analytic re-

sults are obtainable it is still of great interest to study the performance of the proposed

method when parameters have to be estimated. A simulation study was performed

to investigate further these issues, with focus on the two association structures of

Section 5.3.
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5.4.1 Data Generation

Equally spaced longitudinal data were generated based on (5.13), using a two-stage

approach. In the first stage, random trial-specific intercepts and treatment effects,

b1i and b2i respectively, were generated from a zero-mean normal distribution with

covariance matrix

DL =

(
1.5 2.098

2.098 3.26

)
.

Additionally, error terms εijk were generated from a zero-mean normal distribution

with covariance matrix ΣL, either first-order autoregressive, AR(1), or compound

symmetry, CS. The variance in ΣL was assumed constant and the correlation between

successive measurements was set to either 0.3, 0.6, 0.71, or 0.9. The fixed-effects vector

was set to βT = (2.5, 4.3, 0.78, 3.5). Using these, the outcomes were obtained from

(5.13).

The data generation scheme discussed earlier assumes that the treatment-by-time

interaction is constant across trials. To increase flexibility, a more general framework,

where the treatment effect is allowed to randomly vary over time and across trials was

adopted. The first stage now involved generation of random trial-specific time effects

and random slopes, in addition to random trial-specific intercepts and treatment

effects, b1i and b2i, from a zero-mean normal distribution with covariance matrix

DL =




1.0 0.8 0.00 0.00
0.8 1.0 0.00 0.00
0.0 0.0 1.00 0.95
0.0 0.0 0.95 1.00




.

The error terms were, again, generated from a zero-mean normal distribution with

AR(1) or CS covariance matrix ΣL, The outcome vector Yijk then takes the form:

Yijk = (β0 + b0i) + (β1 + b1i)Zij + (β2 + b2i)tij + (β3 + b3i)Zijtij + εijk.
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The number of trials was set to either 10, 20, 30, or 40. Two sets of trial sizes were

considered. The first set of smaller trial sizes consists of 20, 40, and 60 subjects per

trial. The second set of larger trial sizes consists of 100, 200, and 300 subjects per

trial. The simulation consists of a full combination of the specified correlation values,

covariance matrix structures, number of trials, and trial sizes. For each combination,

100 datasets (samples) where generated as described in above (Section 5.4.1), analyzed

and the optimal number of measurements determined as described in Section 5.2.

In principle, simulations based on 100 runs are in jeopardy of large Monte Carlo

errors. However, because we predominantly determine the optimal number of mea-

surements, a discrete quantity, there is little gain to be expected from increasing the

number of runs.

5.4.2 Simulation Study Results

The results of the simulation for the case of R = 4 and K = 10 are summarized in

Tables 5.1–5.4. In the tables, V RFind(mo) is the usual individual-level surrogacy for

the optimal number of measurements, while V RFind(K− 1) corresponds to the entire

K − 1 sequence being used as a surrogate. Furthermore, f represents the percentage

of datasets that resulted in a given mo as the optimal number of measurements. The

weight, w1, was set to either 0.3, 0.5, or 0.7.

Let us focus on the first data-generation scheme, where the treatment-by-time

interaction is assumed constant across trials. We learn that the V RFind(m) increases

with increasing number of repeated measurements. When the data are generated

under AR(1) but analyzed using an unstructured covariance matrix, the optimal

number of time points was chosen to be either 1 or 9, depending on the weights

assigned. When the correlation was set to 0.9, assigning more weight to precision or

equal weights to both precision and financial cost requires all 9 repeated measurements
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to minimize the objective function. For the other possible values of the correlation,

i.e., 0.30, 0.60, or 0.71, if more weight is assigned to financial cost or equal weights

are assigned to financial cost and precision then the optimum simply is the first

measurement only. However, the entire sequence is needed when progressively more

weight is assigned to the precision. This result is in agreement with Section 5.3,

where we have shown that, under AR(1), CPR(m) does not reach its minimum value

in the interval (1,K − 1) and therefore it will always lead to taking either only one

observation or the entire K − 1 subsequence. Hence, this result carries over to the

simulation setting, in spite of the added variability coming from parameter estimation.

When the data are generated using CS and analyzed with either unstructured or CS

(Table 5.2), then 1, 2, 3, or 4 repeated measurements may be required to predict the

outcome at the last time point, with differing percentages of the sample depending on

the weight assigned. When less weight is assigned to precision, the first observation

is selected and the optimal number of measurements equals one, for both CS and

unstructured.

Note that, in Table 5.2, missing entries are not due to convergence issues. Actually

those spaces are left for conveniently putting the results for CS and UN in one table.

For example, for CS structure with a weight of 0.7 and correlation of 0.71, when the

analysis was done with a CS, time point 3 was selected as optimal with 100 percent

of the samples. Whereas, when the analysis is conducted with UN, time points 2 and

4 were also selected as optimal with percentages of 14 and 6 respectively. These two

time points were not picked before and hence the space corresponding to time points

2 and 4 is left blank in the columns corresponding to CS.

In the second data-generation scheme, where treatment effects are allowed to vary,

the same results followed, for both AR(1) and CS.
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We also gave some consideration to the Toeplitz, or banded, structure, where the

correlation between pairs of measurements varies with the time lag between them,

in an unstructured way, but is independent of the actual times at which the mea-

surements are taken. Furthermore, an AR(1)-type structure was assumed where the

decline in autocorrelation is expressed in terms of the square root of the time lag, de-

noted by AR(1)-Sq. The results are summarized in Tables 5.3–5.4. For the Toeplitz

structure, up to five time points and for the unstructured matrix up to six time points

were selected as optimum, depending on the weight assigned to the precision part of

the cost function. For the AR(1)-Sq structure, the optimal time point swings between

taking the first measurement or the entire sequence. However, it picks the first time

point as optimal more often, except when the weight assigned to precision is as high

as 70% and correlation values are 0.60 and 0.90. For a correlation of 0.30, it invariably

picks the first time point only, even when the weight is as high as 70%.

5.5 Constrained Maximization

It is not uncommon to encounter circumstances in which clinical trials are faced

with budget and or time constraints and yet are expected to produce acceptable

results. This predicament motivates the use of constraint maximization to arrive at

an optimal number of subjects and/or repeated measures per subject, thereby not

exceeding the budget available. Translated to our setting, we aim at maximizing the

individual level surrogacy measure, subject to cost and time constraints. We first

maximize V RFind(m) subject to (R + m)/(R + K) ≤ δ1 and then later subject to

two constraints: (R + m)/(R + K) ≤ δ1 and (tm − t0)/(tk − t0) ≤ δ2, where both δ1

and δ2 assume values between zero and one. Details on the derivations for the results

used in this section are provided in Section A.3 of Appendix A.
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Table 5.1: Simulation study. Results for the optimal number of measurements with
AR(1). (ρ: correlation between successive time measurements; w1: weight assigned
to the precision part of the objective function; mo: optimal number of measure-
ments; V RFind(m): individual-level surrogacy for the optimal number of measure-
ments; V RFind(K − 1): expected value of individual-level surrogacy; f : percentage of
datasets resulting in mo is 100% in all cases.)

V RFind(m) V RFind(m)
w1 mo as AR(1) as CS w1 mo as AR(1) as CS

ρ = 0.30 & V RFind(K − 1) = 0.09 ρ = 0.71 & V RFind(K − 1) = 0.50
0.7 1 0.00003 0.0006 0.7 9 0.50 0.50
0.5 1 0.00003 0.0006 0.5 1 0.0032 0.0032
0.3 1 0.00003 0.0006 0.3 1 0.0032 0.0032

ρ = 0.60 & V RFind(K − 1) = 0.36 ρ = 0.90 & V RFind(K − 1) = 0.81
0.7 9 0.36 0.42 0.7 9 0.81 0.81
0.5 1 0.07 0.07 0.5 9 0.81 0.81
0.3 1 0.07 0.07 0.3 1 0.15 0.15

Without loss of generality, if we assume that the measurements are equally spaced

with fixed time interval 4, then tm = t0 + 4M and tk = t0 + 4K and hence the

second constraint reduces to M/K ≤ δ2. Using a Lagrange multiplier for the first

optimization problem, one can show that, for CS with positive ρ, the optimal number

of repeated measures required for a percentage budget of δ1 is given as:

M =





δ1(R + K)−R if (R + 1)− δ1(R + k) ≤ 1
ρ ,

2
(

1−ρ
ρ

)
− δ1(R + K) + R if (R + 1)− δ1(R + k) ≥ 1

ρ .

In a similar manner, for AR(1) with ρ > 0, the optimal number of repeated mea-

sures for a given percentage of the budget is M = δ1(R + K) − R. If we now max-

imize the association measure subject to both budget and time constraint, we find

M = min[δ1(R + K)−R, δ2K] for the optimal number of repeated measures for both

CS and AR(1).
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Table 5.2: Simulation study. Results for the optimal number of measurements with
CS. (ρ: correlation between successive time measurements; w1: weight assigned
to the precision part of the objective function; mo: optimal number of measure-
ments; V RFind(m): individual-level surrogacy for the optimal number of measure-
ments; V RFind(K − 1): expected value of individual-level surrogacy; f : percentage of
datasets resulting in mo.)

as CS as UN
w1 mo V RFind(m) f V RFind(m) f

ρ = 0.30 & V RFind(K − 1) = 0.24
0.7 1 0.11 18 0.10 18
0.7 2 0.14 6 0.12 34
0.7 3 0.16 60 0.17 22
0.7 4 0.19 16 0.19 26
0.5 1 0.09 100 0.09 100
0.3 1 0.09 100 0.09 100

ρ = 0.60 & V RFind(K − 1) = 0.56
0.7 3 0.49 60 0.48 62
0.7 4 0.52 40 0.51 38
0.5 1 0.37 30 0.37 18
0.5 2 0.44 70 0.43 82
0.3 1 0.36 100 0.36 100

ρ = 0.71 & V RFind(K − 1) = 0.68
0.7 2 0.58 14
0.7 3 0.62 100 0.62 80
0.7 4 0.64 6
0.5 3 0.62 70
0.5 4 0.64 6
0.5 1 0.51 30
0.5 2 0.58 70 0.57 24
0.3 1 0.50 100 0.50 100

ρ = 0.90 & V RFind(K − 1) = 0.89
0.7 2 0.85 100 0.85 100
0.5 1 0.81 100 0.81 100
0.3 1 0.81 100 0.81 100
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Table 5.3: Simulation study. Results for the optimal number of measurements with:
unstructured covariance and Toeplitz correlation structure with slowly declining corre-
lation ( w1: weight assigned to the precision part of the objective function; mo: optimal
number of measurements; V RFind(m): individual-level surrogacy for the optimal num-
ber of measurements; V RFind(K − 1): expected value of individual-level surrogacy; f :
percentage of datasets resulting in mo.)

w1 mo V RFind(K − 1) f

Unstructured
V RFind(K − 1) = 0.995

0.1 1 0.53 100
0.3 1 0.53 100
0.5 4 0.86 92
0.5 5 0.91 8
0.7 6 0.96 100
0.6 4 0.86 29
0.6 5 0.91 57
0.6 6 0.96 14

Toeplitz
V RFind(K − 1) = 0.75

0.1 1 0.15 100
0.3 2 0.16 80
0.3 3 0.22 20
0.5 4 0.38 100
0.6 4 0.38 98
0.6 5 0.42 2
0.7 5 0.42 100

To enhance insight, we carried out a limited set of simulations for both AR(1) and

CS. Results are summarized in Table 5.5. The simulation revealed that as R increases,

the optimal M diminishes. This is in line with intuition because the total cost and the

number of patients in the study are fixed and hence to maintain a low cost, the only
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Table 5.4: Simulation study. Results for the optimal number of measurements with:
AR(1) with square root of time lag analyzed as conventional AR(1). ( w1: weight
assigned to the precision part of the objective function; mo: optimal number of mea-
surements; V RFind(m): individual-level surrogacy for the optimal number of measure-
ments; V RFind(K − 1): expected value of individual-level surrogacy; f : percentage of
datasets resulting in mo.)

w1 mo V RFind(K − 1) f

AR(1)-Sq
ρ = 0.30 & V RFind(K − 1) = 0.22
0.1 1 0.0016 100
0.3 1 0.0016 100
0.5 1 0.0016 100
0.6 1 0.0016 100
0.7 1 0.0016 100

AR(1)-Sq
ρ = 0.60 & V RFind(K − 1) = 0.50
0.1 1 0.052 100
0.3 1 0.052 100
0.5 1 0.052 100
0.6 9 0.052 100
0.7 9 0.052 100

AR(1)-Sq
ρ = 0.90 & V RFind(K − 1) = 0.86
0.1 1 0.21 100
0.3 1 0.21 100
0.5 1 0.21 100
0.6 1 0.21 100
0.7 9 0.86 100

option is to reduce the number of repeated measures. It also follows that, for some

values of R, it is not possible to obtain a value of M for which the percentage of cost

incurred is lower than the specified δ value. In such cases, only the first time point or

the entire sequence could be taken, depending on the magnitude of M . In this context,
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Table 5.5: Simulation study for constraint maximization. Results for the optimal num-
ber of measurements for ρ= 0.3 with CS and AR(1). (δ: percentage of cost available;
R: cost ratio; mo: optimal number of measurements; V RFind(m): individual-level
surrogacy for the optimal number of measurements mo.)

CS AR(1)

δ R m0 V RFind(m) δ R m0 V RFind(m)
0.2 1 1 0.10979 0.2 1 1 2.29E-14
0.3 1 2 0.13882 0.3 1 2 4.44E-09
0.4 1 3 0.16273 0.4 1 3 4.11E-08
0.5 4 3 0.17758 0.5 4 3 4.11E-08
0.6 4 4 0.19843 0.6 4 4 2.85E-07
0.8 4 7 0.21728 0.8 4 7 0.000584203
0.6 10 2 0.19843 0.6 10 2 4.44E-09
0.7 10 4 0.20691 0.7 10 4 2.85E-07
0.8 10 6 0.21728 0.8 10 6 4.68688E-05
0.9 10 8 0.22203 0.9 10 8 0.007548459

it is also worth noting that, although there is no difference in the optimal number of

repeated measures for CS and AR(1), the same number of repeated measures in the

two covariance structures will nevertheless not yield identical V RFind(m) values.

5.6 Impact of Missingness

In practice, it is not unusual for some measurement sequences in a longitudinal

study to terminate early for reasons outside the control of the investigator. Sub-

jects so affected are referred to as dropouts. Additionally, intermediate scheduled

measurements might be missed, the so-called intermittent missing values (Verbeke

and Molenberghs 2000, Molenberghs and Verbeke 2005, Molenberghs and Kenward

2008). Dropout is a common occurrence in clinical trials. Indeed, the vast majority

of incomplete sequences in clinical trials are of a dropout type, with a relative minor
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fraction of incompletely sequences exhibiting intermittent missingness. Thus we put

emphasis on the problem of dropout.

It might be necessary to accommodate missingness into the modeling process, as

they may have impact on statistical inference. Many methods have been formulated

such as the selection models (Little and Rubin 1987, 2002) as opposed to pattern-

mixture models (Little 1993, 1994) and shared-parameter models (Wu and Carroll

1988, Wu and Bailey 1988, 1989). Here, we focus on the selection models and the

terminology of Rubin (1976) and Little and Rubin (1987). Key concepts are (1)

missing completely at random (MCAR), if the missingness is independent of both

unobserved and observed data, (2) missing at random (MAR) if, conditional on the

observed data, the missingness is independent of the unobserved measurements, and

(3) missingness not at random (MNAR), when neither MCAR nor MAR applies.

In this section we performed a limited simulation study to assess the impact of

missingness on the prediction of the final outcome of a longitudinal response using

earlier measures from the same sequence. Again, the CS and AR(1) covariance struc-

tures were used with ρ set to either 0.3, 0.5 or 0.9. First, data were generated with ten

repeated measures, which we refer to as the full-data. Next, artificial missingness was

imposed using a logistic model to mimic the three missing data mechanisms; MCAR,

MAR and MNAR. The V RFind was calculated base on complete cases (CC), available

cases (AC) , multiple imputation (MI) and the full-data. Bias and mean square error

(MSE) were used to assess the magnitude of the effect.

It should be noted that the objective here is to investigate the impact of missing-

ness, under the three missingness mechanisms, using some methods commonly use to

handle missingness. The issue of handling missingness in a optimal manner together

with sensitivity analysis is not of particular concern. All methods used, CC, AC and



86
Chapter 5. Earlier Measures in a Longitudinal Sequence as Potential

Surrogate for a Later One

MI, exhibited bias for all missingness mechanisms considered. The bias was highest

under the MNAR mechanism. This is not unexpected as the methods considered are

only valid under the MCAR or MAR mechanisms. MI had the lowest bias, closely

followed by AC, while CC generally showed relatively larger bias. The discrepancy

between these methods is high when the data were generated with moderate to low

values of ρ. This makes sense intuitively, as for very high values of ρ, say > 0.9, the

first few observed measurements may be enough to predict the final outcome, espe-

cially for the CS structure. It is therefore crucial to use methods that appropriately

account for missingness when applying this method to incomplete data.

5.7 Application to the Case Study

Two motivating studies introduced in Section 2.2.1 and Section 2.2.2 are analyzed here

and the results displayed in Tables 5.6 and 5.7, respectively. For the data coming

from the opthalmology experiment (Section 2.2.1), measurements of visual acuity

were taken at baseline and every sixth week there after up to 54th week giving 10

repeated measures. For the schizophrenia study, the PANSS values were measured

at five different time points, taken at the baseline and every two weeks thereafter.

In both cases, the objective is to predict the ultimate measurement using earlier

ones from the sequence, thereby accounting for cost. In both cases, an unstructured

variance-covariance matrix fits the data best.

Focusing attention on the data coming from the opthalmology experiment, we find

that, with increasing weight attributed to precision: the first one; the first and the

second; the first, the second, and the third; the first eight; or all nine time points

were required to optimally predict the final measurement. Note that one time unit

corresponds to 6 weeks. Thus, for example, taking the first three time points amounts
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to using measurements from 18 weeks to predict a response at the 54th week. In

conclusion, even though necessarily a bit subjective, it seems that 3 measurements

leads to reasonably good quality, while reducing the study time to a third.

For the schizophrenia experiment, first, to stabilize the variance, a linear trans-

formation of the outcome and a non-linear transformation of time, taking the form

Yij = −3.5675 + 0.0484 · PANSSij and tj,new = e−tj/4, respectively, were applied.

It follows that, with increasing weight assigned to precision: the first one; the first

and the second; or all four time points were required to optimally predict the final

measurement. In this case, with similar logic as in the previous case study, it appears

that two measurements provides reasonable results, while leading to a 50% study-time

reduction.

In line with intuition, in both cases, the number of time points required also changes

with increasing R. Setting R = 0 corresponds to assuming that patients are recruited

at no cost or when interest is solely with the cost per additional measurement occasion.

To accommodate the waiting time in the decision making process, we also stud-

ied the optimal number of time points based on the modified cost functions (5.17)

and (5.18). Results can be found in Table 5.7 for schizophrenia and Table 5.8 for

opthalmology. The modified functions lead to the same results when R = 0, but, as

R increases, the modified cost functions are more prudent and tend to select less time

points.

5.8 Discussion

Our simulation study involved varying numbers of trials and subjects within trials.

Unlike conventional surrogate marker validation, which involves two separate out-

comes where one is used as a potential surrogate for the other, here we have studied
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Table 5.6: Case study in opthalmology. Results for the optimal number of measure-
ments based on cost function (5.16). (w1: weight assigned to the precision part of the
objective function; mo: optimal number of measurements;R = C1/C2 be the cost ra-
tio ; V RFind(m): individual-level surrogacy for the optimal number of measurements;
V RFind(K − 1): expected value of individual-level surrogacy.)

V RFind(K − 1) = 0.91

w1 R mo V RFind w1 R mo V RFind

0.1 0 1 0.18 0.1 4 1 0.18
0.3 0 1 0.18 0.3 4 1 0.18
0.4 0 2 0.34 0.4 4 3 0.45
0.5 0 3 0.45 0.5 4 8 0.85
0.7 0 9 0.91 0.7 4 9 0.91
0.1 1 1 0.18 0.1 6 1 0.18
0.3 1 1 0.18 0.3 6 2 0.34
0.4 1 2 0.34 0.4 6 3 0.45
0.5 1 3 0.45 0.5 6 8 0.85
0.7 1 9 0.91 0.7 6 9 0.91
0.1 2 1 0.18
0.3 2 1 0.18
0.4 2 2 0.34
0.5 2 3 0.45
0.7 2 9 0.91

a scenario where there is a single outcome only, measured repeatedly over time. The

objective was to assess the performance of accumulated measures of an equally spaced

longitudinal sequence as a possible surrogate for a final outcome and to determine the

optimal number of repeated measures required to adequately attain ‘good’ surrogacy.

The individual-level surrogacy was assessed using the canonical correlation approach,

introduced by Alonso et al. (2004) and discussed in Section 5.2. The determination

of the optimal number of measurements requires striking a balance between preci-

sion and cost of incorporating a long sequence of repeated measures. To this end,
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Table 5.7: Case study in schizophrenia. Results for the optimal number of measure-
ments based on cost function (5.16) and modified cost function (5.17). (w1: weight
assigned to the precision part of the objective function; mo: optimal number of mea-
surements; R = C1/C2 be the cost ratio ; V RFind(m): individual-level surrogacy for the
optimal number of measurements; V RFind(K − 1): expected value of individual-level
surrogacy.)

V RFind(K − 1) = 0.85

Cost function (5.16) Cost function (5.17)
w1 R mo V RFind(m) w1 w2 w3 R mo V RFind(m)
0.1 0 1 0.20 0.1 0.1 0.8 0 1 0.20
0.3 0 1 0.20 0.3 0.1 0.6 0 1 0.20
0.5 0 2 0.59 0.5 0.1 0.4 0 2 0.59
0.7 0 4 0.85 0.7 0.1 0.2 0 4 0.85
0.1 1 1 0.20 0.1 0.1 0.8 1 1 0.20
0.3 1 2 0.59 0.3 0.1 0.6 1 1 0.20
0.5 1 2 0.59 0.5 0.1 0.4 1 2 0.59
0.7 1 4 0.85 0.7 0.1 0.2 1 4 0.85
0.1 2 1 0.20 0.1 0.1 0.8 2 1 0.20
0.3 2 2 0.59 0.3 0.1 0.6 2 1 0.20
0.5 2 2 0.59 0.5 0.1 0.4 2 2 0.59
0.7 2 4 0.85 0.7 0.1 0.2 2 4 0.85
0.1 4 1 0.20 0.1 0.1 0.8 4 1 0.20
0.3 4 2 0.59 0.3 0.1 0.6 4 1 0.20
0.5 4 4 0.85 0.5 0.1 0.4 4 2 0.59
0.7 4 4 0.85 0.7 0.1 0.2 4 4 0.85
0.1 6 1 0.20 0.1 0.1 0.8 6 1 0.20
0.3 6 2 0.59 0.3 0.1 0.6 6 1 0.20
0.5 6 4 0.85 0.5 0.1 0.4 6 2 0.59
0.7 6 4 0.85 0.7 0.1 0.2 6 4 0.85

an objective function has been utilized. The objective function has two parts, which

takes care of the cost and precision components. The importance of both components

is gauged through the use of weights. Whenever it is felt that the importance of
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Table 5.8: Case study in opthalmology. Results for the optimal number of measure-
ments based on modified cost function (5.17) and (5.18); ( w1-w3): weights assigned to
the precision, financial cost and waiting time parts of the objective function; mo: op-
timal number of measurements; R = C1/C2 be the cost ratio; V RFind(m): individual-
level surrogacy for the optimal number of measurements; f = 100: percentage of
datasets resulting in mo, in all cases.)

Cost Ratios
Weights R = 0 R = 1 R = 2 R = 4 R = 6

w1 w2 w3 mo V RFind mo V RFind mo V RFind mo V RFind mo V RFind

Modified cost function (5.17)

0.1 0.1 0.8 1 0.18 1 0.18 1 0.18 1 0.18 1 0.18
0.3 0.1 0.6 1 0.18 1 0.18 1 0.18 1 0.18 1 0.18
0.4 0.1 0.5 2 0.34 2 0.34 2 0.34 2 0.34 2 0.34
0.5 0.1 0.4 3 0.45 3 0.45 3 0.45 3 0.45 3 0.45
0.7 0.1 0.2 9 0.91 9 0.91 9 0.91 9 0.91 9 0.91
0.1 0.2 0.7 1 0.18 1 0.18 1 0.18 1 0.18 1 0.18
0.3 0.2 0.5 1 0.18 1 0.18 1 0.18 1 0.18 1 0.18
0.4 0.2 0.4 2 0.34 2 0.34 2 0.34 2 0.34 2 0.34
0.5 0.2 0.3 3 0.45 3 0.45 3 0.45 3 0.45 3 0.45
0.6 0.2 0.2 8 0.85 8 0.85 8 0.85 9 0.91 9 0.91
0.1 0.3 0.6 1 0.18 1 0.18 1 0.18 1 0.18 1 0.18
0.3 0.3 0.4 1 0.18 1 0.18 1 0.18 1 0.18 1 0.18
0.4 0.3 0.3 2 0.34 2 0.34 2 0.34 2 0.34 2 0.34
0.5 0.3 0.2 3 0.45 3 0.45 3 0.45 3 0.45 8 0.85
0.6 0.3 0.1 8 0.85 8 0.85 8 0.85 9 0.91 9 0.91

Modified cost function (5.18)

0.1 0.1 0.8 1 0.18 1 0.18 1 0.18 1 0.18 1 0.18
0.3 0.1 0.6 1 0.18 1 0.18 1 0.18 1 0.18 1 0.18
0.4 0.1 0.5 1 0.18 1 0.18 2 0.34 2 0.34 2 0.34
0.5 0.1 0.4 2 0.34 3 0.45 3 0.45 3 0.45 3 0.45
0.7 0.1 0.2 9 0.91 9 0.91 9 0.91 9 0.91 9 0.91
0.1 0.2 0.7 1 0.18 1 0.18 1 0.18 1 0.18 1 0.18
0.3 0.2 0.5 1 0.18 1 0.18 1 0.18 1 0.18 1 0.18
0.4 0.2 0.4 2 0.34 2 0.34 2 0.34 2 0.34 2 0.34
0.5 0.2 0.3 3 0.45 3 0.45 3 0.45 3 0.45 3 0.45
0.6 0.2 0.2 8 0.85 8 0.85 8 0.85 8 0.85 8 0.85
0.1 0.3 0.6 1 0.18 1 0.18 1 0.18 1 0.18 1 0.18
0.3 0.3 0.4 1 0.18 1 0.18 1 0.18 1 0.18 1 0.18
0.4 0.3 0.3 2 0.18 2 0.18 2 0.34 2 0.34 2 0.34
0.5 0.3 0.2 3 0.45 3 0.45 3 0.45 3 0.45 3 0.45
0.6 0.3 0.1 8 0.85 8 0.85 8 0.85 9 0.91 9 0.91
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precision outweighs cost, more weight will be assigned to the precision part and vice

versa.

The objective function can be modified to accommodate other possible sources of

cost. One such cost is the cost of waiting time. This can be incorporated through a

third component which accounts for the time lag between the start of the study and

the optimal time point. This calls for assigning three possible weights, corresponding

to financial cost, time cost, and precision cost, respectively. Similarly, when it is

deemed better to detect a condition early rather than late. A possible extension of

our work would be to incorporate the cost of a failure to detect the condition early,

when treatments are more effective or when a change to an alternative therapy may

be more beneficial than when such a switch is effectuated at a later stage.

The results of the simulation study for two data-generation schemes, based on CS

and AR(1), respectively, have revealed that, depending on the correlation structure of

the data and the weights assigned, the first few repeated measures or the entire K−1

sequence might be needed to adequately predict the outcome at the last time point.

Assuming that the outcome has an AR(1) structure, we showed theoretically and via

simulations that either only the first measurement or the entire K − 1 sequence is

required to predict the true endpoint, depending on the weights chosen and the level of

the AR(1) correlation. This is a very interesting characteristic of the first-order auto-

regressive structure. Our results illustrate that here no balance between precision

and cost is possible, because the CPR always leads to the two extreme situations. If

precision is the driving requirement, then the entire K − 1 subsequence is the best

option, whereas if cost if the impelling factor then the surrogate should never contain

more than a single observation. In such a situation, the best strategy will be to use

only one measurement, located somewhere in the interval (1, k − 1). Obviously if
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the observation is taken at the end of the sequence, more predictive power will be

achieved but a longer waiting time will also be needed. Arguably, a decision should

then be taken based on other field related factors and the opinion of the experts in the

area will be important. Moreover, at most six measurements, about 60% of the entire

sequence, are required to adequately predict the final measurement if the outcome has

a CS or a Toeplitz structure, or a general structure with slowly decaying correlation

between repeated measures.

Based on these findings, it seems promising to use the proposed approach to bal-

ance between cost and precision in the process of evaluating the performance of a

few repeated measures taken early as possible surrogates to adequately predict the

outcome and/or treatment effect of the final measure.

In practice, missing data are frequently encountered with longitudinal studies. Re-

sults from a limited simulation indicate that when using this method with incomplete

data, is it important to employ models that appropriately handle the missingness.

Additionally, misspecification of the covariance structure can have substantial effect

on V RFind. Simulation results (not shown) indicated that when data were generated

using CS and analyzed as AR(1) and vice versa, substantial bias were obtained rel-

ative to using the ‘correct’ covariance structure. Also, analyzing the data using an

unstructured covariance structure minimizes bias, when the data were generated with

either CS or AR(1). Therefore it is advisable to determine a plausible covariance

structure through model building, starting with an unstructured covariance matrix,

when applying these methods.

Our simulation study, while relatively broad, is intrinsically limited, as is the case

for every simulation study. A number of extensions could be considered. First, while

the first-order autoregressive structure applies to equally spaced measures only, this is
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not the case for the compound symmetry and unstructured covariances. In principle,

further structures for unbalanced data, such as general special functions, as available

in the SAS System, could be considered. Second, our derivations crucially rely on

the continuous nature of the outcome, and hence on the linearity of the expressions

involved, enabling the derivation of explicit expressions.

Should the outcome be non-Gaussian, then relevant model choices are generalized

estimating equations (GEE, Liang and Zeger 1986) or generalized linear mixed models

(GLMM, Breslow and Clayton 1993), for example. A review of this and additional

methodology is provided in Molenberghs and Verbeke (2005). Such models, how-

ever, raise a number of complexities. The presence of a mean-variance link and the

non-linear nature of the link function defeats the derivation of explicit analytical ex-

pressions like in the continuous case. Of course, one might make progress through the

use of approximate expressions, or by way of Monte-Carlo-based evaluations. These

are just two examples of how extensions could be considered.

Indeed, GEE was employed while performing a simulation for predicting the final

outcome of a binary longitudinal sequence using cumulative earlier measurements,

subject to cost and time constraints. Simulation results (not shown here)indicate

that for the AR(1) and CS structures more or less similar results to the continuous

case are observed, i.e., for AR (1) swinging between 1 and 9 time points but with some

percentage of samples pointing to other possible number of measurements as optimal.

For CS up to 5 time points were selected as optimal. These results are similar to with

the results obtained for the case of continuous longitudinal outcome.
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6
Information-Theoretic

Approach to Surrogate

Markers Validation

To recapitulate, methodologies discussed in the previous chapters where based on the

meta-analytic approach of Buyse et al. (2000) and its extensions. This methodology

stemmed from the work of Prentice (1989) and Freedman, Graubard, and Schatzkin

(1992), who propose a formal definition of surrogacy and outline a validation strat-

egy. Even though their ideas are appealing, a drawback, shared with all single-trial

approaches, is that they rest on strong and unverifiable assumptions. Therefore sev-

eral authors (Daniels and Hughes 1997, Buyse et al. 2000) proposed methods based

on information coming from several units or trials. Using hierarchical linear models,

Buyse et al. (2000) defined individual-level (R2
ind) and trial-level (R2

trial) surrogacy

measures, both of a coefficient of determination type.

97
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A drawback of the meta-analytic paradigm is that several individual-level mea-

sures have been proposed for different settings. For normally distributed endpoints,

Buyse et al. (2000), using a bivariate normal regression model, defined the R2
indas

the correlation between the surrogate and true endpoint after adjusting for treat-

ment and trial effects. In the binary-binary setting, Renard et al. (2002) used the

correlation between two latent variables R2
ind = corr(S̃, T̃ ) to define individual-level

surrogacy and alternatively define R2
ind = ψ, the global odds ratio between both end-

points estimated from a bivariate Plackett-Dale model. Considering a longitudinal

surrogate for a time-to-event clinical endpoint, Renard et al. (2003) used the so-

called model-based curve R2
ind(t), using ideas stemming from the model proposed by

Henderson et al. (2000), which can be defined relative to any time over the course

of measurement of the surrogate. Also, Burzykowski et al. (2001) used Kendal’s

tau to characterize the individual-level surrogacy for failure time endpoints. Using

multivariate ideas and canonical correlations, the so-called R2
Λ has been proposed to

evaluate surrogacy when both responses are measured longitudinally (Burzykowski,

Molenberghs, and Buyse, 2005; Alonso, Geys, and Molenberghs, 2006). This R2
Λ can

be incorporated into a more general framework allowing for interpretation in terms

of canonical correlations of the error vectors, based on which these authors define a

family of individual-level parameters.

The scenarios mentioned highlight a limitation of the meta-analytic methodology

so far: different settings require different definitions and in some of these settings,

the association is measured at a latent level, hampering interpretation. Furthermore,

more than one measure for individual-level surrogacy can be defined for some settings,

an immediate example being the binary-binary setting. Additionally, in all cases, a

joint and often nonstandard model for both endpoints is needed, frequently represent-
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ing a serious computational burden, even for normally distributed endpoints (Tilahun

et al. 2007, Chapters 4 and 3).

To overcome these limitations, Alonso et al. (2004b) extend the R2
Λ to nonnormal

settings using a scaled likelihood reduction factor (LRF). Later in 2007, Alonso and

Molenberghs (2007) used information theory to create a unified framework for surro-

gate markers evaluation base on a measure of information, R2
h. These authors showed

that the LRF is a consistent estimator of R2
h, thereby, leading to a definition of sur-

rogacy with an intuitive interpretation and applicable in a wide range of situations.

Another strong point for the LRF is its easy applicability in practice. This is a direct

consequence of the fact that it is based on routine measures produced by standard

softwares.

This chapter serves as basis for all the chapters in this part of the thesis. There-

fore, a succinct introduction on information theory is provided in Section 6.1, while

some important concepts of information theory are briefly described in Section 6.2.

Section 6.3 focuses on surrogate marker validation from an information-theoretic

perspective, as proposed by Alonso and Molenberghs (2007). Finally, some impli-

cations of the information theoretic approach are discussed in Section 6.4.

6.1 Information Theory

Information theory is a branch of electrical engineering, applied mathematics, and

the mathematical theory of probability and statistics, involving the quantification of

information. Its abstract formulations are applicable to any probabilistic or statistical

system of observations. Since its inception it has broadened to find applications

in many other areas, including natural language processing, modern communication

theory, networks other than communication networks and statistical inference.
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In spirit and concept, information theory has its mathematical roots connected with

the idea of entropy used in thermodynamics and statistical mechanics. It was studied

by James Clerk Maxwell (1867), Ludwig Boltzman (1877) and Leo Szilard (1929)

who identified entropy with information. Nyquist (1924) recognized the logarithmic

nature of the measure of information and made an early attempt to formalize the

theory. A major contribution in this area came in 1948 when Shannon published a

remarkable paper on the properties of information sources and the communication

channels: “Mathematical Theory of Communication.”

It is worth considering the fact that the most commonly used estimating technique,

maximum likelihood, is usefully viewed as an empirical version of information. This

follows since the usual log-likelihood divided by the sample size, which can be taken as

a fixed constant, provides a consistent estimate of the information (O’Quigley 2008).

R. A. Fisher’s well-known measure of the amount of information supplied by data

about an unknown parameter is the first use of information in statistics. Further,

Kullback and Leibler (1951) studied another statistical information measure, the so-

called information gain, involving two probability distributions associated with the

same experiment. The later plays an important role in this work as will be seen in

subsequent sections.

6.2 Some Concepts and Information-theoretic Mea-

sure of Association

The entropy, a good measure of randomness or uncertainty, of a random variable is

defined in terms of its probability distribution. Shannon (1948) defined entropy for

a discrete random variable, Y , taking values {k1, k2, . . . , km} and with probability



6.2. Some Concepts and Information-theoretic Measure of Association 101

function P (Y = ki) = pi as

H(Y ) =
∑

i

pi log
(

1
pi

)
. (6.1)

H(Y ) is the average uncertainty associated with P . Defining the information of a sin-

gle event as I(A) = log pA, the entropy is H(A) = −I(A). No information is gained

from a totally certain event, pA ≈ 1, so I(A) ≈ 0, while an improbable event is infor-

mative. In general, we could use the alternative definition H(Y ) = E[−log P (Y )].

We can also define the joint and conditional entropy as H(X, Y ) = E[−log P (X, Y )]

and H(Y |X) = E[−log P (Y |X)], respectively. Entropy is always nonnegative, satis-

fies H(Y |X) ≤ H(Y ) for any pair of random variables, with equality holding under in-

dependence, and is invariant under a bijective transformation (Cover and Tomas 1991).

Shannon’s entropy can be extended to situations where the random variable is contin-

uous, the so-called differential entropy. The differential entropy hd(X) of a continuous

variable X with density fX and support SfX
equals

hd(Y ) = −E[log fX(X)] = −
∫

SfX

fX(x) log fX(x)dx. (6.2)

Differential entropy enjoys some but not all properties of entropy: it can be infinitely

large, negative or positive, and is coordinate dependent. For a bijective transformation

Y = g(X), it follows that hd(Y ) = hd(X) − EY

(
log

∣∣∣dx
dy (g)

∣∣∣
)
. Nevertheless, beyond

all these limitations, it is possible to define some very important and meaningful

measures based on the concept of differential entropy that are positive and invariant

by bijective transformations.

A concept analogous to conditional entropy can also be defined for continuous

outcomes. Let (X, Y) be two continuous random variables with joint density fXY .

Further, we will denote by fY , fX , and fY |X the marginal densities of Y , X, and

Y |X, respectively. The expected conditional entropy of Y given X can be defined as
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hd(Y |X) = EX [hd(Y |X = x)]. It represents the uncertainty in Y that is expected

to remain if the value of X is known (Alonso and Molenberghs 2007). Based on

these concepts, the amount of uncertainty in Y that is expected to be removed if

the value of X is known can be quantified by I(X, Y ) = hd(Y ) − hd(Y |X), the so-

called mutual information. I(X, Y ) is always non-negative, zero if and only if X

and Y are independent, symmetric, invariant under bijective transformations of X

and Y , and I(X, X) = hd(X). Intuitively, if (X, Y) are independent, then their

mutual information should be zero. On the other hand, if X and Y are identical,

then knowing X reveals nothing new about Y or vice versa, therefore, the mutual

information should be the same as the information conveyed by X (or Y ) alone, which

is given by the entropy of the random variable. Also, it can be shown that I(X, Y )

equals the Kullback-Leibler discrepancy measure (Alonso and Molenberghs 2007),

which quantifies the distance between the joint distribution of X and Y and the

product of their marginal distribution.

The concept of entropy-power, introduced by Shannon (1948) for comparison of

continuous random variables, can be defined for a continuous n-dimensional random

vector, X, as

EP(X) =
1

(2πe)n
e2h(X). (6.3)

The differential entropy of a continuous normal random variable is h(X) = 1
2 log

(
2πσ2

)
,

a simple function of the variance and, on the natural logarithmic scale: EP(X) = σ2.

In general, EP(X) ≤ Var(X) with equality if and only if X is normally distributed.

For other distributions where variance itself may not be the best measure of un-

certainty or lack of knowledge (dispersion), the concept of entropy-power, might be

viewed as having more generality (O’Quigley 2008). We can now define an information-
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theoretic measure of association (Schemper and Stare 1996):

R2
h =

EP(Y )− EP(Y |X)
EP(Y )

, (6.4)

which ranges in the unit interval, equals zero if and only if (X,Y ) are independent,

is symmetric, is invariant under bijective transformation of X and Y , and, when

R2
h → 1 for continuous outcomes, there is usually some degeneracy appearing in the

distribution of (X,Y). There is a direct link between R2
h and the mutual information:

R2
h = 1− e−2I(X,Y ). (6.5)

For Y discrete: R2
h ≤ 1 − e−2H(Y ), implying that R2

h will have an upper bound that

can generally be smaller than 1, given by 1− e−2H(Y ). Consequently, the calibrated

quantity

R̃2
h =

R2
h

1− e−2H(Y )
(6.6)

is more meaningful, reaching 1 when both endpoints are deterministically related.

Note that H(Y ) is the log-likelihood of the true endpoint divided by the total number

of subjects.

6.3 Surrogate Marker Validation from an Information-

Theoretic Perspective

We can now redefine surrogacy in a simple and intuitive manner, while preserving

previous proposals as special cases. While we will focus on individual-level surrogacy,

all results apply to the trial level too. Let us denote by Y = T and X = S the true

and surrogate endpoints, respectively. Base on the information-theoretic measure

of association, Alonso and Molenberghs (2007) stated the following definition for

surrogacy:
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S is called a good surrogate for T at the individual (trial) level, if a “large”

amount of uncertainty about T (the treatment effect on T ) is reduced when

S (the treatment effect on S) is known. Equivalently, we term S a good

surrogate for T at the individual level, if our lack of knowledge about

the true endpoint is substantially reduced when the surrogate endpoint is

known.

This definition, in spite of being based on formal concepts rooted in information

theory, is simple and intuitive, because the idea behind surrogacy is to reduce our

lack of knowledge about a true endpoint through the use of a surrogate alternative.

Thus, R2
h is a valuable tool to evaluate surrogacy in practice. R2

h ≈ 1 implies that

our potential surrogate is promising, and could be interpreted as follows: once the

surrogate is known, almost all of our uncertainty about the true endpoint will be

removed. On the other hand, R2
h ≈ 0 evidences a poor surrogate, unable to reduce

our uncertainty about the true endpoint.

A meta-analytic framework, with N clinical trials, produces Nq different R2
hi, and

a meta-analytic R2
h can be obtained as:

R2
h =

Nq∑

i=1

αiR
2
hi = 1−

Nq∑

i=1

αie
−2Ii(Si,Ti), (6.7)

where αi > 0 for all i and
∑Nq

i=1 αi = 1, i.e., a convex combination. Different choices

for αi lead to different proposals, producing an uncountable family of parameters.

Ωh =

{
θh : θh = 1−

Nq∑
i = 1

αie
−2Ii

(
Si, Ti

)
, where: αi > 0 and

∑
i

αi = 1

}
. (6.8)

This opens the additional issue of finding, in a well-defined way, the best member of Ωh

that should be more appropriate in a certain practical situation, if it actually exists.

Alonso and Molenberghs (2007) showed that (6.7) reduces to previous proposals as
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special cases for well chosen choices of αi. When applied in the cross-sectional normal

setting and considering the bivariate model introduced by Buyse et al. (2000) the R2
h

equals the R2
ind. In the longitudinal normal case and based on the model considered in

Burzykowski et al. (2005) and Chapter 5 (Section 5.2.1), the R2
h = R2

Λ when αi = N−1

and Ωh reduces to the ΩΛ family defined by these authors.

It is often the case in practice that different trials in meta-analysis have different

sizes. Since univariate models are used to evaluate surrogacy in the information-

theoretic approach, there is a need to adjust for the heterogeneity in information

content between trial-specific contributions (Tibaldi et al. 2003, Pryseley et al. 2007,

Section 3.3.3). A common way to account for a variable amount of information per

trial is by weighting the contributions according to trial size.

Furthermore, when the information-theoretic ideas are applied at the trial level

using the fully hierarchical approach considered by Buyse et al. (2000), the R2
h reduces

to the R2
trial proposed by these authors. This connection allows us to reinterpret R2

trial

from an information point.

Based on the ideas of Kent (1983) to build confidence intervals for 2I(T, S),

Alonso and Molenberghs (2007) developed asymptotic confidence intervals for R2
h.

Let â = 2nÎ(T, S), where n is the number of patients. Define κ1 : α(a) and δ1 : α(a) by

P {χ2
1 [κ1 : α(a)] ≥ a} = α and P {χ2

1 [δ1 : δ(a)] ≤ a} = α. Here, χ2
1 is a chi-squared ran-

dom variable with 1 degree of freedom. If P [χ2
1(0) ≥ a] = α then we set κ1 : α(a) = 0.

A conservative two-sided 1− α asymptotic confidence interval for R2
h is

∑

i

αi [n−1
i κi

1 : α(â), n−1
i δi

1 : α(â)] , (6.9)

where 1−αi is the Bonferroni confidence level for the trial intervals. This asymptotic

interval has considerable computational advantage relative to the bootstrap approach

used by Alonso et al. (2005). Through simulation studies, it was observed that 95%
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asymptotic intervals were tighter than 95% percentile bootstrap intervals, and the

discrepancy between the asymptotic and bootstrap intervals reduces with increase in

the number of trials and trial sizes (Pryseley et al. 2007).

6.4 Some Implications of the Informational Approach

The link between information theory and surrogate marker validation may have many

interesting implications. We briefly mention some of them and discuss the theoretical

plausibility of finding a good surrogate.

6.4.1 Prentice Criteria

Prentice (1989) put forward one of the most interesting ideas to approach surro-

gate marker validation. However, base on an information-theoretic point of view,

Prentice’s main criterion f(T |S, T ) = f(T |S) implies that once we have adjusted for

the surrogate, the true endpoint carries no further information about the treatment

(Alonso and Molenberghs 2007). Essentially, it implies that there are no pathways

from the treatment to the true endpoint which bypass the surrogate. We believe this

is quite a strong condition and that in practice the mechanisms that lead from the

treatment to the true endpoint will be frequently more complicated than what this

model states. Additionally, even when this condition is satisfied, the data processing

inequality (DPI) (Cover and Tomas 1991), seems to illustrate that Prentice’s main

criterion entails that a treatment effect on T implies a treatment effect on S rather

than the other way around (Alonso and Molenberghs 2007).
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6.4.2 The Proportion Explained

In spite of contributing the important switch from a hypothesis testing to an estima-

tion paradigm, the PE is not considered to be the final answer (Freedman, 2001).

Among other limitations, the PE is not restricted to the unit interval and can lead

to counterintuitive results in some scenarios (Burzykowski et al. 2005). On the other

hand, if we apply the information-theoretic ideas at the trial level using the fully

hierarchical approach considered by Buyse et al. (2000), the R2
h defined before will

take the form

R2
ht = 1− EP(βi|αi)

EP(βi)
,

where (βi, αi) denote the treatment effects on the surrogate and true endpoints, re-

spectively, at the ith trial and EP(βi|αi) and EP(βi) are the power entropies associated

with the conditional distribution βi|αi and the marginal distribution of βi, respec-

tively. Note that the R2
ht and the PE are structurally very similar (see Section 3.1).

Although R2
ht and PE are very close in spirit, R2

ht overcomes some of the limitations

of the PE as it is based on a meta-analytic framework, thereby avoiding in this way

all the drawbacks common to all the single-trial approaches. Therefore, it is clear at

this stage that the information-theoretic approach allows us to redefine the PE in a

more meaningful and principled way.

6.4.3 Theoretical Plausibility of Finding a Good Surrogate

As mentioned and illustrated earlier in the first part of the thesis, Buyse et al.

(2000) approach the surrogate marker validation problem from a prediction perspec-

tive. Their coefficients of determination aims at quantifying, under certain assump-

tions, how well this prediction is for normally distributed endpoints. However, it is

neither straightforward nor trivial to generalize this idea beyond normal endpoints.
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Alonso and Molenberghs (2007) provided a more general result for R2
h base on Fano’s

inequality.

Fano’s inequality shows the relationship between entropy and prediction:

E
[
(T − g(S))2

] ≥ EP(T )(1−R2
h), (6.10)

where EP(T ) =
1

2πe
e2h(T ). Note that nothing has been assumed about the distri-

bution of our responses and no specific form has been considered for the prediction

function g. Also, (6.10) shows that the predictive quality strongly depends on the

characteristics of the endpoint, specifically on its power-entropy. Fano’s inequality

states that the prediction error increases with EP(T ) and therefore, if our endpoint

has a large power-entropy then a surrogate should produce a large R2
h to have some

predictive value. This means that, for some endpoints, the search for a good surro-

gate can be a dead end street: the larger the entropy of T the more difficult it is to

predict. Studying the the power-entropy before trying to find a surrogate is therefore

advisable.

6.5 The Likelihood Reduction Factor (LRF)

The previous sections of this chapter introduced information theory and described

theoretical concepts leading to the validation of surrogate markers from an infor-

mation theory perspective. The next question becomes, ‘how do we estimate R2
h

from data in practice?’ Alonso and Molenberghs (2007) showed that the LRF of

Alonso et al. (2004a) is a consistent estimator of the R2
h. In principle, other estima-

tors could be used as will be shown in subsequent chapters. Here we focus on the

LRF .

As previous developments and the first part of the thesis clearly showed, estimating

individual-level surrogacy has frequently been based on a variance-covariance matrix
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coming from the distribution of the residuals. However, if we move away from the

normal distribution, it is not always clear how to quantify the association between

both endpoints after adjusting for treatment and trial effect. To address this problem,

Alonso et al. (2005) and Alonso and Molenberghs (2007) considered the following

generalized linear models

gT{E(Tij)} = µT i + βiZij, (6.11)

gT{E(Tij|Sij)} = θ0i + θ1iZij + θ2iSij, (6.12)

where gT is an appropriate link function, µT i are the trial-specific intercepts and βi

are trial-specific effects of treatment Z on the true endpoint in trial i. θ0i and θ1i

are trial-specific intercepts and effects of treatment on the true endpoint when the

surrogate endpoint is known. Note that (6.11) and (6.12) can be readily extended to

incorporate more complex settings. For example, longitudinal data are easily incor-

porated by including functions of time in (6.11) and (6.12). Other extensions, such

as non-linearity between Sij and gT{E(Tij)} are possible, more generally we have

gT{E(Tij|Sij)} = θ0i + θ1iZij + f (Sij). In most part of the thesis, we assume a linear

relationship between Sij and gT{E(Tij)}, but consider extensions of (6.11) and (6.12)

in the light of simplified modeling strategy, as presented by Tibaldi et al. (2003).

The trial dimension provides a choice between treating the trial-specific effects as

fixed or random. The former is often chosen out of necessity, when the latter is too

challenging. If the trial-specific effects are chosen fixed, then (6.11) and (6.12) are

used to validate the surrogate endpoint. On the other hand, if the trial-specific effects

are considered random, we extend (6.11) and (6.12) to appropriate generalized linear
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mixed-effects models

gT{E(Tij)} = µT + mT i + βZij + biZij, (6.13)

gT{E(Tij|Sij)} = θ0 + cT i + θ1Zij + aiZij + θ2iSij, (6.14)

where µT and β are a fixed intercept and treatment effect on the true endpoint, while

mT i and bi are a random intercept and treatment effects on the true endpoint. θ0 and

θ1 are a fixed intercept and treatment effect on the true endpoint when the surrogate

is known, and cT i and ai are a random intercept and treatment effects on the true

endpoint when the surrogate is known.

Let us turn to the so-called likelihood reduction factor (LRF). Observe that, in

the case where the true endpoint is continuous and normally distributed, (6.11) and

(6.12) reduce to normal regression models. On the other hand, when the true end-

point is binary or counts, (6.11) and (6.12) reduce to logistic or Poisson regression

models. Similarly, setting the natural link function gT equal to the identity, logit,

and logarithmic functions in (6.13) and (6.14) leads to the linear mixed model for

continuous data, the logistic-normal model for binary data, and the Poisson-normal

model for counts, respectively. Alonso and Molenberghs (2007) used the LRF to

evaluate individual level surrogacy, which is obtained by

LRF = 1− 1
N

∑

i

exp
(
−G2

i

ni

)
, (6.15)

where G2
i denotes the log-likelihood ratio test statistic to compare (6.11) and (6.12)

or (6.13) and (6.14) within trial i. We can think of (6.15) as a sample estimate of

a general measure of association between both endpoints based on the information

gain about the true endpoint by using the surrogate. Alonso et al. (2005) established

a number of properties for LRF, in particular its ranging in the unit interval and,

importantly, its reduction to R2
ind and R2

Λ in the cross-sectional normal-normal and
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the longitudinal-longitudinal cases, respectively. Furthermore, (6.6) has been recom-

mended for settings with discrete clinical endpoints. Although there are formulas for

calculating H(Y ) for most parametric distributions, an estimate for H(Y ) in a given

sample is the log-likelihood from (6.11) without the treatment effect scaled by the

total number of subjects. Finally, asymptotic confidence intervals for LRF can be

obtained from (6.9) by replacing â with G2
i .

6.6 Discussion

Stemming from interesting ideas of Prentice (1989) and Freedman et al. (1992), the

meta-analytic approach of Buyse et al. (2000), partly devoted to frame the evaluation

in a multi-trial framework, led to definitions in terms of the quality of trial- and

individual-level association between a potential surrogate and a true endpoint. A

drawback is that different settings have led to different measures at the individual

level, as the R2 measures coming from the framework of Buyse et al. (2000), do not

readily generalize to settings with nonnormal outcomes. Alonso and Molenberghs

(2007) used information theory to create a unified framework, leading to a definition

of surrogacy with an intuitive interpretation, offering interpretational advantages, and

applicable in a wide range of situations. Indeed, the information-theoretic measure,

R2
h, serves as a theoretical basis for the R2 based measures within the meta-analytic

framework, as it is applicable to a wide variety of settings (normal, binary, categorical,

and longitudinal outcomes) and reduces to the quantities previously introduced in the

literature.

Furthermore, while the meta-analytic approach is elegant, it faces computational

problems, which are largely alleviated by the information-theoretic approach, given

that it is only based on univariate models that can be fitted with standard software
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packages. Also, when there are more than two arms in the clinical trials under con-

sideration, one has the choice between calculating the validation measures using all

arms simultaneously. Indeed, the information-theoretic developments carry through

when Z represents a nominal covariate rather than a sole binary variable. Alterna-

tively, the measures can be calculated for every pair of arms deemed of interest.

The information-theoretic approach can easily incorporate baseline covariates for

early-stage clinical trials, as well as assess the joint effect of multiple surrogate end-

points on a true endpoint. Note that, by parsimoniously using information, the

information-theoretic approaches may lead to tighter confidence intervals than in

the hierarchical-model framework. This is an advantage, in addition to increased

generality and flexibility (Alonso and Molenberghs 2008).

Again, the use of validation methods, such as the ones proposed in this chapter,

whether based on R2, other association measures, or ITA, is but one component of the

broader surrogate endpoint evaluation picture. Clinical and biopharmaceutical argu-

ments will have to be juxtaposed with evidence from the surrogate marker evaluation

analysis. Therefore, it is hard to specify a universal cutoff for R2-based measures,

above which a potential surrogate be deemed “valid.” Further, once a surrogate has

been adopted, or even before, it is important to assess how it will perform in a new

trial. Burzykowski and Buyse (2006) proposed the so-called surrogate threshold effect

(STE). Their method is intended for deriving a sample size large enough for a treat-

ment effect on the surrogate endpoints to translate into a meaningful and significant

effect on the true endpoint. Methods discussed in this chapter are situated within the

meta-analytic framework. This is also true for the recent work by Baker (2006), who

proposed the use of average prediction error based on easy-to-implement regression

models.
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Given that R2
h reduces to the R2

trial at the trial level, we shall mainly focus at the

individual level when applying this method in subsequent chapters. The following

two chapters investigate the performance of the information-theoretic approach in a

setting where either the clinical or both endpoints are binary.





7
Information-Theoretic

Validation with Mixed

Continuous and Binary

Endpoints

Validation of surrogate markers within the meta-analytic framework of Buyse et al.

(2000) has been extended to settings with nonnormal endpoints. In this chapter, we

review an extension to mixed continuous and binary outcomes (Section 7.1) as well as

apply the information-theoretic approach to this setting. As discussed in the previous

chapter, the information-theoretic measure, R2
h reduces to the quantities previously

introduced in the literature. Additionally, Alonso et al. (2005) established that its

estimator, LRF , reduces to R2
ind and R2

Λ in the cross-sectional normal-normal and the

longitudinal-longitudinal cases, respectively.

115
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However, the performance of the information-theoretic approach has not been in-

vestigated with a binary endpoint. It should be noted that unlike the case for normally

distributed endpoints, the individual-level surrogacy within the meta-analytic frame-

work is quantified at a latent scale (Molenberghs, Geys, and Buyse 2001, Section 7.1).

A consequence of the fact that the observed binary endpoint is considered to be

a dichotomized version of a latent continuous variable. On the other hand, ITA

quantifies surrogacy at the observed scale, thereby motivating the investigation of its

performance in such a setting. Here, we investigate the performance of ITA in the

continuous-binary setting through a simulation study, as well as the operational cha-

racteristics of various ways to derive confidence intervals for measures of surrogacy.

Also, the assumption of linearity, inherent in the models, is put to the test. The

simulation study is reported in Section 7.2.

7.1 Mixed Continuous and Binary Endpoints

It is not uncommon to encounter statistical problem where various outcomes of a

combined nature are observed, especially with normally distributed outcomes on the

one hand and binary or categorical outcomes on the other hand. Emphasis may be

on the determination of the entire joint distribution of both outcomes or on specific

aspects, such as the association in general or correlation in particular between both

outcomes. Burzykowski, Molenberghs, and Buyse (2005) review extensions of the

meta-analytic approach, ranging over continuous, binary, ordinal, time-to-event, and

longitudinally measured outcomes. Here, we focus on the combination of continuous

and binary outcomes.

We start with a bivariate non-hierarchical setting, which can always be expressed

as the product of a marginal distribution of one of the responses and the conditional



7.1. Mixed Continuous and Binary Endpoints 117

distribution of the remaining response given the former response. One can choose

either the continuous or the discrete outcome for the marginal model (Molenberghs

and Lesaffre 1994). The main problem with this approach is that no easy expressions

for the association between both endpoints are available. Thus, we opt for a symmetric

treatment of both endpoints, using bivariate generalized linear mixed models. We

focus on the case where the true endpoint is continuous and the surrogate is binary.

The reverse case is entirely similar, because the meta-analytic approach treats both

endpoints symmetrically.

The generalized linear mixed model (GLMM) (Breslow and Clayton 1993) is the

most frequently used random-effects model in the context of discrete repeated mea-

surements. It is a straightforward extension of the generalized linear model for uni-

variate data to the context of clustered measurements, and there is a wide range of

software available for fitting these models. However, generalized linear mixed models

for endpoints of different data types are challenging (Molenberghs and Verbeke 2005).

Thus, we concentrate on a two-stage fixed-effects model with a binary surrogate and

a continuous clinical endpoint. In the first stage, let S̃ij be a latent variable of which

Sij is the dichotomized version. A bivariate normal model for S̃ij and Tij is given by

(Molenberghs, Geys, and Buyse 2001):

S̃ij = µSi + αiZij + εSij , (7.1)

Tij = µT i + βiZij + εT ij , (7.2)

where µSi and µT i are trial-specific intercepts, αi and βi are trial-specific effects of

treatment Zij on the endpoints in trial i, and εSi and εT i are correlated error terms,

assumed to be zero-mean normally distributed with covariance matrix

Σ =

(
1

(1−ρ2)
ρσ√

(1−ρ2)

σ

)
. (7.3)
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The variance of S̃ij is chosen for computational reasons. Using a probit formulation

like Molenberghs Geys, and Buyse (2001) and owing to the replication at the trial

level, we can impose a distribution on the trial-specific parameters. At the second

stage, we assume 


µSi

µT i

αi

βi




=




µS

µT

α

β




+




mSi

mT i

ai

bi




, (7.4)

where the second term on the right hand of (7.4) is assumed to follow a zero-mean

normal distribution with dispersion matrix (3.5). Measures to assess the quality of

the surrogate both at the trial and individual level are obtained as in (3.10) and

(3.12). Interpretation of these measures and decision making follows the logic laid

out in Section 3.2.

7.2 A Simulation Study

The information-theoretic approach is easily applicable because its measure of sur-

rogacy, LRF , can be readily calculated from routine outputs provided by univariate

models implemented in standard regression software. The primary objectives of this

simulation study is to investigate the performance of this approach, as well as its cor-

responding asymptotic confidence interval, in the mixed continuous binary setting.

Prior to that, we lay out the design of the simulation study followed by a summary

of the results obtained.

7.2.1 Design of the Simulation Study

Owing to the computational difficulties encountered in practice with the bivariate

random-effects models required for the meta-analytic approach by Buyse et al. (2000),

ITA becomes an interesting option to consider in practice. However, as stated earlier,
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the performance of the later has not been investigated in the mixed continuous binary

setting, and is the focus of this section. Here, we outline the procedures followed in

generating the data used for simulation. The data were generated based on model

(3.6)–(3.7). Choices made are µS = 0.5, µT = 0.45, α = 0.05, and β = 0.03. Values

assumed for the covariance matrices are:

Σ =

(
3 2.4

3

)
, D =




3 2.4 0 0
3 0 0

3 2.85
3




.

After generating continuous outcomes based on the above models, a binary surrogate

is obtained by dichotomizing the resulting continuous surrogate using the fixed inter-

cept as cut-off point. The dichotomized surrogate takes value 1 if the corresponding

continuous surrogate is greater than µS and zero otherwise. The above model assumes

trial-level and individual-level R2 values of 0.9 and 0.64, respectively, at the contin-

uous scale. It is important to note that this value of the individual-level R2 is the

squared correlation between the latent unobservable continuous surrogate endpoint

and the observable true endpoints. One should also keep in mind that correlation

between observed binary outcomes can have an upper bound less than one (Aerts et

al. 2002). However, the situation is totally different at the trial-level. Based on (7.1)

and (7.2), Alonso et al. (2005) showed that the relationship between the treatment

effects on the latent-continuous and observed-binary surrogate endpoints is linear.

Hence, the value of the trial-level R2 (0.9) is valid both for the latent and observed

surrogate.

The number of trials was fixed to either 5, 10, 20 or 30. There were 2 sets of trial

sizes used, the first set consists of 10, 20, 40 or 60, which we term small trial size. The

second set consists of 100, 150, 200 or 300, termed large trial size. A full combination
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of the number of trials and trial sizes was obtained. In each case, 100 runs were

performed, assuming either models (6.11) and (6.12) or (6.13) and (6.14). In each

of these models, an appropriate and commonly used link function, gT , is the identity

link as the clinical endpoint is assumed to be normally distributed. Obviously, the

surrogate, Sij, is the corresponding binary outcome and the information-theoretic

measures of surrogacy are obtained as described in Chapter 6.

Apart from the primary objectives to investigate the performance of ITA as well as

comparing the bootstrap percentile intervals with the asymptotic interval by Alonso

and Molenberghs (2007), there are two secondary objectives. The first is to investigate

the impact of alternative link functions, at the individual-level, on the performance

of ITA. Thus, both probit and logit link functions were implemented in all settings.

Second, both linear and non-linear (splines) functions were considered, at the trial-

level, to explore the assumption of linearity between treatment effects. Results are

shown for the probit link at the individual-level and linear function at the trial-level.

Histograms are used to depict results of the secondary objectives.

7.2.2 Simulation Results

The simulation results are presented in Tables 7.2 – 7.9. Both individual-level and

trial-level R2 measures are included, as based on both the mixed-effects models (6.13)

and (6.14) as well as the fixed-effects models (6.11) and (6.12). The tables have

columns indicating the number of trials, the trial size, median R2, percentile bootstrap

and asymptotic 95% confidence intervals.

ITA yields estimates of surrogacy at the individual-level, bounded above by 0.3.

Hence, the approach yields estimates substantially lower than the value assumed

when generating the datasets, 0.64. This phenomenon is observed in all settings con-

sidered in the simulation study. However, it should be noted that the value of 0.64
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is the individual-level surrogacy at the latent scale, whereas ITA estimates assess the

individual-level surrogacy at the observed scale. Also, it is expected that dichotomiz-

ing a continuous variable leads to information loss, which would imply that results

obtained from the continuous and discrete version should not generally be expected

to be in agreement with each other.

Unlike the individual level, Alonso et al. (2002) showed that the trial-level surro-

gacy at the latent scale translates equally to the observed scale. For small trial sizes,

≤ 60, ITA tends to underestimate the trial-level surrogacy. Nevertheless, the models

perform considerably well for large trial sizes, ≥ 100. The mixed-effect models, (6.13)

and (6.14), outperform the fixed-effect models, (6.11) and (6.12), in all simulation

settings considered. However, the mixed-models had some convergence issues, which

were not encountered with the fixed-effect models. Even so, the percentage of non-

convergence is smaller than 10% within each simulation setting. Generally, increasing

the number of trials has little effect on the surrogacy measures, although increasing

the trial size appears to yield better estimates for the surrogacy measures. Also, it

is not advisable to a use very small number of trials, as it may overestimate or not

provide enough data points to reliably assess the trial-level surrogacy.

The 95% asymptotic intervals are tighter than the 95% percentile bootstrap inter-

vals for all simulation settings considered. The discrepancy between these intervals

reduces with increases in the number of trials and trial sizes. Further, the choice of

an appropriate link function appears to have little influence on the results. Figure 7.1

shows a plot of magnitude of pooled differences of the trial-level estimates between

the logit and probit links, for the fixed-effect models with large sample size. Observe

that more than 97% of the samples have differences below 0.1. Also, almost identical

results were obtained in each sample when the spline and linear functions were con-
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Figure 7.1: Frequency histogram showing absolute differences obtained for each sam-
ple. (a) Difference between probit and logit link functions. (b) Linearity assumption
at trial level: linear versus spline-based.

sidered at the trial level. This is supported by Figure 7.1, as more than 93% of the

samples have differences inferior to 0.04.

7.3 Analysis of the ARMD Data

The motivating study introduced in Section 2.2.1, coming from a study on age-related

macular degeneration, will now be analyzed. Patients with macular degeneration

progressively lose vision. In the trial, the patients visual acuity was assessed through

their ability to read lines of letters on standardized vision charts. These charts display

lines of five letters of decreasing size. Each line with at least four letters correctly

read is called one ’line of vision. The patients visual acuity is the total number of

letters correctly read. Here we investigate if the loss of two lines of vision at 6 months

(binary) could be used as a surrogate for the visual acuity at 1 year (treated as a

continuous endpoint).
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Table 7.1: Age-related macular degeneration trial. Estimates (standard error) of the
individual-level (R2

indiv) and trial-level (R2
trial) surrogacy analysis based on the conven-

tional and information-theoretic approach.

probit link logit Link

level type fixed mixed fixed mixed

information-theoretic approach

trial line 0.33 (0.14) 0.49 (0.13) 0.32 (0.13) 0.48 (0.13)

spline 0.33 (0.13) 0.49 (0.12) 0.32 (0.13) 0.48 (0.13)

individual 0.23 (0.13) 0.27 (0.13) 0.23 (0.13) 0.27 (0.13)

conventional meta-analytic approach (2-stage fixed effects)

trial 0.42 (0.13)

individual 0.44 (0.09)

Again, it is natural to consider center as the unit of analysis, as the data comes

from a multi-center trial. There were 36 centers, each treating between 2 and 18

patients. The two-stage meta-analytic approach and the corresponding ITA models,

described in Section 7.1 and Chapter 6 respectively, have been applied to this dataset

and results displayed in Table 7.1. Figure 7.2 graphically presents the surrogate by

true endpoint treatment effect pairs for all centers. The circles are proportional in

surface to the trial size, so as to graphically indicate the centers’ relative importance.

Extension of the meta-analytic approach to the mixed continuous and binary end-

points, using two-stage fixed-effects model yields R2
indiv=0.42 (s.e. 0.13) and R2

trial=0.44

(s.e. 0.09). Thus, the loss of at least two lines of vision at 6 months is a relatively

poor surrogate for visual acuity at 1 year, a conclusion in synchrony with the one

reached by Buyse et al. (2000) at the continuous level.

At the individual level, ITA yield estimates of R2
indiv ranging from 0.2319 to 0.2735.

It should be noted that we do not have information about the degree of under-
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Figure 7.2: Age-related macular degeneration trial. Treatment effect on the surrogate
endpoint by treatment effect on the true endpoint, for each center. Circle surfaces are
proportional to the centers’ sample sizes.

estimation of R2
indiv by ITA at the observed scaled. As mentioned earlier, it may

be bounded above by a number less than one. Nevertheless, the very low values ob-

tained indicate that the loss of at least two lines of vision at 6 months may not be a

good surrogate for visual acuity at 1 year, at the individual level.

ITA yields estimates of R2
trial ranging from 0.3211 to 0.4864. This indicates that

the loss of at least two lines of vision at 6 months does not seem to be a very good

surrogate for visual acuity at 1 year, at the trial level. It should be noted that the

size of the largest unit of analysis (center) was only 18, though. Thus, there may be

a considerable degree of under-estimation on the estimates of R2
trial.

There appears to be no difference between the probit and logit link functions on

these data. Also, the line and spline models yield similar results, indicating that the

linearity assumption at the trial level may be a plausible one. Furthermore, the mixed

models generally have higher estimates for surrogacy measures than the fixed models,

hence, exhibiting a lower degree of underestimation.



7.4. Discussion 125

7.4 Discussion

In this chapter, we reviewed the meta-analytic strategy of Buyse et al. (2000),

its extension to mixed binary and continuous endpoints, and the information theo-

retic approach for validating surrogate endpoints. Combination of the latter with

combined-type outcomes is novel. The meta-analytic approach and its extension are

mathematically appealing, but encounter practical and/or computational issues. The

information theoretic approach involves substantial mathematics yet it is more prac-

tically feasible than the meta-analytic approach as it depends on simple univariate

models.

Here, we investigated the performance of the ITA for combined continuous and bi-

nary endpoints, particularly continuous surrogate and binary true endpoints, through

a simulation study. Generally, this approach underestimates the measures of surro-

gacy. The underestimation reduces with increase in both the number of trials and

trial sizes. However, the simulation study showed that the degree of underestimation

is higher with very small trial sizes, even for large number of trials.

The model proposed by Alonso et al. (2005) for a general setting, which we referred

to as fixed-effects models, was outperformed by its extension to generalized linear

mixed models. Quite similar results were obtained by extending the linear relationship

between the true and surrogate endpoints to non-linear, spline-based models, at the

trial level. Thus, it may be reasonable to assume a linear relationship between the

treatment effects on the true and surrogate endpoints.

Asymptotic confidence intervals for surrogacy measures (R2
indiv and R2

trial) devel-

oped by Alonso and Molenberghs (2007) performed better than bootstrap confidence

intervals used by Alonso et al. (2005) in the sense of being generally more narrow.

On the other hand, the asymptotic confidence intervals are computationally advan-
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tageous than the bootstrap confidence intervals. Arguably, a fully formal comparison

would be of interest; we view this a topic for further research. The choice of link

function appears to have little influence on the estimates of the surrogacy measures.

Particularly, the logit and probit link functions gave similar estimates in all settings

considered in the simulation study. This is also supported by the fact that these link

functions gave almost identical estimates when applied to the motivational case study.

These finding are not surprising in view of their well-known relationship.

The meta-analytic strategy for evaluating surrogacy faces computational problems,

which are largely alleviated by the information-theoretic approach. On the other

hand, the latter may be biased downards in smaller trials. Therefore, it is advisable

to reserve the use of ITA for larger trial sizes. Also, the extended generalized linear

mixed models are recommended.
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Table 7.2: Simulation study. Univariate mixed-effects model for large trial sizes,
individual-level surrogacy.

strategy confidence intervals

sim. # # trials # subjects R2
indiv percentile asymptotic

1 5 100 0.1537 (0.0600;0.2512) (0.1099;0.2095)

2 5 150 0.1580 (0.0816;0.2706) (0.1245;0.2073)

3 5 200 0.1649 (0.0826;0.2719) (0.1309;0.2030)

4 5 300 0.1553 (0.0821;0.2680) (0.1341;0.1926)

5 10 100 0.1652 (0.0974;0.2299) (0.1269;0.1993)

6 10 150 0.1610 (0.0875;0.2427) (0.1335;0.1927)

7 10 200 0.1651 (0.0801;0.2362) (0.1375;0.1887)

8 10 300 0.1640 (0.0961;0.2353) (0.1408;0.1827)

9 20 100 0.1624 (0.1119;0.2107) (0.1356;0.1870)

10 20 150 0.1607 (0.1094;0.2106) (0.1403;0.1823)

11 20 200 0.1596 (0.1162;0.2055) (0.1433;0.1797)

12 20 300 0.1590 (0.1103;0.2069) (0.1459;0.1756)

13 30 100 0.1633 (0.1203;0.1967) (0.1417;0.1839)

14 30 150 0.1592 (0.1159;0.1992) (0.1434;0.1777)

15 30 200 0.1578 (0.1134;0.1953) (0.1440;0.1736)

16 30 300 0.1601 (0.1215;0.1961) (0.1473;0.1715)

.
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Table 7.3: Simulation study. Univariate mixed-effects model for large trial sizes,
trial-level surrogacy.

strategy confidence intervals

sim. # # trials # subjects R2
indiv percentile asymptotic

1 5 100 0.8159 (0.0752;0.9804) (0.3016;0.9360)

2 5 150 0.8323 (0.0864;0.9823) (0.3305;0.9481)

3 5 200 0.8619 (0.1321;0.9870) (0.3545;0.9594)

4 5 300 0.8807 (0.3362;0.9884) (0.4123;0.9761)

5 10 100 0.7696 (0.0043;0.9211) (0.3614;0.8849)

6 10 150 0.7975 (0.0144;0.9417) (0.3905;0.8899)

7 10 200 0.7973 (0.1295;0.9422) (0.3876;0.9031)

8 10 300 0.7870 (0.0374;0.9502) (0.4019;0.8984)

9 20 100 0.7628 (0.1500;0.8841) (0.4583;0.8701)

10 20 150 0.8060 (0.4690;0.9018) (0.5229;0.9073)

11 20 200 0.8075 (0.2821;0.9092) (0.5171;0.8975)

12 20 300 0.8289 (0.2745;0.9170) (0.5626;0.9177)

13 30 100 0.7770 (0.2732;0.9041) (0.5440;0.8706)

14 30 150 0.7835 (0.4593;0.8963) (0.5672;0.8892)

15 30 200 0.7976 (0.5068;0.9130) (0.5823;0.8941)

16 30 300 0.8158 (0.5118;0.9234) (0.6072;0.9024)
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Table 7.4: Simulation study. Univariate fixed-effects model for large trial sizes,
individual-level surrogacy.

strategy confidence intervals

sim. # # trials # subjects R2
indiv percentile asymptotic

1 5 100 0.1511 (0.0575;0.2483) (0.1068;0.2054)

2 5 150 0.1553 (0.0803;0.2688) (0.1222;0.2045)

3 5 200 0.1659 (0.0796;0.2696) (0.1293;0.2011)

4 5 300 0.1542 (0.0811;0.2663) (0.1330;0.1913)

5 10 100 0.1609 (0.0939;0.2294) (0.1242;0.1961)

6 10 150 0.1586 (0.0861;0.2410) (0.1318;0.1907)

7 10 200 0.1626 (0.0790;0.2366) (0.1362;0.1873)

8 10 300 0.1634 (0.0952;0.2343) (0.1400;0.1817)

9 20 100 0.1588 (0.1086;0.2089) (0.1326;0.1836)

10 20 150 0.1576 (0.1071;0.2095) (0.1383;0.1801)

11 20 200 0.1581 (0.1144;0.2045) (0.1418;0.1781)

12 20 300 0.1578 (0.1092;0.2061) (0.1448;0.1745)

13 30 100 0.1602 (0.1159;0.1943) (0.1387;0.1806)

14 30 150 0.1569 (0.1135;0.1973) (0.1414;0.1755)

15 30 200 0.1563 (0.1120;0.1934) (0.1425;0.1720)

16 30 300 0.1590 (0.1202;0.1952) (0.1463;0.1705)
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Table 7.5: Simulation study. Univariate fixed-effects model for large trial sizes, trial-
level surrogacy.

strategy confidence intervals

sim. # # trials # subjects R2
indiv percentile asymptotic

1 5 100 0.8134 (0.0133;0.9852) (0.2938;0.9274)

2 5 150 0.8004 (0.1640;0.9796) (0.2884;0.9560)

3 5 200 0.8342 (0.2109;0.9906) (0.3237;0.9576)

4 5 300 0.8167 (0.1457;0.9827) (0.3027;0.9564)

5 10 100 0.7350 (0.2608;0.9163) (0.3272;0.9118)

6 10 150 0.7797 (0.1995;0.9308) (0.3619;0.9177)

7 10 200 0.7668 (0.1808;0.9478) (0.3693;0.9166)

8 10 300 0.7755 (0.1742;0.9066) (0.3645;0.9129)

9 20 100 0.7075 (0.4191;0.8659) (0.4117;0.8692)

10 20 150 0.7283 (0.4732;0.8865) (0.4548;0.8903)

11 20 200 0.7399 (0.4631;0.8786) (0.4549;0.8893)

12 20 300 0.7543 (0.4872;0.8850) (0.4713;0.8960)

13 30 100 0.7145 (0.4588;0.8440) (0.4730;0.8516)

14 30 150 0.7200 (0.4596;0.8530) (0.4818;0.8545)

15 30 200 0.7223 (0.5393;0.8673) (0.4956;0.8643)

16 30 300 0.7492 (0.5445;0.8747) (0.5225;0.8754)
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Table 7.6: Simulation study. Univariate fixed-effects model for small trial sizes,
individual-level surrogacy.

strategy confidence intervals

sim. # # trials # subjects R2
indiv percentile asymptotic

1 5 10 0.1501 (0.0003;0.3844) (0.0497;0.3338)

2 5 20 0.1443 (0.0255;0.3379) (0.0670;0.2777)

3 5 40 0.1589 (0.0552;0.3060) (0.0974;0.2560)

4 5 60 0.1607 (0.0471;0.2810) (0.0983;0.2251)

5 10 10 0.1503 (0.0520;0.3253) (0.0679;0.2846)

6 10 20 0.1676 (0.0855;0.2697) (0.0945;0.2559)

7 10 40 0.1608 (0.0737;0.2506) (0.1068;0.2196)

8 10 60 0.1576 (0.0903;0.2436) (0.1152;0.2077)

9 20 10 0.1558 (0.0627;0.2696) (0.0878;0.2451)

10 20 20 0.1601 (0.0907;0.2138) (0.1067;0.2203)

11 20 40 0.1623 (0.1055;0.2223) (0.1216;0.2024)

12 20 60 0.1619 (0.1099;0.2113) (0.1286;0.1949)

13 30 10 0.1572 (0.0916;0.2443) (0.0986;0.2287)

14 30 20 0.1634 (0.0994;0.2297) (0.1207;0.2148)

15 30 40 0.1588 (0.1019;0.2114) (0.1283;0.1945)

16 30 60 0.1641 (0.1197;0.2096) (0.1373;0.1919)
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Table 7.7: Simulation study. Univariate fixed-effects model for small trial sizes, trial-
level surrogacy.

strategy confidence intervals

sim. # # trials # subjects R2
indiv percentile asymptotic

1 5 10 0.4767 (0.0010;0.9480) (0.1236;0.8055)

2 5 20 0.5559 (0.0293;0.9429) (0.1364;0.8745)

3 5 40 0.6232 (0.0800;0.9593) (0.1429;0.9012)

4 5 60 0.5870 (0.0267;0.9536) (0.1333;0.8739)

5 10 10 0.3973 (0.0333;0.7484) (0.0870;0.7478)

6 10 20 0.4644 (0.0567;0.8768) (0.1371;0.7872)

7 10 40 0.4659 (0.0143;0.8405) (0.1297;0.7898)

8 10 60 0.5583 (0.0857;0.8743) (0.1767;0.8338)

9 20 10 0.4139 (0.0649;0.7116) (0.1483;0.6732)

10 20 20 0.4745 (0.0820;0.7412) (0.1853;0.7194)

11 20 40 0.4979 (0.1206;0.8008) (0.2218;0.7467)

12 20 60 0.5251 (0.1257;0.7265) (0.2155;0.7424)

13 30 10 0.4141 (0.1317;0.6158) (0.1712;0.6360)

14 30 20 0.4522 (0.2472;0.6932) (0.2231;0.6853)

15 30 40 0.4855 (0.1755;0.6816) (0.2367;0.6964)

16 30 60 0.5092 (0.1934;0.6993) (0.2570;0.7143)
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Table 7.8: Simulation study. Univariate mixed-effects model for small trial sizes,
individual-level surrogacy.

strategy confidence intervals

sim. # # trials # subjects R2
indiv percentile asymptotic

1 5 10 0.1595 (0.0235;0.3929) (0.0596;0.3667)

2 5 20 0.1594 (0.0404;0.3332) (0.0736;0.2920)

3 5 40 0.1669 (0.0567;0.2979) (0.1008;0.2612)

4 5 60 0.1635 (0.0475;0.2784) (0.1011;0.2291)

5 10 10 0.1712 (0.0553;0.3263) (0.0789;0.3054)

6 10 20 0.1777 (0.0924;0.2682) (0.1007;0.2652)

7 10 40 0.1633 (0.0805;0.2515) (0.1106;0.2246)

8 10 60 0.1598 (0.0968;0.2401) (0.1178;0.2110)

9 20 10 0.1773 (0.0823;0.2881) (0.1053;0.2708)

10 20 20 0.1718 (0.1057;0.2253) (0.1163;0.2329)

11 20 40 0.1683 (0.1099;0.2262) (0.1262;0.2080)

12 20 60 0.1657 (0.1127;0.2138) (0.1318;0.1986)

13 30 10 0.1799 (0.1135;0.2604) (0.1164;0.2528)

14 30 20 0.1750 (0.1101;0.2380) (0.1294;0.2256)

15 30 40 0.1637 (0.1070;0.2135) (0.1330;0.1999)

16 30 60 0.1687 (0.1220;0.2137) (0.1403;0.1952)
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Table 7.9: Simulation study. Univariate mixed-effects model for small trial sizes,
trial-level surrogacy.

strategy confidence intervals

sim. # # trials # subjects R2
indiv percentile asymptotic

1 5 10 0.4173 (0.0010;0.9497) (0.1272;0.7803)

2 5 20 0.5699 (0.0021;0.9589) (0.1306;0.8506)

3 5 40 0.5990 (0.0136;0.9389) (0.1306;0.8702)

4 5 60 0.5914 (0.0024;0.9395) (0.1359;0.8416)

5 10 10 0.4024 (0.0038;0.7753) (0.0886;0.7027)

6 10 20 0.4395 (0.0330;0.8527) (0.1204;0.7794)

7 10 40 0.4754 (0.0047;0.8042) (0.1250;0.7709)

8 10 60 0.5226 (0.0280;0.8562) (0.1576;0.8047)

9 20 10 0.4212 (0.0017;0.6803) (0.1470;0.6495)

10 20 20 0.4769 (0.0406;0.7370) (0.1886;0.7057)

11 20 40 0.5218 (0.0373;0.7701) (0.2167;0.7307)

12 20 60 0.5352 (0.0034;0.7554) (0.2218;0.7201)

13 30 10 0.4268 (0.0415;0.6198) (0.1753;0.6284)

14 30 20 0.4505 (0.0105;0.7169) (0.2288;0.6677)

15 30 40 0.5175 (0.1498;0.7066) (0.2636;0.7106)

16 30 60 0.5322 (0.2769;0.7543) (0.2756;0.7267)



8
Information-Theoretic

Valdiation with Binary

Endpoints

The previous chapter highlights some of the issues encountered with extending the

validation of surrogate markers within the meta-analytic approach by Buyse et al.

(2000), as well as the information-theoretic approach. The main issue being that the

individual-surrogacy is quantified at a latent scale for the meta-analytic approach.

Even though ITA quantifies the individual-level surrogacy at the observed scale, it may

be bounded above by a value less than one, which is usually unknown. Nevertheless,

ITA is still a viable alternative, especially when a more complex functional form is

necessary to describe the relation between both treatment effects (endpoints) at the

trial (individual) level. Additionally, results from the previous chapters indicate that

the random-effects model outperforms the fixed-effects model. Therefore, generalized

135
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linear mixed models will have to be considered, even with the information-theoretic

approach, when the clinical endpoint is nonnormal.

Considering a binary surrogate for a binary clinical endpoint yields a setting with

some peculiar issues: (1) the individual-level surrogacy is quantified at the latent scale;

(2) correlation between binary outcomes can be highly constrained, owing to but not

limited to, the mean-variance relationship; (3) Rodŕıguez and Goldman (1995) demon-

strated that both Penalized Quasi-likelihood (PQL) and Marginal Quasi-likelihood

(MQL), two commonly used and software implemented methods for GLMM based on

a linear Taylor expansion, may be seriously biased when applied to binary response

data. Thus, we base our estimation for the information-theoretic approach on the

maximum likelihood with numerical integration over the random effects (quadrature

estimation method).

In this chapter, we review the meta-analytic approach for binary endpoints (Sec-

tion 8.1) base on the maximum pairwise likelihood (MPL), proposed by Renard et

al. (2002) to reduce estimation bias. Further, we investigate how the information-

theoretic approach with the quadrature estimation method performs in this setting,

and how it fairs against the meta-analytic approach base on MPL. As mentioned

earlier, we consider random-effects models, in contrast to marginal and conditional

models, to cope with the hierarchical structure of the meta-analytic data, combined

with a probit formulation for the pair of surrogate and clinical endpoints.

8.1 Meta-analytic Validation for Binary Endpoints

Extending the meta-analytic approach for continuous endpoints, Renard et al. (2002)

adopted a latent variable perspective. They posit the existence of a pair of latent

variables (S̃ij, T̃ij) that are continuously distributed and related to the actual pair of
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responses (Sij, Tij) through a certain threshold, which can be taken to be 0 without

loss of generality. This approach motivates a wide class of models for binary data, of

which the standard logistic and probit regression models are special cases (Cox and

Snell 1989). With the additional assumption that (S̃ij, T̃ij) is zero-mean normally

distributed with covariance matrix Σ, we consider the following random-effects model

for the latent variables:

S̃ij = µS + mSi + αZij + aiZij + ε̃Sij , (8.1)

T̃ij = µT + mT i + βZij + biZij + ε̃T ij , (8.2)

where µS and µT are fixed intercepts, α and β are fixed treatment effects, mSi and mT i

are random (i.e., trial-specific) intercepts, ai and bi are random treatment effects, and

εSij and εT ij are error terms. The random effects are zero-mean normally distributed

with covariance matrix D given in (3.5). Due to identifiability issues, the covariance

matrix of the zero-mean normally distributed error terms can be written, without loss

of generality, as:

Σ =

(
1 ρST

ρST 1

)
.

The implied model for the observed binary outcomes is then given by:

Φ−1[P (Sij = 1|mSi,mT i, ai, bi)] = µS + mSi + αZij + aiZij , (8.3)

Φ−1[P (Tij = 1|mSi,mT i, ai, bi)] = µT + mT i + βZij + biZij , (8.4)

where Φ(·) denotes the standard normal cumulative distribution function. Formula-

tion (8.1)–(8.2) allows the use of the coefficient of determination defined in Chapter 3

Section 3.2 without any further modification. However, their interpretation is bound

by the postulated latent variables. Thus, the R2
trial is calculated as shown in (3.10),

whereas the individual-level R2
indiv is equal to ρ2

ST .
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Models (8.3)–(8.4) take the form of a multilevel probit model and belongs to the

class of generalized linear mixed models (Breslow and Clayton 1993). Molenberghs

and Verbeke (2005) discuss a variety of commonly used estimation methods, includ-

ing maximum likelihood with numerical integration over the random effects, penal-

ized quasi-likelihood, marginal pseudo-likelihood, and Laplace approximation. These

methods suffer to various extents from computational complexity and severe bias

(Rodŕıguez and Goldman 1995, Molenberghs and Verbeke 2005). Because interest

lies in variance-covariance parameters, another approach to parameter estimation is

preferable, while keeping the computational burden as low as possible. A procedure

fulfilling such requirements is maximum pairwise likelihood (MPL), a form of pseudo-

likelihood (Molenberghs and Verbeke 2005). For the specific case of the probit link,

as in (8.3)–(8.4), Renard et al. (2002) suggested the use of MPL. For detailed des-

cription of MPL see Besag (1975), Lindsay (1988), Molenberghs and Verbeke (2005),

and Burzykowski, Molenberghs, and Buyse (2005).

Even with the use of MPL, while fitting the bivariate probit models 8.3–8.4, one

may still encounter ill-conditioned variance-covariance matrices as well as convergence

issues. Additionally, even without these problems, interpretation of the surrogacy

measures may be hampered as they apply to the postulated latent variables rather

than to the observed binary variables of interest. Considering these difficulties, the

ITA approach is a reasonable alternative. As mentioned earlier, ITA easily handles

nonnormal endpoints by choosing an appropriate link function gT in models (6.11)

and (6.12), or (6.13) and (6.14). Given that the clinical endpoint is discrete, the

individual-level surrogacy can be quantified based on the expression (6.6), as R2
h

may be bounded above by a number less than one. The trial-level surrogacy can

be quantified using (6.5) as the second-stage model is for continuous endpoints. Of
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course, estimates are obtained using the LRF as described in Section 6.5. In the

following section, we investigate the performance of these methods via a simulation

study.

8.2 Simulation Study

We expect MPL to provide more stable estimates and be computationally less in-

tensive than PQL and MQL, within the meta-analytic approach. Also, to evade

computational and interpretation issues, we recommended the information-theoretic

approach based on univariate models. In this section, we investigate the performance

of both methods in a setting with a binary surrogate for a binary clinical endpoint,

base on a probit formulation.

8.2.1 Design of the Simulation Study

Data were generated based on model (8.1)–(8.2) with parameters set equal to µS = 0.5,

µT = 0.45, α = 0.05, and β = 0.03. The following values assumed for the covariance

matrices are:

Σ =

(
3 2.4

3

)
, D =




3 2.4 0 0
3 0 0

3 2.84605
3




,

leading to trial- and individual-level surrogacy of 0.90 and 0.64 respectively. After

generating continuous outcomes based on the above models, the corresponding binary

variables are obtained by dichotomizing the resulting continuous outcomes using the

fixed intercepts as cut-off points. It is assumed that a success Sij = 1 and Tij = 1,

respectively, is recorded if S̃ij > µS and T̃ij > µT , respectively, and a failure, Sij = 0

and Tij = 0, respectively otherwise. The number of trials was fixed to either 5, 10, 20

or 30. There were 2 sets of trial sizes used, the first set consists of 10, 20, 40 or 60,
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which we term small trial size. The second set consists of 100, 150, 200 or 300, termed

large trial size. A full combination of the number of trials and trial sizes was obtained.

In each case, 100 runs were performed. Further, we distinguish between the bivariate

and univariate models on the one hand, and mixed- versus fixed-effects models on the

other hand. The mixed models take the form of the probit model in the bivariate

situation and the Generalized Linear Mixed Model (GLMM), (6.13) and (6.14) with

a probit link, in the univariate case. Additionally, the univariate fixed-effects models

take the form of the generalized linear models (6.11) and (6.12) with a probit link.

8.2.2 Simulation Results

The simulation results are displayed in Tables 8.2–8.17. Focusing at the trial level, the

simulation reveals that the full bivariate random effects model and ITA (univariate)

mixed-effects models are consistent in that both models produce surrogacy measures

approaching the true values as the number of trials and trial size increases. However,

the corresponding fixed-effects models lead to underestimation, even for larger sample

sizes. Although the full bivariate model leads to measures at the latent scale, we

expect it to be preserved at the observed scale (Alonso et al. 2002). Indeed, this

claim is corroborated by the results from the univariate mixed model, which operates

at the observed binary scale. It is also noteworthy that there is not much difference

between the ITA and the conventional approach of regressing the treatment effect on

the true endpoint on the treatment effect on the surrogate endpoint.

At the individual-level, the full bivariate random-effects and bivariate fixed-effect

models result in individual-level measures close to the true value, i.e., the theoretical

value at the latent scale. This comes as no surprise as these models quantify the

individual-level surrogacy at the latent scale. However, it is not trivial to translate

these estimates from the latent scale to the explicit one. On the otherhand, this issue
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is circumvented by the ITA. An important observation is that the values reported with

ITA are substantially smaller than their latent counterparts, in line with expectation:

(1) switching from the latent scale to the explicitly observed scale reduces association

(2) association between correlated binary outcomes is usually bounded by a value less

than one. This may be, but not limited to, a manifestation of the fact that important

information is lost when switching from a continuous to a binary scale. Customarily,

the binary variables are the only ones observed in some real life studies. In this light,

the ITA is a fair representation of reality, whereas the other methods may be overly

optimistic.

8.3 Application to the Case Study

The meta-analysis of 10 early phase trials assessing the efficacy of several therapies

for the treatment of acute migraine crises, introduces in Chapter 2, Section 2.2.3, was

analyzed using the methods described in the previous sections of this chapter together

with considerations discussed in Section 3.3. Of the symptoms studied: nausea,

vomiting, photophobia, phonophobia, the photophobia symptom had the highest trial-

level surrogacy. Both point estimates and 95% confidence intervals for both the trial-

and individual-level surrogacy are presented in Table 8.1. The univariate and bivariate

fixed-effects models result in a smaller R2
trial than their random-effects counterpart.

However, R2
trial estimates from the bivariate randome-effects model are unreliable as

they are based on an ill-conditioned covariance matrix.

The univariate mixed-effect model performed acceptably well in the simulation,

thus, we base our conclusion on results from this model. Therefore, considering that

R2
trial for photophobia at the trial level is sufficiently high, the presence of photo-

phobia is a ‘good’ surrogate for migraine severity. The reasonably good agreement
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between the treatment effects on both endpoints, and in addition the absence of obvi-

ous outliers, is clear from Figure 8.1. The figure displays a scatter plot of the pairs of

treatment effects for each unit. The size of the circles is proportional to the number

of patients per unit.

The R2
indiv for the bivariate fixed and mixed models are higher than their uni-

variate counterparts. This is expected and is supported by the simulation results in

Section 8.2.2. This is a consequence of the fact that former is at the latent scale,

whereas the ITA works at the interpretationally more relevant explicitly observed

scale.

8.4 Discussion

Unlike the previous chapters thus far, the clinical endpoint considered in this chapter

is a nonnormal outcome, binary. Here, we focused on settings with a binary surro-

gate for a binary clinical endpoint. This poses some challenges which had not been

addressed in the previous chapters, especially with respect to estimation methods

and interpretation. Based on a probit formulation, we considered the meta-analytic

approach based on a bivariate probit random-effects model, using maximum pairwise

likelihood for parameter estimation to minimize bias. Although bias was minimized,

interpretation was an issue as validation within this framework yield estimates for

measures of surrogacy at a latent scale rather than the observed scale.

The information-theoretic approach was also employed, eluding both the compu-

tational and interpretation issues. However, unlike its previous applications in this

thesis, an appropriate link function had to specified for both the surrogate and clin-

ical endpoints. Apparently, the probit link function was considered, although other
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Table 8.1: Acute Migraine Study. Estimates (confidence intervals) for trial-level and
individual-level surrogacy for the photophobia symptom.

Trial-level surrogacy

Fixed effects Random effects
Unweighted Weighted Unweighted Weighted

Univariate approach

0.7579 0.7579 0.8112 0.8886
(0.5712;0.8817) (0.5712;0.8817) (0.6367;0.9066) (0.8134;0.9567)

Bivariate approach

0.7336 0.7336 0.9587∗

(0.5426;0.8688) (0.5426;0.8688) (0.6966;1.000)

Individual-level surrogacy

Fixed effects Random effects

Univariate approach (ITA based)

0.5016 0.5885
(0.4354;0.5681) (0.5221;0.6540)

Bivariate approach (probit, latent scale)

0.8959 0.8664
(0.8822;0.9095) (0.6042;1.000)

∗: This value is unreliable due to ill-conditioning of the variance-covariance matrix
from which it was calculated.
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Figure 8.1: Acute Migraine Study. Bubble plot of trial-specific treatment effect on the
surrogate versus true endpoints. The size of the bubbles corresponds to the size of the
trial
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appropriate links such as the logit or complementary log-log can be considered as

well.

At the trial level, the meta-analytic approach and the ITA base on univariate

mixed-effects models performed acceptably well, while their fixed-effects counterparts

exhibited some downward bias. Performances of all models increases with increase in

both number of trials and trial sizes. At the individual level, the meta-analytic frame-

work through the probit formulation, where individual-level surrogacy is expressed at

the latent level, leads to overestimation of the said quantity. Because the ITA operates

at the explicitly observed scale, it provides a fairer and more useful quantity.

Applying the proposed methodology to acute migraine trial data indicate that

photophobia is a ‘good’ surrogate at the trial level, although its surrogacy at the

individual level may be called into question. This finding is of interest and may spark

of further investigation from a clinical and biopharmaceutical perspective. Finally,

given the fact that the ITA performs well when the number of trials and number of

subjects per trials are large, the unit of analysis should be carefully considered in

practice when applying this method.
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Table 8.2: Simulation study. Univariate mixed-effects model for large trial sizes,
individual-level surrogacy.

strategy confidence intervals

sim. # # trials # subjects R2
indiv percentile asymptotic

1 5 100 0.2358 (0.1392;0.3489) (0.1687;0.3104)
2 5 150 0.2255 (0.1152;0.3402) (0.1710;0.2852)
3 5 200 0.2252 (0.1250;0.3378) (0.1776;0.2767)
4 5 300 0.2211 (0.1354;0.3102) (0.1822;0.2627)

5 10 100 0.2256 (0.1523;0.3158) (0.1782;0.2769)
6 10 150 0.2215 (0.1536;0.3100) (0.1827;0.2629)
7 10 200 0.2190 (0.1613;0.3068) (0.1854;0.2547)
8 10 300 0.2172 (0.1634;0.2821) (0.1896;0.2461)

9 20 100 0.2298 (0.1866;0.2778) (0.1955;0.2661)
10 20 150 0.2274 (0.1751;0.2853) (0.1994;0.2568)
11 20 200 0.2249 (0.1878;0.2635) (0.1947;0.3089)
12 20 300 0.2213 (0.1854;0.2748) (0.1936;0.2856)

13 30 100 0.2340 (0.1971;0.2816) (0.2006;0.2502)
14 30 150 0.2289 (0.1891;0.2723) (0.2058;0.2528)
15 30 200 0.2287 (0.1824;0.2603) (0.2086;0.2493)
16 30 300 0.2220 (0.1839;0.2561) (0.2054;0.2225)
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Table 8.3: Simulation study. Univariate mixed-effects model for large trial sizes,
trial-level surrogacy.

strategy confidence intervals

sim. # # trials # subjects R2
trial percentile asymptotic

1 5 100 0.9014 (0.5550;0.9959) (0.5719;0.9901)
2 5 150 0.9028 (0.5693;0.9985) (0.5803;0.9903)
3 5 200 0.8995 (0.5416;0.9978) (0.5704;0.9998)
4 5 300 0.9092 (0.5418;0.9993) (0.6014;0.9907)

5 10 100 0.8716 (0.3962;0.9683) (0.6005;0.9729)
6 10 150 0.8870 (0.4939;0.9718) (0.6283;0.9781)
7 10 200 0.8878 (0.4767;0.9760) (0.6312;0.9780)
8 10 300 0.8864 (0.5575;0.9753) (0.6322;0.9770)

9 20 100 0.8686 (0.7271;0.9432) (0.6809;0.9583)
10 20 150 0.8722 (0.7406;0.9442) (0.6869;0.9597)
11 20 200 0.8762 (0.7222;0.9493) (0.6942;0.9612)
12 20 300 0.8834 (0.7574;0.9548) (0.7079;0.9640

13 30 100 0.8596 (0.7548;0.9397) (0.7066;0.9436)
14 30 150 0.8631 (0.7659;0.9428) (0.7119;0.9454)
15 30 200 0.8713 (0.7761;0.9441) (0.7259;0.9493)
16 30 300 0.8767 (0.7977;0.9415) (0.7344;0.9520)
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Table 8.4: Simulation study. Univariate fixed-effects model for large trial sizes,
individual-level surrogacy.

strategy confidence intervals

sim. # # trials # subjects R2
indiv percentile asymptotic

1 5 100 0.2232 (0.1135;0.3360) (0.1577;0.2966)
2 5 150 0.2194 (0.1297;0.3354) (0.1654;0.2787)
3 5 200 0.2183 (0.1082;0.3345) (0.1714;0.2692)
4 5 300 0.2183 (0.1185;0.3070) (0.1796;0.2597)

5 10 100 0.2134 (0.1388;0.2955) (0.1671;0.2638)
6 10 150 0.2161 (0.1367;0.3109) (0.1777;0.2572)
7 10 200 0.2132 (0.1557;0.3042) (0.1798;0.2485)
8 10 300 0.2142 (0.1509;0.2963) (0.1867;0.2429)

9 20 100 0.2149 (0.1693;0.2627) (0.1814;0.2504)
10 20 150 0.2161 (0.1609;0.2699) (0.1885;0.2449)
11 20 200 0.2152 (0.1818;0.2578) (0.1913;0.2401)
12 20 300 0.2134 (0.1781;0.2692) (0.1939;0.2337)

13 30 100 0.2172 (0.1830;0.2635) (0.1897;0.2461)
14 30 150 0.2158 (0.1736;0.2603) (0.1933;0.2393)
15 30 200 0.2174 (0.1769;0.2491) (0.1978;0.2378)
16 30 300 0.2148 (0.1768;0.2524) (0.1962;0.2200)
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Table 8.5: Simulation study. Univariate fixed-effects model for large trial sizes, trial-
level surrogacy.

strategy confidence intervals

sim. # # trials # subjects R2
trial percentile asymptotic

1 5 100 0.8462 (0.3826;0.9966) (0.4770;0.9799)
2 5 150 0.8575 (0.3961;0.9987) (0.5016;0.9809)
3 5 200 0.8520 (0.3065;0.9981) (0.5089;0.9756)
4 5 300 0.8864 (0.5697;0.9986) (0.5570;0.9873)

5 10 100 0.7514 (0.3991;0.9823) (0.4084;0.9347)
6 10 150 0.7791 (0.3896;0.9818) (0.4570;0.9436)
7 10 200 0.8057 (0.4401;0.9729) (0.4911;0.9531)
8 10 300 0.8199 (0.3564;0.9853) (0.5174;0.9567)

9 20 100 0.7049 (0.2900;0.9236) (0.4464;0.8761)
10 20 150 0.7123 (0.3697;0.9361) (0.4554;0.8809)
11 20 200 0.7321 (0.4283;0.9588) (0.4793;0.8924)
12 20 300 0.7503 (0.4652;0.9316) (0.5058;0.9007

13 30 100 0.6780 (0.4351;0.8713) (0.4528;0.8403)
14 30 150 0.6997 (0.5016;0.8793) (0.4795;0.8541)
15 30 200 0.7304 (0.4631;0.9175) (0.5211;0.8719)
16 30 300 0.7639 (0.5283;0.9317) (0.5673;0.8913)
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Table 8.6: Simulation study. Bivariate fixed-effects model for large trial sizes, trial-
level surrogacy.

strategy confidence intervals

sim. # # trials # subjects R2
trial percentile asymptotic

1 5 100 0.8500 (0.3796;0.9965) (0.4828;0.9802)
2 5 150 0.8609 (0.4050;0.9988) (0.5049;0.9817)
3 5 200 0.8592 (0.3285;0.9974) (0.5140;0.9778)
4 5 300 0.8893 (0.5515;0.9996) (0.5633;0.9877)

5 10 100 0.7735 (0.4328;0.9823) (0.4385;0.9428)
6 10 150 0.7930 (0.3886;0.9867) (0.4724;0.9491)
7 10 200 0.7930 (0.4443;0.9809) (0.5177;0.9594)
8 10 300 0.8240 (0.4396;0.9805) (0.5413;0.9632)

9 20 100 0.8375 (0.3261;0.9158) (0.4829;0.8934)
10 20 150 0.7352 (0.4798;0.9307) (0.5082;0.9043)
11 20 200 0.7545 (0.4747;0.9579) (0.5348;0.9149)
12 20 300 0.7746 (0.5489;0.9360) (0.5669;0.9244)

13 30 100 0.7126 (0.4928;0.8711) (0.4948;0.8624)
14 30 150 0.7444 (0.5919;0.8856) (0.5363;0.8815)
15 30 200 0.7764 (0.5390;0.9184) (0.5819;0.8992)
16 30 300 0.8059 (0.6373;0.9204) (0.6244;0.9155)
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Table 8.7: Simulation study. Bivariate fixed-effects model for large trial sizes,
individual-level surrogacy.

strategy confidence intervals

sim. # # trials # subjects R2
indiv percentile

1 5 100 0.6843 (0.5058;0.8273)
2 5 150 0.6685 (0.5275;0.8218)
3 5 200 0.6642 (0.5141;0.7981)
4 5 300 0.6976 (0.5570;0.7440)

5 10 100 0.6521 (0.5497;0.7631)
6 10 150 0.6636 (0.5576;0.7748)
7 10 200 0.6527 (0.5872;0.7118)
8 10 300 0.6474 (0.5326;0.8485)

9 20 100 0.6640 (0.6009;0.7280)
10 20 150 0.6574 (0.5893;0.7339)
11 20 200 0.6517 (0.6041;0.7013)
12 20 300 0.6449 (0.6129;0.6910)

13 30 100 0.6682 (0.6066;0.7222)
14 30 150 0.6562 (0.6046;0.7109)
15 30 200 0.6495 (0.6136;0.7002)
16 30 300 0.6481 (0.6163;0.6845)
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Table 8.8: Simulation study. Bivariate mixed-effects model for large trial sizes, trial-
level surrogacy.

strategy confidence intervals

sim. # # trials # subjects R2
indiv percentile

1 5 100 0.9433 (0.5005;1.0000)
2 5 150 0.9431 (0.4636;1.0000)
3 5 200 0.9477 (0.4611;1.0000)
4 5 300 0.9325 (0.5021;1.0000)

5 10 100 0.9291 (0.5706;0.9989)
6 10 150 0.9337 (0.6616;0.9996)
7 10 200 0.9306 (0.5499;0.9999)
8 10 300 0.9243 (0.4903;0.9998)

9 20 100 0.9236 (0.7458;0.9997)
10 20 150 0.9230 (0.7820;0.9996)
11 20 200 0.9196 (0.7602;0.9948)
12 20 300 0.9235 (0.7940;0.9977)

13 30 100 0.9152 (0.7932;0.9947)
14 30 150 0.9064 (0.7610;0.9963)
15 30 200 0.9079 (0.7914;0.9896)
16 30 300 0.9082 (0.7729;0.9984)
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Table 8.9: Simulation study. Bivariate mixed-effects model for large trial sizes,
individual-level surrogacy.

strategy confidence intervals

sim. # # trials # subjects R2
indiv percentile

1 5 100 0.6863 (0.4814;0.9044)
2 5 150 0.6763 (0.5007;0.8370)
3 5 200 0.6681 (0.5305;0.7944)
4 5 300 0.6650 (0.5204;0.7967)

5 10 100 0.6379 (0.4949;0.7852)
6 10 150 0.6468 (0.5146;0.7929)
7 10 200 0.6359 (0.5409;0.7331)
8 10 300 0.6390 (0.5274;0.7345)

9 20 100 0.6376 (0.5555;0.7510)
10 20 150 0.6397 (0.5607;0.7421)
11 20 200 0.6398 (0.5692;0.7119)
12 20 300 0.6338 (0.5723;0.6929)

13 30 100 0.6392 (0.5695;0.7095)
14 30 150 0.6367 (0.5725;0.7006)
15 30 200 0.6398 (0.5779;0.7043)
16 30 300 0.6339 (0.5833;0.6804)
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Table 8.10: Simulation study. Univariate mixed-effects model for small trial sizes,
individual-level surrogacy.

strategy confidence intervals

sim. # # trials # subjects R2
indiv percentile asymptotic

1 5 10 0.2661 (0.0108;0.6816) (0.0917;0.5070)
2 5 20 0.2709 (0.0642;0.5322) (0.1312;0.4442)
3 5 40 0.2407 (0.0998;0.3983) (0.1390;0.3608)
4 5 60 0.2365 (0.1292;0.3504) (0.1516;0.3340)

5 10 10 0.2990 (0.0902;0.4920) (0.1503;0.4765)
6 10 20 0.2574 (0.1373;0.4244) (0.1525;0.3793)
7 10 40 0.2448 (0.1434;0.3589) (0.1696;0.3289)
8 10 60 0.2398 (0.1515;0.6434) (0.1779;0.3078)

9 20 10 0.3090 (0.1824;0.4241) (0.1955;0.4360)
10 20 20 0.2853 (0.1456;0.4078) (0.2054;0.3727)
11 20 40 0.2497 (0.1764;0.3313) (0.1947;0.3089)
12 20 60 0.2381 (0.1783;0.3023) (0.1936;0.2856)

13 30 10 0.3362 (0.1964;0.4583) (0.2394;0.4406)
14 30 20 0.2753 (0.1839;0.3524) (0.2100;0.3456)
15 30 40 0.2513 (0.1985;0.3174) (0.2059;0.2995)
16 30 60 0.2388 (0.1823;0.2788) (0.2022;0.2775)
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Table 8.11: Simulation study. Univariate mixed-effects model for small trial sizes,
trial-level surrogacy.

strategy confidence intervals

sim. # # trials # subjects R2
trial percentile asymptotic

1 5 10 0.7037 (0.0332;0.9949) (0.3199;0.9293)
2 5 20 0.8350 (0.2446;0.9944) (0.4456;0.9758)
3 5 40 0.8625 (0.2305;0.9951) (0.5228;0.9744)
4 5 60 0.8880 (0.5288;0.9978) (0.5531;0.9849)

5 10 10 0.7450 (0.3825;0.9375) (0.3836;0.9347)
6 10 20 0.7981 (0.4189;0.9637) (0.4691;0.9517)
7 10 40 0.8464 (0.4927;0.9605) (0.5462;0.9675)
8 10 60 0.8545 (0.4582;0.9704) (0.5751;0.9674)

9 20 10 0.7130 (0.4327;0.8718) (0.4455;0.8845)
10 20 20 0.7895 (0.5521;0.9110) (0.5502;0.9237)
11 20 40 0.8234 (0.5882;0.9447) (0.6067;0.9383)
12 20 60 0.8427 (0.6495;0.9501) (0.6374;0.9470)

13 30 10 0.7225 (0.4826;0.8965) (0.5098;0.8674)
14 30 20 0.7803 (0.5781;0.9044) (0.5862;0.9018)
15 30 40 0.8228 (0.6908;0.9179) (0.6482;0.9250)
16 30 60 0.8414 (0.7109;0.9188) (0.6761;0.9348)
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Table 8.12: Simulation study. Univariate fixed-effects model for small trial sizes,
individual-level surrogacy.

strategy confidence intervals

sim. # # trials # subjects R2
indiv percentile asymptotic

1 5 10 0.2274 (0.0036;0.5809) (0.0684;0.4663)
2 5 20 0.2376 (0.0489;0.4606) (0.1072;0.4059)
3 5 40 0.2206 (0.0893;0.3844) (0.1229;0.3382)
4 5 60 0.2203 (0.1263;0.3297) (0.1379;0.3160)

5 10 10 0.2330 (0.0555;0.3973) (0.1027;0.4009)
6 10 20 0.2092 (0.1091;0.3693) (0.1144;0.3244)
7 10 40 0.2166 (0.1143;0.3334) (0.1454;0.2978)
8 10 60 0.2213 (0.1388;0.3281) (0.1614;0.2877)

9 20 10 0.2015 (0.0696;0.3304) (0.1081;0.3157)
10 20 20 0.2236 (0.1084;0.3348) (0.1513;0.3055)
11 20 40 0.2163 (0.1458;0.3014) (0.1647;0.2731)
12 20 60 0.2142 (0.1569;0.2859) (0.1755;0.2602

13 30 10 0.2231 (0.0886;0.3534) (0.1413;0.3177)
14 30 20 0.2147 (0.1305;0.2945) (0.1557;0.2804)
15 30 40 0.2174 (0.1668;0.2843) (0.1746;0.2636)
16 30 60 0.2149 (0.1662;0.2593) (0.1797;0.2523)
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Table 8.13: Simulation study. Univariate fixed-effects model for small trial sizes,
trial-level surrogacy.

strategy confidence intervals

sim. # # trials # subjects R2
trial percentile asymptotic

1 5 10 0.74967 (0.2237;0.9994) (0.3429;0.9572)
2 5 20 0.78668 (0.1593;0.9970) (0.4210;0.9585)
3 5 40 0.81303 (0.1523;0.9995) (0.4644;0.9675)
4 5 60 0.83546 (0.3234;0.9980) (0.4714;0.9779)

5 10 10 0.67267 (0.2214;0.9198) (0.3019;0.9035)
6 10 20 0.66771 (0.1851;0.9623) (0.3120;0.8984)
7 10 40 0.71278 (0.1988;0.9589) (0.3563;0.9190)
8 10 60 0.73415 (0.2825;0.9809) (0.3988;0.9237)

9 20 10 0.63657 (0.2892;0.8413) (0.3533;0.8409)
10 20 20 0.64009 (0.3417;0.8394) (0.3567;0.8434)
11 20 40 0.66795 (0.3826;0.8884) (0.3944;0.8579)
12 20 60 0.66832 (0.3344;0.9317) (0.3996;0.8560)

13 30 10 0.63242 (0.3971;0.8232) (0.3980;0.8109)
14 30 20 0.62815 (0.3844;0.8106) (0.3913;0.8089)
15 30 40 0.64394 (0.4076;0.8313) (0.4129;0.8179)
16 30 60 0.66659 (0.4111;0.8379) (0.4408;0.8323)
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Table 8.14: Simulation study. Bivariate fixed-effects model for small trial sizes, trial-
level surrogacy.

strategy confidence intervals

sim. # # trials # subjects R2
trial percentile asymptotic

1 5 10 0.7975 (0.2130;0.9995) (0.3842;0.9699)
2 5 20 0.8059 (0.1797;0.9975) (0.4409;0.9635)
3 5 40 0.8148 (0.2834;0.9997) (0.4572;0.9699)
4 5 60 0.8427 (0.3645;0.9988) (0.4844;0.9795)

5 10 10 0.6749 (0.1515;0.9104) (0.3131;0.9013)
6 10 20 0.6512 (0.2183;0.9637) (0.2993;0.8905)
7 10 40 0.7099 (0.2898;0.9607) (0.3543;0.9172)
8 10 60 0.7392 (0.2288;0.9773) (0.3999;0.9268)

9 20 10 0.5941 (0.1759;0.8188) (0.3082;0.8139)
10 20 20 0.6197 (0.2706;0.8273) (0.3348;0.8307)
11 20 40 0.6709 (0.3847;0.8803) (0.3967;0.8601)
12 20 60 0.6833 (0.3681;0.9425) (0.4170;0.8646)

13 30 10 0.5675 (0.3313;0.7811) (0.3280;0.7654)
14 30 20 0.6147 (0.4083;0.8148) (0.3750;0.8004)
15 30 40 0.6505 (0.4540;0.8338) (0.4199;0.8226)
16 30 60 0.6834 (0.4700;0.8532) (0.4602;0.8435)
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Table 8.15: Simulation study. Bivariate fixed-effects model for small trial sizes,
individual-level surrogacy.

strategy confidence intervals

sim. # # trials # subjects R2
indiv percentile

1 5 10 0.8298 (0.0492;0.9999)
2 5 20 0.7763 (0.2469;0.9999)
3 5 40 0.7099 (0.4134;0.9999)
4 5 60 0.6976 (0.4737;0.9999)

5 10 10 0.8461 (0.4281;0.9999)
6 10 20 0.7459 (0.4346;0.9999)
7 10 40 0.7110 (0.4852;0.9181)
8 10 60 0.6970 (0.5326;0.8485)

9 20 10 0.8179 (0.4765;0.9999)
10 20 20 0.7662 (0.4927;0.9187)
11 20 40 0.6967 (0.5409;0.8161)
12 20 60 0.6729 (0.5835;0.7787)

13 30 10 0.8487 (0.5242;0.9999)
14 30 20 0.7529 (0.4083;0.8148)
15 30 40 0.6995 (0.6036;0.8002)
16 30 60 0.6755 (0.5984;0.7589)
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Table 8.16: Simulation study. Bivariate mixed-effects model for small trial sizes,
trial-level surrogacy.

strategy confidence intervals

sim. # # trials # subjects R2
trial percentile

1 5 10 0.9749 (0.6438;1.0000)
2 5 20 0.9556 (0.4628;1.0000)
3 5 40 0.9477 (0.5341;1.0000)
4 5 60 0.9349 (0.5049;1.0000)

5 10 10 0.9114 (0.5373;1.0000)
6 10 20 0.9252 (0.5364;1.0000)
7 10 40 0.9345 (0.6964;0.9999)
8 10 60 0.9263 (0.4939;0.9999)

9 20 10 0.9078 (0.5867;0.9999)
10 20 20 0.9321 (0.7076;0.9996)
11 20 40 0.9209 (0.6956;0.9998)
12 20 60 0.9240 (0.7508;0.9997)

13 30 10 0.9231 (0.6530;0.9999)
14 30 20 0.9189 (0.7196;0.9993)
15 30 40 0.9125 (0.7512;0.9937)
16 30 60 0.9142 (0.7970;0.9996)



8.4. Discussion 161

Table 8.17: Simulation study. Bivariate mixed-effects model for small trial sizes,
individual-level surrogacy.

strategy confidence intervals

sim. # # trials # subjects R2
indiv percentile

1 5 10 0.8088 (0.1167;1.0000)
2 5 20 0.7758 (0.2494;1.0000)
3 5 40 0.7033 (0.4431;0.9936)
4 5 60 0.6993 (0.4511;0.9491)

5 10 10 0.7632 (0.2686;1.0000)
6 10 20 0.6562 (0.3415;0.9044)
7 10 40 0.6611 (0.4329;0.8421)
8 10 60 0.9243 (0.4708;0.8369)

9 20 10 0.6605 (0.3033;0.9413)
10 20 20 0.6567 (0.4167;0.8494)
11 20 40 0.6608 (0.4904;0.8182
12 20 60 0.6430 (0.5176;0.7935)

13 30 10 0.6340 (0.3267;0.8577)
14 30 20 0.6536 (0.4611;0.8232)
15 30 40 0.6366 (0.5332;0.7540)
16 30 60 0.6349 (0.5445;0.7378)





9
Information-Theoretic

Surrogate Marker Validation

for Censored Data

There has been a lot of work in the area of surrogate marker validation since Prentice

(1989) put forward a formal definition, some 20 years ago. Buyse et al. (2000) pro-

posed an evaluation in a multi-trial framework leading to definitions in terms of the

quality of trial- and individual-level surrogacy, the so-called meta-analytic approach.

Extensions within the validation framework of Buyse et al. (2000) highlighted some

limitations of the meta-analytic approach (Chapter 6). To circumvent these limita-

tions, Alonso and Molenberghs (2007) used information theory to create a unified

framework with an intuitive interpretation, which is applicable to a wide range of

situations (normal, binary, categorical, and longitudinal outcomes), and is easy to

implement in practice.

163
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In practice, the use of surrogate endpoints is a viable option for the need to develop

new drugs as quickly as possible, and regulatory agencies have made various provisions

and policies for this. However, most of these provisions are limited to diseases where

no effective therapies exist. In particular, the U.S. Food and Drug Administration fast

track programs are designed to facilitate the development and expedite the review of

new drugs that meet two criteria: (1) are intended to treat serious or life-threatening

conditions and (2) demonstrate the potential to address unmet medical needs for the

condition (Burzykwoski, Molenberghs and Buyse 2005). The most common clinical

endpoint for life-threatening diseases is survival time, which is a failure-time (event-

time type or censored) outcome.

Although the concept of entropy, and hence R2
h, can be applied even to event-time

variables, the consistent estimator LRF proposed by Alonso and Molenberghs (2007)

is not suited for settings with event-time clinical endpoints. Indeed, O’Quigley and

Flandre (2006) remarked that the LRF requires some modification if it is to be use-

ful in general situations, specifically to censored data. These authors proposed an

adjustment of the LRF (which we refer to as LRF-a) to serve as a partial remedy

for censored data. Additionally, we consider another information theory measure, ex-

plained randomness and its estimator, which we denote by R2
XOQ (Xu and O’Quigley

1999, O’Quigley 2008). Another interesting measure by Kent and O’Quigley (1998),

which we denote henceforth as ρW , will be discussed for completeness. It should be

noted that these measures will be used to evaluate only the individual-level surro-

gacy, but prior to that we provide a brief overview of censored data and common

models for censored data. We shall use the terms censored data and survival data

interchangeably.
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9.1 Events Time Data

Survival time T is a positive random variable, typically right skewed and with a non-

negligible probability of sampling large values, far above the mean. Additionally,

the fact that an ordering T1 > T2, corresponds to a solid physical interpretation are

put forward as reasons by some authors to consider techniques other than the classic

techniques of linear regression (O’Quigley 2008). This reasoning is incorrect from

a purely statistical viewpoint as using transformations and paying careful attention

to the structure of the error, linear models are perfectly adequate for dealing with

these situations. The most important particularity of survival data is the presence of

censoring. A breakthrough in the modelling of censored data occurred with the use

of the “at-risk” function.

It is the censoring that forces us to consider other techniques. Typically, censoring

is viewed as a nuisance feature of the data, essentially something that hinders us

from estimating what it is we would like to estimate. Thus, we have to make some

assumptions about the nature of the censoring mechanism in order for our endeavors

to succeed. The assumptions may often be motivated by convenience, in which case

it is necessary to give consideration as to how well grounded the assumptions are, as

well as to how robust are the procedures to departures from any such assumption. An

example of the later is considered in the next chapter. In other cases the assumption

may appear natural given the context of interest.

Let us set up some notation for time-to-event data that will be required, for a

given trial i. The random variables of interest are represented by the vector (T,C, Z),

where T is the survival time, C the censoring times and Z is a p vector of explana-

tory variables. The vector Z may depend upon time, which is precisely the case for

some surrogate endpoints settings as proposed by Alonso and Molenberghs (2008).



166 Chapter 9. Information-Theoretic Approach for Censored Data

Time dependency is sometimes indicated through Z = Z(t). For each individual j

we observe Xj = min(Tj, Cj) and δj = I(Tj ≤ Cj), where I(·) is the indicator func-

tion. Clearly Pr (X > x) = Pr (T > x,C > x) and we describe censoring as being

independent, sometimes referred to as non-informative, whenever

Pr (X > x) = Pr (T > x, C > x) = Pr (T > x)Pr (C > x) .

Such censoring often occurs in animal experimentations where the censoring time,

when the study is stopped, for all individuals being censored is equal, Type I censoring.

Another scenario occurs when the proportion of censoring is determined in advance,

Type II censoring.

Type III censoring occurs in clinical trials, where a model for the patients’ random

entry is assumed to be uniform over a fixed study period, and subjects can be censored

because (1) the end of the study period is reached, (2) they are lost to follow-up,

(3) the subjects fail due to something unrelated to the event of interest. Unlike for

Type I or Type II censoring, the Cj could all be distinct for j = 1, . . . , ni. For such

data, we are unable to estimate the joint distribution of the pair (T,C), only the

marginal distributions can be estimated under the independent censoring assumption

(Tsiatis 1975). This assumption is strong but may be plausible in some situations.

Otherwise, censoring is informative and a model for censoring has to be explicitly

introduce when estimating the main quantities of interest. We assume independent

censoring mechanism throughout this thesis.

Basic quantities used to describe failure time data is the survival function, given

by S(t) = 1− F (t) = P (T > t), which is the probability of surviving beyond time t,

and the hazard function (also referred to as the intensity function)

λ(t) = lim
∆t→0

P (t ≤ T < t + ∆t|T ≥ t)
∆t

.
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The hazard function can be interpreted as the instantaneous failure rate, conditional

on having survived up to time t. The survival function can be rewritten in terms of

the cumulative hazard function

S(t) = exp
{
−

∫ t

0

λ(u)du

}
= exp−Λ(t),

and can be estimated in a nonparametric way using the product-limit estimator,

proposed by Kaplan and Meier (1958). We denote the left continuous version of the

Kaplan-Meier estimator of survival by Ŝ(t) and the Kaplan-Meier estimate of the

distribution function by F̂ (t) = 1− Ŝ(t).

9.1.1 Events Time Data and Information Gain

Let Yj(t) denote the ‘at risk function,’ indicating whether subject j is at risk (Yj(t) = 1)

or not (Yj(t) = 0) at time t. Our regression model for T , given the observed values of

the covariates z of Z, is f(t|z), the conditional density, although it is more frequently

expressed equivalently in terms of the hazard. In particular, the proportional hazards

(PH) model (Cox 1972) specifies that the intensity function can be written as

λ(t|Z(t)) = Y (t)λ0(t) exp{βZ(t)}, (9.1)

where λ0(t) is a fixed but unknown “baseline” hazard function, and β is a p × 1

vector of unknown coefficients to be estimated and is interpretable as the log relative

risk for binary covariates. The baseline hazard function λ0(t) can be specified to be

of a power form or a constant, in which cases the Weibull and exponential models

are recovered (Kalbfleisch and Prentice 1980, Cox and Oakes 1984). More generally,

λ0(t) in (9.1) is unspecified, resulting in the use of inferential procedures other than

ordinary maximum likelihood (Cox 1975, Andersen and Gill 1982). All parameters can

be estimated using standard techniques, maximum likelihood in particular, based on
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some conditions on the censoring variable C. This work is based on the independent

(non-informative) censoring assumption (Tsiatis 1975, Duchateau and Janssen 2008,

O’Quigley 2008). In practice, standard techniques are rarely used, most likely as a

consequence of the attractive proposal, based on partial likelihood, of Cox (1972).

Now, suppose that the covariate Z = (β′1, β
′
2) is a p + q dimensional vector, where

Z1 is a vector of baseline covariates such as treatment effect and Z2 is a vector of

surrogate endpoints, possibly time-dependent. For simplicity, we drop the dependence

of the surrogate endpoints on time in the notation. Also β is partitioned in the

corresponding fashion as (β′1, β
′
2). We seek a measure of partial dependence between

Z2 and T , allowing for the regression of Z1. Let β0 denote the true value of β, and

denote H0 : β2 = 0 and H1: no constraint on β. Also, let β̃1 be the value maximizing

β under H0.

Under model (9.1), when β2 = 0 there is no association between T and the surro-

gate endpoints Z2. A population measure of strength of association, or the distance

between the two models indexed by β = β̃1 and β = β0, can be provided by twice the

Kullback-Leibler information gain Γ1(H1,H0;β0) = 2
[
I1(β0, β0)− I1(β̃1, β0)

]
, where

I1(β, β0) =
∫

Z

∫

T
log{f(t|z;β)}f(t|z; β0)dtdG(z). (9.2)

In the above expression, the domains of definition of T and Z are denoted by T and

Z, respectively, and G(z) is the marginal distribution function of Z. Assuming no

censoring, a standard estimate of information gain will be provided by n−1 times the

conventional likelihood ratio statistics. Kent (1986) studied the fitted information,

having similar statistical properties, in which I1(β0, β0) and I1(β̃1, β0) are estimated

by

Î1(β, β̂) = n−1

n∑

j=1

∫

T
log{f(t|Zj; β)}f(t|Zj; β̂)dt, (9.3)
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β = β̃1 and β = β̂, a consistent estimate of β0, respectively. Additionally, the marginal

distribution of Z has been replaced by its empirical estimate. Furthermore, the va-

riable t enters into the expression as a dummy variable so that the actual values,

some of which we might have not been able to observe in the presence of censoring,

do not affect the calculation beyond their effect on the estimation of β (Kent and

O’Quigley 1988, O’Quigley, Xu and Stare 2005). Thus, the concept of information

gain can be readily applied to right censored data.

We focused on proportional hazards model above because some of the estimators

discussed in the subsequent sections are based on the PH assumption. Instead of

modelling the hazard function or the survival function, we can also model the survival

time directly. This can be done through the loglinear model,

log Tj = µ + βZj + σEj, (9.4)

with Tj the event time for subject j, µ the intercept, σ the scale parameter, and

finally Ej the random error term for subject j. The random error term is assumed

to have a fully specified distribution. For instance, assuming a normal, logistic, and

Gumbel distribution for Ej, we obtain respectively the lognormal, loglogistic, and

Weibull distributions for the event times. A scaled version of the overall mean µ and

the regression coefficients β can be considered,

log Tj = σµ + σβZj + σEj, (9.5)

thereby facilitating comparison with the proportional hazards model (9.1) (Duchateau

and Janssen 2008).

As mentioned in Section 6.5, estimators for R2
h, other than the LRF , could be used

in principle. The following sections of this chapter provide concise description of the

estimators considered, beginning with LRF for censored data.
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9.2 Likelihood Reduction Factor for Censored Data

Observe that LRF as defined in Section 6.5 uses G2
i/ni as an estimator for 2I(X, Y )

in (6.5), which is a standard estimate for information gain assuming no censoring.

Alonso and Molenberghs (2007) showed that, when the true and surrogate endpoints

have distributions in the exponential family, then LRF P→ R2
h when the number of

subjects per trial goes to infinity, implying that LRF is a consistent estimator of R2
h.

Furthermore, a meta-analytic estimate can be obtained as described in (6.7).

We now consider the application of the concept of LRF to event times endpoint

such as survival time with (9.1) as basis. Consequently, for event time endpoints,

(6.11) and (6.12) translate respectively to

λ(tij|zij; β1i) = Yij(t)λ0Ti
(t) exp(β1izij), (9.6)

λ(tij|zij, sij; θ1i, θ2i) = Yij(t)λ0Ti
(t) exp [θ1izij + θ2isij(t)] , (9.7)

and LRFi is estimated similarly to (6.15) with Gi being the partial log-likelihood ratio

test statistic to compare (9.6) and (9.7). This result applies equally well to multiple

surrogates.

9.3 Adjusted Likelihood Reduction Factor (LRF-a)

As a reaction to the work of Alonso et al. (2004), O’Quigley and Flandre (2006) re-

marked that the LRF as proposed by Alonso et al. requires some modification if it is

to be useful in general situations, especially in the presence of censoring or event times

clinical endpoints. Indeed, the LRF as it stands depends upon the censoring mecha-

nism, for event time clinical endpoints, even when independent of the failure mech-
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anism. The population equivalent of the LRF, R2
h, fits in with the well-established

theory of measuring information gain and explained randomness (O’Quigley 2008).

This can be carried out for a time-dependent covariate opening up the way to ana-

lyzing the impact of surrogate endpoints.

The main difficulty with the LRF is how to adequately deal with censoring for event

time clinical endpoints. This may not be an issue of much concern for low levels of

censoring. However, for high levels of censoring, it would be useful to have a coefficient

which is not impacted by the censoring mechanism. This is quite easily achieved

and amounts to working with the LRF but weighting it differently. The theoretic

background of the population equivalent for event time endpoint has been described

by Kent (1983), Kent and O’Quigley (1988), Xu and O’Quigley (1999), O’Quigley, Xu,

and Stare (2005) and O’Quigley (2008), who propose non-trivial weights of the partial

log-likelihood to minimize the effect of censoring. As a simple and easily obtainable

approximation, O’Quigley and Flandre (2006) proposed redefining the LRF as

LRF-ai = 1− exp
(
−G2

i

ki

)
, (9.8)

with Gi being the partial log-likelihood ratio test statistic to compare (9.6) and (9.7),

and ki the total number of events experienced in trial i. In the absence of censoring

LRFi = LRF-ai, since ni = ki. In the presence of independent censoring, using ni

instead of ki leads to a coefficient which will depend upon an independent censoring

mechanism regardless of population effects. In particular, it approaches zero as the

percentage of censored observation approaches one. More generally, in the presence of

independent censoring, LRF-ai is a better approximation because it can be viewed as

the empirical expectation of R2
h (O’Quigley 2008). This also makes sense intuitively

for event time data, given that the information about the parameters of interest

increases with increasing numbers of events (ki) rather than with increase in sample



172 Chapter 9. Information-Theoretic Approach for Censored Data

size (ni).

9.4 Measure of Explained Variation (ρ2

W
)

Another alternative approach is a method due to Kent and O’Quigley (1988). These

authors have introduced a measure of explained variation for censored survival out-

come using the concept of the information gain developed by Kent (1983). They

developed these ideas, obtaining simple, multiple and partial coefficients for propor-

tional hazards regression, which are robust to the percentage of censored observations

(O’Quigley, Xu, and Stare 2005). Their approach was based upon the idea of trans-

forming a general proportional hazards model to a specific one of Weibull form.

Without loss of generality let us first assume that there are no censored observa-

tions. Consider two random variables Z and Y and let G(z) denote the marginal

distribution of Z and let the conditional distribution of Y given Z be modelled by

(9.5). If we assume that the probability density function f(y) for the random error

term is a Gumbel density, we get a Weibull regression model as mentioned earlier. Now

let Θ = (β, µ, σ2) denote the parameters of the model with σ > 0 and β = (β1, β2) a

2-dimensional vector. Let Θ1 = (β, µ, σ2) denote the true values of the parameters.

Consider two hypotheses H0 : β1 = 0 and H1 : β1 6= 0. The objective here is to

measure the dependence between Y and Z2 after allowing the regression on Z1. Now

let Θ0 be the value of Θ which maximizes the expected log-likelihood:

Φ(Θ, Θ1) =
∫ ∫

log{f(y|z; θ)}f(y|z; θ1)dyG(dz) (9.9)

over Θ satisfying the null hypothesis. A measure of the distance between the null

hypothesis and the alternative hypothesis is given by the Kullback & Liebler infor-

mation gain: Γ = Γ(H1,H0, G) = 2{Φ(θ1; θ1)−Φ(θ1; θ0)}. Kent (1983) proposed the
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following measure of dependence between Y and Z2 after allowing the regression on

Z1

ρ2
W = 1− e−Γ. (9.10)

Kent and O’Quigely denoted the measure by ρ2
W in order to emphasize the relationship

to the Weibull distribution. These authors appealed to the concept of fitted infor-

mation gain (9.3) to provide estimates for (9.9), and hence ρW2. In principle, other

possible accelerated failure time and proportional hazard models could be considered.

They choose the Weibull distribution so because the resulting integrals can be worked

out explicitly. Thus, expression (9.3) can be evaluated leading to an estimate of ρW .

A limitation of using this measure is that the calculations are numerically involved,

although a SAS macro has been made available (Heinzl and Stare 2000). Its primary

limitation is that it can not be applied to PH models with time-dependent variables.

Most of the surrogate marker settings encountered with a time-to-event clinical end-

point lead to time-dependent covariates. Consequently, we shall pay little attention

to this measure in subsequent chapters.

9.5 Explained Randomness (R2

XOQ
)

As mentioned before, O’Quigley and Flandre (2006) remarked that the LRF required

some modification, which can be achieved by weighting the quantities contributing

to the LRF differently. Although they proposed the LRF-a as a good, simple, and

easily attainable upgrade, it is still affected by the percentage of censored observations,

although less so than the LRF . This downside encourages the need for other measures

of dependence which are more robust to the percentage of censored observations, yet

based on the concept of information theory. Here, we recall the work of Xu and

O’Quigley (1999, 2000), which adapts the idea of using information gain to obtain
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a measure of dependence for proportional hazards regression. We focus on their

work because it can be applied to time-dependent covariates as well as to partial

dependence.

The fitted information enables us to apply the concept of information gain to right

censored data. This observation motivated Kent and O’Quigley (1988) to develop a

measure of dependence based on (9.3), which is independent of the percentage of cen-

sored observations. Nonetheless, the procedure is not straightforward and inference

for the resulting estimate is even less so. In addition, the fact that it is not applicable

to time-dependent covariates motivated Xu and O’Quigley (1999) to develop a mea-

sure arising naturally in the context of proportional hazards regression. Their measure

can be obtained in a straightforward manner, inference is also straightforward, and it

easily extends immediately to time-dependent covariates.

Unlike Kent and O’Quigley (1988), who worked with the family of conditional

distributions of the survival time T given the covariate vector Z, Xu and O’Quigley

(1999) base their work on the conditional distribution of Z given T . This idea was

motivated by; (1) for a normal model, the resulting measure of explained randomness

is unaltered by the way in which the conditioning is done; (2) for other models, the

results will often be close (Kent 1983); (3) being able to predict which subject is to

fail at any given failure time is equivalent to being able to predict failure rankings

of all failed subjects; and (4) studying the conditional distribution of Z given T ,

does in fact correspond to the way in which inference is carried out in proportional

hazards regression. Additionally, this ensures that the measure is rank invariant to

monotonic increasing transformations of time (O’Quigley 2008). Thus, rather than

(9.2), consider

I2(β, β0) =
∫

T

∫

Z
log{g(z|t; β)}g(z|t; β0)dzdF (t), (9.11)
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where F (t) is the marginal distribution function of T , and g(z|t) is the conditional

density or conditional probability function of Z given T . It is assumed, for the most

part, that there is enough information in the tail of F . As before, the information

gain is given by Γ2(H2, H0;β0) = 2
[
I2(β0, β0)− I2(β̃1, β0)

]
and

R2
XOQ = 1− exp [−Γ2(H2, H0;β0)] .

Proceeding in a semiparametric way, the Kaplan-Meier (1958) estimator can be used

as a consistent estimator of F in the presence of censoring. Also, consider

πj(t; β) =
Yj(t) exp(βZj)∑n
l=1 Yl(t) exp(βZl)

,

known to be the conditional probability of choosing individual j, given all the indi-

viduals at risk at time t and that one individual is to be selected to fail. The product

of the π′s over the observed failure times is the partial likelihood (Cox 1972, 1975) of

the proportional hazards model, which gives our estimate β̂. Also, under model (9.1),

the conditional distribution function of Z given T is consistently estimated by

P̂ (Z ≤ z|T = t) =
∑

{j:Zj≤z}
πj(t; β̂).

Let t1 < . . . < tK be the distinct failure times. We estimate the conditional dis-

tribution of Z given T by {πj(t; β̂)}j, and the marginal distribution of T by the

Kaplan-Meier estimate, with W (tk) being the jump of the Kaplan-Meier curve at

time tk. Then

Γ2(H2, H0;β0) = 2
∫

T

∫

Z
log

[
g(z|t;β0)

g(z|t; β̃1)

]
g(z|t;β0)dzdF (t) (9.12)

can be consistently estimated by

Γ̂2(H2, H0; β̂0) = 2
K∑

k=1

W (tk)
n∑

j=1

πj(tk; β̂0) log

[
πj(tk; β̂0)

πj(tk; β̃1)

]
, (9.13)
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where the second sum is effectively over those subjects that are in the risk set at

time tk. Whenever there is a finite limit τ of our observation time, intuitively no

more information is to be gained beyond τ . Therefore, we can look at the informa-

tion gain conditioning on T ≤ τ , which is consistently estimated by the proposed

estimator divided by
∑K

1 P (tk). It inevitably depends on the upper limit τ reflecting

its faithfulness to the data, especially since the proportional hazards assumption can

often hold only for limited situations. This can be viewed as appropriate in that the

conditioning is on the time span actually studied rather than a time span of potential

interest.

Additionally, working with the conditional distribution of the covariate Z given the

survival time T implies that R2
XOQ will be bounded by a number strictly less than 1 for

discrete covariates taking on very few levels, as mentioned before in the final paragraph

of Section 6.2. Even so, for the most extreme case of a single binary covariate, the

bound is close enough to 1 for the phenomenom to be practically ignored, except for

very high values of R2
XOQ (O’Quigley 2008).

Conditioning Z on T leads to great simplification, as the computation for esti-

mating the information gain only involves those quantities routinely calculated in a

proportional hazards analysis. Another consequence is the fact that R2
XOQ increases

with |β| and we can directly infer confidence intervals for R2
XOQ from those for β

(O’Quigley 2008). Suppose that a 95% confidence interval for β is 0 < βL < β <

βU , then an interval for R2
XOQ is

[
R2

XOQ(βL), R2
XOQ(βU)

]
. In practice, we do not

know R2
XOQ(·), but, following the consistency results, we can “plug” βL and βU into

R2
XOQ(·) = 1− exp

[
−Γ̂2(·)

]
to obtain an approximation of R2

XOQ(βL) and R2
XOQ(βU).

We can similarly deal with the case where βU < β < βL < 0. See O’Quigely (2008)

for full details when βL and βU have different signs. The coverage properties will not
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be exactly the same but will be close. This aspect will be studied further through a

simulation study in the Chapter 11.

We can view R2
XOQ either as an estimator of the explained randomness in Z given

T or as an approximation to the explained randomness in the ranks of T given Z.

This second interpretation is the one that corresponds most closely to our appli-

cation, surrogate endpoint validation. Both interpretations are equal for bivariate

normal models and are anticipated to be generally close. O’Quigley (2008) discuss

some conditions required for equality of both interpretations for proportional hazards

regression and noted that it is unlikely to be very far removed from such conditions

in practice.

9.6 Discussion

This chapter further extends the application of the information-theoretic approach to

event-time clinical endpoints, with focus on proportional hazard regression models.

Generally, all measures considered have intuitive interpretation and range between

0 and 1. We described how the LRF can be calculated from these models, as well

as an adjusted version, LRF-a, which tries to minimize the impact of censoring. Of

the measures considered in this chapter, they are the least computationally complex.

Additionally, two other estimators ρ2
W and R2

XOQ, which are robust to the percentage

of censored observations, were considered. It is obvious that LRF , LRF-a and ρ2
W

are not entirely based on the proportional hazards assumption, unlike R2
XOQ. Thus,

ρ2
W appears to be the most suited estimator for R2

h in the presence of censoring and

absence of time-dependent surrogates. However, it is computationally involved and

inference on its estimates is even more so. Additionally, it is not applicable to time-

dependent covariates, which is usually encountered with event-time clinical endpoints.
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On the other hand, R2
XOQ is applicable to time-dependent covariates, easy to calcu-

late and inference on its estimates are straight forward. However, its high dependency

on the PH assumption is a call for concern. Nevertheless, it is required that a good

measure of dependence should perform satisfactorily also when applied to misspecified

models. The next chapter investigates how these measures fair when the PH assump-

tion is violated in the presence of censoring. Also, LRF and LRF-a reduce to the

multiple R2 in the case of a normally distributed clinical endpoint, while R2
XOQ is

expected to produce a close estimate in such settings. This aspect will also be inves-

tigated in the next chapter.



10
ITA for Censored Data: Some

Computational Issues

To evade computational and interpretational issues encountered by extending valida-

tion within the meta-analytic framework of Buyse et al. (2000), Alonso and Molen-

berghs (2007) developed a unified framework using information theory with an intu-

itive interpretation, and is applicable in a wide range of situations (normal, binary,

categorical, and longitudinal outcomes). For these situations, the authors proposed

the LRF , a consistent estimator, to be used in practice. In the previous chapter,

we extended the application of the information-theoretic approach to situations with

event-time clinical endpoints. Further, we described how the LRF can be calculated

for such situations, together with an adjusted version LRF-a proposed by O’Quigley

and Flandre (2006). These estimators are expected to be affected by the percentage

of censored observations, which is typical of event-time data. Here, we investigate the

performance of these estimators both in the presence and absence of censoring.

179
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Furthermore, two estimators robust to the percentage of censoring were consid-

ered ρ2
W and XOQ.

2 The later depends entirely on the PH assumption, which when

satisfied is only an approximate of R2
h. Many simulations have been performed to

investigate the performance of these measures under the proportional hazards as-

sumption (Schemper and Stare 1996, O’Quigley, Xu and Stare 2005), demonstrating

their robustness to the percentage of censored observations under this assumption.

Within the context of validating a cross-sectional surrogate for a time-to-event

clinical endpoint, the objectives of this chapter is two fold (1) to investigate how the

said measures perform when the PH assumption is violated, in the presence of censor-

ing, and (2) to apply these measures in the evaluation of individual-level surrogacy,

using a motivating study, in a situation with a time-to-event clinical endpoint and a

cross-sectional continuous surrogate.

10.1 A Simulation Study

This section grants us insight into the performance of the information-theoretic mea-

sures LRF , LRF-a, ρ2
W and R2

XOQ when the PH assumption is violated, with and

without censoring.

10.1.1 Design of the Simulation Study

Here we describe the design of the simulation study used to compare the performance

of the measures, together with the motivation for the various choices made on the

design. As mentioned earlier, we intend to violate the proportional hazards assump-

tion. Also, we intend to investigate how well R2
XOQ approximates the ‘classical’ R2

from a traditional normal-linear regression model. This requires the residuals to be

normally distributed, as well as the absence of censoring. In light of these require-
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ments, we considered model (9.5) and assumed a normal distribution for the random

error term resulting to a log-normal model for the clinical endpoint. Therefore, data

were generated from a bivariate normal distribution, assuming a normally distributed

cross-sectional surrogate endpoint. The event-time clinical outcome was obtained by

taking the exponential of the resulting continuous variable.

A uniform distribution was used to induce censoring on the exponentiated clinical

outcome. The percentage of censored observations is set to either 0, 10, or 35%, which

we consider as the small to moderate level of censoring. Censoring percentages of 50,

75 or 90% were also considered, representing high to extreme number of censored ob-

servations. The individual-level R2 values are set to 0.36, 0.64, or 0.81, corresponding

to ‘poor’, ‘moderate’ and ‘good’ surrogacy at the individual level. The number of

subjects is fixed to either 20, 50, 100, 200 or 1000. For full combinations of these

parameter values, 100 runs are performed in each case, and the measures of interest

calculated.

10.1.2 Simulation Results

The simulation results are displayed in Tables 10.1 and 10.2. It can be observed

that in the absence of censoring (Censoring = 0%), LRF and LRF-a provide equal

estimates as expected. Also, in the absence of censoring, R2
XOQ yields similar estimates

to LRF , and hence LRF-a. Generally, all measures seem to perform adequately with

the estimates approaching the true value, from which the data were generated, as the

sample size increases with small to moderate level of censoring.

The LRF-a and R2
XOQ slightly overestimate the individual-level surrogacy when

the percentage of censoring ranges between 35% and 50%. For similar censoring

percentages, LRF underestimates the individual-level surrogacy, even for large sample
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sizes. The bias exhibited by LRF , LRF-a and R2
XOQ increases ‘unacceptably’ as

the percentage of censoring increases to 75% and becomes worse at the percentage

of censoring reaches 90%. ρ2
W underestimates the individual-level surrogacy as the

percentage of censoring increases, but the underestimation subsides as the sample

size increases except for high level of association between the surrogate and the true

endpoint.

These observations indicate that the LRF is highly affected by the percentage of

censored observation. Also, as indicated by O’Quigley and Flandre (2006) LRF-a

performs well for small to moderate percentage of censoring. However, it exhibits

upward bias for high levels of censoring. Surprisingly, R2
XOQ performs acceptably well

when the PH assumption is violated and the percentage of censoring is low to mod-

erate. As expected, ρ2
W is robust to the percentage of censoring, especially when the

sample size is large. Given that event-time clinical endpoints are usually encountered

with time-dependent surrogates, we recommend the use of LRF-a or R2
XOQ when the

PH assumption is violated and the percentage of censoring is low to moderate. In

case of cross-sectional surrogates, we recommend the use of ρ2
W. Investigating the

performance within a surrogate marker context when the PH assumption is plausible

is the topic of the next chapter.

In the following section, we illustrate how the information-theoretic approach can

be employed to a situation with a cross-sectional surrogate for an event-time clinical

endpoint, using the measures discussed in this section.

10.2 Application to a Motivating Study

Estimates of R2
XOQ, LRF-a, LRF , and their respective asymptotic confidence intervals,

are used to evaluate the different TCD velocities as potential surrogates for time to
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first stroke, in the stroke study on children with sickle cell disease. This motivating

study was described in Chapter 2, Section 2.2.8. Cross-sectional surrogates were

obtained by taking the median of the respective TCD velocities over time. The

median age was included in the models with and without the surrogate, corresponding

to models (9.6) and (9.7). Also, the PH assumption was tested for each model and

the results indicate that the PH assumption is plausible (Table 10.4). Results for

individual-level surrogacy measures are shown in Table 10.3.

Given that the PH assumption is plausible, R2
XOQ is expected to be robust to the

percentage of censoring, even when it is as high as 90% (Xu and O’Quigley 1999,

O’Quigley, Xu, and Stare 2005). In this light, although LRF-a is expected to be

affected by such high degree of censoring, its estimates are close to those obtained

from R2
XOQ. Obviously, LRF is substantially affected by the high degree of censoring,

as expected. Conclusions will be made base on R2
XOQ, as well as LRF-a. It can be

observed that estimates from the screened SCD data are consistently higher than their

counterparts from the randomized SCD data. This discrepancy may be due to, but

not limited to, effects of possible prognostic factors on the screened SCD data. Also,

the estimates based on the screened SCD data have narrower intervals, probably due

to its larger sample size relative to the randomized SCD data.

Generally, moderate associations were found at the individual level, indicating that

the TCD velocities only explain about 50% of our uncertainty about the time to first

stroke. However, the asymptotic confidence intervals do not exclude the plausibility of

stronger associations. Therefore, we recommend these biomarkers for further studies.
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10.3 Discussion

In the previous chapter we defined the LRF for settings with event-time endpoints

and considered a modified version LRF-a, both of which are expected to be affected

by high percentages of censoring. Thus, two other measures which are expected to be

robust to the percentage of censoring were also consider: ρ2
W and R2

XOQ. Substantial

literature is available concerning the performance of the later measures when the

proportional hazard assumption is met. They indicate that these measures are robust

to censoring, even as high as 90%, under the PH assumption. In this chapter, we (1)

investigated the performance of all measures when the PH assumption is violated,

with increasing percentage of censoring, and (2) evaluated individual-level surrogacy

for the stroke study using the measures of interest. Both tasks were done in the

context of validating a cross-sectional surrogate for a time-to-event clinical endpoint.

Schemper and Stare (1996) compared several measures of explained variation, in-

cluding the Kent and O’Quigely measure of association, for a Cox proportional haz-

ards model. The authors observed that, among the other methods suggested, the

measure of Kent and O’Quigely was unaffected by censoring even for a substantial

percentage of censoring. Similar results were observed for R2
XOQ (Xu and O’Quigley

1999, O’Quigley, Xu, and Stare 2005). Thus, we assume that these measures yield

promising results in quantifying the individual-level surrogacy, even with substantial

censoring, under the PH assumption. Generally, results from LRF-a, and especially

LRF , should not be trusted when the degree of censoring is high even with when the

PH assumption seems plausible.

When the PH assumption is violated in the presence of censoring, LRF is not

suitable to handle the censoring especially with small sizes. LRF-a performs much

better with low to moderate censoring and high sample sizes. ρ2
W performs satisfac-
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torily even for moderately large percentage of censoring and reasonable sample sizes.

Surprisingly, R2
XOQ performed acceptably with low to moderate censoring and large

sample sizes. This indicates that with low censoring and large sizes R2
XOQ may be a

good measure of dependence even without the PH assumption.

These measures were used together with their respective asymptotic confidence

intervals to evaluate various cross-sectional TCD velocities as potential surrogates of

time to first stroke. Conclusions were mainly based on R2
XOQ as the PH assumption

was deemed plausible, and its asymptotic confidence interval can be easily estimated,

unlike that of R2
XOQ. We recommend the TCD velocities for further studies because

confidence intervals do not exclude stronger associations, although they explain only

about 50% of our uncertainty about the time to first stroke.
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Table 10.3: Evaluating individual-level surrogacy for the stroke study on children
with sickle cell disease.

Randomized Screened

Biomarker Measure Estimate 95% Asymp. CI Estimate 95% Asymp. CI

MaxL R2
XOQ 0.574 (0.124; 0.880) 0.668 (0.388; 0.906)

LRF-a 0.592 (0.199; 0.867) 0.672 (0.477; 0.819)

LRF 0.082 (0.021; 0.176) 0.023 (0.013; 0.034)

MaxR R2
XOQ 0.415 (0.041; 0.822) 0.733 (0.490; 0.904)

LRF-a 0.426 (0.080; 0.764) 0.753 (0.575; 0.874)

LRF 0.055 (0.008; 0.136) 0.027 (0.016; 0.039)

MaxS R2
XOQ 0.588 (0.153; 0.886) 0.744 (0.507; 0.912)

LRF-a 0.604 (0.226; 0.866) 0.751 (0.578; 0.871)

LRF 0.089 (0.026; 0.184) 0.027 (0.017; 0.040)

MaxD R2
XOQ 0.531 (0.109; 0.888) 0.694 (0.412; 0.917)

LRF-a 0.541 (0.166; 0.833) 0.700 (0.512; 0.838)

LRF 0.075 (0.018; 0.165) 0.024 (0.014; 0.036)

MaxRL R2
XOQ 0.562 (0.105; 0.903) 0.802 (0.587; 0.930)

LRF-a 0.563 (0.172; 0.853) 0.812 (0.658; 0.909)

LRF 0.077 (0.018; 0.169) 0.033 (0.021; 0.047)

MaxSD R2
XOQ 0.590 (0.154; 0.898) 0.748 (0.494; 0.928)

LRF-a 0.603 (0.225; 0.866) 0.754 (0.582; 0.873)

LRF 0.089 (0.025; 0.183) 0.028 (0.017; 0.040)

MaxVel R2
XOQ 0.560 (0.129; 0.887) 0.717 (0.450; 0.919)

LRF-a 0.574 (0.196; 0.851) 0.723 (0.541; 0.853)

LRF 0.082 (0.022; 0.175) 0.025 (0.015; 0.037)
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Table 10.4: P-values for tests of the PH assumption in both the model without
the respective surrogates ‘Red.Mod’ and the model with the respective surrogates
‘Ful.Mod’.

Randomized Screened

Biomarker Red.Mod Ful.Mod Red.Mod Ful.Mod

MaxL 0.684 0.797 0.155 0.180

MaxR 0.805 0.914 0.114 0.267

MaxS 0.820 0.925 0.152 0.197

MaxD 0.820 0.987 0.152 0.230

MaxRL 0.669 0.907 0.117 0.154

MaxSD 0.820 0.953 0.152 0.231

MaxVel 0.820 0.937 0.152 0.230
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A
Mathematical Derivations

Here we will outline the analytical derivations used in the chapter concerned with the

optimal number of repeated measures. It has to be recalled that, in the chapter on

the mixed longitudinal and cross-sectional setting, we have shown that, the R2
Λ and

V RFind are equal for a longitudinal surrogate and a cross-sectional true endpoint, and

hence we use R2
Λ in place of V RFind for ease of notation.
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210 Mathematical Derivations

A.1 Derivation of The Association Measures

A.1.1 Compound Symmetry case

Let us assume that we have k longitudinal observations with a mean vector µ and

variance covariance matrix Σc:

Y =




y1

y2

.

.

.

yk




, E(Y ) = µ =




µ1

µ2

.

.

.

µk




V (Y ) = Σc,

we will further assume that Σc is a kXK compound symmetric matrix , i.e

Σc = σ




1 ρ . . . ρ

ρ 1 . . . ρ

. . . . . .

. . . . . .

. . . . . .

ρ ρ . . . 1




= σ(1− ρ)Ik + σρJk,

where Jk = 1k1
′
k. It is well known that (Graybill 1983),

‖Σc‖ = σk(1− ρ)k−1(1 + (k − 1)ρ. (A.1)

We now want to evaluate the performance of the first m observations as a surrogate

for the last one. Therefore in this setting we will consider:

S =




y1

y2

.

.

.

ym




T = Yk.
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X =

(
S

T

)
=




y1

y2

.

.

.

ym




, E(X) = µ =




µ1

µ2

.

.

.

µk




and V (X) = Σ where Σ is a (m+1)× (m+1) compound symmetry matrix. Essentially,

Σ can be decomposed as:

Σ = σ

(
RSS RST

RTS RTT

)
, (A.2)

where:

1. RSS is a compound symmetric correlation matrix.

2. RTS= (ρ, ρ, . . ., ρ) is a 1× m vector and RST = Rt
TS

3. RTT = 1

The amount of information on T that S brings can be quantified as:

R2
Λ = 1− |Σ |

|ΣT T | · |ΣSS | .

Using (A.1) and (A.2) we have:

R2
Λ(m) = 1− σm+1(1− ρ)(1 + mρ)

ρm+1(1− ρ)m−1(1 + (m− 1)ρ)
= 1− (1− ρ)(1 + mρ)

1 + (m− 1)ρ
.

⇒ R2
Λ(m) =

mρ2

1 + (m− 1)ρ
. (A.3)

The R2
Λ(m) is a function of m, the number of repeated measurements, if we calcu-

late the derivative of R2
Λ(m) with respect to m we get:
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d

dm
R2

Λ(m) =
ρ2(1− ρ)

[1 + (m− 1)ρ]2
≥ 0.

This implies that if ρ 6= 1 then R2
Λ(m) is an increasing function of m i.e the

more repeated measures we include in S, the more precise our prediction of T will

be. However, another important question is concerned with the impact of ρ on this

information gain, i.e, how the value of ρ influences the amount of information that S

brings about T . To study this issue further, let us consider the additional information

that one extra observation will bring. This means, let us consider a new surrogate

formed by adding another observation to S. For this new surrogate :

R2
Λ(m + 1) =

(m + 1)ρ2

1 + mρ
.

Let us now define

g(ρ) =
R2

Λ(m + 1)
R2

Λ(m)
=

(
m + 1

m

) (
1 + (m− 1)ρ

1 + mρ

)
,

which quantifies how much extra information about the true endpoint we get by

considering another observation. Note that

g
′
(ρ) =

(
m + 1

m

)( −1
[1 + mρ]2

)
< 0.

This last equation implies that g(ρ) is a decreasing function of ρ, i.e, on the one

hand, the higher the correlation between two consecutive observations the less we gain

by taking more observations. On the other hand, the lower the ρ the more meaningful

it is to consider more observations. Note that g(ρ) will reach its maximum when ρ = 1

and in that case:

g(1) =
R2

Λ(m + 1)
R2

Λ(m)
= 1 ⇔ R2

Λ(m + 1) = R2
Λ(m),



Mathematical Derivations 213

and therefore, adding a new observation will not bring any additional information.

Indeed, if ρ = 1 then there is deterministic relationship between Yi and Yk for all i.

Actually, knowing the value of Y1 would be enough to predict T = Yk without error.

Conversely, if ρ = 0 then R2
Λ(m) = 0 for all m = 1, . . . k − 1. Obviously in that

situation all the observations are independent and no sensible prediction is possible.

Finally, it is important to point out that in all the previous analysis the position of

the chosen surrogate vector S is totaly irrelevant, i.e, all these results will be equally

valid if we consider the following vector: St = (Yi+1, Yi+2, . , . Yi+m) with i + m < k.

A.1.2 Auto-Regressive of Order One AR(1)

Let us consider the same general settings as in the compound symmetry case with

V (Y ) = ΣAR, where ΣAR is now the variance covariance matrix of an AR(1) process,

i.e

ΣAR = σ2




1 ρ ρ2 . . ρk−1

ρ 1 . . . ρk−2

. . . . . .

. . . . . .

. . . . . .

ρk−1 ρk−2 . . . 1




.

Like before we want to evaluate the performance of the first m observations as a

surrogate for the last one. For this situation V (X) = Σ where

Σ = σ

(
RSS δ

δt 1

)
=

(
σRSS σδ

σδt σ

)
=

(
ΣSS ΣST

ΣTS ΣTT

)
,

here:

1. RSS is an AR(1) m×m correlation matrix.

2. δt= (ρk−1, ρk−2, . . ., ρk−m) = ρk−m(ρm−1, ρk−2, . . ρ, 1)
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so Σ can be written as:

Σ = σ




1 ρ ρ2 . . . . ρm−1 | ρk−1

ρ 1 ρ . . . . ρm−2 | ρk−2

. . . . . . . . | .

. . . . . . . . | .

ρm−1 ρm−2 . . . . . 1 | .

ρk−1 ρk−2 . . . . . ρk−m | 1




.

In this scenario it has been shown that:

R2
Λ =

ΣTSΣ−1
SSΣST

σTT
=

σδt(σRSS)−1σδ

σ

⇒ R2
Λ = ρ2(k−m)δt

1R
−1
SSδ1

where δt
1 = (ρm−1, ρm−2, ., ., ., ρ, 1). Note that RSS is again an AR(1) matrix of

dimension m and from Graybill (1983), we have

R−1
SS =

1
(1− ρ2)




1 −ρ 0 . 0 0
−ρ 1 + ρ2 −ρ . 0 0
0 −ρ 1 + ρ2 . 0 0
. . . . . .

. . . . . .

. . . . . .

0 0 0 . 1 + ρ2 −ρ

0 0 0 . ρ 1




In general if ci denotes the ith column of RSS then: Ct
i = (0, 0, ., ., ., 0, ,−ρ, 1 +

ρ2, −ρ, 0, ., ., ., 0) i = 2, ., ., ., m− 1 where the first −ρ appears in the i− 1 compo-

nent, Ct
1 = (1,−ρ, 0, ., ., ., 0), and Ct

m = (0, ., ., ., ., −ρ, 1). Using this notation we

have that:

δt
1RSS =

1
(1− ρ2)

(δt
1C1, δt

1C2, ., ., ., δt
1Cm),
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but : δt
1Ci = ρm−i(−ρ) + ρm−i−1(1 + ρ2) + ρm−i−2(−ρ)) = −ρm−i+1 + ρm−i−1 +

ρm−i+1 − ρm−i−1 = 0. So, δt
1Ci = 0 for i = 2, ., ., ., m− 1. Additionally, we have :

δt
1C1 = ρm−1 − ρm−1 = 0,

δt
mCm = −ρ2 − ρm−1 = 0,

⇒ δt
1RSS =

1
1− ρ2 (0, 0, ., ., ., 1− ρ2).

Finally we have:

δt
1R

−1
SS = 1

1− ρ2 (0, 0, ., ., ., 1− ρ2)




ρm−1

ρm−2

.

.

.

ρ

1




= 1
1− ρ2 (1− ρ2) = 1

⇒ δt
1R

−1
SSδ1 = 1

and therefore

R2
Λ = ρ2(k−m), (A.4)

where k = 1, ., ., ., m − 1. Here again R2
Λ(m) is an increasing function of m, i.e.,

the more observations we take, the more precise our prediction on the true endpoint

will be. Additionally, R2
Λ is also an increasing function of ρ and, therefore, the

higher the correlation the more meaningful is to take more observations. Unlike in

the compound symmetry case, in this scenario the “position” of the of the surrogate
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sequence becomes relevant. Indeed, let us assume that we shift the entire sequence in

the following way:

snew =




Ys

Y s + 1
.

.

.

Ys+m




,

with s + m < k. In this scenario it is easy to see that: R2
Λs = ρ2(k−(s+m−1) and

obviously R2
Λs ≥ R2

Λ for s ≥ 1. This implies that considering m observations closer

to the true endpoint will result in a surrogate with more predictive power than the

one obtained by using m observations further away from the true endpoint. However,

that may imply inquiring more cost and or waiting time.

A.2 Optimal Number of Measurements

A.2.1 Compound Symmetry case

We have proposed to calculate the optimal number of measurements to predict the

true endpoint by minimizing the objective function:

CPR0(m) = w1 · (1−R2
Λ(m)) + (1− w1) · R + m

R + K
,

where k is the total number of measurements and 1 ≤ m ≤ k. It is obvious from

(A.3) that, for the compound symmetry case:

1−R2
Λ(m) =

(1− ρ)(1 + mρ)
1 + (m− 1)ρ

.

and therefore:

CPR0(m) = w1 · (1− ρ)(1 + mρ)
1 + (m− 1)ρ

+ (1− w1) · R + m

R + K
.
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To find the maximum of CPR0(m) we need to solve the score equation:

d

dm
CPR0(m) = 0.

But

d

dm
CPR0(m) = w1 · (1− ρ) · d

dm

(
1 + mρ

1 + (m− 1)ρ

)
+

1− w1

R + K

d

dm

(
1 + mρ

1 + (m− 1)ρ

)
=

−ρ2

[1 + (m− 1)ρ]2

⇒ d

dm
CPR0(m) =

−w1 · (1− ρ)ρ2

[1 + (m− 1)ρ]2
+

1− w1

R + K
,

and this implies:

⇒ d

dm
CPR0(m) ⇔ 1− w1

R + K
=

w1 · (1− ρ)ρ2

[1 + (m− 1)ρ]2
.

Solving this equation with respect to m we get:

m12 =
(−(1− ρ)

ρ

)
±

√
(R + k)w1(1− ρ)

1− w1

.

So essentially we have two solutions:

m1 =
(−(1− ρ)

ρ

)
+

√
(R + k)w1(1− ρ)

1− w1

,

m2 =
(−(1− ρ)

ρ

)
−

√
(R + k)w1(1− ρ)

1− w1

.

The value of m that minimizes CPR0(m) is the one for which its second derivative

is positive:
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d2

dm2 CPR0(m) =
2 · w1(1− ρ)ρ3

[1 + (m− 1)ρ]3
,

and therefore :

d2

dm2 CPR0(m1) =
2 · w1(1− ρ)ρ3

[
(R + K)w1ρ

2(1− ρ)
dm2

]3/2

d2

dm2 CPR0(m2) =
−2 · w1(1− ρ)ρ3

[
(R + K)w1ρ

2(1− ρ)
dm2

]3/2
.

We have then the following case:

1. If ρ > 0 , d2

dm2 CPR0(m1) > 0 and m1 is the optimal

2. If ρ < 0 , d2

dm2 CPR0(m2) > 0 and m2 is the optimal

In a practical situation m1 and or m2 will likely not be integers, thus, we should

take the integer that is closest to them.

A.2.2 Auto-Regressive of Order One AR(1)

Similar to the compound symmetry case, we want to calculate the optimal number

of measurements to predict the true endpoint by minimizing the objective function:

CPR0(m) = w1 · (1−R2
Λ(m)) + (1− w1) · R + m

R + K
, (A.5)

where k is the total number of measurements and 1 ≤ m ≤ k. From (A.4) we know

that R2
Λ(m) = ρ2(k−m) and therefore:

CPR0(m) = w1[1− ρ2(k−m)] + (1− w1)
R + M

R + K
.
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Now to find the value of m that maximizes CPR0(m) we need to solve the score

equation:

d

dm
CPR0(m) = 2w1ρ

2(k−m) log ρ +
1− w1

R + K
.

But

d

dm
CPR0(m) = 0

⇔ −2w1ρ
2(k−m) log ρ =

1− w1

R + K

⇔ ρ2(k−m) =
−(1− w1)

2w1(R + K) log ρ
,

and this implies:

⇔ 2(k −m) log ρ = log
[ −(1− w1)
2w1(R + K) log ρ

]

⇔ (k −m) =
log

[ −(1− w1)
2w1(R + K) log ρ

]

2 log ρ

⇔ m = k −
log

[ −(1− w1)
2w1(R + K) log ρ

]

2 log ρ
.

To ascertain whether m maximizes or minimizes CPR0(m) we need to evaluate

the second derivative of the function, we have:

d2

dm2 CPR0(m) = −4w1(log ρ)2ρ2(k−m) < 0,
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for all m. This result implies that the previous value of m maximizes CPR0(m). This

from a practical point of view means that the minimum value of CPR0(m) can only

be attained at the two extreme cases i.e m= 1 or m= k − 1.

A.3 Constraint Maximization Problem Derivations


