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Samenvatting

Wetenschappelijk onderzoek steunt in vele gevallen op empirisch, op gegevens gebaseerd

onderzoek. Dergelijke gegevens zijn meer dan eens onvolledig. Experimenteel of

klinisch onderzoek, bijvoorbeeld, is meestal gericht op het verzamelen van volledige

gegevens, doch kan uitmonden in verlies of beschadiging van experimentele eenheden,

uitval of overlijden van proefpersonen. Een ander voorbeeld wordt gevormd door re-

spondenten in een survey die weigeren om bepaalde vragen te beantwoorden of zonder

meer niet aan het onderzoek wensen deel te nemen. Wanneer vervanging van de ont-

brekende gegevens niet mogelijk is, dient de analyse noodzakelijkerwijze te gebeuren

op basis van onvolledige gegevens. Dit kan leiden tot de aanpassing van het oor-

spronkelijke statistisch analyseplan om er op die manier voor te zorgen dat de studie

vooralsnog tot een geldig antwoord op de onderzoeksvraag leidt.

Observationale en experimentele studies nemen hetzij een cross-sectionele hetzij

een longitudinale vorm aan. Waar de eerste vorm leidt tot het verzamelen van één

enkele responsveranderlijke, geeft de tweede aanleiding tot het verzamelen van een

reeks metingen, gespreid in de tijd. In beide types kunnen de gegevens onvolledig

zijn. De structuur van de onvolledige gegevens neemt over het algemeen één van twee

mogelijke vormen aan. In een longitudinale studie, waar een bepaalde responsveran-

derlijke herhaald in de tijd gemeten wordt, definieert de volgorde van de metingen op

een natuurlijke manier de patronen. In voorkomend geval spreken we vaak van uitval

(dropout), monotoon ontbreken, of attritie; dus, wanneer alle metingen volledig zijn

tot op een bepaald punt in de tijd, waarna de metingen ontbreken. Monotone patronen

kunnen ook in andere situaties voorkomen, ook al is het concept vrij natuurlijk geasso-

cieerd aan herhaalde metingen. Daarnaast hebben we ook niet-monotone ontbrekende

waarden, waarbij de patronen geen natuurlijke ordening toelaten. Bij longitudinale

metingen komt het erop neer dat studiesubjecten ontbrekende metingen hebben op

een bepaald moment in de tijd, doch eventueel nadien opnieuw geobserveerd kunnen

worden. Nochtans, ook al kan het dus voorkomen in longitudinale studies, het is meer
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gebruikelijk dit soort patronen in multivariate situaties tegen te komen.

Het onvolledig zijn van de gegevens wordt meestal als een ongewenst nevenef-

fect van empirisch onderzoek beschouwd. Het induceert een bijkomende graad van

complexiteit in de data-analyse. Heel wat data analytische technieken waren oor-

spronkelijk niet ontworpen om dit aspect te behandelen. De keuze van hoe met

onvolledigheid wordt omgegaan kan belangrijke gevolgen hebben voor de uit de anal-

yse volgende conclusies. Bijvoorbeeld, wanneer in een longitudinale studie patiënten

met een minder gunstige evolutie een hogere kans hebben op uitval en als bovendien

dergelijke patiënten van analyse worden uitgesloten, dan kan de resulterende analyse

te optimistisch uitvallen. Op dezelfde manier, wanneer respondenten vóór (of tegen)

een bepaald gevoelig thema met een hogere kans weigeren van op een survey vraag te

antwoorden, dan zullen de resulterende conclusies in de regel vertekening vertonen.

Het concept van een nonrespons mechanisme werd ingevoerd door Rubin (1976),

minder uit nood om het te modeleren, dan wel om af te leiden onder welke aannames

het mechanisme kan verwaarloosd worden zonder de geldigheid van de statistische con-

clusies te verstoren. Waar frequentistische methoden in principe de sterkere MCAR

conditie vereisen, is dat voor likelihood en Bayesiaanse methodologie gelukkig slechts

de zwakkere MAR assumptie. In elk geval kan een MNAR mechanisme niet verwaar-

loosd worden. Deze resultaten zijn zeer nuttig omdat ze aangeven hoe analyses kunnen

vereenvoudigd worden. Het is nochtans niet mogelijk om op een onomstotelijke wijze

vast te stellen in welke categorie een bepaald mechanisme precies valt. Er dienen

altijd niet te verifiëren aannames gemaakt te worden. Dit is intüıtief duidelijk, omdat

het, bijvoorbeeld, zeer moeilijk te achterhalen is waarom een patiënt precies uitvalt

in een klinische studie. Tenzij het expliciet zou geweten zijn, kan de onderzoeker vaak

niet verder gaan dan een verantwoorde gok.

Gedurende de jongste decennia is de methodologie om met ontbrekende gegevens

om te gaan in belangrijke mate in volume en kracht toegenomen. Alles wijst erop

dat deze trend zich zal verderzetten. In het verleden waren er zowel methodologis-

che als computationale barrières om te beletten dat meer geavanceerde methodologie

kon gebruikt worden. Dit leidde er dan toe dat men eenvoudige methoden gebruikte,

zoals complete case analysis. Een dergelijke aanpak is meestal erg inefficiënt, in het

bijzonder wanneer er een substantieel deel van de gegevens ontbreekt. Vaak is er

ook belangrijke vertekening. Formeel komt het erop neer dat de sterke MCAR aan-

name vereist is. Heden ten dage is de reeks mogelijkheden, ter beschikking van de

onderzoeker, sterk uitgebreid. Zulke meer algemeen geldige methoden maken het ge-

bruik van de eenvoudige methoden overbodig; een aantal ervan wordt in deze thesis

onderzocht. Hoogstens kunnen de eenvoudige methoden als eerste stap aangezien
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worden, of als aanvulling op meer gesofisticeerde methodologie. Ondanks uitgebreide

onderzoeks- en onderwijsinspanningen op het gebied van onvolledige gegevens, toch

blijft het omgaan met dit type data ingewikkeld. Dit is voornamelijk toe te schrijven

aan het feit dat assumpties waarop de methodolgie rust zo goed als nooit helemaal

verifieerbaar zijn. Een groot deel van deze thesis is erop gericht dit te onderstrepen

en verder te verduidelijken. In dezelfde geest besteden we heel wat aandacht aan

zogenaamde sensitiviteitsanalyse.

Het doel van deze thesis is om cruciale aspecten aan te halen van en inzicht

te verschaffen in de methodologie voor de analyse van ontbrekende gegevens. De

klemtoon ligt op herhaalde metingen. Nieuwe en/of aangepaste methodologie wordt

voorgesteld en bestudeerd, en vaak in verband gebracht met bestaande methoden

(hoofdstukken 5, 6, 8 en 9). Er worden ook verscheidene methoden voorgesteld voor

sensitiviteitsanalyse (hoofdsukken 4, 7 en 8). Sensitiviteitsanalyse is waarschijnlijk de

veiligste en voorzichtigste optie wanneer de gegevens onvolledig zijn. We zullen nu de

verscheidene hoofdstukken kort voorstellen.

Hoofdstukken 2 en 3 omvatten inleidend materiaal, nodig als achtergrond bij de lat-

ere hoofdstukken. Motiverende case studies worden beschreven in hoofdstuk 2. Defini-

ties, algemene begrippen en fundamentele concepten worden aangereikt in hoofd-

stuk 3. In hetzelfde hoofdstuk wordt een overzicht gegeven van bestaande methodolo-

gie, zoals eenvoudige methoden en imputatie. Ook een aantal veelgebruikte modellen

wordt geschetst, zoals het Diggle and Kenward (1994) model.

Het begrip van een MAR tegenhanger voor een gefit MNAR model (Molenberghs

et al., 2008) wordt geschetst in hoofdstuk 4. Een dergelijke tegenhanger is equiv-

alent met het oorspronkelijke model voor wat betreft de fit aan de geobserveerde

gegevens, maar verschilt in de predictie van de niet geobserveerde waarnemingen.

Van hieruit kunnen we vertrekken om aan te geven dat de fit van een MNAR model

nooit gebruikt kan worden om na te gaan dat een mechanisme MNAR of MAR is.

We verwijzen hierbij ook naar Gill, van der Laan and Robins (1997) en Schafer and

Graham (2002). Wanneer een parametrisch MAR model de geobserveerde gegevens

niet goed beschrijft, kan een meer uitgebreid MNAR model gefit worden, waarna dan

de MAR tegenhangen kan afgeleid worden. Uiteraard kan dit alles mooi ingepast

worden in sensitiviteitsanalyse.

Methoden gebaseerd op MAR worden verder bestudeerd in hoofdstukken 5 en 6. In

het eerste van beide hoofdstukken beschouwen we marginale MAR modellen voor on-

volledige dichotome longitudinale gegevens, met bijzondere aandacht voor variaties op

de semi-parametrische aanpak van Liang and Zeger (1986), d.w.z. generalized estimat-

ing equations (GEE). Het feit dat GEE een frequentistische methode is, betekent dat
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ze in beginsel slechts geldig is onder MCAR, zoals eerder aangegeven een sterke, on-

realistische aanname. Om die reden worden twee aanpassingen bestudeerd: gewogen

GEE (WGEE) (Robins, Rotnitzky and Zhao, 1995) aan de ene kant en GEE gecombi-

neerd met multiple imputation (Rubin, 1987), of MI-GEE, aan de andere kant. Waar

asymptotische simulaties de theoretische eigenschappen van beide methodes aantoon-

den, gaven simulaties met eindige steekproeven aan wat de praktische eigenschappen

zijn, nuttig voor gebruik in concrete data analyse (Beunckens, Sotto and Molenberghs,

2008). De aantrekkelijke asymptotische eigenschappen van WGEE werden nauwelijks

gereproduceerd in kleine steekproeven. In een aantal scenarios waren de schattin-

gen gebaseerd op WGEE een stuk minder precies dan de schattingen gebaseerd op

MI-GEE. Verder, in tegenstelling tot MI-GEE dat een zekere mate van robuustheid

geniet bij verkeerd gespecifieerde modellen (zowel voor het meetmodel als voor het

imputatiemodel), is WGEE vrij sensitief voor verkeerd gespecifieerde dropout- en

meetmodellen. Samengevat illustreren de vergelijkingen gemaakt in dit hoofdstuk de

relatieve sterkte van imputatie, eerder dan weging, in het bijzonder in de context van

GEE.

Hoofdstuk 6 beschouwt het zogenaamde pattern-mixture model , PMM (Little,

1993, 1994a) voor de analyse van categorische gegevens met monotoon ontbrekende

gegevens. Via het gebruik van gesimuleerde gegevens bestuderen we de methode

van Jansen and Molenberghs (2007), die gebruik maakt van identificatie-restricties

om PMM parameters te schatten. We leiden ook asymptotische varianties af voor

gemarginaliseerde effectschattingen, in analogie met Sotto et al. (2009a). De resul-

taten geven aan dat de precisie van de schattingen sterk afhangt van de hoeveel-

heid ontbrekende gegevens in de verschillende dropout patronen. Dit impliceert op

zijn beurt dat een identificatie schema best gebruikt maakt van behoorlijk goed ge-

vulde patronen. Desalniettemin zijn de precisieschattingen bevredigend, ook als ze

gebaseerd zijn op eerder sporadisch gevulde patronen. Het effect van behandeling

op het moment van de laatste meting geeft meestal de beste precisie, onafhanke-

lijk van het dropout mechanisme of de gebruikte restricties. Met betrekking tot de

gemarginaliseerde effecten van behandeling zijn deze voorgesteld door Jansen and

Molenberghs (2007) lichtjes minder vertekend dan de directe lineaire methode (Park

and Lee, 1999) wanneer de gegevens binair zijn. De directe lineaire methode wordt

dus best beperkt tot gebruik bij continue, Gaussisch verdeelde gegevens.

In hoofdstuk 7 wordt het gebruik van invloedsmaten als instrumenten voor sen-

sitiviteitsanalyse bestudeerd. Veralgemeende lokale invloedsmaten worden afgeleid

en variaties op de bestaande methodologie voor de vorm die perturbaties aannemen

worden gëıntroduceerd. In analogie met Beunckens et al. (2009) is de ontwikkeling
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van ideeën in dit hoofdstuk sterk geworteld in een omvattende sensitiviteitsanalyse

van de zogenaamde Slovenian Public Opinion Survey. We combineren resultaten van

bestaande strategieën voor sensitiviteitsanalyse, zoals niet-parametrische grenzen, een

familie van identificeerbare modellen en intervallen afgeleid van niet-gëıdentificeerde

modellen, met deze gebaseerd op invloedsmaten.

De moeilijkheden bij het fitten van likelihood-gebaseerde non-ignorable modellen

voor longitudinale gegevens ontstaan uit de noodzaak om de likelihood voor de volledige

gegevens te integreren over de ontbrekende gegevens. Hoofdstuk 8 onderzoekt het ge-

bruik van computationele algoritmen om de complexe en tijdsintensieve aspecten van

dit numeriek integratieproces te vereenvoudigen. Sotto et al. (2009b) beschouwde

het gebruik van het zogenaamde stochastic expectation-maximization of SEM algo-

ritme (Celeux and Diebolt, 1985) om een likelihood-gebaseerd model voor longitu-

dinale gegevens met non-ignorable missingness te fitten. Het is een variatie op het

zeer populaire expectation-maximization (EM) algoritme. Op basis van een simulati-

estudie werden stochastische en niet-stochastische methoden met elkaar vergeleken.

De stochastische methode is zeer stabiel, terwijl de niet-stochastische methode tot

een iets grotere precisie leidt. Hiermee hebben we niet alleen een computationeel

aantrekkelijk alternatief voor bestaande methoden, doch SEM opent ook wegen voor

sensitiviteitsanalyse.

De grote verspreiding van makkelijk te gebruiken doch flexibele software om im-

putatie te implementeren heeft ongetwijfeld bijgedragen aan de populariteit ervan.

In hoofdstuk 9 passeren een aantal implementaties de revue en worden ze met elkaar

vergeleken. Het praktische nut is dat gebruikers zich kunnen laten leiden door deze

resultaten bij het maken van een keuze. De methoden worden vergeleken, op ba-

sis van simulaties, m.b.t. de resulterende parameterschattingen en m.b.t. maten voor

individuele imputatie-vertekening, d.w.z. de mate van vertekening in de imputatie

geëvalueerd op het niveau van het individu. Ondanks het feit dat de verscheidene

methoden over het algemeen tot vergelijkbare schattingen en standaardfouten leiden,

zijn er duidelijke verschillen op het niveau van de inviduele imputatie-vertekening.

Verder blijkt de performantie van de verscheidene routines af te hangen van twee

factoren, met name de fractie ontbrekende gegevens en de variabiliteit in de respons.

De ideeën ontwikkeld in deze thesis werden voorgesteld om aan te geven wat

de opties zijn, beschikbaar voor de onderzoeker. Bestaande methoden werden ook

verder bestudeerd. De keuze voor een bepaalde analysemethode is meestal ingegeven

door een samengaan van verscheidene pragmatische beschouwingen, zoals de speci-

fieke wetenschappelijke vraagstelling, computationele beschouwingen, en de hoeveel-

heid onvolledige gegevens. Omdat een dergelijke keuze vaak nogal overweldigend kan
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zijn voor de gebruiker hopen we met ons werk bijgedragen te hebben aan het verge-

makkelijken van de keuze. Tegelijk hebben we het belang aangegeven van sensitiviteit-

sanalyse. Verscheidene instrumenten voor sensitiviteitsanalyse werden aangereikt en

bestudeerd. In het bijzonder wanneer er onzekerheid is over het onderliggende miss-

ing data mechanisme, wat bijna altijd het geval is, is het gebruik van verscheidene

methoden tegelijkertijd een belangrijke bijdrage om na te gaan hoe onzekerheid over

de ontbrekende gegevens de conclusies al dan niet kan verstoren.
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1
Introduction

Scientific investigation frequently relies on data-based research, and, as such, is in-

evitably prone to incompleteness. Experimental or clinical studies, for instance,

though probably designed to yield complete data, can result in the loss or damage

of the experimental unit (or clinical subject) during the conduct of the experiment.

When replacement of the lost unit is infeasible, the research investigator is faced with

analysis of incomplete data. Incompleteness in survey-based studies is perhaps even

more common, as respondents may refuse to provide an answer to one or several ques-

tions for a variety of reasons. It is also possible that the study design itself induces

a lack of information for certain individuals of the study population. Regardless of

the specific missing data scenario, modification of the original plan of analysis may

be required to still be able to address the research question in a scientifically sound

manner.

In a broad sense, observational or experimental studies can be of a longitudinal

or cross-sectional nature. Whereas the latter entails data collection at a single point

in time, the former involves the collection of information from the study units over

periods of time. Both longitudinal and cross-sectional studies can result in data with

missing values, and the structure of the incomplete data is generally classified into

two forms. In a longitudinal study in which a particular response variable is observed

repeatedly over time, the sequence of resulting measurements naturally defines a log-

ical arrangement. In such cases, missingness often occurs in the form of the loss of a

1



2 Chapter 1. Introduction

study unit at a specific point in time and thereafter, yielding what is conventionally

termed dropout or attrition, or, more generally, monotone missingness. The latter,

though most frequently encountered in longitudinal types of studies, can also occur in

cross-sectional data, provided some ordering of the variables of interest can be consid-

ered. In contrast, one can speak of so-called non-monotone missingness, for which the

missing values do not define any particular structure, but rather occur intermittently

within the set of variables. Non-monotone missingness, though entirely conceivable

in longitudinal data, is actually more commonly encountered in multivariate data.

Missingness, which is typically viewed as a nuisance, usually induces additional

complexity in the analysis, because most data analysis procedures were not designed

for them. The manner in which incompleteness in the data is addressed can have

important implications on the resulting conclusions. In a longitudinal study assessing

the efficacy of a particular treatment, for example, if patients with poorer clinical

condition are the ones who drop out from the study and are excluded from the anal-

ysis, the efficacy of the treatment may be too optimistically estimated. Similarly, if

respondents in favor (or against) a sensitive issue fail to supply responses and are

discarded from the analysis a survey, resulting conclusions about the issue will most

probably be biased accordingly. Though these and similar situations are somewhat

extreme and perhaps unlikely, they nevertheless illustrate the consequences that the

analysis approach can have on the conclusions derived from incomplete data.

When missing values occur for reasons unknown or beyond the control of the re-

searcher, assumptions about the process that generates them need to be made. Rubin

(1976) defined a classification scheme for the non-response process in terms of its sta-

tistical relation with the process generating the data itself (i.e., the response process).

When the two processes are independent, possibly conditionally on covariates, the

missing data or non-response process is described as being missing completely at ran-

dom (MCAR). A missing at random (MAR) non-response mechanism, on the other

hand, consists of a relation between the non-response process and the observed, but

not the unobserved, responses. Dependence between the non-response and the missing

responses characterizes a missing not at random (MNAR) missingness mechanism.

To help motivate these different missing data mechanisms, consider a typical lon-

gitudinal clinical trial to assess the efficacy of a given treatment for a particular dis-

ease or condition. A patient who fails to continue the study for reasons not related to

his/her clinical condition (e.g., relocation to a different region from which continuation

in the trial would not be possible) would have missing values that most probably fall

within the category of MCAR. Alternatively, a patient who was improving over three

visits, lapsed at the fourth visit, and, as a consequence of the regressing condition,
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dropped out at the fifth visit might most plausibly have missing-at-random values,

since the nature of the missingness is related to the previously observed (worsening)

outcome. An MNAR situation might best be depicted by a patient who improves to

the third visit, deteriorates in between the third and the fourth visit, and, because of

his/her aggravated condition, drops out at the fourth visit. In this case, the outcome

for the fourth visit will be unobserved and the reason for the missingness is actually

related to the yet-to-be observed deteriorating outcome at that visit.

The notion of a non-response process was introduced by Rubin (1976) not so

much out of a need to model it, but rather to help clarify under what conditions it

could possibly be ignored and yet have valid inferences. While frequentist statistical

procedures generally admit ignoring the missing data process only when the data are

MCAR, likelihood and Bayesian approaches allow ignoring the missing data process

under MAR. In contrast, the missingness process cannot be ignored in the case of

MNAR, which is also commonly referred to as the non-ignorable situation. These

results, though already substantially providing some level of simplification of the

missing data problem in the sense of narrowing down viable alternatives for analysis,

rely on unverifiable assumptions about the underlying missing data mechanism. From

the previous illustrations, it is clear that unless one knows, or at least has some idea

about, the motivations for a subject’s dropping out, it can be almost impossible

to determine which underlying missing data mechanism is in play. Without such

knowledge, a researcher can only attempt, at best, a reasonable guess. And unless

strong conviction about the underlying mechanism driving the missingness can be

had, more confidence in resulting conclusions might be gained by means of so-called

sensitivity analysis. Under such, a researcher might consider analysis approaches

under various missing data scenarios and compare resulting inferences.

Prior to advances in the theory, methodology, as well as computational capabil-

ity, for handling missing data, analysis generally entailed the exclusion of cases with

missing values - an approach referred to as complete case analysis. Such an approach

is clearly inefficient, especially for data with large amounts of missingness, and poten-

tially biased, as was already pointed out earlier, but more importantly, is valid only

if the underlying missingness process is MCAR. Owing to the development of less

näıve methodologies in the recent decades, many more options are now available to

the researcher. Moreover, with the continuing growth in this area of research, missing

data problems have become much more manageable and a lot less of a nuisance than

in the past.

The aim of this thesis is to highlight and provide insight on existing methodology

in the area of incomplete data, with primary interest falling on longitudinal outcome
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data. In addition, new or modified techniques shall be proposed and assessed, often in

relation to existing approaches. Because the inferential validity of a method depends

heavily on the unverifiable assumption regarding the underlying missing data mech-

anism, a considerable part of the thesis shall also be devoted to the use of various

tools for sensitivity analysis, which provides a more prudent approach compared to

“putting all one’s eggs in a single basket.” It is important to clarify at this point

that incompleteness can arise in any variable in a study, be it a response variable or

a covariate. The main concern here, however, shall be missingness in the response

or outcome, rather than in covariates. Moreover, inasmuch as outcome variables of a

continuous or of a discrete nature are both entirely conceivable in practice, methods

for both types are explored. An overview of each of the chapters within the thesis

now follows.

Chapters 2 and 3 comprise the introductory material necessary for the devel-

opment of this thesis. In Chapter 2, various data sets used within the thesis are

described briefly. Basic definitions, general notations and fundamental concepts to

be used throughout the thesis are then outlined in Chapter 3. The latter will also

already provide a very broad overview of some of the existing methodology, e.g., sim-

ple techniques and imputation, as well as an enumeration of various commonly used

models for dealing with incomplete data, e.g., the Diggle and Kenward (1994) model.

As has been stressed previously, the choice of the assumed type of non-response

mechanism is a critical one in the modeling of incomplete data, due to the unveri-

fiable nature of such a choice. Moreover, as will be developed in Chapter 4, under

certain situations, a model derived under one particular missing data mechanism may

be equivalent, in some statistical sense, to another model derived under a different

mechanism. In Chapter 4, such an idea is presented, relating missingness at ran-

dom with missingness not at random (Molenberghs et al., 2008). The result is of

substantive interest as it not only further underscores the risk in placing one’s belief

entirely on a specific missing data mechanism, but also emphasizes the importance of

performing sensitivity-based analyses.

MAR-based approaches in modeling incomplete data are the subject of Chapters 5

and 6. In the former, focusing on non-Gaussian longitudinal data with dropout, two

versions of a semi-parametric method – one using a weighting scheme to address

missingness and the other using imputation of the missing data – are compared. The

relative merits of the different approaches are highlighted via a simulation study con-

ducted under various misspecifications. Chapter 6, on the other hand, considers the

pattern-mixture modeling framework (Little, 1993, 1994a). Building upon the ideas

proposed in Jansen and Molenberghs (2007), regarding pattern-mixture models for



5

categorical outcomes with missingness and their subsequent marginalization, simu-

lations are conducted and asymptotic variances for the marginalized estimates are

further derived in line with the results of Sotto et al. (2009a).

Chapters 7 and 8 focus on methodology for the analysis of longitudinal or mul-

tivariate data with non-ignorable missingness. In Chapter 7, the use of influence

measures are explored as possible tools for sensitivity analysis. Parallel to Beunckens

et al. (2009), the development of ideas in this chapter are rooted within a com-

prehensive sensitivity analysis on the Slovenian Public Opinion Survey (Chapter 2),

combining results of existing strategies for sensitivity analyses with those based on

influence measures. Chapter 8 explores the application of a computational algorithm

to fit likelihood-based models to longitudinal data with missing data that are of an

MNAR nature (Sotto et al., 2009b). The algorithm is particularly useful in the latter

setting as it provides an approach that precludes the often tedious and computation-

ally demanding aspects of numerical integration that is required under non-ignorable

models. Moreover, such a technique, when not taken as the primary course of analysis,

can further serve as an additional tool within the framework of a sensitivity analysis.

The widespread availability of easy-to-use yet flexible software-based routines for

implementing imputation - broadly covering all methods that entail filling-in miss-

ing observations with some form of imputed values - has undoubtedly boosted the

popularity of imputation as a technique to deal with missing data. In Chapter 9, a

number of these software routines or packages is reviewed under simulated settings,

as well as within a real-life context, to help bring out features of the different routines

relative to each other, thereby providing practitioners with bases for making a choice

regarding which software package might best suit their needs.

Finally, in the last chapter (Chapter 10), ideas, results, issues and recommen-

dations are presented regarding the different methods considered within the thesis.

Technical details and derivations that are excluded from the main text are provided

in the Appendix section.





2
Key Examples

In this chapter, three data sets that shall serve as key examples in the thesis are intro-

duced. These data sets, which are either of a longitudinal or multivariate nature and

contain missing observations, will be used in illustrating methodologies in subsequent

chapters.

2.1 Age-Related Macular Degeneration Trial

The first data set considered arises from a randomized multicenter clinical trial com-

paring an experimental treatment (interferon-α) with a corresponding placebo in the

treatment of patients with age-related macular degeneration, or ARMD, with particu-

lar focus on the comparison between the placebo and the highest dose (6 million units

daily) of interferon-α (Z). Full results of this trial are reported in Pharmacological

Therapy for Macular Degeneration Study Group (1997).

Patients with macular degeneration progressively lose vision. In the trial, visual

acuity was assessed at different time points (4, 12, 24 and 52 weeks) through patients’

ability to read lines of letters on standardized vision charts. These charts display lines

of five letters of decreasing size, which the patient must read from top (largest letters)

to bottom (smallest letters). The raw visual acuity is the total number of letters read

correctly. Table 2.1 shows the average visual acuity by treatment group at baseline

and at the four subsequent measurement occasions.

7
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Table 2.1: Age-Related Macular Degeneration Trial. Mean (standard error) visual

acuity at baseline, at 4, 12, 24 and 52 weeks, by randomized treatment group.

Time Point Placebo Interferon-α Total

Baseline 55.3 (1.4) 54.6 (1.4) 55.0 (1.0)

4 weeks 54.0 (1.5) 50.9 (1.5) 52.5 (1.1)

12 weeks 52.9 (1.6) 48.7 (1.7) 50.8 (1.2)

24 weeks 49.3 (1.8) 45.5 (1.8) 47.5 (1.3)

52 weeks (1 year) 44.4 (1.8) 39.1 (1.9) 42.0 (1.3)

Table 2.2 presents an overview of the amount and nature of missingness, monotone

and non-monotone, for the ARMD data. A total of 240 patients were observed, of

which about 78% had complete observations. Roughly 16% of the cases represented

dropout at either the 12th, 24th or 52nd week, less than 5% exhibited intermittent

missingness, and 6 patients (2.5%) had no observations.

In subsequent analyses of the ARMD data, whenever considering monotone miss-

ingness, patients with intermittent missingness, as well as patients with no recorded

measurements, are excluded, yielding a final analysis set consisting of 226 patients.

When intermittent missingness is of interest, on the other hand, all 240 patients are

included in the analysis set.

Table 2.2: Age-Related Macular Degeneration Trial. Overview of missingness patterns

and corresponding frequencies. (O: observed, M: missing.)

Measurement Occasion
Number %

4 weeks 12 weeks 24 weeks 52 weeks

Completers O O O O 188 78.33

Dropouts

O O O M 24 10.00

O O M M 8 3.33

O M M M 6 2.50

M M M M 6 2.50

Non-Monotone

O O M O 4 1.67

O M M O 1 0.42

M O O O 2 0.83

M O M M 1 0.42
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2.2 Hepatitis B Virus Immunization Trial

The second case study involves a Hepatitis B virus vaccination trial to study the

persistence of vaccine-induced anti-HBs antibodies in mentally retarded patients (Van

Damme et al., 2006). Hepatitis B is a liver infection caused by the Hepatitis B virus

(HBV) for which the mentally retarded are at high risk. The trial assessed the level

of anti-HBs antibodies in the blood 20 years after the original vaccinations. Patient

anti-HBs antibody levels were then recorded at various times points within a period

of 61 months. Information on the number of booster shots received by the patient

during the immunization period was also recorded.

Of 275 subjects originally enrolled in the trial, only 214 were available for follow-

up after the 20-year period. The log-scaled level of anti-HBs was the response of

interest, and, for the purposes of this thesis, analysis of this response was restricted

to the last 2 time points in the sequence (months 60 and 61). Table 2.3 shows the

distribution of the subjects across the various non-monotone patterns. Of the 214

subjects, about 60% had complete information at the time points of interest, while a

little more than 40% had incomplete data. More specifically, about 29% of the cases

had both measurements missing, 10% had responses only for the first time point and

2% had responses only for the second time point.

Table 2.3: Hepatitis B Virus Immunization Trial. Overview of missingness patterns

and corresponding frequencies. (O: observed, M: missing.)

Measurement Occasion
Number %

60 months 61 months

Completers O O 126 58.89

Dropouts

O M 21 9.81

M M 62 28.97

Non-Monotone

M O 5 2.34
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2.3 The Slovenian Public Opinion Survey

In 1991, Slovenians voted for independence from former Yugoslavia in a plebiscite.

To prepare for this result, the Slovenian government collected data on its possible

outcome by inserting questions in the so-called Slovenian Public Opinion (SPO) Sur-

vey. The survey, administered to 2074 voting-age Slovenians, was conducted a month

prior to the plebiscite using a three-stage sampling design (Barnett, 2002). The three

fundamental questions about the ensuing plebiscite added to the survey were:

(1) Are you in favor of Slovenian independence?

(2) Are you in favor of Slovenia’s secession from Yugoslavia?

(3) Will you attend the plebiscite?

In spite of their apparent equivalence, questions (1) and (2) are different since

independence would have been possible in a transition from the existing federal struc-

ture to a looser, confederal, form as well, and therefore the secession question was

added. Question (3) is highly relevant since the political decision was taken that not

attending was treated as an effective NO to question (1). Thus, the primary esti-

mand is the proportion θ of people that will be considered as voting YES, which, in

Table 2.4: Slovenian Public Opinion Survey. Cross-tabulation of the responses on the

three questions added to the survey. (M: Missing.)

Secession Attendance
Independence

Yes No M

Yes

Yes 1191 8 21

No 8 0 4

M 107 3 9

No

Yes 158 68 29

No 7 14 3

M 18 43 31

M

Yes 90 2 109

No 1 2 25

M 19 8 96
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Table 2.5: Slovenian Public Opinion Survey. Cross-tabulation of the responses on the

attendance and independence questions, collapsed over the secession question. (M:

Missing.)

Attendance
Independence

Yes No M

Yes 1439 78 159

No 16 16 32

M 144 54 136

the context of the three questions, can be defined as the fraction of people answering

YES on both the independence and attendance questions (1) and (3), respectively,

regardless of their response to question (2). The raw data are presented in Table 2.4.

In subsequent chapters that use the SPO Survey data, unless otherwise indicated,

analysis will be restricted to the results of the independence and attendance questions,

i.e., questions (1) and (3), respectively. The raw data in Table 2.4, collapsed over the

secession question, are summarized in Table 2.5.





3
Fundamental Concepts

In this chapter, basic terminology, notations and fundamental concepts that are used

in the area of incomplete (longitudinal) data and that will be used throughout the

thesis, are introduced. Some commonly used methodologies are also briefly described.

3.1 Incomplete Longitudinal Data

Suppose that for subject i, i = 1, 2, . . . , N , a sequence of measurements Yij is designed

to be measured at time points tij , j = 1, 2, . . . , ni. The resulting vector of planned

measurements, Y i = (Yi1, Yi2, . . . , Yini
)′, is referred to as the complete data. Sup-

pose further that, for each measurement in the series, a corresponding non-response

indicator Rij is defined as:

Rij =

{
1 if Yij is observed, and

0 otherwise,

which are organized into a vector Ri of parallel structure to Y i. The set of mea-

surements, along with the non-response indicators, (Y i,Ri), comprise what is called

the full data. Typically, Y i can be partitioned into two sub-vectors: Y o
i consisting

of those Yij for which Rij = 1, and Y m
i consisting of the remaining components,

respectively referred to as the observed and missing components. For longitudinal

data with missingness, only (Y o
i ,Ri) is available.

13
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The structure of the non-response vector admits two basic types of missingness:

monotone and non-monotone. When non-response is monotone or of a dropout nature,

the unobserved measurements within the longitudinal series all occur after a particular

measurement occasion, and in that sense, the subject is said to have “dropped out”

of the study. In such cases, the non-response vector Ri consists of a very particular

form, with all Rij equal to one up to a particular time point j and zero thereafter.

This structure allows the non-response indicators in Ri to be collapsed into a single

variate, Di, defined as

Di = 1 +

ni∑

j=1

Rij ,

denoting the time point at which subject i drops out. Non-monotone missingness,

on the other hand, occurs when missing values arise intermittently within the se-

ries, leading to no distinct configuration of the non-response indicators, and thus,

simplification of Ri into a lower-dimensional form is not straightforward.

3.2 Modeling Frameworks

Owing to the presence of the two stochastic components, Y i and Ri, models for

incomplete longitudinal data involve working with the joint distribution (suppress-

ing, for the moment, dependence on covariates), f(yi, ri|θ,ψ), where θ and ψ are

the respective parameter vectors describing the response and non-response processes.

The choice of factorization of this joint distribution characterizes various modeling

frameworks, each of which naturally warranting a particular interpretation. Under

a selection model (SeM) framework (Rubin, 1976; Little and Rubin, 1987), the joint

distribution is factored into a marginal model for the measurements and a conditional

model for non-response given the measurements, that is,

f(yi, ri|θ,ψ) = f(yi|θ) f(ri|yi,ψ). (3.1)

Selection models are an obvious choice for clinicians, for instance, who are often

interested in the marginal effect, θ, of the independent variables (e.g., treatment) on

the response.

The reverse factorization of f(yi, ri|θ,ψ) into a marginal model for the non-

response and a model for the measurements conditional on the non-response,

f(yi, ri|θ,ψ) = f(yi|ri,θ) f(ri|ψ), (3.2)

characterizes pattern-mixture models (Little, 1993, 1994a), or PMM. It is clear that the

structure of (3.2) describes a mixture of pattern-specific models for the measurements
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via the mixing distribution f(ri|ψ). And in contrast with selection models, the

parameters θ in a PMM denote pattern-specific effects of the independent variables

on the response.

Finally, if the measurement and non-response processes are taken to be indepen-

dent, conditional on a common set bi of latent variables or random effects, via the

factorization,

f(yi, ri|θ,ψ) = f(yi|bi,θ) f(ri|bi,ψ), (3.3)

then, a shared-parameter model (Wu and Carroll, 1988; Wu and Bailey, 1989), or SPM,

is in effect. Here, θ denotes the effects of the independent variables, conditional on

the random effects.

It should be noted that whereas θ in (3.1) represent marginal effects, θ in both

(3.2) and (3.3) describe conditional effects, conditional on the missingness pattern

and on the random effects, respectively. As such, direct comparison of parameter

estimates arising from an SeM, a PMM or an SPM is not immediately possible.

Further marginalization, however, over either the non-response patterns or over the

random effects, may be considered to yield fully marginal effects.

3.3 Missing Data Mechanisms

Within the selection model framework, Rubin (1976) developed a taxonomy to classify

the missingness process based on its dependence (or lack thereof) on the measurement

process. The classification is hinged on the structure of the second term in the right

hand side of (3.1), which upon partitioning of the response vector into its observed and

missing components, can be expressed as f(ri|yi,ψ) = f(ri|yo
i ,y

m
i ,ψ). Independence

of the measurement and non-response processes, possibly conditionally on covariates,

defines a missing data mechanism that is said to be missing completely at random

(MCAR). A less rigid assumption would be one of missing at random (MAR), for

which the missingness may depend on the observed outcomes and on covariates but,

given these, not further on the unobserved outcomes. When, in addition to such de-

pendencies, the unobserved data provide further information about the non-response

process, the mechanism is referred to as being missing not at random (MNAR). These

can be depicted in terms of the conditional distribution of ri given yi as follows:

Mechanism f(ri|yi,ψ)

MCAR f(ri|ψ)

MAR f(ri|yo
i ,ψ)

MNAR f(ri|yo
i ,y

m
i ,ψ)
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Though these frameworks are frequently considered as distinct, technically speak-

ing, the MNAR family can be viewed as encompassing both MCAR and MAR models

as special cases. In addition, an MCAR model, under which no dependence between

ri and ym
i exists, can actually be (more broadly) classified as MAR as well. These

connections give rise to the following relations:

MCAR ⊂ MAR ⊂ MNAR.

MCAR, though leading to the simplest approaches in terms of the modeling task,

since the missing observations can be altogether excluded from the analysis, requires

quite a stringent assumption, which, in real-life contexts, is often not realistic. MNAR,

on the other hand, is plausible in (longitudinal) clinical trials, where it is common

to encounter subjects who do well until midway into the trial, relapse after the last

observed visit, and are then lost to follow-up. If, in such cases, the missed visit is, to

some extent, attributable to the subject’s worsening clinical condition, as represented

by the yet-to-be observed response, then the non-response process depends on the

missing response (that would have been recorded had the patient been present for

the visit). Analogously, if a subject consistently worsens over the previous visits and,

as a consequence, decides to drop out at the next scheduled visit, then the missing

response somehow depends on the previous observed responses and may most likely

be of an MAR nature.

It is important to note at this point that MCAR, MAR and MNAR are assump-

tions made regarding the underlying non-response process. As such, absolute certainty

about them can never be had. Incompleteness in the data induces a certain degree

of unidentifiability, which has to be compensated for, ideally by a wise choice for the

operating missingness mechanism. Though an experienced researcher may have some

general idea on the nature of the missing data, this would be, at best, an educated

guess. Fazed with unfamiliarity with clinical (and other) aspects of non-response, one

can perhaps avoid the more implausible MCAR, or even go for some sort of sensi-

tivity analysis, comparing results under different mechanisms, for instance. As will

become clear shortly, validity of inferences made under different statistical methods

depend primarily on the assumed missingness mechanism. In extreme cases, contra-

dictory results can be obtained under two different mechanisms. Moreover, a model

obtained under an MNAR missingness mechanism admits an equivalent MAR model,

at least in terms of the models’ fit to the observed data, but with contrasting infer-

ences regarding the unobserved data. Such ideas will be discussed in greater detail in

Chapter 4.
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3.4 Likelihood and Ignorability

Traditionally, likelihood-based methods entail maximization of the full-data likelihood

L∗ ≡ L∗ (θ,ψ|y, r) =

N∏

i=1

f(yi, ri|θ,ψ) =

N∏

i=1

f(yo
i ,y

m
i , ri|θ,ψ). (3.4)

In the presence of incomplete data, however, inference must be based on what is

observed, and thus, the full-data likelihood L∗ must be replaced by the observed-data

likelihood L, for which the individual likelihood contributions need to be integrated

over the missing values, i.e.,

L ≡ L (θ,ψ|y, r) =
N∏

i=1

∫
f(yo

i ,y
m
i , ri|θ,ψ) dym

i . (3.5)

Restricting focus on the observed-data likelihood contribution of subject i, under an

SeM framework, the integral in (3.5) becomes

Li ≡ Li (θ,ψ|yi, ri) =

∫
f(yo

i ,y
m
i |θ) f(ri|yo

i ,y
m
i ,ψ) dym

i . (3.6)

Under MCAR (or MAR), independence of all (or the unobserved) measurements and

non-response leads to

Li = f(ri|ψ)

∫
f(yo

i ,y
m
i |θ) dym

i = f(ri|ψ) f(yo
i |θ), or (3.7)

Li = f(ri|yo
i ,ψ)

∫
f(yo

i ,y
m
i |θ) dym

i = f(ri|yo
i ,ψ) f(yo

i |θ). (3.8)

If the parameters describing the measurement process are functionally independent

of the parameters describing the missingness process, i.e, the parameter space of

the full vector (θ′,ψ′)′ is equivalent to the product of the parameter spaces of θ

and ψ, then the separability condition is satisfied. Under such a case, within the

context of likelihood inference, MCAR and MAR are ignorable, while an MNAR

process is non-ignorable. Frequentist inference, on the other hand, require the stronger

condition of MCAR to ensure ignorability (Rubin, 1976). Modifications can allow for

the possibility to model the data under MAR, provided the missingness is addressed

by, for instance, a dropout or an imputation model, thus rendering the missing-data

mechanism not ignorable.

The implication of ignorability within likelihood-based approaches is that θ can

be estimated directly from the observed data, by maximizing the logarithm of the

component f(yo
i |θ) in the likelihood contribution Li – a task easily done by stan-

dard software procedures that allow for missing observations. Unless the researcher
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is particularly interested in the missingness model, non-response can altogether be

“ignored.” For the non-ignorable situation (MNAR), the likelihood contributions do

not admit further simplification and evaluation of the integral is necessary to compute

the observed-data likelihood. Depending on the complexity of the model used, not

only is the approximation/evaluation of the integral itself involved, but its subsequent

maximization (for maximum likelihood, for instance) can be computationally demand-

ing. This integration step is what often poses a challenge in fitting likelihood-based

parametric models for non-ignorable missing data.

Perhaps the most widely used methodology for continuous longitudinal data within

the likelihood framework is the general linear mixed-effects model (Laird and Ware,

1982), which takes the form





Y i = Xiβ +Zibi + εi

bi ∼ N(0, D)

εi ∼ N(0,Σi)

b1, . . . , bN , ε1, . . . , εN independent

(3.9)

where Y i is the ni-dimensional (longitudinal) response vector for subject i,Xi and Zi

are, respectively, the (ni×p) and (ni×q) known design matrices, β is the p-dimensional

vector containing the fixed effects, bi is the q-dimensional vector containing random

effects, and εi is an ni-dimensional vector of residual components, combining mea-

surement error and serial correlation. D and Σi are general covariance matrices of

size (q× q) and (ni ×ni), respectively. In the case of no serial correlation, Σi reduces

to σ2Ini
.

It follows from (3.9) that, conditional on bi, Y i is normally distributed with mean

vectorXiβ+Zibi and with covariance matrix Σi. Upon integration over the random

effects, bi ∼ N(0, D), the resulting marginal (i.e., averaged over the random effects)

model for the response can be expressed as:

Y i ∼ N
(
Xiβ,ZiDZ

′
i + Σi

)
. (3.10)

Ample detail and examples can be found in Verbeke and Molenberghs (2000).

Extension of the linear mixed-effects model to non-Gaussian (e.g., binary) longitu-

dinal responses defines the class of generalized linear mixed models (Molenberghs and

Verbeke, 2005). GLMMs expand the generalized linear model framework (McCullagh

and Nelder, 1989) to the case of correlated responses by (1) including subject-specific

regression parameters bi in the linear predictor to address correlations among the

repeated measures, and (2) assuming that conditional on the random effects bi, the
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elements of Y i are independent. A typical GLMM assumes that all Yij have densi-

ties of the form fi(yij) ∈ exponential family, and the mean µij is modeled through a

linear predictor containing fixed regression parameters β, as well as subject-specific

parameters bi, with some known link function η(·). It is further assumed that the

random effects follow a normal distribution.

The general specification of a GLMM thus includes (Molenberghs and Verbeke,

2005):

• the conditional distribution of the response Yij given the random effects bi is

assumed to follow from the exponential family;

• the conditional expectation of the response is modeled through a linear pre-

dictor containing the fixed regression parameters as well as the subject-specific

parameters bi, through some known link function η, i.e.,

E (Yij |bi) = µij and η (µij) = x′
ijβ + z′ijbi, (3.11)

where xij and zij are vectors containing known covariate values, with condi-

tional variance given by:

Var (Yij |bi) = φυ (µij) ; (3.12)

• conditional on the bi, the repeated measurements in Y i are independent; and,

• the bi are independent and identically distributed as bi ∼ N(0, D).

Note that if η(·) is the natural (identity) link function, (3.11) becomes

µij = x′
ijβ + z′ijbi,

and the GLMM reduces to the linear mixed model.

3.5 Methodology for Incomplete Longitudinal Data

This section is devoted to providing an overview of the various strategies in handling

missing data in longitudinal studies.
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3.5.1 Simple Methods

One of the simplest, but not necessarily most efficient, ways to handle incompleteness

in any data is to use only the complete cases. Such an analysis is referred to as

complete case analysis (CCA). Not only is implementation of CCA straightforward,

most standard software delete incomplete cases at the onset of the procedure, and

thus, no special data management is often necessary. The simplicity of CCA comes

with a price – loss of information, arising from discarding incomplete cases, and,

as a consequence, inefficient estimators and a severe decrease in power. Moreover,

exclusion of incomplete cases is valid only under MCAR, and bias is inevitable under

MAR. From an intuitive point of view, if the completers in a longitudinal study are

generally the “better” patients, CCA would lead to overly optimistic results for the

general study population.

Last observation carried forward or LOCF does exactly what its name states –

the last observed measurement is used for succeeding unobserved measurements. If

missingness is of a dropout nature, then the last recorded value for the response is used

for all succeeding time points up to the end of the study. For intermittent missingness

types, the last observed response is substituted for all missing observations within 2

observed responses. The idea of LOCF is based on the assumption that a subject

will stay at the same response level until the end of the study, or at least, until

he/she returns for a visit. Given that these periods of dropout (or missingness) can

be months or years in many clinical trials, it is difficult to conceive that a patient’s

clinical condition will not change over such a possibly lengthy period. Moreover,

when a patient goes off trial, changes in his/her condition are almost always expected.

Finally, when LOCF is employed as a means of handling incompleteness in the data,

no attempt is made to distinguish the actual observed responses and those filled in

by LOCF (e.g., a weighting scheme which downweights the replaced values).

Molenberghs and Kenward (2007) (Section 4.3) showed, using hypothetical data,

that, even under the unrealistically strong assumption of MCAR, while CCA produces

unbiased estimates, the bias in the LOCF estimator does not vanish, and can even

induce an apparent treatment effect when there is none. Under MAR, they showed

that both can be biased and bias can go in either direction. The same authors further

examined the nature of the resulting missing data mechanism implied by using LOCF

(Kenward and Molenberghs, 2009). They determined that LOCF effects a missing

data mechanism that is forced to depend on future, unobserved measurements – a

sharp contradiction and incompatibility with MCAR, under which LOCF has been

thought, apparently incorrectly, to be valid.
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3.5.2 Imputation

Imputation broadly refers to any method that addresses the missing data problem

by substituting imputed values for the missing measurements. This can be done in a

variety of ways. LOCF, for instance, can be viewed as an imputation strategy in the

broad sense. Alternatively, more intuitive ways of arriving at imputed values might

be considered. Unconditional mean imputation (Little and Rubin, 1987) uses the av-

erage of all observed values of the same variable (e.g., response at a particular time

point) over the other subjects as a substitute for missing values of that variable. The

term unconditional arises from the fact that the imputation does not condition on a

subject’s available information, but rather, uses information from other subjects. In

contrast, when information on a subject’s missing response is imputed using infor-

mation from the same subject’s observed responses, the imputation method is called

conditional mean imputation or Buck’s method (Buck, 1960; Little and Rubin, 1987).

LOCF, unconditional and conditional mean imputation, among others, each re-

place the missing value with a single imputed value. Several such replacements can

also be considered for the missing observation, via so-called multiple imputation (Ru-

bin, 1978, 1987). Under this approach, the completed data sets are separately an-

alyzed and subsequently pooled for final inference. The rationale behind multiple

imputation is to take into account variability in the imputation of the missing values

by taking several copies of it. The key idea of the procedure is to first replace each

missing value with a set of M plausible values drawn from the conditional distribu-

tion of the unobserved values, given the observed ones. This conditional distribution

represents the uncertainty about the right value to impute. In this way, M imputed

data sets are generated (imputation stage), which are then analyzed using standard

complete-data methods (analysis stage). Finally, the results from the M analyses

have to be combined into a single inference (pooling stage) by means of the method

laid out in Rubin (1978). In its basic form, multiple imputation requires the miss-

ingness mechanism to be MAR, though versions under MNAR have been proposed

(Rubin, 1987; Molenberghs, Kenward and Lesaffre, 1997).

In line with previous notation, suppose that the vector of repeated measures Y i =

(Y o
i ,Y

m
i ) is described by the parameter vector θ. At the imputation stage, the

objective is to fill in the missing data with draws from the conditional distribution

f(ym
i |yo

i ,θ). Since θ is unknown, an estimate for it, say θ̂, is first obtained from

the data, after which f(ym
i |yo

i , θ̂) is used to impute the missing data. This implies

generating draws from the distribution of θ̂, thereby taking sampling uncertainty

into account. Alternatively, a Bayesian approach, in which uncertainty about θ is
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incorporated by means of some prior distribution for θ, can also be taken. A random

θ
∗ is first drawn from this prior distribution, then a random Y m

i is selected from

f(ym
i |yo

i ,θ
∗). The so-imputed missing data are next augmented to the observed

data, yielding completed data (Y o,Y m∗

), which are then used to obtain an estimate

of θ and its variance, U = V̂ar(θ̂). These steps are repeated a number of times, say

M times, producing θ̂
m

and Um, for m = 1, . . . ,M . In the last phase of multiple

imputation, the results of the analyses for the M imputed data sets are pooled into a

single inference. The combined point estimate for the parameter of interest θ from the

multiple imputation is simply the average of the M complete-data point estimates.

That is, the estimate and its estimated variance are given by:

θ̂ =
1

M

M∑

m=1

θ̂
m

and V =W +

(
M + 1

M

)
B, (3.13)

where

W =

M∑

m=1

Um

M
and B =

M∑

m=1

(θ̂
m − θ̂)(θ̂m − θ̂)′

M − 1
, (3.14)

with W denoting the average within imputation variance and B the between impu-

tation variance (Rubin, 1987).

3.5.3 Direct Likelihood

In general, likelihood-based methods can be applied to incomplete longitudinal data

after deletion (e.g., CCA) or imputation of the missing observations, or to the in-

complete data in its raw form (i.e., without any pre-processing or prior treatment of

the missing values). In the former, since missing values are not longer present in the

set of complete cases or in the imputed data set, likelihood approaches are based on

the full-data likelihood (3.4) of the complete (or completed) data. In contrast, for

incomplete longitudinal data in the “raw,” so to speak, any method within a likeli-

hood framework would require working with the observed-data likelihood (3.5). For

the remainder of this thesis, the terminology direct likelihood, unless otherwise stated,

shall be used to refer to the latter case, that is, likelihood methods applied to the

data as they are, rather than on data subjected to any pre-processing of the missing

observations.

In Section 3.4, it was noted that, under ignorability, the observed-data likeli-

hood simplifies into either (3.7) for MCAR or (3.8) for MAR. Under such cases, the

observed-data log-likelihood splits into two component parts, having, as a consequence
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of the separability condition, separable parameter spaces. For MAR, for instance,

ℓi ≡ log Li = log f(ri|yo
i ,ψ) + log f(yo

i |θ). (3.15)

Maximum likelihood estimation would thus simply entail separate maximization of

the component terms, which would translate, for instance, to fitting two maximum

likelihood models: one for the observed responses and another for the non-responses

conditional on the observed responses. Additional simplification arises for the case of

MCAR,

ℓi ≡ log Li = log f(ri|ψ) + log f(yo
i |θ), (3.16)

where the model for the non-response need not be conditioned on the observed re-

sponses. Moreover, if the focus of inference lies on the response process parameters

θ, estimation of the (conditional) non-response model (given the observed measure-

ments) can altogether be bypassed. As such, the direct likelihood approach is no more

complicated than fitting a likelihood-based model on the complete cases. Standard

software procedures that allow for incomplete observations, ensuring that the correct

form of the likelihood is manipulated, would be able to obtain such a solution.

Direct likelihood under non-ignorability (e.g., MNAR) is a lot less straightforward

in comparison with the ignorable case. Unlike the latter, the former does not admit

further simplification of the observed-data log-likelihood contributions, due to the de-

pendence of non-response on the unobserved (and possibly also, observed) outcomes,

ℓi ≡ log Li = log

∫
f(yo

i ,y
m
i |θ) f(ri|yo

i ,y
m
i ,ψ) dym

i . (3.17)

The integration over the missing values, which vanishes under ignorability, brings

about additional levels of complexity to the direct likelihood approach for non-ignorable

missingness. In addition to evaluation/approximation of the integral to compute ℓi

in (3.17), which in itself can already be intricate, especially for high dimensions of

missingness, obtaining a maximum of such a complex log-likelihood can be extremely

demanding computationally. In Chapter 8, a computational algorithm to help over-

come such numerical complexities will be explored.

3.5.4 Semi-Parametric Approaches

Often, full maximum likelihood can be prohibitive when the form of the likelihood

is complex; this can be particularly so in the case of longitudinal sequences that are

of moderate to large lengths. In such situations, working with the full likelihood can
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be avoided by specifying the likelihood only partially, resulting in a semi-parametric

method. Broadly speaking, the application of semi-parametric techniques is not exclu-

sively confined to the area of longitudinal data, though such approaches have gained

popularity, particularly for the case of categorical (e.g., binary) repeated measures.

For the latter, fully specified marginal models, e.g., Bahadur (1961) and Molenberghs

and Lesaffre (1994), exist and can be fitted; however, the intricacies can be restrictive.

As an alternative, Liang and Zeger (1986) proposed generalized estimating equations

(GEE), which can be used to obtain marginal models for non-Gaussian longitudinal

data, but, at the same time, circumventing the computational complexity of full like-

lihood. It is primarily useful whenever interest is restricted to the mean parameters.

The semi-parametric nature of GEE arises from the fact that the method requires

only the correct specification of the univariate marginal distributions, provided one

is willing to adopt so-called working assumptions about the association structure of

the vector of repeated measurements. The moments that are specified under GEE

coincide with those of the Bahadur model (Bahadur, 1961), so that the former can be

seen as a non-likelihood version of the latter, and as such, is sometimes viewed as a

moment-based version of the Bahadur model. Alternatively, GEE can also be loosely

described as a “correlation-corrected version of logistic regression.”

In the classical (or standard) form of GEE (Liang and Zeger, 1986; Molenberghs

and Verbeke, 2005), the score equations for a non-Gaussian outcome are

S(β) =

N∑

i=1

∂µi

∂β′ (A
1/2
i CiA

1/2
i )−1(yi − µi) = 0, (3.18)

where µi = E(yi), β is the vector of regression parameters, Ai is a diagonal matrix

with the marginal variances, and Ci is the marginal correlation matrix for the repeated

measures. Although Ai = Ai(β) follows directly from the marginal mean model, β

commonly contains no information about Ci. Therefore, the correlation matrix Ci

typically is written in terms of a vector α of unknown parameters, i.e., Ci = Ci(α).

Liang and Zeger (1986) dealt with this set of nuisance parameters α by allowing for

specification of an incorrect structure or so-called working correlation matrix. Some

of the more popular choices for the working correlations include:

Structure Correlation

Independence ρ(Yij , Yik) = 0, j 6= k

Exchangeability ρ(Yij , Yik) = α, j 6= k

Autoregressive (1) ρ(Yij , Yi,j+t) = αt, t = 0, 1, . . . , ni − j

Unstructured ρ(Yij , Yik) = αjk, j 6= k
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Assuming that the marginal mean µi has been correctly specified as h(µi) = Xiβ,

Liang and Zeger (1986) showed that, under mild regularity conditions, the estimator

β̂ obtained from solving (3.18) is asymptotically normally distributed with mean β

and with covariance matrix

Var(β̂) = I−1
0 I1I

−1
0 , (3.19)

where

I0 =

(
N∑

i=1

∂µ′
i

∂β
V −1

i

∂µi

∂β′

)
and I1 =

(
N∑

i=1

∂µ′
i

∂β
V −1

i Var(yi)V
−1
i

∂µi

∂β′

)
,

with Vi = A
1/2
i CiA

1/2
i . When the working correlation structure differs strongly from

the true underlying structure, there is no price to pay in terms of the consistency of

the asymptotic normality of β̂, but such a poor choice may result in loss of efficiency.

The frequentist nature of GEE renders it valid only under the most restrictive

of assumptions about the missingness mechanism – MCAR. With incomplete data

that are MAR or MNAR, an erroneously specified working correlation matrix may

additionally lead to bias (Molenberghs and Kenward, 2007). Extensions of GEE for

longitudinal data with dropout of an MAR nature were proposed by Robins, Rotnitzky

and Zhao (1995) and these shall be the subject of Chapter 5.

3.6 Model Families

The manner of treatment of the correlated repeated measures present in any lon-

gitudinal (or multivariate) data defines three model families. Considering, for the

moment, Gaussian outcomes, a marginal model is characterized by a marginal mean

function of the form

E(Yij |xij) = x′
ijβ, (3.20)

where xij denotes a vector of covariates for subject i at time point j and β denotes the

vector of regression coefficients for these. Excepting conditioning on covariates, re-

sponses are modeled marginally over all other responses, as opposed to being modeled

conditionally on other outcomes, for instance. Often also referred to as population-

averaged models, marginal models directly relate covariates to the marginal response

expectation, and thus, β in (3.20) represent fully marginal covariate effects (e.g.,

marginal treatment effect).

Random-effects models, on the other hand, further condition on a vector of random

effects bi, over and above conditioning on covariates, that is,

E(Yij |bi,xij) = x′
ijβ + z′ijbi. (3.21)
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Under such models, correlations among the repeated measures are addressed by the

inclusion of parameters that are specific to a subject, so that given the collection of

these subject-specific parameters or random effects, the responses within the longi-

tudinal series are assumed to be independent. In contrast with population-averaged

covariate effects, β in (3.21) reflects covariate effects that are conditional on a subject

with a particular level of the random effects, say bi = bio
, further denoting somewhat

of a sub-population average, for the sub-population of subjects having random effects

equal to bio
.

Finally, correlations within the longitudinal responses can be dealt with by con-

sidering a particular outcome in the series and modeling it conditionally on the other

outcomes (or subsets thereof), thereby defining the family of conditional models. A

first-order stationary transition model, for instance, involves expectations of the form

E(Yij |Yi,j−1, . . . , Yi1,xij) = x′
ijβ + αYi,j−1. (3.22)

Conditional models, in general, describe features of one of the responses in a set given

others in the same set. While often meaningful in a multivariate (non-longitudinal)

context, the use of conditional models for longitudinal data is infrequent since scientific

interest in such studies usually lies in estimating the effect of some covariate(s) over

time, rather than on its effect at one particular time point given others.

Owing to the elegant properties of the multivariate normal distribution, random-

effects models neatly imply a simple marginal model in the linear mixed model case

(Verbeke and Molenberghs, 2000). In particular, expectation (3.20) follows from

(3.21) either by marginalizing over the random effects or by conditioning on the

random-effects vector bi = 0. As was pointed out earlier, in Section 3.4, the linear

mixed model (3.9), for instance, which belongs to the random-effects model family,

implies marginal model (3.10). Thus, the fixed-effects parameters β have both a

marginal and hierarchical model interpretation. Certain autoregressive models, in

which later-time residuals are expressed in terms of earlier ones, can also lead to

particular instances for which the general linear mixed-effects model implies some

marginal function of the form (3.20).

Such relations between marginal and random-effects models are much less straight-

forward in the case of non-Gaussian (e.g., binary) responses, arising primarily from

the fact that the mean response is usually modeled through a link function η(·). And

though formulation of the model remains linear at the level of the link, direct relations

with the raw (non-Gaussian) response itself, is frequently of a non-linear nature.

For illustration, consider a binary response, the success probability of which is

formulated in terms of a time covariate, tij , via the logit link. A marginally specified
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model, i.e., logit P (Yij = 1|tij) = β0 + β1tij , would imply the following marginal

mean response:

E(Yij |tij) = P (Yij = 1|tij) =
exp(β0 + β1tij)

1 + exp(β0 + β1tij)
, (3.23)

whereas a random-effects model could be formulated as

logit P (Yij = 1|tij , bi) = β0 + β1tij + bi,

leading to the following conditional mean response:

E(Yij |tij , bi) = P (Yij = 1|tij , bi) =
exp(β0 + β1tij + bi)

1 + exp(β0 + β1tij + bi)
. (3.24)

From the latter model, the marginal average evolution over time would require aver-

aging (3.24) over the the random effects:

E(Yij |tij) = E [E(Yij |tij , bi)] = E

[
exp(β0 + β1tij + bi)

1 + exp(β0 + β1tij + bi)

]
, (3.25)

which will clearly not lead to (3.23) because of the non-linearity of expression (3.24)

in bi, thus demonstrating that the implied marginal model from a random effects

specification does not necessarily reduce to the marginally specified model.

The consequence of this disparity between random-effects and marginally specified

models in the non-Gaussian setting is an obvious distinction between the parameters

under each. In contrast with the Gaussian case, for which β, whether defined on

a marginal or random-effects model, can be unambiguously interpreted as marginal

covariate effects, for non-Gaussian responses, the choice of model family will dictate

either marginal or hierarchical inference on the model parameters. In addition, there

is no straightforward relation between the parameter vector βRE in the random-effects

model and the parameter vector βM in the marginal model, except in a few special

cases. Moreover, not only are there interpretational differences between both families,

but when comparing parameter estimates across families, one often observes substan-

tial differences. The key reason is that they estimate different “true” parameters.

The inherent differences across the model families, particularly for non-Gaussian

responses, warrants careful consideration regarding the type of model to be employed.

Understanding of the key differences and the implications of each type of model is

essential in making the appropriate choice. Ultimately, the choice rests on the research

question at hand. If fully marginal covariate effects are of interest, marginal models

may be the most appropriate route. From a practical point of view, the computational

requirements can also help in the choice. A partially specified marginal model for non-

Gaussian responses, for instance, may be less computationally demanding than a fully

specified one.
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3.7 Additional Concepts

3.7.1 The Bahadur Model

Bahadur (1961) proposed a marginal model for binary outcomes, accounting for the

association via marginal correlations. Let the marginal success probability be denoted

as πij = E(Yij) = P (Yij = 1) and define the standardized deviations as:

εij =
Yij − πij√
πij(1 − πij)

and eij =
yij − πij√
πij(1 − πij)

, (3.26)

where yij is an actual value of the binary response variable Yij . Further define the cor-

relations ρij1j2 = E(εij1εij2), ρij1j2j3 = E(εij1εij2εij3), . . . , ρi12...ni
= E(εi1εi2 . . . εi,ni

).

Then, the general Bahadur model can be represented by the expression

f(yi) = f1(yi) c(yi), (3.27)

where

f1(yi) =

ni∏

j=1

π
yij

ij (1 − πij)
1−yij and

c(yi) = 1 +
∑

j1<j2

ρij1j2eij1eij2 +
∑

j1<j2<j3

ρij1j2j3eij1eij2eij3

+ . . .+ ρi12...ni
ei1ei2 . . . ei,ni

.

Thus, the probability mass function f(yi) in (3.27) is the product of the independence

model f1(yi) and the correction factor c(yi). One viewpoint is to consider the factor

c(yi) as a model for overdispersion.

Even though a variety of flexible full-likelihood models exist, maximum likelihood

can be unattractive due to excessive computational requirements, especially when

high-dimensional vectors of correlated data arise, as alluded to in the context of the

Bahadur model.

3.7.2 The Multivariate Dale Model

The multivariate Dale model or MDM (Molenberghs and Lesaffre, 1994) extends the

bivariate global-cross ratio model (Dale, 1986), which accounts for dependence across

multiple ordinal outcomes as well as their dependence on continuous and/or discrete,

possibly time-varying, covariates. The model decomposes the joint probabilities of

the outcomes into main effects and interactions. Thus, for a series of n outcomes,
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for instance, the MDM involves describing the marginal distributions for each of

the n outcomes, n(n − 1)/2 pairs of two-way interactions and three-way or higher-

ordered associations. The description is completed by specifying link functions and

linear predictors for both the univariate margins and the association parameters. A

convenient choice for the univariate marginal links is the logistic link function, while

the association parameters are often assumed to be constant modeled on a log odds

ratio scale. Full specification of the association is done in terms of marginal global

odds ratios. A trivariate version of the model has been presented by McCullagh

and Nelder (1989), but they did not provide a way to calculate joint probabilities

as needed in the likelihood equations. Solutions for the multivariate case have been

provided by Molenberghs and Lesaffre (1994), Lang and Agresti (1994) and Glonek

and McCullagh (1995). A detailed review, as well as various applications, is given in

Molenberghs and Verbeke (2005) (Chapter 7).

Though developed for categorical (ordinal) responses with 2 or more levels, the

MDM as applied to binary variables, say Y = (Y1, Y2, . . . , Yn)′, yields a simplifi-

cation since these indicators define a single cutpoint, thus obviating the need to

construct tables with cumulative counts and probabilities. For n = 3, the follow-

ing logistic-regression and odds-ratio formulations describe a trivariate Dale model

(subject-specific indices i are omitted for ease of notation):

ln

(
p0++

1 − p0++

)
= X1θ, (3.28a)

ln

(
p+0+

1 − p+0+

)
= X2θ, (3.28b)

ln

(
p++0

1 − p++0

)
= X3θ, (3.28c)

lnψ12 = ln

(
p00+(1 − p0++ − p+0+ + p00+)

(p0++ − p00+)(p+0+ − p00+)

)
=X4θ, (3.28d)

lnψ13 = ln

(
p0+0(1 − p0++ − p++0 + p0+0)

(p0++ − p0+0)(p++0 − p0+0)

)
=X5θ, (3.28e)

lnψ23 = ln

(
p+00(1 − p+0+ − p++0 + p+00)

(p+0+ − p+00)(p++0 − p+00)

)
=X6θ, (3.28f)

lnψ123 = ln

(
p000p011p101p110

p001p010p100p111

)
= X7θ, (3.28g)

with pijk = P (Y1 = i, Y2 = j, Y3 = k|x), for i, j, k = 0, 1, and a + in lieu of a

subscript indicating that the marginal probability over this index needs to be used.

Extensions to cases where n > 3 follow similar formulations.
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When n = 2, the MDM reduces to Dale (1986)’s bivariate global cross-ratio model,

which will be referred to as the bivariate Dale model (BDM). The joint probabilities

pij = P (Y1 = i, Y2 = j|x), for i, j = 0, 1 can now be decomposed into two marginal

distributions for the main effects and one log cross-ratio for the association between

the two non-response indicators:

ln

(
p0+

1 − p0+

)
= X1θ,

ln

(
p+0

1 − p+0

)
= X2θ, (3.29)

lnψ = ln

(
p00p11

p01p10

)
= X3θ,

which yield the following probabilities pij(x) (dependence on x is omitted for ease of

notation):

p00 =





1 + (p0+ + p+0)(ψ − 1) − S(p0+, p+0, ψ)

2(ψ − 1)
if ψ 6= 1

p0+p+0 if ψ = 1
,

p01 = p0+ − p00, (3.30)

p10 = p+0 − p00,

p11 = 1 − p0+ − p+0 − p00,

where

S(λ1, λ2, ψ) =

√
[1 + (λ1 + λ2)(ψ − 1)]

2
+ 4ψ(1 − ψ)λ1λ2.

Extensions or variations to the above model are possible, e.g., associations can be

assumed constant, or intercepts and/or covariate parameters can be kept constant

over time, or relations between the covariate parameters over time can be included.

Among the advantages of the MDM is the flexibility with which the marginal

and association parameters can be modeled. In addition, because some investigators

may find the odds ratio easier to interpret, this model also has some interpretative

advantages over, say, the multivariate probit model. The MDM, however, does not

support the analysis of nominal categorical data, though this can be addressed by

modifying the model to cover marginal descriptions using generalized logits instead

of cumulative logits. Finally, one of the less attractive features of the model is that

it is only implicitly defined, i.e., only parts of the model are “visible” – the marginal

probabilities and the association structure. The consequence is that some statistical

properties of the model are “hidden.”
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3.7.3 The BRD Family of Models

Baker, Rosenberger and DerSimonian (BRD, 1992) proposed a log-linear based family

of models for the four-way classification of two binary outcomes, together with their

respective missingness indicators. The generic expressions for the cell counts and

corresponding probabilities are Zr1r2,j1j2 and πr1r2,j1j2 , respectively, where rℓ = 0(1)

if the measurement for outcome ℓ is missing (observed) and jℓ (=1,2) denotes the

value for binary outcome ℓ (e.g., for the SPO Survey, 1=yes, 2=no). For instance,

Z11,21 denotes the number of completers, i.e., (r1, r2) = (1, 1), with a (2) on the first

outcome and a (1) on the second outcome. The models can be written as:

ν11,j1j2 = E(Z11,j1j2) = Z++,++π11,j1j2 ,

ν10,j1j2 = E(Z10,j1j2) = ν11,j1j2βj1j2 ,

ν01,j1j2 = E(Z01,j1j2) = ν11,j1j2αj1j2 ,

ν00,j1j2 = E(Z00,j1j2) = ν11,j1j2αj1j2βj1j2γ,

with

αj1j2 =
φ01|j1j2

φ11|j1j2

, βj1j2 =
φ10|j1j2

φ11|j1j2

, γ =
φ11|j1j2φ00|j1j2

φ10|j1j2φ01|j1j2

,

where φr1r2|j1j2 = P (R1 = r1, R2 = r2|Y1 = j1, Y2 = j2).

The α (β) parameters describe missingness in the first (second) outcome as the

proportion of subjects with a missing response on the first (second) outcome relative

to the proportion of subjects with both responses present, given a particular response

combination (j1, j2). The γ parameter, on the other hand, captures the interaction

between the two missingness indicators via the (conditional) odds ratio for a given

response combination. The subscripts are missing from γ since Baker, Rosenberger

and DerSimonian (1992) have shown that this quantity is independent of j1 and j2

in every identifiable model. These authors considered nine models, based on setting

αj1j2 and βj1j2 constant in one or both indices, and, enumerated using the ‘BRD’

abbreviation, are:

BRD1 : (α.., β..) BRD4 : (α.., β.j2) BRD7 : (α.j2 , β.j2)

BRD2 : (α.., βj1.) BRD5 : (αj1., β..) BRD8 : (αj1., β.j2)

BRD3 : (α.j2 , β..) BRD6 : (αj1., βj1.) BRD9 : (α.j2 , βj1.).

Interpretation is straightforward; for example, in BRD1, both missingness indicators

do not depend on the responses, thereby characterizing an MCAR mechanism. In

view, however, of the nesting relations among the different types of mechanisms de-

scribed in Section 3.3, although BRD1 is more precisely classified as MCAR, it can



32 Chapter 3. Fundamental Concepts
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Figure 3.1: Graphical representation of the nesting structure within the BRD model

family.

also be considered a special case of MAR, or even MNAR. In BRD4, missingness in

the first variable is constant, while missingness in the second variable depends on its

value. Moreover, BRD6–BRD9 saturate the observed data degrees of freedom, while

the lower numbered ones leave room for evaluating the goodness-of-fit of the model

to the observed data. The nesting structure existing within the nine BRD models is

displayed in Figure 3.1.

3.7.4 The Diggle-Kenward Model

Diggle and Kenward (1994) proposed a framework for modeling longitudinal data of a

continuous nature with monotone missingness. Using a selection model formulation,

as in (3.1), they combine a multivariate normal marginal model for the measurements

Y i with a logistic regression model for dropout Di conditional on the measurements.

The measurement model assumes that the vector Y i satisfies the linear regression

model Y i ∼ N(Xiβ, Vi), where the matrix Vi can be left unstructured or assumed

to be of a specific form, e.g., resulting from a linear mixed model, a factor-analytic

structure, or spatial covariance structure (Verbeke and Molenberghs, 2000). The

dropout model, on the other hand, takes the form of a logistic regression, for example,

logit P (Di = j|Di ≥ j,hij , yij ,ψ) = ψ0 + ψc yij + ψp yi,j−1, (3.31)

where hij = (yi1, yi2, . . . , yi,j−1) represents the history of subject i up to time ti,j−1.

The latter implies that the conditional probability for dropout at occasion j, given

that the subject was still observed at the previous occasion, is allowed to depend
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on the history hij of the subject up to time ti,j−1, and on the possibly unobserved

current outcome yij , but not on future outcomes yik, k > j. Clearly, the dependence

of Di on the possibly unobserved current outcome yij characterizes an MNAR mech-

anism, though special cases can be obtained by setting ψc = 0, implying MAR, or

ψp = ψc = 0, which corresponds to MCAR.

Formulation (3.31) can also be extended to include the complete history, as well

as external covariates. In fact, one could allow dropout at a specific occasion to be

related to future responses as well, but this is usually counterintuitive. Moreover,

including future outcomes seriously complicates the calculations, since computation

of the likelihood in (3.5) will then require evaluation of a possibly high-dimensional

integral.

From the conditional probabilities defined in (3.31), the (unconditional) probabil-

ities of dropout at each occasion can then be calculated as follows:

P (Di = j|yi,ψ) = P (Di = j|hij , yij ,ψ)

=





P (Di = j|Di ≥ j,hij , yij ,ψ) for j = 2,

P (Di = j|Di ≥ j,hij , yij ,ψ)

×

j−1∏

k=2

[1 − P (Di = k|Di ≥ k,hik, yik,ψ)] for j = 3, 4, . . . , ni,

ni∏

k=2

[1 − P (Di = k|Di ≥ k,hik, yik,ψ)] for j = ni + 1.

(3.32)

Diggle and Kenward (1994) obtained parameter and precision estimates by means

of maximum likelihood. The likelihood necessitates marginalization over the un-

observed outcomes, which, in practice, can involve relatively tedious and computa-

tionally demanding forms of numerical integration. This, combined with likelihood

surfaces tending to be rather flat or otherwise awkward in shape, makes the model

difficult to use – a feature shared by virtually all MNAR models. Application of the

Diggle-Kenward model to various data sets can be found in Molenberghs and Kenward

(2007) and Verbeke and Molenberghs (2000).





4
Missing At Random versus

Missing Not At Random

The suitability of any methodology applied to incomplete longitudinal data, and as

a consequence, the validity of resulting inferences, depends heavily on assumptions

made regarding the nature of the missingness mechanism. While the more established

statistical techniques are sufficiently equipped with means to assess the validity of

underlying assumptions (e.g., diagnostic checking of residuals in regression analysis),

incomplete data methods are much less developed in this respect. As it is close to

impossible to ascertain the nature of the incompleteness, one needs to rely on the

strength of one’s belief that a particular mechanism is in effect. The implications of

an incorrect choice on the resulting conclusions make the task even more crucial.

Traditionally, simple methods such as a CCA or simple forms of imputation (e.g.,

LOCF) have been in use, though such analyses have been shown to be prone to

severe bias and/or losses of efficiency and should be avoided, as has been pointed out

here (Section 3.5.1) and elsewhere (Kenward and Molenberghs, 2009; Molenberghs

and Kenward, 2007; Molenberghs, Kenward and Lesaffre, 1997). Since a likelihood-

based or Bayesian analysis is valid under MAR, for as long as all observed data are

included into the analysis, direct likelihood approaches, their Bayesian counterparts,

or multiple imputation, are often regarded as candidates for the primary analysis.

35
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One can never exclude, however, the possibility that MNAR models may be oper-

ating. Even though a variety of statistical models have been proposed for the MNAR

situation (Diggle and Kenward, 1994; Baker, 1995; Molenberghs, Kenward and Lesaf-

fre, 1997; Troxel, Harrington and Lipsitz, 1998), and in spite of the dramatically

increased computational power, such models are prone to considerable sensitivity.

This was made clear by a variety of discussants to Diggle and Kenward (1994), such

as Laird (1994), Little (1994b) and Rubin (1994). Several authors have laid bare

such sensitivities and proposed methods for informal and formal sensitivity analysis

(Kenward, 1998; Robins, Rotnitzky and Scharfstein, 1998; Molenberghs, Kenward and

Goetghebeur, 2001; Van Steen et al., 2001; Verbeke et al., 2001; Thijs et al., 2002;

Jansen et al., 2003). Overviews are provided in Verbeke and Molenberghs (2000) and

Molenberghs and Verbeke (2005).

There is no quick and easy strategy to determine the missing data mechanism

that is believed to be operating and that will eventually be assumed for the analysis.

One view is that testing the MAR null hypothesis against an MNAR alternative is

of a conventional nature. Although Diggle and Kenward (1994) have conducted such

tests, it is very important to realize that such tests are conditional on the alternative

model holding. Strictly speaking, the correctness of the alternative model can only be

verified in as far as it fits the observed data. Thus, evidence for or against MNAR can

only be provided within a particular, predefined parametric family, the plausibility of

which cannot be verified in empirical terms alone.

In this chapter, an important result is presented regarding the impossibility of an

overall (omnibus) assessment of MAR versus MNAR. This arises from the result of

Molenberghs et al. (2008) that a uniquely defined MAR counterpart can be obtained

for an MNAR model and this counterpart produces exactly the same fit as the original

MNAR model, in the sense that it produces exactly the same predictions to the

observed data (e.g., fitted counts in an incomplete contingency table) as the original

MNAR model, and depends on exactly the same parameter vector. It will also be

shown here that, while this so-called MAR counterpart generally does not belong to

a conventional parametric family, its existence has important ramifications.

4.1 General Result

In this section, it will be shown that for every MNAR model fitted to a set of data,

there is an MAR counterpart providing exactly the same fit to the data. Here, the

concept of model fit should be understood as measured using such conventional meth-
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ods as deviance measures and, of course, in as far as the observed data are concerned.

The following steps are involved:

(1) fitting an MNAR model to the data;

(2) reformulating the fitted model in PMM form;

(3) replacing the density or distribution of the unobserved measurements given the

observed ones and given a particular response pattern by its MAR counterpart;

and,

(4) establishing that such an MAR counterpart uniquely exists.

Throughout this section, covariates xi will be suppressed from notation, though they

are assumed to be present.

In the first step, an MNAR model is fitted to the observed set of data. Recall,

from Section 3.4, that the observed-data likelihood is:

L =
∏

i

∫
f(yo

i ,y
m
i , ri|θ,ψ) dym

i . (4.1)

Denoting the resulting parameter estimates, e.g., obtained by likelihood-based or

Bayesian methods, as θ̂ and ψ̂, respectively, the fit to the hypothetical full data is

f(yo
i ,y

m
i , ri|θ̂, ψ̂) = f(yo

i ,y
m
i |θ̂) f(ri|yo

i ,y
m
i , ψ̂). (4.2)

To undertake the second step, full density (4.2) is re-expressed in PMM form as:

f(yo
i ,y

m
i |ri, θ̂, ψ̂) f(ri|θ̂, ψ̂) = f(ym

i |yo
i , ri, θ̂, ψ̂) f(yo

i |ri, θ̂, ψ̂) f(ri|θ̂, ψ̂). (4.3)

A similar reformulation can be considered for an SPM. In a PMM, the model would

have been expressed in this form to begin with. Note that, in line with PMM theory,

the first term on the right hand side of (4.3),

f(ym
i |yo

i , ri, θ̂, ψ̂), (4.4)

is not identified from the observed data. In this case, it is determined solely from

modeling assumptions. Within the PMM framework, identifying restrictions have to

be considered (Little, 1994a; Molenberghs et al., 1998; Kenward, Molenberghs and

Thijs, 2003).

The third step requires replacing (4.4) by the appropriate MAR counterpart. To

this end, the following lemma, formulating MAR equivalently within the PMM frame-

work, is necessary.



38 Chapter 4. Missing At Random vs. Missing Not At Random

Lemma 1 In the PMM framework, the missing data mechanism is MAR if, and only

if,

f(ym
i |yo

i , ri,θ) = f(ym
i |yo

i ,θ).

This means that, in a given pattern, the conditional distribution of the unobserved

components given the observed ones equals the corresponding distribution marginal-

ized over the patterns. Lemma 1 further implies that MAR can be formulated in terms

of R given Y , but also in terms of Y given R. The proof is rather straightforward

and similar to what can be found in Molenberghs et al. (1998).

Proof of Lemma 1

Suppressing parameters and covariates from notation, the decomposition of the full

data density, in both SeM and PMM fashion, whereby MAR is applied to the SeM

version, produces:

f(yo
i ,y

m
i ) f(ri|yo

i ) = f(yo
i ,y

m
i |ri) f(ri). (4.5)

Further factoring the right hand side and moving the second factor on the left to the

right as well gives:

f(yo
i ,y

m
i ) = f(ym

i |yo
i , ri)

f(yo
i |ri) f(ri)

f(ri|yo
i )

f(yo
i ,y

m
i ) = f(ym

i |yo
i , ri)

f(yo
i , ri)

f(ri|yo
i )

f(ym
i |yo

i )f(yo
i ) = f(ym

i |yo
i , ri) f(yo

i ),

and hence

f(ym
i |yo

i ) = f(ym
i |yo

i , ri).
⊠

Using Lemma 1, it is clear that f(ym
i |yo

i , ri, θ̂, ψ̂) needs to be replaced with

h(ym
i |yo

i , ri) = h(ym
i |yo

i ) = f(ym
i |yo

i , θ̂, ψ̂), (4.6)

where the h(·) notation is used for shorthand purposes. Note that the density in (4.6)

follows from the SeM-type marginal density of the complete data vector. Sometimes,

therefore, it may be more convenient to replace the notation yo
i and ym

i by one that

explicitly indicates which components are observed and missing in pattern ri under

consideration:

h(ym
i |yo

i , ri) = h(ym
i |yo

i ) = f [(yij)rj=0|(yij)rj=1, θ̂, ψ̂]. (4.7)
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Thus, (4.7) provides a unique way of extending the model fit to the observed data,

belonging to the MAR family. As stated before, the above construction does not

lead to a member of a conventional parametric family. While this obviously implies

limitations on its use, such is not dissimilar to the construction of some semi- and

non-parametric estimators. Also, it helps to understand that an overall, definitive

conclusion about the nature of the missing data mechanism is not possible, even

though one can make progress if attention is confined to a given parametric family, in

which one puts sufficiently strong prior belief. To show formally that the fit remains

the same, consider the observed-data likelihood based on (4.1) and (4.3):

L̂ =
∏

i

∫
f(yo

i ,y
m
i |θ̂) f(ri|yo

i ,y
m
i , ψ̂) dym

i

=
∏

i

∫
f(yo

i |ri, θ̂, ψ̂) f(ri|θ̂, ψ̂) f(ym
i |yo

i , ri, θ̂, ψ̂) dym
i

=
∏

i

f(yo
i |ri, θ̂, ψ̂) f(ri|θ̂, ψ̂)

=
∏

i

∫
f(yo

i |ri, θ̂, ψ̂) f(ri|θ̂, ψ̂)h(ym
i |yo

i ) dy
m
i .

The above results justify the following theorem.

Theorem 1 Every fit to the observed data, obtained from fitting an MNAR model to

a set of incomplete data, is exactly reproducible from an MAR decomposition.

The key computational consequence is the need to compute h(ym
i |yo

i ) in (4.6) or

(4.7). This means that, for each pattern, the conditional density of the unobserved

measurements given the observed ones needs to be extracted from the marginal dis-

tribution of the complete set of measurements. Molenberghs et al. (1998) have shown

that, for the case of dropout, the so-called available case missing value restrictions

(ACMV) provide a practical computational scheme. Precisely, ACMV states that

∀t ≥ 2 and ∀s < t :

f(yit|yi1, · · · , yi,t−1, di = s) = f(yit|yi1, · · · , yi,t−1, di ≥ t). (4.8)

In other words, the density of a missing measurement, conditional on the measure-

ment history, is determined from the corresponding density over all patterns for which

all of these measurements are observed. For example, the density of the third mea-

surement in a sequence, given the first and second ones, in patterns with only 1 or 2
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measurements taken, is determined from the corresponding density over all patterns

with 3 or more measurements. Thijs et al. (2002) and Verbeke and Molenberghs

(2000) derived a practical computational method for the factors in (4.8), which, upon

letting αd denote the probability of belonging to pattern d, are given by:

f(yit|yi1, · · · , yi,t−1, di = s)

=

n∑

d=s

αd fd(yi1, . . . , yis)

n∑

d=s

αd fd(yi1, . . . , yi,s−1)

(4.9)

=

n∑

d=s

[
αdfd(yi1, . . . , yi,s−1)∑ni

d=s αdfd(yi1, . . . , yi,s−1)

]
fd(ys|yi1, . . . , yi,s−1). (4.10)

The above identifications for the monotone case are useful when an MNAR pattern-

mixture model has been fitted to begin with, since then, the identifications under

MAR can be calculated from the pattern-specific marginal distributions. When a

selection model is fitted in the initial step, on the other hand, all conditional distri-

butions needed in (4.7), can be derived from the estimated f(yi1, . . . , yini
|θ̂). For an

MNAR PMM initial model for non-monotone missing data patterns, it is necessary

to first rewrite the PMM in SeM form, then subsequently derive the required con-

ditional distributions for the so-obtained SeM measurement model. This essentially

comes down to calculating a weighted average of the pattern-specific measurement

models. In some cases, such as for contingency tables, this step can be done in an

alternative way by fitting a saturated MAR SeM to the fit obtained from the PMM.

The following sections illustrate and contrast the monotone and non-monotone

cases using a bivariate and trivariate outcome with dropout on the one hand, and a

bivariate non-monotone outcome on the other. While the theorem applies to both the

monotone and non-monotone settings, it is insightful to see that only for the former do

relatively simple and intuitively appealing expressions arise, while the latter setting

involves the need for iterative computation.

4.1.1 A Bivariate Outcome With Dropout

Considering monotone missing data patterns (dropout) for the case of two outcomes,

the first of which is always observed and the second one partially missing, the SeM

and PMM decompositions will be equated, enabling derivation of the expressions for

the MAR counterparts. As it is likewise interesting and straightforward to derive

results under the MCAR setting, these shall be presented as well.
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Dropping covariates, parameters, and the subject index i from notation, the SeM-

PMM equivalence for the case of the bivariate outcome with dropout is given by:

f(y1, y2) g̃(d = 2|y1, y2) = f2(y1, y2) α̃(d = 2),

f(y1, y2) g̃(d = 1|y1, y2) = f1(y1, y2) α̃(d = 1).

Note that this is the setting considered by Glynn, Laird and Rubin (1986). Here,

g̃(·) is used for the SeM dropout model, with α̃(·) denoting the PMM probabilities to

belong to one of the patterns. Since α̃(d = 1) + α̃(d = 2) = 1 and a similar result

holds for the g̃(·) functions, it is convenient to write:

f(y1, y2) g(y1, y2) = f2(y1, y2)α (4.11)

f(y1, y2) [1 − g(y1, y2)] = f1(y1, y2) [1 − α]. (4.12)

Assuming MCAR, it is clear that α = g(y1, y2), producing, without any difficulty,

f(y1, y2) = f2(y1, y2) = f1(y1, y2). (4.13)

Under MAR, y2 has to be removed from g(·) for incomplete observations, but since

a single parametric function is assumed for the missingness model, it follows that

g(y1, y2) = g(y1) and hence (4.11) produces

f(y1) f(y2|y1) g(y1) = f2(y1) f2(y2|y1)α.

Upon reordering,
f(y1) g(y1)

f2(y1)α
=
f2(y2|y1)
f(y2|y1)

. (4.14)

The same arguments can be applied to (4.12), from which the following can be derived:

f(y2|y1) = f2(y2|y1) = f1(y2|y1). (4.15)

Note that (4.15) is strictly weaker than (4.13). The last term in (4.15) is not identified

by itself, and hence, needs to be set equal to its counterpart from the completers which,

in turn, is equal to the marginal distribution. This is in agreement with (4.7) as well as

with the specific identifications applicable in the monotone and hence ACMV setting.

4.1.2 A Trivariate Outcome With Dropout

In the bivariate case, it can be observed that identification (4.15) does not involve

mixtures. This changes as soon as there are three or more outcomes. The equations
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corresponding to (4.11)–(4.12), specialized to the MAR case, are:

f(y1, y2, y3) g0 = f0(y1, y2, y3)α0, (4.16)

f(y1, y2, y3) g1(y1) = f1(y1, y2, y3)α1, (4.17)

f(y1, y2, y3) g2(y1, y2) = f2(y1, y2, y3)α2, (4.18)

f(y1, y2, y3) g3(y1, y2) = f3(y1, y2, y3)α3. (4.19)

Pattern 0, without any follow-up measurements, has been included in the above for-

mulations, but discussion of this will be deferred for the moment. Also, it can be

noted that g3(·) can be written as a function of y3 as well, but because the sum of

the gd(·) equals one, it is clear that g3(·) ought to be independent of y3.

With arguments similar to the ones developed in the case of two measurements,

(4.19) can be rewritten as:

f(y1, y2)

f3(y1, y2)
· g3(y1, y2)

α3
=
f3(y3|y1, y2)
f(y3|y1, y2)

.

Exactly the same consideration can be made based on (4.18), and hence

f3(y3|y1, y2) = f(y3|y1, y2) = f2(y3|y1, y2). (4.20)

The first factor identifies the second one, and hence also the third one. Equation

(4.17) leads to

f1(y2, y3|y1) = f(y2, y3|y1),

which produces, in fact, two separate identities:

f1(y2|y1) = f(y2|y1), (4.21)

f1(y3|y1, y2) = f(y3|y1, y2) = f3(y3|y1, y2) = f2(y3|y1, y2). (4.22)

For the latter one, identity (4.20) has been used as well. The density f(y2|y1), needed

in (4.21), is determined from the general ACMV result (4.10) as

f(y2|y1) =
α2f2(y2|y1) + α3f3(y2|y1)

α2 + α3
.

Finally, turning attention to (4.16), it is clear that g0 = α0 and hence also f0(y1, y2, y3) =

f(y1, y2, y3). From the latter density, only f(y1) has not been determined yet, but

this one follows again very easily from the general ACMV result, i.e.,

f(y1) =
α1f1(y1) + α2f2(y1) + α3f3(y1)

α1 + α2 + α3
.

In summary, the necessary MAR identifications easily follow from both the PMM and

the SeM formulations of the model.
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4.1.3 A Bivariate Outcome With Non-Monotone Missingness

For a bivariate outcome with non-monotone missingness, the corresponding equations

to (4.11)–(4.12) and (4.16)–(4.19) are:

f(y1, y2) g00(y1, y2) = f00(y1, y2)α00, (4.23)

f(y1, y2) g10(y1, y2) = f10(y1, y2)α10, (4.24)

f(y1, y2) g01(y1, y2) = f01(y1, y2)α01, (4.25)

f(y1, y2) g11(y1, y2) = f11(y1, y2)α11. (4.26)

Clearly, under MCAR, the gr1r2
(·) functions do not depend on the outcomes, and

hence, fr1r2
(y1, y2) = f(y1, y2) for all four patterns. For the MAR case, (4.23)–(4.26)

simplify to

f(y1, y2) g00 = f00(y1, y2)α00, (4.27)

f(y1, y2) g10(y1) = f10(y1, y2)α10, (4.28)

f(y1, y2) g01(y2) = f01(y1, y2)α01, (4.29)

f(y1, y2) g11(y1, y2) = f11(y1, y2)α11. (4.30)

It can be observed that there are four identifications across the gr1r2
(y1, y2) functions,

i.e.,

g00 + g10(y1) + g01(y2) + g11(y1, y2) = 1,

for each (y1, y2). Also,
∑

r1,r2
αr1,r2

= 1. Applying the usual algebra to (4.27)–(4.30)

yields three identifications for the unobservable densities:

f00(y1, y2) = f(y1, y2), (4.31)

f10(y1|y2) = f(y1|y2), (4.32)

f01(y2|y1) = f(y2|y1). (4.33)

Using these in conjunction with the identifiable parts of the distributions yields the

MAR counterpart.

4.2 The General Case of Incomplete Contingency

Tables

In Sections 4.1.1–4.1.3, general identification schemes for an MAR extension of a

fitted model to a binary or trivariate outcome with dropout, as well as to a bivariate
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outcome with non-monotone missingness, have been derived. Whereas the monotone

cases provide explicit expressions in terms of the pattern-specific densities, (4.31)–

(4.33) provide an identification only in terms of the marginal probability. This in

itself is not a problem, since the marginal density is always available, either directly

when an SeM is fitted, or through marginalization when a PMM or an SPM is fitted.

In the specific case of contingency tables, further progress can be made. As will be

shown shortly, a saturated MAR model is indeed always available, for any incomplete

contingency table setting. This implies that one can start from the fit of an MNAR

model to the observed data, and then extend it, using this result, towards MAR. The

general formulation of the result, as well as a discussion of its precise implications for

practice, shall be presented in this section.

Consider a
∏n

k=1 ck contingency table with supplemental margins, where k indexes

the n dimensions in the table and ck is the number of alternatives the kth categorical

variable can take. The table of completers is indexed by r = 1 = (1, . . . , 1). A

particular incomplete table is indexed by r 6= 1. The full set of tables can but does

not have to be present. The number of cells is:

#cells =
∑

r

n∏

k=1

crk

k . (4.34)

The measurement model probabilities can be denoted by pj = pj1...jn
, for jk =

1, . . . , ck and k = 1, . . . , n, and these probabilities sum to one. The missingness

probabilities, assuming MAR, are:

p(r|j) =





p(r|jk with rk = 1) if r 6= 1,

1 −∑r 6=1 p(r|j) if r = 1.
(4.35)

Summing over r implies summing over those patterns for which actual observations

are available. The number of parameters in the saturated model can be computed as

#parameters =

(
n∏

k=1

ck − 1

)
+
∑

r 6=1

n∏

k=1

crk

k . (4.36)

The first term in (4.36) is for the measurement model, while the second one is for

the missingness model. Clearly, the number of parameters equals one less than the

number of cells, establishing the claim. The situation where covariates are present is

covered automatically, merely by considering one extra dimension in the contingency

table, j = 0 say, with c0 referring to the total number of covariate levels in the set of

data.

In what follows, the implications for the simple but important settings studied in

Sections 4.1.1 and 4.1.3 are laid out.
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4.2.1 A Bivariate Contingency Table With Dropout

In Section 4.1.1, identifications were derived for the general case of bivariate outcomes

with monotone missingness. In the specific setting of contingency tables, these can be

derived as well by further fitting the saturated MAR model, described in the previous

section, to the fit obtained from the original MNAR model.

Suppose that z2,jk and z1,j denote, for the completers and dropouts, respectively,

the counts obtained from the fit of the original model, pjk denote the measurement

model probabilities, and qj the dropout probabilities. Then, due to ignorability, the

likelihood factors into two components:

ℓ1 =
∑

j,k

z2,jk ln pjk +
∑

j

z1,j ln pj+ − λ


∑

j,k

pjk − 1


 , (4.37)

ℓ2 =
∑

j,k

z2,jk ln qj +
∑

j

z1,j ln(1 − qj). (4.38)

An undetermined Lagrange multiplier λ can be used to incorporate the sum constraint

on the marginal probabilities. Solving the score equations for (4.37) and (4.38) pro-

duces, with simple and well-known algebra,

p̂jk =
1

n
z2,jk

(
z2,j+ + z1,j

z2,j+

)
, (4.39)

q̂j =
z2,j+

z2,j+ + z1,j
, (4.40)

where n is the total sample size. Combining parameter estimates leads to the new,

MAR-based, fitted counts:

ẑ2,jk = n p̂jk q̂j = z2,jk, (4.41)

ẑ1,jk = n p̂jk (1 − q̂j) = z1,j
z2,jk

z2,j+
, (4.42)

ẑ1,j+ = z1,j+. (4.43)

From (4.41) and (4.43) it is clear that the fit in terms of the observed data has not

changed. The expansion of the incomplete data into a complete one is described by

(4.42). Equations (4.41) and (4.42) can be used to produce the MAR counterpart

to the original model, without any additional calculations. This, however, is not so

simple for the non-monotone case, as will be shown next.
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4.2.2 A Bivariate Contingency Table With Non-Monotone

Missingness

For bivariate contingency tables with non-monotone missingness, the counterparts to

(4.37)–(4.38) are:

ℓ1 =
∑

j,k

z11,jk ln pjk +
∑

j

z10,j ln pj+ +
∑

k

z01,k ln p+k (4.44)

+ z00 ln p++ − λ


∑

j,k

pjk − 1


 ,

ℓ2 =
∑

j,k

z11,jk ln(1 − q10,j − q01,k − q00) (4.45)

+
∑

j

z10,j ln q10,j +
∑

k

z01,k ln q01,k + z00 ln g00.

Notation has been modified in accordance with the design. The q quantities cor-

respond to the g(·) model in Section 4.1.3. While p++ = 1 and hence z00 does not

contribute information to the measurement probabilities, it does add to the estimation

of the missingness model.

Deriving the score equations from (4.44) and (4.45) is straightforward but, unlike

in the previous section, no closed form exists. Chen and Fienberg (1974) derived

an iterative scheme for the probabilities pjk, based on setting the expected sufficient

statistics equal to their complete-data counterparts, yielding

npjk = z11,jk + z10,j
pjk

pj+
+ z01,k

pjk

p+k
+ z00

pjk

p++
,

and hence, with p++ = 1,

(n− z00) pjk = z11,jk + z10,j
pjk

pj+
+ z01,k

pjk

p+k
. (4.46)

The same equation is obtained from the first derivative of (4.44). The iterative

scheme of Chen and Fienberg (1974) results from initiating the process with a set of

starting values for the pjk, e.g., from the completers, and then evaluating the right

hand side of (4.46). Equating it to the left hand side provides an update for the

parameters. The process is repeated until convergence.

While there are no closed-form counterparts to (4.39) and (4.40), the expressions
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equivalent to (4.41)–(4.43) are:

ẑ11,jk = z11,jk, (4.47)

ẑ10,jk = z10,j
pjk

pj+
, (4.48)

ẑ01,jk = z01,k
pjk

p+k
, (4.49)

ẑ00,jk = z00 pjk. (4.50)

An important difference can be noted between (4.41)–(4.43) on the one hand and

(4.47)–(4.50) on the other. In the monotone case, the expressions on the right hand

side are in terms of the counts z only, whereas here the marginal probabilities pjk,

which have to be determined from a numerical fit, intervene.

4.3 Analysis of the Slovenian Public Opinion

Survey

In this section, the practical use of the results described in the previous sections are

illustrated on the Slovenian Public Opinion (SPO) Survey data (questions 1 and 3),

on which derivation of the MAR counterpart to certain MNAR models will be shown.

The ideas developed in this chapter can be illustrated easily by means of 4 models from

the BRD family (Section 3.7.3), fitted to the independence and attendance outcomes

(Table 2.5). Particular interest shall be paid on models BRD1, BRD2, BRD7 and

BRD9. Whereas model BRD1 assumes missingness to be MCAR, all others are of the

MNAR type. Model BRD2 has 7 free parameters, and hence does not saturate the

observed data degrees of freedom, while models BRD7 and BRD9 saturate the 8 data

degrees of freedom. The collapsed data, together with the model fits, are displayed

in Table 4.1. Each of the four models is doubled up with its MAR counterpart.

Table 4.1 presents, apart from the raw data, for each of the models and its MAR

counterpart, the fit to the observed and the hypothetical complete data. The fits

of models BRD7, BRD9 and their MAR counterparts to the observed data, coincide

with the observed data. As the theory states, every MNAR model and its MAR

counterpart produce exactly the same fit to the observed data, which is therefore also

seen for BRD1 and BRD2. However, while models BRD1 and BRD1(MAR) coincide

in their fit to the hypothetical complete data, this is not the case for the other three

models. The reason is clear: since model BRD1 is MCAR, which can be also more

broadly classified as belonging to the MAR family, its counterpart BRD1(MAR) will

not produce any difference, but merely copies the fit of BRD1 to the unobserved data,
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Table 4.1: The Slovenian Public Opinion Survey, analysis restricted to the indepen-

dence and attendance questions. Observed data and the fit of models BRD1, BRD2,

BRD7 and BRD9, and their MAR counterparts, to the observed data and to the hypo-

thetical complete data. Rows (columns) of the contingency tables correspond to ‘yes’

vs. ‘no’ on the attendance (independence) question. The four tables in each row cor-

respond to people: (i) responding to both questions; (ii) responding to independence

only; (iii) responding to attendance only; and, (iv) responding to neither question.

Observed data &

fit of BRD7, BRD7(MAR), BRD9 and BRD9(MAR) to incomplete data

1439 78

16 16

159

32
144 54 136

Fit of BRD1 and BRD1(MAR) to incomplete data

1381.6 101.7

24.2 41.4

182.9

8.1
179.7 18.3 136.0

Fit of BRD2 and BRD2(MAR) to incomplete data

1402.2 108.9

15.6 22.3

159.0

32.0
181.2 16.8 136.0

Fit of BRD1 and BRD1(MAR) to complete data

1381.6 101.7

24.2 41.4

170.4 12.5

3.0 5.1

176.6 13.0

3.1 5.3

121.3 9.0

2.1 3.6

Fit of BRD2 to complete data

1402.2 108.9

15.6 22.3

147.5 11.5

13.2 18.8

179.2 13.9

2.0 2.9

105.0 8.2

9.4 13.4

Fit of BRD2(MAR) to complete data

1402.2 108.9

15.6 22.3

147.7 11.3

13.3 18.7

177.9 12.5

3.3 4.3

121.2 9.3

2.3 3.2

Fit of BRD7 to complete data

1439 78

16 16

3.2 155.8

0.0 32.0

142.4 44.8

1.6 9.2

0.4 112.5

0.0 23.1

Fit of BRD9 to complete data

1439 78

16 16

150.8 8.2

16.0 16.0

142.4 44.8

1.6 9.2

66.8 21.0

7.1 41.1

Fit of BRD7(MAR) and BRD9(MAR) to complete data

1439 78

16 18

148.1 10.9

11.8 20.2

141.5 38.4

2.5 15.6

121.3 9.0

2.1 3.6
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given the observed ones. Finally, while BRD7 and BRD9 produce a different fit to the

complete data, BRD7(MAR) and BRD9(MAR) coincide. This is because the fits of

BRD7 and BRD9 coincide with respect to their fit to the observed data, and indeed,

due to their saturation, coincide with the observed data as such. This fit is the sole

basis for the models’ MAR extensions. It is noteworthy that, while BRD7, BRD9 and

BRD7(MAR)≡BRD9(MAR) all saturate the observed data degrees of freedom, their

complete-data fits are dramatically different.

It is worthwhile to examine the implications of these results for the primary es-

timand θ, the proportion of people voting YES by simultaneously being in favor of

independence and deciding to take part in the vote. Rubin, Stern and Vehovar (1995)

considered, apart from simple models such as complete case analysis (θ̂ = 0.928) and

available case analyses (θ̂ = 0.929), both ignorable models (θ̂ = 0.892 when based on

the two main questions and θ̂ = 0.883 when using the secession question as an auxil-

iary variable) and a non-ignorable one (θ̂ = 0.782). Since the value of the plebiscite

was θpleb = 0.885, an important benchmark obtained four weeks after the SPO Survey,

these authors concluded the MAR was preferable. Molenberghs, Kenward and Goet-

ghebeur (2001) supplemented these analysis with a so-called pessimistic-optimistic

interval, obtained from replacing the incomplete data with NO and YES, respectively,

and obtained: θ ∈ [0.694, 0.904]. Further, they considered all nine BRD models, pro-

ducing a range for θ from 0.741 to 0.892. Ultimately, these authors devised a method

to consider overspecified models, in which point estimates are replaced by interval

estimates, giving rise to so-called intervals of ignorance.

Turning now to the results obtained from fitting each of the nine BRD models

(Table 4.2), it can be observed that BRD1 produces θ̂ = 0.892, exactly the same

estimate as the first MAR estimate obtained by Rubin, Stern and Vehovar (1995).

This should not come as a surprise, since both BRD1 and Rubin’s model assume

MAR and use information from the two main questions. Before continuing with

the models’ interpretation, it is necessary to assess their fit. Conducting likelihood

ratio tests for BRD1 versus the ones with 7 parameters, BRD2–BRD5, and then in

turn for BRD2–BRD5 versus the saturated models BRD6–BRD9, suggests the lower

numbered models do not fit well, leaving models BRD6–BRD9. The impression might

be generated that the poor model fit of BRD1 might be seen as evidence for discarding

the MAR-based value 0.892. However, studying the MAR values from each of the

models BRD1(MAR)–BRD9(MAR), as displayed in the last column of Table 4.2, it is

clear that this value is remarkably stable and hence a value of θ̂ = 0.892, based on the

four counterparts BRD6(MAR)–BRD9(MAR), is a sensible choice after all. Thus,

a main contribution resulting from considering the counterparts in this particular
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Table 4.2: The Slovenian Public Opinion Survey, analysis restricted to the indepen-

dence and attendance questions. Summaries on each of the models BRD1–BRD9.

Model Structure d.f. loglik θ̂ C.I. θ̂MAR

BRD1 (α.., β..) 6 -2495.29 0.892 [0.878;0.906] 0.8920

BRD2 (α.., βj1.) 7 -2467.43 0.884 [0.869;0.900] 0.8915

BRD3 (α.j2 , β..) 7 -2463.10 0.881 [0.866;0.897] 0.8915

BRD4 (α.., β.j2) 7 -2467.43 0.765 [0.674;0.856] 0.8915

BRD5 (αj1., β..) 7 -2463.10 0.844 [0.806;0.882] 0.8915

BRD6 (αj1., βj1.) 8 -2431.06 0.819 [0.788;0.849] 0.8919

BRD7 (α.j2 , β.j2) 8 -2431.06 0.764 [0.697;0.832] 0.8919

BRD8 (αj1., β.j2) 8 -2431.06 0.741 [0.657;0.826] 0.8919

BRD9 (α.j2 , βj1.) 8 -2431.06 0.867 [0.851;0.884] 0.8919

example, is the provision of a solid basis for the MAR-based estimate. Obviously,

since models BRD6(MAR)–BRD9(MAR) are exactly the same and exhibit a perfect

fit, the corresponding probabilities θ̂MAR are exactly equal too. And here, even though

BRD2(MAR)–BRD5(MAR) differ among each other, the probability of being in favor

of independence and attending the plebiscite is constant across these four models. This

is a mere coincidence, since all three other cell probabilities are different, but only

slightly so. For example, the probability of being in favor of independence combined

with not attending ranges over 0.066–0.0685 across these four models.

In the preceding analyses, a two-stage use of models BRD6(MAR)–BRD9(MAR)

has been employed. At the first stage, in a conventional way, the fully saturated

model is selected as the only adequate description of the observed data. At the

second stage, these models are transformed into their MAR counterpart, from which

inferences are drawn. The MAR counterpart usefully supplements the original models

BRD6–BRD9 and provide one further, important scenario to model the incomplete

data. In principle, the same exercise can be conducted when the additional secession

variable would be used.

4.4 Discussion

In this chapter, it has been shown that every MNAR model, fitted to a set of incom-

plete data, can be replaced by an MAR version which produces exactly the same fit to
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the observed data. Several important implications follow from this. First, unless one

puts strong a priori belief in the posited MNAR model, it is not possible to use the fit

of an MNAR model for or against MAR – a message in line with Gill, van der Laan

and Robins (1997) and Schafer and Graham (2002). Second, it sometimes happens

that the obvious parametric MAR model does not fit the observed data well. This is

the case for BRD1, fitted to the Slovenian Public Opinion Survey. It is then appealing

to fit a sufficiently versatile MNAR model, to ensure a good fit to the observed data,

and then to use the MAR version. Various forms of use can be given to this MAR

counterpart. To begin with, the MAR counterpart of a single, well-fitting MNAR

model can be used as the sole basis for inference. More realistically, one can consider

a variety of well-fitting MNAR models, such as BRD6–BRD9, and then switch to

the corresponding collection of MAR counterparts. For example, for the SPO data,

BRD6(MAR)–BRD9(MAR) all provide the same answer, unlike the MNAR models

they originate from. Finally, an MAR counterpart or several MAR counterparts, can

be used as a component of a sensitivity analysis. In this respect, it is useful to recall

that all MNAR models, saturating the observed data, produce the same counterpart.

It should also be pointed out that the collection of counterparts provides a way of

constructing an entire collection of MAR models. This is a less than trivial matter,

especially with non-monotone missing data, as opposed to the straightforward deter-

mination of the MAR version of an MNAR model in the case of dropout, since the

ACMV restrictions, established by Molenberghs et al. (1998) and translated in a com-

putational scheme by Thijs et al. (2002), provides a convenient algorithm. In the case

of non-monotone missingness, the marginal density of the outcomes is needed, and

this can be directly obtained when the model fitted is of the SeM type. When a PMM

is fitted, the marginal density follows from a weighted sum over the pattern-specific

measurement models, for which no explicit construction exists.

Another issue worth noting here is that the best possible MAR model can always

be obtained through the construction proposed in this paper. One merely has to

consider the best fitting, perhaps a saturated, model, and then construct its MAR

counterpart, which, by definition, does not alter the fit.

The analyst might want to examine the differences between how the MNAR model,

on the one hand, and its MAR counterpart, on the other, fit the hypothetical complete

data, so as to better understand what individuals and/or which parts of the data

make the missing data mechanism appear MNAR. The sensitivity analysis part of

Molenberghs and Kenward (2007) provides a thorough discussion. Beunckens et al.

(2009) have considered this issue in the context of the SPO Survey.

The preceding analyses of the SPO Survey data has shown that, while a set of
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MNAR models produces a widely varying range of conclusions about the proportion

of people who are jointly in favor of independence and plan to attend the plebiscite,

the corresponding MAR models produce a very narrow range of estimates, which, in

addition, all lie close to the outcome of the plebiscite. This provides evidence for the

claim, also made in Rubin, Stern and Vehovar (1995), that choosing an MAR model

as one’s main route of analysis is a sensible one.

While the result of Theorem 1 is general, focus here remained on SeM and PMM

formulations. It is worth re-emphasizing that the SPM modeling framework is also

covered without any problem. In this case, the likelihood is expressed as

L =
∏

i

∫
f(yo

i ,y
m
i |θ, bi) f(ri|ψ, bi) dy

m
i , (4.51)

with bi denoting the shared parameter and often taking the form of random effects.

To apply the result, f(yo
i ,y

m
i |θ̂, bi) needs to be integrated over the shared parameter.

The model as a whole needs to be used to produce the fit to the observed data, and

then (4.7) is used to extend the observed-data fit to complete-data MAR version.



5
Non-Gaussian Longitudinal

Data and Missing At

Random: Multiple

Imputation versus Weighting

Methodology for longitudinal data have historically been developed and revolve pri-

marily around continuous outcomes. Discrete (e.g., binary) responses, however, have

become popular as well over the years, sparking, as a consequence, increased research

interest in methods for such. Within the three model families (Section 3.6), a broad

set of methods are available, though the marginal and random-effects models are

perhaps the most frequently used in longitudinal non-Gaussian settings. Under a

likelihood framework, ignorability can be invoked for MAR, and hence, likelihood-

based marginal (e.g., Bahadur model) or random-effects (e.g., GLMM) models can

be used. For non-likelihood marginal models, the semi-parametric approach based

on so-called generalized estimating equations (GEE), proposed by Liang and Zeger

(1986), provides a useful alternative. The frequentist nature of standard GEE, for

which dropout need not be modeled, renders it valid only under the restrictive MCAR

53
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condition. Robins, Rotnitzky and Zhao (1995) extended the GEE approach for ap-

plicability under the weaker MAR case by the use of inverse probability weights,

resulting in weighted generalized estimating equations (WGEE). An alternative route

would be multiple imputation, developed by Rubin (1987), in which missing values

are imputed several times, and the resulting completed data sets are analyzed using a

standard method, such as GEE. The so-obtained multiple inferences are subsequently

combined into a single one (MI-GEE). Standard multiple imputation requires MAR

to hold, even though extensions exist. In both methods, missingness (e.g., dropout)

needs to be addressed, either by means of a dropout model for WGEE or by an im-

putation model for multiple-imputation-based GEE, implying that the missing-data

mechanism is then not ignorable.

In this chapter, the important setting of incomplete non-Gaussian longitudinal

data is considered. Of particular interest is a comparison of the two aforementioned

approaches – WGEE and MI-GEE – to obtain marginal models for discrete longitu-

dinal outcomes with dropout that are of an MAR nature. Focusing on the case of

incomplete binary measures, both methods are compared using so-called asymptotic,

as well as small-sample, simulations, in a variety of correctly and incorrectly specified

models. Beunckens, Sotto and Molenberghs (2008) investigated this comparison un-

der modest proportions of incompleteness in the data, which will be complemented

here by considering more substantial amounts of missing data.

5.1 Missing-At-Random-Based Non-Gaussian Lon-

gitudinal Data Methods

This section describes three specific approaches to modeling non-Gaussian longitu-

dinal data with MAR-type of missingness, particularly, dropout. Though primary

interest lies on methodology to obtain marginal models for the latter, e.g., WGEE

and MI-GEE, conditional models are also explored.

5.1.1 Weighted Generalized Estimating Equations

Liang and Zeger (1986) pointed out that inferences based on their GEE-based ap-

proach are valid only under MCAR, due to the fact that they are based on frequentist

considerations. An important exception, mentioned by these authors, is the situation

where the working correlation structure happens to be correct, since then the esti-

mates and model-based standard errors are valid under the weaker MAR. In general,
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the working correlation structure will not be correctly specified, and hence, Robins,

Rotnitzky and Zhao (1995) proposed a class of weighted estimating equations to allow

for MAR. The general idea behind this approach is to weight each subject’s contri-

bution in the GEE by the inverse probability of dropping out at the time that he/she

dropped out. Thus, a subject staying in the study is considered representative of

himself as well as of a number of similar subjects that did drop out from the study.

The incorporation of these weights, reduces possible bias in the regression parameter

estimates. Restricting focus on the specific case of monotone missingness, such a

weight can be expressed as:

νij ≡ P [Di = j] =

j−1∏

k=2

(1 − P [Rik = 0|Ri2 = . . . = Ri,k−1 = 1]) ×

P [Rij = 0|Ri2 = . . . = Ri,j−1 = 1]I{j≤ni},

where j = 2, 3, . . . , ni + 1, or, in terms of the dropout indicator Di,

νij =





P (Di = j|Di ≥ j) for j = 2,

P (Di = j|Di ≥ j)

j−1∏

k=2

[1 − P (Di = k|Di ≥ k)] for j = 3, . . . , ni,

ni∏

k=2

[1 − P (Di = k|Di ≥ k)] for j = ni + 1.

(5.1)

For the weighted GEE approach, the score equations to be solved are then given by:

S(β) =

N∑

i=1

ni+1∑

d=2

I(Di = d)

νid

∂µi

∂β′ (d) (A
1/2
i RiA

1/2
i )−1(d) [yi(d) − µi(d)] = 0,

where yi(d) and µi(d) are the first (d − 1) elements of yi and µi, respectively. The

terms
∂µi

∂β′ (d) and (A
1/2
i RiA

1/2
i )−1(d) are defined analogously, in line with the defini-

tions of Robins, Rotnitzky and Zhao (1995).

WGEE falls within the broad class of schemes that employ inverse probability

weighting of complete cases (IPWCC). As such, WGEE provides an appealing alter-

native for correcting for MAR missingness, since only a model for the missingness

process is required, without necessitating assumptions about the conditional distribu-

tion of the unobserved given the observed outcomes. IPW methods, however, have,

as their main criticism, inefficiency, in comparison with, for instance, likelihood-based

approaches (Clayton et al., 1998) or multiple imputation (Carpenter, Kenward and

Vansteelandt, 2006). Moreover, when certain subsets of the population have low

response probabilities, resulting estimates can be unstable (Little and Rubin, 1987).
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5.1.2 Multiple-Imputation-Based Generalized Estimating

Equations and Multiple Imputation-Transition

In Section 3.5.2, multiple imputation or MI (Rubin, 1978) was described to consist of

three stages. At the imputation stage, M imputed data sets are generated by replac-

ing each missing value with a set of M plausible values, drawn from the conditional

distribution of the unobserved values, given the observed ones. Analysis of the M

completed data sets, by means of any standard complete data method, then follows.

At the final stage – the pooling stage – the results from the M analyses are combined

into a single inference, e.g., (3.13) and (3.14), by means of the method laid out in

Rubin (1978). In its basic form, multiple imputation requires the missingness mech-

anism to be MAR, even though versions under MNAR have been proposed (Rubin,

1987; Molenberghs, Kenward and Lesaffre, 1997).

At the analysis stage of MI, any standard complete data method can be used. One

can consider MI together with GEE or with a transition model, hereinafter referred to

as MI-GEE and MI-Transition, respectively. In essence, these methods come down to

first using the predictive distribution of the unobserved outcomes given the observed

ones and perhaps covariates. After this step, the missing-data mechanism can be

further ignored, provided the missing-data mechanism is MAR. Under either case,

a misspecification made in the imputation step will only affect the unobserved (i.e.,

imputed) but not the observed part of the data. Meng (1994) showed that as long as

the imputation model is not grossly misspecified, these approaches will perform well.

5.2 Simulation Study

In the previous section, two approaches proposed to overcome the bias occurring in

GEE under MAR have been introduced. WGEE is unbiased for a correctly specified

dropout and mean structure of the measurement model. MI-GEE requires compatibil-

ity between the imputation and estimation model to be correctly specified. Therefore,

it is of interest to quantify the bias and precision under various types of misspecifica-

tion. To this end, an asymptotic simulation study, as well as small-sample simulations,

were conducted on various underlying data-generating models. Whereas asymptotic

simulations give a nice paradigm to explore the situation of “large” samples, small-

sample simulations give insight into the behavior of the methods in real-life settings.

In the simulation study, it is important to distinguish between two stages: (1) the

data-generating stage and (2) the analysis stage. In the first stage, a data-generating

model is defined. Under the selection model framework, this generating model consists
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of a measurement model on the one hand, and a dropout model given the measurement

model on the other. The analysis stage involves three distinct models: a measurement

model, a dropout model and an imputation model. For the WGEE approach, only a

marginal measurement model and a dropout model need to be specified. In contrast,

the analysis stage for MI-GEE would entail the specification of an imputation model,

rather than a dropout model, as well as a marginal measurement model. Finally, for

MI-Transition, a conditional rather than marginal measurement model is needed, as

well as an imputation model. For the MI-GEE and MI-Transition approaches, the

predictors of dropout are included in the imputation model. These distinctions can

be more clearly visualized in the following schematic:

MODEL
Data-Generating Analysis/Fitting Stage

Stage WGEE MI-GEE MI-Transition

Measurement X X X X

Dropout X X

Imputation X X

To assess the distinctive and relative merits of the methods of interest, their per-

formance for binary longitudinal outcomes with monotone missingness shall be con-

sidered, first in the case without any misspecification, then under various misspecifi-

cations. Since interest lies in comparing WGEE and MI-GEE as methods for dealing

with missing data in a non-Gaussian longitudinal setting, the misspecification can be

made either in the dropout model, in the imputation model, or in the measurement

model. Misspecification in the missingness mechanism, however, e.g., using MCAR

for an underlying MAR mechanism, is not further explored, as this is not the main

focus here and has already been investigated extensively (Jansen et al., 2006).

In this section, the various data-generating models employed for the simulations

are first defined. A description of the design of the simulation study follows, after

which the results of the simulation, under each of the various scenarios, are presented.

5.2.1 Data-Generating Models

For the simulation study, an outcome at 3 time points was generated using three

different measurement models: first, three-dimensional binary outcomes were gener-

ated from a Bahadur model, as well as from a second-order autoregressive, AR(2),

transition model; further, a three-dimensional continuous outcome (that was later

dichotomized) was generated from a trivariate Gaussian distribution. Whereas the

choice of the first two is obvious, since focus lies on binary repeated measures, the
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third case depicts real-life settings for which a continuous outcome is available, but

the scientific question is based on a dichotomized version of it. For all three cases, the

measurement model incorporated a binary treatment indicator, such as a treatment

versus placebo classification. In addition, for the dropout model, an MAR mecha-

nism was considered. Assuming that dropout can occur only after the first time point,

there are three possible dropout patterns: (1) dropout at the second time point, (2)

dropout at the third time point, or (3) no dropout. The combination of the vari-

ous measurement models and the dropout model gives rise to three data-generating

models, which will hereinafter be denoted as:

Generating Model Measurement Model Dropout Model

GM I Bahadur MAR logistic

GM II AR(2) MAR logistic

GM III Gaussian MAR logistic

GM I is based on a Bahadur (1961) model, which, upon denoting by tj the time

point at which measurement j is taken and by xi the treatment indicator, follows

general formulation (3.27) with

logit(πij) = logit P (Yij = 1|xi, tj) = β0 + βx xi + βt tj + βxt xi tj , (5.2)

where β0 = −0.25, βx = 0.5, βt = 0.2 and βxt = −0.8, with two- and three-way

correlation coefficients equal to ρij1j2 = 0.2 and ρij1j2j3 = 0, respectively. The latter

define an exchangeable correlation structure. The missingness process for GM I is

assumed to be MAR, and the probability of dropout at time point j given xi and the

measurement at the previous time point, yi,j−1, is modeled by a logistic regression of

the form

logit P (Di = j|xi, yi,j−1, Di ≥ j) = ψ0 + ψx xi + ψprev yi,j−1, (5.3)

where j = 2, 3, 4. To be able to explore the effects of the amount of missingness

as well, the following two sets of parameters, giving rise to varying proportions of

missing data patterns were considered:

Setting ψ0 ψx ψprev

1 −0.50 −0.60 −3.50

2 −0.10 −0.29 −1.20

The resulting proportions of the 3 dropout patterns under each of these settings

are enumerated in Table 5.1. While setting 1 reflects a situation with only a moderate

amount of missingness in the data, a somewhat more extreme case, with more than

half of the data incomplete, is represented by dropout setting 2.
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Table 5.1: Generating Model I. Proportions of missing data patterns, by treatment

level and overall, under each dropout setting. (O: observed, M: missing.)

Pattern
Setting 1 Setting 2

x = 0 x = 1 Overall x = 0 x = 1 Overall

OOO 32.86 34.83 67.69 21.86 23.05 44.91

OOM 7.03 7.64 14.67 10.75 11.61 22.35

OMM 10.11 7.53 17.64 17.39 15.34 32.74

GM II consists of an autoregressive transition model of order 2, AR(2), defined

by the following:

P (xi) = µx,

logit P (Yi1 = 1|xi) = α0 + αx xi,

logit P (Yi2 = 1|xi, yi1) = φ0 + φx xi + φ1 yi1, and

logit P (Yi3 = 1|xi, yi1, yi2) = γ0 + γx xi + γ1 yi1 + γ2 yi2,

where µx = 0.5, α0 = −0.2, αx = 0.3, φ0 = −0.1, φx = 0.5, φ1 = 0.7, γ0 = −0.25,

γx = 0.35, γ1 = 0.4 and γ2 = 0.6. This is combined with the same dropout models

considered for GM I, which lead to the missing data pattern proportions summarized

in Table 5.2.

As WGEE and MI-GEE both involve marginal models, so as to allow comparison,

the conditional AR(2) transition model needs to be further marginalized to obtain so-

called marginalized “true” parameters, which then approximately describe a marginal

logistic function. For this simulation study, it is assumed that the underlying marginal

model for GM II is of the form given in (5.2). Inasmuch as the underlying measure-

ment model is in fact conditional, rather than marginal, there is no way to verify

whether this assumed underlying marginal model is “true”. The marginalization is

done by computing the marginal probabilities from the underlying conditional AR(2)

transition model probabilities, i.e., for a given outcome vector and treatment level,

(yi1, yi2, yi3, xi),

P (yi1, yi2, yi3, xi) = P (yi3|xi, yi1, yi2) P (yi2|xi, yi1) P (yi1|xi) P (xi). (5.4)

Then, on a hypothetical data set consisting of all 16 possible combinations of the form

(yi1, yi2, yi3, xi), with corresponding marginal probabilities given in (5.4) as weights, a

GEE model of the form (5.2) is fitted. The resulting marginalized “true” parameters

of GM II are β0 = −0.3658, βx = 0.2673, βt = 0.2265 and βxt = 0.0790.
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Table 5.2: Generating Model II. Proportions of missing data patterns, by treatment

level and overall, under each dropout setting. (O: observed, M: missing.)

Pattern
Setting 1 Setting 2

x = 0 x = 1 Overall x = 0 x = 1 Overall

OOO 32.46 40.10 72.56 21.63 27.27 48.90

OOM 6.75 3.71 10.46 10.49 8.70 19.19

OMM 10.78 6.19 16.98 17.88 14.03 31.91

Finally, GM III arises from a Gaussian outcome, Wij , at three time points, where:

µij = E(Wij |xi, tj) = η0 + ηx xi + ηt tj + ηxt xi tj ,

for i = 0, 1 and j = 1, 2, 3, with η0 = 3.5, ηx = 0, ηt = 1.75 and ηxt = 0.5. That is,

µ =

[
µ0

µ1

]
=

[
(µ01, µ02, µ03)

′

(µ11, µ12, µ13)
′

]
=

[
(5.75, 8.00, 10.25)′

(5.25, 7.00, 8.75)′

]
,

for which the following unstructured covariance matrix is assumed:

Σ =




1 0.80 0.35

0.80 1 0.50

0.35 0.50 1


 .

The missingness process for this GM is given by:

logit P (Di = j|xi, wi,j−1, Di ≥ j) = δ0 + δx xi + δprev wi,j−1, (5.5)

where j = 2, 3, 4. As in each of the two previous GMs, two dropout settings are

again considered, the first with δ0 = −0.15, δx = 0.8 and δprev = −0.35, and for

the second dropout setting, only the latter parameter was modified to δprev = −0.15.

Combining these dropout models with the measurement model yields, on average, over

the 500 generated samples, percentages of missing data patterns that are presented

in Table 5.3.

The binary outcome Yij was then obtained from the continuous outcome Wij

by defining a cut-off value of 6.5, i.e., Yij = 1, if Wij ≥ 6.5, and 0, otherwise.

Although the generated outcomes are continuous in nature, the focus here is on the

analysis of the binary version Yij . For this reason, “true” parameters corresponding

to this dichotomized response need to be obtained by fitting a GEE model of the

form (5.2). Note, however, that this model is again not necessarily the unknown

underlying marginal model for the binary outcomes. Using the complete data, the

resulting parameters are β0 = −3.0373, βx = 0.0095, βt = 1.7812 and βxt = 0.4828.
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Table 5.3: Generating Model III. Proportions of missing data patterns, by treatment

level and overall, averaged over the 500 generated samples, under each dropout setting.

(O: observed, M: missing.)

Pattern
Setting 1 Setting 2

x = 0 x = 1 Overall x = 0 x = 1 Overall

OOO 40.31 35.38 75.69 27.50 17.52 45.02

OOM 3.18 4.19 7.37 8.11 10.14 18.25

OMM 6.50 10.44 16.94 14.39 22.34 36.73

The choice for linear time evolutions, at the scale of the linear predictor and

within each of the treatment arms, allows distinguishing between misspecification

effects on cross-sectional parameters (β0 and βx), longitudinal parameters (βt), and

parameters combining aspects of both (βxt). In practice, for example in a clinical

trial, it might be advisable to allow for an unstructured, saturated treatment-by-time

model, reducing the risk of model misspecification and in line with recommendations

made by Molenberghs et al. (2004) and several references listed therein.

5.2.2 Design of the Simulation Study

Given that the sequence of outcomes and the missing data process for GM I and

GM II are discrete, quantification of bias under specific assumptions about the non-

response process can be done via an algorithm first proposed by Rotnitzky and Wypij

(1994). This so-called asymptotic simulation method entails first creating a hypo-

thetical data set consisting of all possible outcome sequences for each level of the

covariate(s) and for each of the possible missingness patterns. The probability mass

with which each of these outcome combinations occurs can be computed based on the

assumed data-generating model (measurement and dropout models). The asymptotic

simulation then entails fitting the prescribed model on the hypothetical data set, using

the probability mass values as weights, thereby resulting in the asymptotic solution.

Asymptotic simulations, though enabling computation of asymptotic quantities (e.g.,

bias and variance), have only theoretical value and may provide guidance as to what

happens in large to very large samples, but are of no meaningful use with conventional

data analysis. As such, these are best supplemented with small-sample simulations.

For the three-dimensional binary outcome yi = (yi1, yi2, yi3)
′ and the binary treat-

ment indicator xi considered here, there are 23 = 8 possible outcome sequences at

each level of xi, or a total of 16 possibilities over both covariate (treatment) levels.

From the assumed measurement model, the probability masses, P (yi, xi), for each of
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these 16 sequences can be computed. Now, for each such case, there are 3 possible

dropout patterns – dropout at second time point, dropout at the third time point, and

no dropout – yielding a total of 48 possibilities. The probabilities P (yi, xi) are thus

further split among the 3 missingness patterns according to the dropout probabilities.

Specifically, denoting by P (Di = 2|Di ≥ 2), P (Di = 3|Di ≥ 3) and P (Di = 4|Di ≥ 4)

the probabilities of dropout at time points 2, 3 and 4, respectively, and using (5.1),

the probabilities for the different outcome combinations are given by:

P (yi, xi,Di = 4|Di ≥ 4) = P (yi, xi)
4∏

j=2

[1 − P (Di = j|Di ≥ j)],

P (yi, xi,Di = 3|Di ≥ 3) = P (yi, xi)

3∏

j=2

[1 − P (Di = j|Di ≥ j)] P (Di = 4|Di ≥ 4),

P (yi, xi,Di = 2|Di ≥ 2) = P (yi, xi) [1 − P (Di = 2|Di ≥ 2)]

4∏

j=3

P (Di = j|Di ≥ j).

The estimating equations are then applied to this hypothetical data set with the

application of the resulting probability weighting. The solutions obtained are the

limiting (i.e., asymptotic) solutions, which can then be compared with the known

parameters of the simulation model, so as to conveniently derive the asymptotic bias

of the estimators.

For the small-sample simulations, a sample of size of N = 100 subjects, equally

divided between the two treatment groups, was considered. Such a choice is directly

applicable to practitioners, since many bio-pharmaceutical trials employ about 50 to

100 patients per treatment arm. Based on the underlying probabilities from GM I

or GM II, 50 observations were generated randomly for each treatment group, and

S = 500 such samples were then generated. Similarly, for GM III, S = 500 sam-

ples were generated, each with n0 = 50 observations from N(µ0,Σ) and n1 = 50

observations from N(µ1,Σ). While asymptotic simulations were conducted only for

GM I and GM II, small-sample simulations were done for all three generation models.

When using a GEE approach, the same working correlation structure as assumed

during data generation was employed for the analysis.

5.2.3 Results

For the ensuing discussion, various properties are quantified to help assess and com-

pare WGEE and MI-GEE. Firstly, bias for some generic parameter θ is defined here

as the difference between its estimate and its true value, i.e., Bias(θ̂) = θ̂ − θ. For

the asymptotic version, probability weights, computed from the underlying GM, are

applied in solving the estimating equations, giving the limiting solutions, from which
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the asymptotic bias (Bias∞) can be computed, as well as asymptotic variances (Var∞)

of the parameter estimators.

For the small-sample simulations, the average (Est) of the estimators over all

S = 500 samples, its estimated variance for a sample of size N (V̂arN ) and MSE are

computed as:

Est ≡ θ̂ =
S∑

i=1

θ̂i

S
,

V̂arN ≡ V̂arN (Est) =

S∑

i=1

(θ̂i − θ̂)2

S − 1
, and

MSE ≡ MSE(Est) = Bias2N(Est) + V̂arN (Est).

5.2.3.1 Everything Correctly Specified

The individual merits of each method are first investigated when every one of its

aspects is correctly specified. It can be recalled that GM I is based on a Bahadur

measurement model and a logistic model for dropout that is reflective of an MAR

mechanism, i.e., depending on the previous measurement as well as the treatment

indicator. An appropriate analysis model would therefore consist of a measurement

model and a dropout model that match those of this GM. Since GEE methods can

be viewed as moment-based versions of the Bahadur model (Section 3.5.4), a GEE-

based solution using the same structure as that of the underlying measurement model

would be suitable. To address the MAR nature of the missingness, the GEE approach

is supplemented with a weighting scheme, obtained from a model of the same form

as that of the underlying dropout model, resulting now in WGEE. Thus, WGEE

was fitted for GM I, using weights taken from fitting a logistic dropout model with

the treatment indicator and the previous measurement as predictors. It should be

noted that under WGEE the imputation model is not relevant since the missingness is

addressed, not by imputation, but rather, by means of the dropout model. The results

for both the asymptotic and small-sample simulations for both dropout settings are

shown in Table 5.4.

The asymptotic unbiasedness of the WGEE estimators under a correctly specified

mean structure is demonstrated by the results of the asymptotic simulation. The same

cannot be said, however, for the small-sample simulations, under which a substantial

amount of bias is observed under setting 1, though this improves considerably under

setting 2. Similarly, though MSEs are still relatively large in setting 1, demonstrating

the inefficiency of WGEE for small samples, improvement is observed for the case

with more missing data. These observations are indicative that, for a sample of size
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Table 5.4: Generating Model I. Asymptotic bias (Bias∞), small-sample bias (BiasN)

and mean squared error (MSE) of the parameter estimates, for WGEE analysis with

everything correctly specified, for two dropout settings and for N = 100.

Parameter
Setting 1 Setting 2

Bias∞ BiasN MSE Bias∞ BiasN MSE

β0 -1.87E-06 -0.3956 1.2346 -1.95E-07 -0.0272 0.2964

βx 1.99E-07 0.1226 2.1254 -1.37E-07 0.0681 0.6361

βt 2.02E-07 0.1018 0.2491 -0.15E-07 0.0143 0.0848

βxt -1.66E-07 -0.1357 0.4625 -0.08E-07 -0.0470 0.1944

N = 100, the consistency of the WGEE estimators does not seem to be achieved, at

least not for this particular generating model. The improvement of the precision under

increased incompleteness, though seemingly counterintuitive, might suggest that the

benefits of weighting are better realized under situations with more missing data.

For GM II, which uses an AR(2) transition model for the mean structure and a

conditional logistic model for dropout, after multiple imputation of the missing values,

an AR(2) transition model (MI-Transition), which is consistent with the underlying

measurement model, was fitted. The multiple imputations were carried out with the

SAS procedure PROC MI, which employs a conditional logistic imputation model for

binary outcomes, a model in line with the underlying measurement model of GM II

and fully parametric, admitting valid inferences under MAR (Schafer, 2003). Thus,

the MI-Transition analysis, both the imputation as well as the measurement models,

are correctly specified in the sense that they are compatible with the underlying

measurement model. Note also that a dropout model need not be defined for this mode

of analysis, since imputations, rather than dropout weights, are used to cope with the

missingness. For the asymptotic simulation, M = 500 data sets were imputed, while

for the small-sample simulations, since efficient results can be obtained even under

a small number of imputations (Rubin, 1987), a more practically relevant value of

M = 5 was chosen. Table 5.5 gives the results for both types of simulations for the

two dropout settings considered.

The first panel, reflecting the results for the model for the first outcome Y1, shows

asymptotically unbiased parameter estimates for both settings, which is expected for

this outcome, since data for all subjects are available and are thus not imputed.

The small-sample simulations for this outcome, however, show small amounts of bias,

which can most probably be attributed to finite sampling. For the second and third
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Table 5.5: Generating Model II. Asymptotic bias (Bias∞), small-sample bias (BiasN)

and mean squared error (MSE) of the parameter estimates, for MI-Transition analysis

with everything correctly specified, for two dropout settings and for N = 100.

Parameter
Setting 1 Setting 2

Bias∞ BiasN MSE Bias∞ BiasN MSE

α0 -0.0000 -0.0313 0.0935 0.0000 -0.0313 0.0935

αx -0.0000 0.0369 0.1805 -0.0000 0.0369 0.1805

φ0 -0.0096 0.0317 0.2056 -0.0049 0.0326 0.2860

φx -0.0666 0.0041 0.2635 -0.1348 0.0119 0.3688

φ1 0.0343 0.0241 0.2698 -0.0838 0.0413 0.3360

γ0 0.0236 0.0798 0.3535 0.0650 0.1136 0.5918

γx -0.0568 0.0090 0.3024 -0.1016 0.1033 1.9510

γ1 -0.0594 -0.0971 0.2448 -0.1078 0.0464 0.6039

γ2 0.0072 0.0382 0.3264 -0.2052 -0.1822 0.3168

panels, respectively representing the models for Y2 and Y3, some bias is observed,

asymptotically and for small samples, but the amounts are generally of small mag-

nitudes. It is worthwhile to point out the increase not only in both types of bias,

but also in MSE, for most of the parameters when going from dropout setting 1

to 2. As the latter consists of more missingness in the data than the former, this

observation seems to suggest that the merits of MI tend to diminish under increased

incompleteness. This is not surprising since more missing values would require more

imputations from less information, which would naturally inflate the variability of the

MI estimates, subsequently decreasing their efficiency.

Since the correctly specified MI-Transition model fitted is a conditional model,

resulting estimates warrant further marginalization to obtain so-called “marginal”

parameters. It can be recalled from Section 5.2.1 that the MI-Transition model de-

fines three sets of conditional probabilities, from which marginal probabilities can

be derived as in (5.4). These marginal probabilities can be estimated using now

the parameter estimates, rather than the true parameter values, and these estimated

marginal probabilities can be subsequently used as weights in fitting a GEE model

of the form (5.2) on a data set consisting of all possible combinations of outcome

sequences and treatment level. This yields estimates for the “marginal” parameters
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Table 5.6: Generating Model II. Asymptotic bias (Bias∞), small-sample bias (BiasN)

and mean squared error (MSE) of the parameter estimates, for the marginalized MI-

Transition analysis with everything correctly specified, for two dropout settings and

for N = 100.

Parameter
Setting 1 Setting 2

Bias∞ BiasN MSE Bias∞ BiasN MSE

β0 0.0058 -0.0616 1.1239 0.0501 -0.0350 1.1192

βx 0.0270 0.0470 2.4650 0.0571 -0.0113 2.4931

βt -0.0031 0.0394 0.2064 -0.0475 0.0214 0.2045

βxt -0.0352 -0.0153 0.4499 -0.0741 0.0308 0.4548

of the MI-Transition model, which can then be compared with the corresponding

“marginal” parameters in (5.2); the results are shown in Table 5.6. Asymptotic bias

for the parameter estimates is generally small, while its small-sample counterpart is

larger for setting 1. The reverse is observed under the setting of increased missingness,

which is also observed to inflate the asymptotic bias. With respect to MSE, however,

only very slight differences are observed across the two dropout settings.

Finally, recall that GM III is based on a Gaussian measurement model and a logis-

tic dropout model. The analysis model used for this GM was MI-GEE, which requires

an imputation model and a measurement model, but not a dropout model. Multiple

imputations of the missing Gaussian outcomes were first obtained using a Gaussian

imputation model, thereby ensuring a correctly specified imputation model, that is,

one that uses the underlying measurement process to generate the imputations for

the missing observations. The Gaussian outcome was then dichotomized based on

the previously defined cutoff value, after which standard GEE, using a probit link,

was applied to the dichotomized outcome of the imputed data sets. Since the under-

lying distribution for the outcomes is not discrete, only small-sample simulations are

possible. Although initially S = 500 samples were generated, after dichotomization

of the Gaussian outcome, there were 51 (and 108) samples under dropout setting 1

(and 2) for which convergence was not attained. Inspection of these samples showed

that the treatment-by-time interaction could not be estimated because, at one time

point, all dichotomized outcomes belonged to only one treatment group, and thus,

these samples had to be excluded.

Table 5.7 gives the results of the simulation only for the S′ = 449 and S′ = 392

convergent samples for dropout settings 1 and 2, respectively. The “true” parameter
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Table 5.7: Generating Model III. Small-sample bias (BiasN) and mean squared error

(MSE) of the parameter estimates, for MI-GEE analysis with everything correctly

specified, for dropout setting 1 (using S′ = 449) and for dropout setting 2 (using

S′ = 392), for N = 100.

Parameter
Setting 1 Setting 2

BiasN MSE BiasN MSE

β0 0.0016 0.1978 0.0208 0.1986

βx 0.0056 0.3968 0.0077 0.3792

βt -0.0004 0.0601 -0.0135 0.0579

βxt -0.0060 0.1481 -0.0145 0.1297

values used to compute the bias were obtained by fitting the same measurement model

using the complete (binary) data from the S′ = 449 or S′ = 392 samples. Consistent

with the theory on MI, only very small bias for the estimates was observed and

might be expected to decrease even further under larger samples. In addition, MSEs

generally decrease slightly under setting 2.

5.2.3.2 Dropout and Measurement Models Correct, Imputation Model

Incorrect

A comparison is now considered between WGEE and MI-GEE, both having a correctly

specified measurement model, but with an incorrectly specified imputation model for

the latter and a correctly specified dropout model for the former. In both cases, the

measurement model used is consistent with the underlying Bahadur measurement

model of GM I. In the previous section, it was discussed that fitting WGEE for GM I,

using the same mean structure as that of the underlying measurement model and

with weights obtained from a logistic dropout model with the treatment indicator and

the previous measurement as predictors, ensures every aspect is correctly specified.

For MI-GEE, imputations are done using a conditional logistic imputation model

for binary outcomes – a model that is not consistent with the marginal nature of the

underlying Bahadur measurement model and is, therefore, incorrectly specified. Thus,

the said comparison, of WGEE with correctly specified dropout and measurement

models against MI-GEE with correctly specified measurement model but incorrectly

specified imputation model, is possible under GM I. The results of the correct and

incorrect analyses are compared in Table 5.8.

As was already noted in the previous section, WGEE does not yield unbiased and
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Table 5.8: Generating Model I. Asymptotic bias (Bias∞), small-sample bias (BiasN)

and mean squared error (MSE) of the parameter estimates, for WGEE, with correctly

specified dropout, and MI-GEE, with incorrectly specified imputation model, for two

dropout settings and for N = 100.

Parameter
WGEE (correct) MI-GEE (incorrect)

Bias∞ BiasN MSE Bias∞ BiasN MSE

Setting 1

β0 -0.0000 -0.3956 1.2346 0.0101 -0.0182 0.2322

βx 0.0000 0.1226 2.1254 -0.3515 0.0181 0.4723

βt 0.0000 0.1018 0.2491 0.0007 0.0082 0.0558

βxt -0.0000 -0.1357 0.4625 0.3056 -0.0040 0.1171

Setting 2

β0 -0.0000 -0.0272 0.2964 0.0836 -0.0039 0.2906

βx -0.0000 0.0681 0.6361 -0.6024 -0.0111 0.5779

βt -0.0000 0.0143 0.0848 -0.0647 -0.0011 0.0826

βxt -0.0000 -0.0470 0.1944 0.5388 0.0183 0.1701

consistent estimators for the particular sample size used, and the small-sample bias is

considerably less for MI-GEE, particularly under dropout setting 1. Under setting 2,

however, differences between the small-sample bias for the two methods are much

smaller. It can also be observed that the precision of the estimators from MI-GEE

tends to decrease, though only slightly, under increased proportions of missing data.

But, despite this decreased precision, MI-GEE still yields more efficient estimators

than those obtained for WGEE, as evidenced by smaller MSEs, notwithstanding the

fact that the WGEE analysis was entirely correctly specified. These observations

suggest a certain amount of robustness in MI-GEE with respect to misspecifications

in the imputation model.

5.2.3.3 Imputation and Measurement Models Correct, Dropout Model

Incorrect

Whereas in the previous section the relative performances of WGEE with a cor-

rectly specified dropout model and MI-GEE with an incorrectly specified imputation

model were compared, in this section the reverse is investigated, that is, a compar-

ison of WGEE with an incorrectly specified dropout model against MI-GEE with a

correctly specified imputation model. For this assessment, GM III is considered. Ear-
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Table 5.9: Generating Model III. Small-sample bias (BiasN) and mean squared error

(MSE) of the parameter estimates, for WGEE, with incorrectly specified dropout, and

MI-GEE, with correctly specified imputation model, for two dropout settings and for

N = 100.

Parameter
MI-GEE (correct) WGEE (incorrect)

BiasN MSE BiasN MSE

Setting 1

β0 0.0016 0.1978 -0.2961 0.9656

βx 0.0056 0.3968 0.1295 1.4962

βt -0.0004 0.0601 0.1833 0.2975

βxt -0.0060 0.1481 -0.0444 0.5448

Setting 2

β0 0.0208 0.1986 -0.0737 0.3607

βx 0.0077 0.3792 0.0734 0.6127

βt -0.0135 0.0579 0.0595 0.1262

βxt -0.0145 0.1297 -0.0654 0.2511

lier, it was noted that under GM III, a Gaussian imputation model combined with a

subsequent standard GEE analysis on the dichotomized outcomes of the completed

data sets results in MI-GEE with everything correctly specified. To enable compari-

son with WGEE using an incorrectly specified dropout model, weights are obtained

from a logistic dropout model with the treatment indicator and the binary version

of the previous measurement as predictors. The latter is a clear misspecification in

the dropout model, since the underlying dropout model uses the continuous previ-

ous measurement as predictor. In both cases, the measurement model corresponds

to the assumed underlying measurement model for the dichotomized version of the

continuous response. The results of this comparison are given in Table 5.9. Only

small-sample simulations are possible since the underlying GM does not consist of a

discrete set of outcomes.

Bias is much smaller for MI-GEE, which can be expected as this is a correctly spec-

ified analysis model, with discrepancies much more pronounced for modest amounts

of missingness (setting 1). As was already previously observed, increased missingness,

though worsening the MI-GEE results slightly, tends to improve the results of WGEE.

With respect to MSE, the estimators obtained from MI-GEE are superior to those

from WGEE, for both dropout settings. These observations seem to highlight the



70 Chapter 5. Multiple Imputation vs. Weighting

Table 5.10: Marginalized Generating Model II. Asymptotic bias (Bias∞), small-sample

bias (BiasN ) and mean squared error (MSE) of the parameter estimates, for WGEE,

with correctly specified dropout and incorrectly specified measurement model, and MI-

GEE, with correctly specified imputation model and incorrectly specified measurement

model, for two dropout settings and for N = 100.

Parameter
WGEE (incorrect) MI-GEE (incorrect)

Bias∞ BiasN MSE Bias∞ BiasN MSE

Setting 1

β0 -0.0633 -0.4193 1.3114 0.0034 -0.0576 0.2523

βx -0.0556 -0.1487 3.0037 0.0332 0.0532 0.4914

βt 0.0380 0.1222 0.2311 -0.0013 0.0352 0.0611

βxt 0.0352 0.0812 0.5945 -0.0409 -0.0237 0.1168

Setting 2

β0 -0.0633 -0.1281 0.3301 0.0497 -0.0464 0.2957

βx -0.0556 -0.0150 0.7424 0.0665 0.0427 0.5870

βt 0.0380 0.0775 0.0985 -0.0479 0.0276 0.0856

βxt 0.0352 0.0298 0.2225 -0.0833 -0.0146 0.1645

sensitivity of WGEE to misspecifications in the dropout model, in contrast to MI-

GEE, which was noted to be somewhat robust to misspecifications in the imputation

model.

5.2.3.4 Imputation and Dropout Models Correct, Measurement Model

Incorrect

As a final comparison, the case of an incorrectly specified measurement model is con-

sidered, particularly under the marginalized version of GM II. For WGEE, weights

are obtained from a dropout model consistent with the underlying dropout model of

GM II, while for MI-GEE, imputations are generated from a conditional AR(2) tran-

sition model, which is in line with the underlying measurement model of GM II. In

this way, both the dropout and imputation models are correctly specified. However,

the fitted measurement models for both WGEE and MI-GEE are clearly misspecified,

in the sense that the outcomes are modeled marginally (i.e., GEE), rather than con-

ditionally (i.e., AR(2)). The resulting estimates for each case were compared to the

“marginal” parameters of GM II. The results of this comparison (Table 5.10) indicate

generally less small-sample bias and consistently smaller MSEs for MI-GEE for both
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settings. It is particularly interesting to note that quite an improvement is observed

in the MSE (and on a lesser degree, in the small-sample bias) of the WGEE estimates

for setting 2 compared to setting 1, while the MSE for MI-GEE increases slightly for

more missing values in the data.

5.3 Discussion

In this chapter, the analysis of binary longitudinal data with missingness of an MAR

nature was investigated. Apart from likelihood-based methods, such as generalized

linear mixed-effects models (Molenberghs and Verbeke, 2005), non-likelihood meth-

ods are attractive, especially when a so-called marginal model is of interest. Since

standard generalized estimating equations (Liang and Zeger, 1986) are unbiased only

under MCAR, a variety of modifications and alternatives to GEE have been proposed.

Undoubtedly the most popular route is through weighted estimating equations, pro-

posed by Robins, Rotnitzky and Zhao (1995), and a number of later extensions. Also

of attraction is a combination of GEE and multiple imputation (Rubin, 1987) meth-

ods, i.e., MI-GEE. Once multiple imputation is considered an option, it has the merit

of allowing for a variety of imputation techniques, whereafter several analysis meth-

ods can be considered. Two such routes considered in this chapter are MI-GEE and

MI-Transition.

The simulation study presented here has provided quantitative evidence, based

on asymptotic, as well as small-sample, simulations, that can be usefully applied in

the decision-making process. WGEE and MI-GEE, as well as MI-Transition, have

been compared under a variety of scenarios, shedding light on their respective merits.

Although, asymptotically, WGEE exhibits the desirable properties it is theoretically

known to possess, these are barely reproduced for small samples, even when every

aspect of the analysis is correctly specified. Moreover, the observed sensitivity of

WGEE to misspecification in either the dropout or measurement model renders these

asymptotic properties meaningless. Misspecifications are common in practice and it

is seldom the case that one would have an entirely correctly specified analysis model.

This, along with the fact that the desirable properties of WGEE are not attained for

modest sample sizes, which is common in typical clinical trials, discourages its rec-

ommendation. Some amount of improvement, however, was observed under increased

proportions of missing data. MI-GEE and MI-Transition, on the other hand, demon-

strate a certain degree of robustness to misspecification in either the imputation or

measurement model, yielding more precise estimates than WGEE, even despite a fur-
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ther marginalization for the MI-Transition case. Furthermore, while application of MI

to the case with missingness in the covariates is relatively easy, WGEE’s applicability

under such is much less straightforward. Moreover, one can do MI under MAR with

intermittent missing data. Though the results of the simulation study provide insight

about the methods under consideration, whenever inference is critical, it is always

wise to try a couple of different methods, by way of sensitivity analysis.

Previous work on the merits of inverse probability weighting methods versus mul-

tiple imputation can be found in the discussion of Scharfstein, Rotnitzky and Robins

(1999), as well as in Clayton et al. (1998) and in Carpenter, Kenward and Vanstee-

landt (2006). Clayton et al. (1998) investigated the use of inverse probability weight-

ing (IPW) and multiple imputation, among others, in the context of longitudinal

binary data in a multi-phase sampling setting. They found that, while IPW was in-

efficient for such a (2 × 2) phase design, MI showed remarkable efficiency. Moreover,

this, along with possible extension to data arising from other designs, indicates the

substantial strengths of MI. Carpenter, Kenward and Vansteelandt (2006), on the

other hand, used simulations to study a so-called doubly-robust IPW estimator, in-

troduced by Scharfstein, Rotnitzky and Robins (1999), in comparison with standard

IPW, maximum likelihood and MI. The doubly-robust IPW estimator is a modified

version of the usual IPW, proposed to improve the efficiency of IPW estimators. IPW

estimators were again found to be inefficient and sensitive to the choice of the weight

model, but the doubly-robust version proves to be as efficient as MI and robust to

misspecification. Although applied to continuous Gaussian data, they expect the re-

sults to generalize to the discrete case. Whereas Clayton et al. (1998) used actual

data and Carpenter, Kenward and Vansteelandt (2006) used simulations of a small-

sample nature, this chapter presents a small-sample simulation study complemented

with asymptotic simulations. Results reinforce the strength of MI over IPW, specifi-

cally in application to GEE. WGEE, a type of IPW scheme that uses as weights the

inverse of the probability of dropout (taken from some dropout model), was found

to be inefficient for small-samples with modest amounts of missing data, in line with

the findings of these two papers regarding the inefficiency of such IPW schemes. This

(lack of) efficiency, however, might well be addressed by adopting the doubly-robust

IPW version Scharfstein, Rotnitzky and Robins (1999) in obtaining the WGEE so-

lutions. And finally, though WGEE showed some amount of improvement under the

setting with more missingness in the data, in most of the comparisons made, MI-GEE

still outperformed WGEE.



6
Multiple-Imputation-Based

Pattern-Mixture Modeling

Clinical studies that give rise to, often incomplete, longitudinal data frequently utilize,

as mode of analysis, the selection modeling framework (Rubin, 1976; Little and Ru-

bin, 1987). The choice is natural and obvious, particularly when scientific interest lies

on the marginal effects of the independent variables on the response, since resulting

estimates from selection models immediately provide such marginal effects. Some-

times, interest can also very well be on the effects of the covariates on a particular

group of subjects, e.g., on completers, and on how these effects vary across different

response groups. In such cases, pattern-mixture models (Little, 1993, 1994a) could

provide a suitable course of analysis, since parameter estimates in a PMM denote

pattern-specific effects of the covariates on the response.

References to pattern-mixture models include Rubin (1977); Glynn, Laird and

Rubin (1986); Little and Rubin (1987); Hogan and Laird (1997); Molenberghs and

Kenward (2007). Several authors have contrasted selection models and pattern-

mixture models, to either compare the answer to the same scientific question, such

as a marginal treatment effect or time evolution, as a form of sensitivity analysis, or

to gain additional insight by supplementing the results from a selection model with

those of a pattern-mixture approach. Examples can be found in Verbeke, Lesaffre and

73
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Spiessens (2001) and Michiels et al. (2002) for continuous outcomes, while categorical

outcomes have been treated by Michiels, Molenberghs and Lipsitz (1999a,b). On a

more directed slant, i.e., not necessarily vis a vis the selection modeling approach,

Thijs et al. (2002) discussed various strategies in fitting pattern-mixture models for

continuous outcomes via model simplification, while Jansen and Molenberghs (2007)

explored strategies for the categorical case using identifying restrictions.

In this chapter, pattern-mixture models are applied to categorical data with mono-

tone missingness using the approach described by Jansen and Molenberghs (2007),

which will be investigated over simulated settings, so as to be able to assess the per-

formance of the method. Moreover, while Jansen and Molenberghs (2007) derived

formulae for marginalized point estimates, asymptotic variance expressions derived

by Sotto et al. (2009a) will be introduced here to supplement these.

6.1 Pattern-Mixture Models

Pattern-mixture models (Little, 1993, 1994a, 1995; Molenberghs and Verbeke, 2005;

Molenberghs and Kenward, 2007) employ a different response model for each pattern

of the missing values, the observed data being a mixture of these, weighted by the

probability of each missing value or dropout pattern. The family of pattern-mixture

models is based on factorization (3.2), where the conditional density of the measure-

ments given the missingness process is combined with the marginal density describing

the missingness mechanism. Note that the latter can depend on covariates, but not

on the random outcomes, and, in addition, it is possible to have different covariate

dependencies in either component of the factorization.

A key issue in this modeling framework is that pattern-mixture models are, by

construction, under-identified, that is, over-specified. Little (1993, 1994a) addresses

this problem with the use of so-called identifying restrictions, whereby inestimable

parameters of the incomplete patterns are set equal to (functions of) the parameters

describing the distribution of the completers. Under complete case missing values

(CCMV), information that is unavailable is always borrowed from the completers.

Alternatively, the nearest identified pattern can be used as a donor (neighboring case

missing values, NCMV). Using such identification schemes, within a specific pattern,

the conditional distribution of the unobserved measurements, given the observed ones

becomes identified. Yet a third possibility is to borrow information for an unidentified

distribution from all patterns for which it is identified (available case missing values,

ACMV). A further set of restrictions is presented in Kenward, Molenberghs and Thijs



6.1. Pattern-Mixture Models 75

(2003). The concept of restrictions will be elaborated upon in the following subsection.

Alternative to the use of identifying restrictions, model simplification can be con-

sidered as a means of addressing the under-identification in pattern-mixture models.

This approach might, for instance, restrict trends to functional forms supported by

the observed data within a pattern, e.g., linear or quadratic time trend. One can

also take the route of allowing the parameters to vary in a controlled parametric way,

and, for example, assume that the time evolution within each pattern is unstructured

but parallel across patterns. Thijs et al. (2002) discussed these sub-strategies in de-

tail, in the context of continuous longitudinal outcomes. Examples can be found in

Molenberghs and Kenward (2007).

6.1.1 Identification Schemes

Restricting attention to the case of monotone missingness or dropout, assume that

all subjects are to be observed at time points t = 1, 2, . . . , n, and thus, ni = n, ∀i =

1, 2, . . . , N . This results in n patterns, for which the complete data density is given

by

ft(y1, y2, . . . , yn) = ft(y1, y2, . . . , yt) ft(yt+1, yt+2, . . . , yn|y1, y2, . . . , yt). (6.1)

Owing to the monotone nature of the incompleteness, the number of repeated mea-

surements is equal to the number of potential patterns, even though some of the

latter may turn out to be empty. Density (6.1) describes all n outcomes, conditional

on pattern t being observed. Although the first factor on the right hand side is clearly

identified from the observed data, and can hence be modeled using the observed data,

the second is not, necessitating the application of identifying restrictions.

While, in principle, completely arbitrary restrictions can be used by means of

any valid density function over the appropriate support, strategies which relate back

to the observed data deserve privileged interest. One can base identification on all

patterns for which a given component ys is identified. A general expression for this

is

ft(ys|y1, y2, . . . , ys−1) =

n∑

j=s

ωsj fj(ys|y1, y2, . . . , ys−1), s = t+ 1, t+ 2, . . . , n. (6.2)

Let ωs = (ωss, ωs,s+1, . . . , ωsn)′. Every ωs with components summing to one provides

a valid identification scheme. Three special and important cases are considered. Lit-

tle (1993) proposed complete case missing values (CCMV), which uses the following

identification:

ft(ys|y1, y2, . . . , ys−1) = fn(ys|y1, y2, . . . , ys−1), s = t+ 1, t+ 2, . . . , n. (6.3)
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In other words, the conditional distribution beyond time t is always borrowed from

the corresponding conditional distribution of the completers, i.e., ωsn = 1 and all

other ωsj are set to zero. This identification scheme is perhaps most reasonable

and applicable when a large bulk of the subjects have complete data and only small

proportions fall within the various dropout patterns. Extension of this approach to

non-monotone patterns is also particularly easy. Alternatively, the nearest identified

pattern can be used to identify missing components, i.e.,

ft(ys|y1, y2, . . . , ys−1) = fs(ys|y1, y2, . . . , ys−1), s = t+ 1, t+ 2, . . . , n. (6.4)

Such restrictions are referred to as neighboring case missing values (NCMV), with

ωss = 1 and the other ωsj set to zero. The third special case of (6.2) is available case

missing values (ACMV), under which derivation of the corresponding ωs vectors is

straightforward and results in

ωsj =
πj fj(y1, y2, . . . , ys−1)

n∑

ℓ=s

πℓ fℓ(y1, y2, . . . , ys−1)

, (6.5)

where πj is the fraction of observations in pattern j (Molenberghs et al., 1998).

Clearly, ωs defined by (6.5) consists of components which are nonnegative and sum to

one, i.e., a valid density function is obtained. Molenberghs et al. (1998) showed that,

for monotone missing data, ACMV in the pattern-mixture framework is the natural

counterpart of MAR in the selection model framework.

It should be noted that identifying restrictions are unverifiable assumptions, which

also follows from the unidentified nature of the ω parameters, affording sensitivity

analysis rather than providing an unambiguous answer to the incompleteness issue.

One might, for example, prefer CCMV in cases where the bulk of the data is com-

plete, or perhaps ACMV since, in the monotone case, it is the counterpart of MAR

(Molenberghs et al., 1998). However, it is wise not to put too much emphasis on

one particular set of restrictions and to consider several. It is also worthwhile to

point out that family (6.2) is termed “interior” by Kenward, Molenberghs and Thijs

(2003), since identification is done based on distributions following from the data it-

self. One could, of course, envisage restrictions coming from external sources, such

as expert opinions, historical studies, etc. These authors also described identifying

restrictions that ensure that dropout does not depend on future, unobserved values,

termed missing non future dependent (MNFD).
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6.1.2 Pattern Mixture Models for Categorical Outcomes

with Monotone Missingness

In this section, a procedure for fitting PMMs to categorical data with monotone

missingness, proposed by Jansen and Molenberghs (2007), with an application to

actual data, will be described. In general, the method can be broken down into

three stages. In the first stage, initial models are fitted to the observed data: a

univariate model for subjects with one measurement; a bivariate model for subjects

with two measurements; and so on. Identification occurs at the second stage, in which

a particular identifying restriction is chosen. Using the initial models obtained in

stage 1, the required probabilities for the chosen identifying restriction are computed

and subsequently used to perform multiple imputation of the missing data to complete

each of the patterns. At the last stage, analysis is conducted by fitting full-vector (n-

variate) models to the completed data of each pattern and pooling these analyses over

the multiple imputations. The mixture of these pattern-specific models comprises the

final pattern-mixture model.

In line with Jansen and Molenberghs (2007), the procedure is outlined in detail for

the case of three binary outcomes. Extension to more outcomes and/or to more than

two outcome categories is straightforward. The multivariate Dale model (Molenberghs

and Lesaffre, 1994) will be used to estimate the parameters of the identified densities.

For completers (pattern 3), a trivariate Dale model of the form (3.28) will be used, for

pattern 2, a bivariate Dale model as given by (3.29), and for pattern 1, a univariate

Dale model, which is equivalent to conventional logistic regression. This is referred

to as the minimal approach (Jansen and Molenberghs, 2007), which will be described

shortly.

It is important to point out that, using the MDM formulations given by (3.28),

the incomplete patterns provide information neither about the unobserved outcomes

nor about the associations involving those unobserved outcomes. Thus, for pattern 2,

only an analogous model involving (3.28a), (3.28b) and (3.28d) can be obtained from

the data, while for pattern 1 only (3.28a) will be available. Of course, the functions

(3.28a)-(3.28g) are specific to a particular pattern and therefore the design matrices

may also change from pattern to pattern. This is necessary, among others, when

different patterns correspond to different sets of parameters.

Also in this setting, one is interested in model parameters for the full set of re-

peated outcomes, and thus identifying restrictions are necessary to determine the

unknown probabilities by equating them to functions of known probabilities. In the

normal case, restrictions are very natural to apply, because marginal as well as condi-



78 Chapter 6. MI-Based Pattern-Mixture Modeling

tional distributions can be expressed as simple functions of the mean vector and the

covariance matrix components. For categorical data in general and for the Dale model

in particular, there is no easy transition from marginal to conditional distributions in

terms of the model parameters.

Going back now to the minimal approach, a trivariate Dale model for the complete

pattern is combined with a bivariate and univariate Dale model for the incomplete

patterns, resulting in densities f3(y1, y2, y3), f2(y1, y2) and f1(y1), respectively. From

this approach, the following underlying probabilities can be estimated:

py1,y2,y3|3 = P (Y1 = y1, Y2 = y2, Y3 = y3|t = 3),

py1,y2|2 = P (Y1 = y1, Y2 = y2|t = 2),

py1|1 = P (Y1 = y1|t = 1).

For pattern 2, there is only one possibility to impute the missing cell counts, since

information on the third measurement can only be borrowed from pattern 3. So, the

partial counts Zy1,y2|2 and the conditional probabilities py3|y1,y2,3 = P (Y3 = y3|Y1 =

y1, Y2 = y2, t = 3) have to be used to identify Z∗
y1,y2,y3|2

as Zy1,y2|2 × py3|y1,y2,3. The

asterisk refers to a completed count, while corresponding counts are indicated by the

symbol Z. For pattern 1, several possibilities are available to impute the missing cell

counts, since information on the second measurement can be borrowed from pattern 2

as well as from pattern 3. Using (6.2), the joint probability of y1, y2 and y3 in pattern 1

can be written as:

py1,y2,y3|1 = py1|1

[
ω py2|y1,2 + (1 − ω) py2|y1,3

]
py3|y1,y2,3,

where specific choices of ω lead to the previously defined identifying restrictions, i.e.,

CCMV : py1|1 py2|y1,3 py3|y1,y2,3,

NCMV : py1|1 py2|y1,2 py3|y1,y2,3,

ACMV : ω =
π2py1|2

π2py1|2 + π3py1|3
,

such that the missing cell counts can be identified as follows:

CCMV : Ẑ∗
y1,y2,y3|1

= Zy1|1 p̂y2|y1,3 p̂y3|y1,y2,3, (6.6)

NCMV : Ẑ∗
y1,y2,y3|1

= Zy1|1 p̂y2|y1,2 p̂y3|y1,y2,3, (6.7)

ACMV : Ẑ∗
y1,y2,y3|1

= Zy1|1

[
π̂2p̂y1,y2|2 + π̂3p̂y1,y2|3

π̂2p̂y1|2 + π̂3p̂y1|3

]
p̂y3|y1,y2,3. (6.8)

Multiple imputations are then generated by drawing uniformly from Bernoulli vari-

ables with probabilities embedded in (6.6)–(6.8). As stated earlier, once the imputa-

tions have been generated, the so-called analysis task model, i.e., the final model, can
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be fitted and multiple-imputation inference conducted. Using conventional multiple-

imputation machinery (Little and Rubin, 1987), obtaining parameter and precision

estimates is straightforward via expressions (3.13) and (3.14).

Although Jansen and Molenberghs (2007) described an extension of the above

procedure to the case of non-monotone missingness, their analyses were confined to the

monotone case, owing to an almost negligible proportion of intermittent missingness in

the data they considered. They further mention that generalization of the procedure

to the non-monotone case would result in a proliferation of parameters, leading to a

trade-off between clarity and parsimony.

6.1.3 Marginalization Across Patterns

By way of its factorization of the joint distribution of yi and ri, as specified in (3.2),

a PMM gives rise to pattern-specific estimates. In cases where the scientific interest

is on such, a PMM would, of course, be a natural choice. If, however, interest lies

on marginal effects, one might opt for a selection model instead. It is also possible

though that one wants to obtain, from a fitted PMM, so-called “marginalized” effects,

i.e., pattern-specific effects marginalized across all patterns. This might be the case,

for example, when one wants to compare PMM results with their selection model

counterparts. In the case of continuous data, the overall (or marginalized) effect

is simply a weighted average of the pattern-specific effects. For categorical data,

however, the marginalization is less straightforward. Jansen and Molenberghs (2007)

propose an approximation for the marginalized effects of a PMM for a logistic model.

Suppose that to model the data from pattern t, one considers a logistic regression

of a binary response Yij on some treatment of interest, Xi, of the form

P (Yij = 1|t) =
eαt+βtXi

1 + eαt+βtXi
. (6.9)

In general, t = 1, 2, . . . ,K, where K = n for the monotone case (as in Section 6.1.1),

while K = 2n for non-monotone missingness, in which case, for instance, the mul-

tivariate Dale model might be used to model the non-response. The parameters αt

and βt can depend on j, but this index is suppressed from notation. Assuming that

interest is on one particular treatment effect X , e.g., treatment effect at the last occa-

sion, and that πt denote the pattern probabilities as defined previously, the marginal

success probability over all patterns, is then equal to

P (Yij = 1) =

K∑

t=1

πt
eαt+βtX

1 + eαt+βtX
. (6.10)
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From this formulation, there are three ways to calculate the marginal effects (e.g., the

intercept A and treatment effect B) at the last occasion. First, using a direct linear

approach (Park and Lee, 1999), where a weighted average over all patterns is taken,

i.e.,

APL =
∑

t

πtαt and BPL =
∑

t

πtβt. (6.11)

Though seemingly logical, this marginalization may not be entirely appropriate for

binary responses, as will be shown shortly. Second, the marginal probability can be

approximated via a logistic regression, a probit model, or by fully using the longitu-

dinal nature of the design, through a Dale model, a generalized linear mixed model,

etc. Third, classical averaging can be performed. To this effect, function (6.10) is

kept as is and is then computed, graphed, or sampled from. Note that averaging in

this last way will be similar to the marginalization of generalized linear mixed-effects

model (Molenberghs and Verbeke, 2005). Here, the marginalization is over the pat-

terns, rather than over random effects. When a GLMM is used in each pattern, then

a double marginalization is necessary, one over the random effects and another over

the patterns. Focus here will be on the second approach – using a Dale model – but

comparison will also be made with the less appropriate but sometimes used direct

linear approach.

Jansen and Molenberghs (2007) approximate (6.10) by a logistic regression, i.e.,

letting AJM and BJM denote the marginalized effects,

f(X) =
∑

t

πt
eαt+βtX

1 + eαt+βtX
∼= eAJM+BJM X

1 + eAJM+BJM X
, (6.12)

and derived the following expressions for AJM and BJM :

AJM = logit

(∑

t

πt
eαt

1 + eαt

)
and

(6.13)

BJM =

∑

t

πt βt
eαt

1 + eαt

1

1 + eαt

(∑

t

πt
eαt

1 + eαt

) (∑

t

πt
1

1 + eαt

) .

They further showed that when the treatment effects are equal across patterns, the

marginalized treatment effect at the last occasion obtained through approximation

(6.12), will not be larger in absolute value than that obtained using the direct linear

approach (6.11). Moreover, marginalization may both increase or decrease the effect

in absolute value when the treatment effects differ across patterns.
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Considering now the direct linear approach, Park and Lee (1999) assume that the

pattern-specific success probability (6.9) is approximately linear, i.e.,

P (Yij = 1|t) =
eαt+βtXi

1 + eαt+βtXi

∼= αt + βtXi, (6.14)

whereby averaging over all patterns yields the following expression for the marginal

success probability (6.10):

f(X) =
∑

t

πt
eαt+βtX

1 + eαt+βtX
∼= APL +BPLX, (6.15)

with APL and BPL as defined in (6.11). Clearly, the assumption that the pattern-

specific success probability is linear, though probable in certain cases, is generally not

realistic for most scenarios. Moreover, approximation (6.14) essentially ignores the

presence of the link function in modeling the binary response. Though this approach

to obtain marginal effects is entirely appropriate for Gaussian outcomes, for which the

response is modeled directly, i.e., with an identity link function, such an approximation

can easily fail when modeling is done via a link, especially when the link entails a

highly non-linear transformation of the response.

Suppose that α̂t and β̂t respectively denote the maximum likelihood estimates of

the pattern-specific parameters, αt and βt, of the trivariate Dale model for pattern t,

for t = 1, 2, 3. Suppose further that π̂t denotes the sample proportion for pattern t,

for t = 1, 2, 3. Note that sample proportions are the maximum likelihood estimates

for the true pattern proportions πt in a multinomial model. Substituting now α̂t, β̂t

and π̂t into expressions (6.11) and (6.13), the estimates for the marginalized effects

are given by:

ÂPL =
∑

t

π̂t α̂t and B̂PL =
∑

t

π̂t β̂t, (6.16)

ÂJM = logit

(∑

t

π̂t
eα̂t

1 + eα̂t

)
and

(6.17)

B̂JM =

∑

t

π̂t β̂t
eα̂t

1 + eα̂t

1

1 + eα̂t

(∑

t

π̂t
eα̂t

1 + eα̂t

) (∑

t

π̂t
1

1 + eα̂t

) .

The asymptotic variances of these estimators, derived in Sotto et al. (2009a), can

be obtained using the delta method, for which independence of the pattern-specific
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estimates across patterns is assumed. Such an assumption of independence of the

pattern-specific estimates across patterns is entirely justified in a PMM since, by

(3.2), the outcome vector is modeled conditionally on a given dropout pattern and

thus, the pattern-specific parameters for one particular pattern can be viewed as be-

ing estimated independently of those in other patterns. In fact, the model for the

outcomes given a pattern can differ across patterns. It is further assumed that the

pattern probabilities and the pattern-specific parameters are estimated independently

of each other. Again, this is plausible in a PMM since, by way of factorization (3.2),

the dropout process, from which the pattern probabilities arise, is modeled indepen-

dently of the outcomes, thereby rendering the estimates of the former independent

of the pattern-specific estimates that characterize the latter. Finally, because the

maximum likelihood estimates of αt, βt and πt are used, the above estimates (6.16)

and (6.17) are consistent for (6.11) and (6.13), respectively, and this follows directly

from standard maximum likelihood principles, under the usual regularity conditions

(Welsh, 1996).

There is a need to be concerned, a priori, with potential dependencies between

observations after the imputation process has taken place, because, for example, infor-

mation on the completers is used to impute sequences that are incomplete. However,

application of multiple imputation here follows the general theory (Little and Rubin,

1987), where the observed data are used to estimate the parameters from the imputa-

tion distribution. Observations would definitely become dependent if this parameter

were used as if it were known. To alleviate this problem, first, draws are made from

the parameter’s posterior distribution, separately for each of the multiple imputa-

tions, and only thereafter are imputations generated. While not straightforward to

establish independence in a particular situation, general theory (Rubin, 1987) states

that this procedure removes or at least alleviates this problem. Moreover, it is sen-

sible to assume that the correlations are mild to begin with. In the particular case

considered here, this rests on the following assumptions:

• Independence of pattern-specific estimates across patterns implies that ∀k 6= ℓ,

Cov(α̂k, α̂ℓ) = 0, Cov(β̂k, β̂ℓ) = 0 and Cov(α̂k, β̂ℓ) = 0.

• Independence of estimates for pattern probabilities and (measurement model)

pattern-specific estimates further implies:

Cov(α̂k, π̂k) = 0 and Cov(β̂k, π̂k) = 0, ∀k = 1, 2, 3,

Cov(α̂k, π̂ℓ) = 0 and Cov(β̂k, π̂ℓ) = 0, ∀k 6= ℓ.
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With the aforementioned assumptions, for the specific case of three outcomes

considered here, derivation of the asymptotic variances for the direct linear approach

(6.11) is straightforward, yielding

Var(ÂPL) =

3∑

t=1

πt
2Var(α̂t) +

3∑

t=1

αt
2Var(π̂t) + 2

∑

t<ℓ

αtαℓCov(π̂t, π̂ℓ),

Var(B̂PL) =
3∑

t=1

πt
2Var(β̂t) +

3∑

t=1

βt
2Var(π̂t) + 2

∑

t<ℓ

βtβℓCov(π̂t, π̂ℓ).

(6.18)

For the approach of Jansen and Molenberghs (2007), the marginalized effects in (6.13)

can be expressed in terms of the following functions:

U ≡ f1(θ) =

3∑

k=1

πk
eαk

1 + eαk
,

V ≡ f2(θ) =

3∑

k=1

πk
1

1 + eαk
, and

W ≡ f3(θ) =
3∑

k=1

πk βk
eαk

1 + eαk

1

1 + eαk
,

with corresponding estimators given by:

Û ≡ f1(θ̂) =
3∑

k=1

π̂k
eα̂k

1 + eα̂k
,

V̂ ≡ f2(θ̂) =
3∑

k=1

π̂k
1

1 + eα̂k
, and

Ŵ ≡ f3(θ̂) =

3∑

k=1

π̂k β̂k
eα̂k

1 + eα̂k

1

1 + eα̂k
.

Application of the delta method on (6.13), as expressed in terms of these functions,

yields the following asymptotic variances:

Var(ÂJM) =
1

U2(1 − U)2
Var(Û),

Var(B̂JM ) =
W 2

U4V 2
Var(Û) +

W 2

U2V 4
Var(V̂ ) +

1

U2V 2
Var(Ŵ ) +

2W 2

U3V 3
Cov(Û , V̂ ) +

2W

U3V 2
Cov(Û , Ŵ ) +

2W

U2V 3
Cov(V̂ , Ŵ ),

(6.19)
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where:

Var(Û) =
3∑

t=1

πt
2 (eαt)2

(1 + eαt)4
Var(α̂t) +

3∑

t=1

(eαt)2

(1 + eαt)2
Var(π̂t) +

2
∑

t<ℓ

eαteαℓ

(1 + eαt)(1 + eαℓ)
Cov(π̂t, π̂ℓ)

Var(V̂ ) =

3∑

t=1

πt
2 (−eαt)2

(1 + eαt)4
Var(α̂t) +

3∑

t=1

(eαt)2

(1 + eαt)2
Var(π̂t) +

2
∑

t<ℓ

1

(1 + eαt)(1 + eαℓ)
Cov(π̂t, π̂ℓ)

Var(Ŵ ) =
3∑

t=1

πt
2
βt

2 (eαt)2(1 − eαt)2

(1 + eαt)6
Var(α̂t) +

3∑

t=1

πt
2 (eαt)2

(1 + eαt)4
Var(β̂t) +

3∑

t=1

βt
2 (eαt)2

(1 + eαt)4
Var(π̂t) + 2

3∑

t=1

πt
2
βt

(eαt)2(1 − eαt)

(1 + eαt)5
Cov(α̂t, β̂t) +

2
∑

t<ℓ

βtβℓ

eαteαℓ

(1 + eαt)2(1 + eαℓ)2
Cov(π̂t, π̂ℓ)

Cov(Û , V̂ ) =
3∑

t=1

πt
2(−1)

(eαt)2

(1 + eαt)4
Var(α̂t) +

3∑

t=1

eαt

(1 + eαt)2
Var(π̂t) +

∑

t<ℓ

eαt + eαℓ

(1 + eαt)(1 + eαℓ)
Cov(π̂t, π̂ℓ)

Cov(Û , Ŵ ) =

3∑

t=1

πt
2
βt

(eαt)2(1 − eαt)

(1 + eαt)5
Var(α̂t) +

3∑

t=1

βt

(eαt)2

(1 + eαt)3
Var(π̂t) +

3∑

t=1

πt
2 (eαt)2

(1 + eαt)4
Cov(α̂t, β̂t) +

∑

t<ℓ

e
αte

αℓ
βt(1 + eαℓ) + βℓ(1 + eαt)

(1 + eαt)2(1 + eαℓ)2
Cov(π̂t, π̂ℓ)

Cov(V̂ , Ŵ ) =
3∑

t=1

πt
2(−1)βt

(eαt)2(1 − eαt)

(1 + eαt)5
Var(α̂t) +

3∑

t=1

βt
eαt

(1 + eαt)3
Var(π̂t) +

3∑

t=1

πt
2(−1)

(eαt)2

(1 + eαt)4
Cov(α̂t, β̂t) +

∑

t<ℓ

(1 + eαt)βℓe
αℓ + (1 + eαℓ)βte

αt

(1 + eαt)2(1 + eαℓ)2
Cov(π̂t, π̂ℓ)

From (6.12) and (6.15) it is easy to see that (AJM , BJM ) and (APL, BPL) are two

approximations for some true underlying marginal effects, say (A,B), which are un-

known but might be estimated by fitting a selection model. For the ensuing simulation

study, the marginal effects were obtained by factoring the underlying data generat-
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ing mechanism in a selection model (SeM) formulation, via a procedure that will be

defined shortly. The estimators (ÂJM , B̂JM ) and (ÂPL, B̂PL) can thus be used to

estimate these underlying SeM-type marginal effects. In the simulation, these two

approximations are examined with respect to how they fare in estimating the true

SeM-type marginal parameters.

The procedure to obtain underlying marginal parameters from a PMM, with which

the above-defined marginalized effects estimates, (ÂPL, B̂PL) and (ÂJM , B̂JM ), can

be subsequently compared, will be described for the specific case of 3 time points,

though generalization to more time points is straightforward. Recall that the general

formulation of a PMM given in (3.2) allows the computation of the joint distribution

of the binary responses, Y , and the dropout pattern, t, conditional on the treatment

indicator, X , as

P (Y = y, t|X) = P (Y = y|t,X) P (t|X)

= P (Y1 = y1, Y2 = y2, Y3 = y3|t,X) P (t|X)

= P (Y1 = y1, Y2 = y2, Y3 = y3|t,X) πt|X ,

where πt|X denotes the pattern proportions conditional on the level of the treatment

indicator. The marginal success probability, say, at the last time point, given treat-

ment X , can then be obtained by summing over all response values at all other time

points and over all patterns, i.e.,

P (Y3 = 1|X) =
∑

∀y1,y2,t

P (Y = y, t|X)

=

1∑

y1=0

1∑

y2=0

3∑

t=1

P (Y1 = y1, Y2 = y2, Y3 = 1|t,X) πt|X

=

3∑

t=1

πt|X P (Y3 = 1|t,X). (6.20)

Assuming now a logistic regression of Y3 on the treatment indicator, X ,

logit P (Y3 = 1|X) = A3 +B3X,

implying

logit P (Y3 = 1|X = 0) = A3 and

logit P (Y3 = 1|X = 1) = A3 +B3,

which can then be solved for the true underlying parameters, A3 and B3, as

A3 = logit P (Y3 = 1|X = 0) and

B3 = logit P (Y3 = 1|X = 1) − logit P (Y3 = 1|X = 0).
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Though interest is usually on the effects at the last time point, effects at intermediate

time points can also be obtained analogously.

Note that P (Y3 = 1|t,X) in (6.20) is modeled logistically as specified by (3.28c)

in the Dale model, i.e.,

logit P (Y3 = 1|t,X) = αt,3 + βt,3X,

which is equivalent to

P (Y3 = 1|t,X) =
eαt,3+βt,3X

1 + eαt,3+βt,3X
,

which, upon substitution into (6.20) leads to

P (Y3 = 1|X) =
3∑

t=1

πt|X
eαt,3+βt,3X

1 + eαt,3+βt,3X
. (6.21)

Clearly, this is not equivalent to (6.10), which uses the unconditional pattern propor-

tions, πt, as weights. Since ÂJM and B̂JM , as well as ÂPL and B̂PL, are both based

on (6.10), it would be natural to expect bias for these when estimating the underlying

SeM-type marginal effects. Thus, in presenting the results of the simulation, MSE,

rather than variances, shall be used to assess the precision of the said estimates. Of

course in the case that the conditional pattern proportions are equal to the uncondi-

tional ones, πt|X = πt, ∀X , e.g., under an MCAR mechanism, then the estimates of

Jansen and Molenberghs (2007) are unbiased for the SeM-type marginal parameters.

6.2 Simulation Study

In this section, the design of the simulation study is first presented, followed by

the primary results. The last subsection includes results of additional simulations

conducted to investigate convergence properties, as well as to gain more insight into

the performance of the different identifying restrictions.

6.2.1 Design of the Simulation Study

For the simulation study, 3 binary outcomes, (Y1, Y2, Y3), and a single two-level co-

variate, X , possibly denoting a treatment indicator, were considered. To formulate

an underlying PMM for the outcomes, a distinct trivariate Dale model of the general

form (3.28) was defined for each pattern. Here, for each outcome, a simple logistic
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model was specified, consisting of an intercept and treatment effect, respectively de-

noted as αt and βt, t = 1, 2, 3. Further, the association parameters (ψ) were set to be

constant. This implies a 10-dimensional full parameter vector, i.e.,

θ = (α1, β1, α2, β2, α3, β3, lnψ12, lnψ13, lnψ23, lnψ123)
′.

Letting C =

(
1 0

1 1

)
, the design matrices in (3.28) can be defined as:

X1 =

(
C 208

802 808

)
, X2 =




202 202 206

202 C 206

602 602 606


 , X3 =




404 402 404

204 C 204

404 402 404


 ,

while for i = 4, 5, 6 and 7,

X4 = [x4]ij , where x4 =

{
1, for i = 7 and j = 7

0, otherwise
,

X5 = [x5]ij , where x5 =

{
1, for i = 8 and j = 8

0, otherwise
,

X6 = [x6]ij , where x6 =

{
1, for i = 9 and j = 9

0, otherwise
,

X7 = [x7]ij , where x7 =

{
1, for i = 10 and j = 10

0, otherwise
,

which further implies

X1θ = Cθ1 = C(α1, β1)
′ = (α1, α1 + β1)

′,

X2θ = Cθ2 = C(α2, β2)
′ = (α2, α2 + β2)

′,

X3θ = Cθ3 = C(α3, β3)
′ = (α3, α3 + β3)

′,

X4θ = 1θ4 = lnψ12,

X5θ = 1θ5 = lnψ13,

X6θ = 1θ6 = lnψ23,

X7θ = 1θ7 = lnψ123.

The values chosen for θ, for each pattern, are given in Table 6.1. The mixture of the 3

trivariate Dale models defined by these sets of parameters gives rise to the underlying

PMM used for the simulations.

Monotone missingness was then generated by formulating a logistic dropout model

of the form

logit P (D = j|D ≥ j,X) = ν0 + ν1X,
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Table 6.1: Trivariate Dale model parameter values specified for each of the three

dropout patterns. (O: observed, M: missing.)

Pattern α1 β1 α2 β2 α3 β3 ψ12 ψ13 ψ23 ψ123

1 (OMM) 0.214 0.096 0.182 0.067 0.142 0.090 1.4 1.1 1.6 1.2

2 (OOM) 0.155 0.135 0.130 0.084 0.100 0.083 1.6 1.2 1.5 1.7

3 (OOO) 0.109 0.033 0.155 0.028 0.142 0.056 2.2 1.8 2.3 1.5

with X denoting the treatment indicator. Two dropout settings were considered for

the above model, using the following sets of parameters: (ν0, ν1) = (−2.2, 0.8) and

(ν0, ν1) = (−1.5, 0.8). The resulting percentages of subjects per pattern, as well as per

covariate (treatment) level, are given in Table 6.2. Combining these mixing weights

from each of these dropout models with the three trivariate Dale models defines two

underlying PMMs on which the simulations will be based. The underlying SeM-type

marginal parameters corresponding to these two PMMs were computed using the

approach described at the end of Section 6.1.3 and are further shown in Table 6.3.

On each of the two defined underlying PMMs, S = 500 samples, each of size

N = 1000, were generated, and the procedure described in Section 6.1.2 was applied

to each of the generated samples. Marginalized parameter estimates using both (6.13)

and the direct linear method (6.11) were also computed. The choice of parameter

values (Table 6.1), as well as the choice of sample size N = 1000, was dictated by

limitations in fitting both the initial, as well as the final, analysis models. Fitting

a trivariate or a bivariate Dale model, or even an ordinary logistic model for that

matter, requires that all combinations of the outcome vector are present per level of

the covariate. In generating each of the S = 500 samples, it was therefore necessary

Table 6.2: Proportions of missing data patterns, by treatment level and overall, under

each dropout setting. (O: observed, M: missing.)

Pattern
Setting 1 Setting 2

x = 0 x = 1 Overall x = 0 x = 1 Overall

1 (OMM) 4.99 9.89 14.88 9.12 16.59 25.71

2 (OOM) 4.49 7.93 12.42 7.46 11.09 18.54

3 (OOO) 40.52 32.17 72.70 33.42 22.32 55.75
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Table 6.3: True marginal parameter values for the two underlying pattern-mixture

models. (The marginal intercept and marginal treatment effect for the jth outcome,

j = 1, 2, 3, are denoted Aj and Bj, respectively.)

PMM
Y1 Y2 Y3

A1 B1 A2 B2 A3 B3

1 0.1236 0.0746 0.1551 0.0457 0.1381 0.0640

2 0.1350 0.0950 0.1559 0.0558 0.1356 0.0700

to ensure that all combinations were “observed” within each pattern. The values

for θ in Table 6.1 were thus chosen so that the probabilities for the trivariate Dale

models (per pattern), when combined with the dropout probabilities, would result in

joint probabilities that are still large enough to generate all combinations within one

pattern for a sample of N = 1000.

6.2.2 Primary Results

The discussion of the results are organized into those pertaining to the initial esti-

mates, the pattern-specific estimates, and the marginalized effects estimates, respec-

tively.

6.2.2.1 Initial Estimates

For the first stage, a trivariate Dale model for cases in pattern 3, a bivariate Dale

model for the second pattern, and a logistic model for pattern 1 were fitted using

the observed data of each sample. At this stage, no attempt is made to address

the missingness yet; appropriate models are simply fit to the observed data. The

resulting estimates, averaged over the S = 500 samples, were then compared with the

true parameter values from the underlying trivariate Dale models, so as to obtain the

bias and MSE, both of which are presented in Table 6.4.

In both settings, parameter estimates exhibit very small bias and reasonably small

MSEs. The results for pattern 3 under setting 1 are the most precise, as might be

expected, since it is under this particular setting and within this particular pattern

that a large proportion of the subjects fall. For the same pattern, but under setting 2,

bias and MSEs are slightly larger, since setting 2 consists of more missingness and thus

fewer subjects within pattern 3 (see Table 6.2). For patterns 1 and 2, under setting 1,

although biases are quite acceptable, the treatment effects, as well as the association,

seem to be less precisely estimated than the intercepts, but this improves in setting 2.
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Table 6.4: Bias and MSE of the parameter estimates for the initial models fitted,

under each dropout setting, to the observed data: trivariate Dale model for pattern 3,

bivariate Dale model for pattern 2 and logistic model for pattern 1.

Parameter
Pattern 1 Pattern 2 Pattern 3

Bias MSE Bias MSE Bias MSE

Setting 1

α1 0.0044 0.0913 0.0099 0.0908 0.0045 0.0112

β1 0.0151 0.1284 -0.0302 0.1413 -0.0014 0.0236

α2 —— —— 0.0030 0.0917 0.0049 0.0101

β2 —— —— -0.0123 0.1386 0.0001 0.0205

α3 —— —— —— —— 0.0012 0.0104

β3 —— —— —— —— -0.0025 0.0223

lnψ12 —— —— 0.0121 0.1354 -0.0042 0.0252

lnψ13 —— —— —— —— -0.0057 0.0222

lnψ23 —— —— —— —— 0.0039 0.0217

lnψ123 —— —— —— —— 0.0008 0.0994

Setting 2

α1 0.0021 0.0476 0.0054 0.0543 0.0122 0.0139

β1 0.0005 0.0745 0.0006 0.0840 -0.0115 0.0345

α2 —— —— -0.0014 0.0570 -0.0005 0.0125

β2 —— —— 0.0039 0.0858 -0.0027 0.0298

α3 —— —— —— —— 0.0070 0.0128

β3 —— —— —— —— -0.0110 0.0311

lnψ12 —— —— 0.0286 0.0976 0.0006 0.0310

lnψ13 —— —— —— —— -0.0034 0.0298

lnψ23 —— —— —— —— 0.0047 0.0326

lnψ123 —— —— —— —— -0.0126 0.1166

Finally, in contrast with the results for pattern 3, the incomplete patterns 1 and 2

yield better results under setting 2, since there are more subjects within these patterns

than there are under setting 1.

6.2.2.2 Pattern-Specific Estimates

The results from the initial models fitted to the observed data were then used to

apply various identifying restrictions, under which multiple imputations (M = 5)

were obtained to fill in the missing data. Under each setting and for each identifying

restriction considered, three trivariate Dale models were then fitted to the completed
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Table 6.5: Bias and MSE of the pattern-specific parameter estimates for the trivariate

Dale models fitted to the completed data using various identifying restrictions, for

dropout setting 1.

Parameter
CCMV ACMV NCMV

Bias MSE Bias MSE Bias MSE

Pattern 1

α1 0.0037 0.0911 0.0049 0.0906 0.0047 0.0909

β1 0.0161 0.1279 0.0144 0.1270 0.0147 0.1281

α2 0.3139 0.1190 0.2645 0.0946 -0.0464 0.1190

β2 -0.0423 0.0311 -0.0454 0.0392 0.0162 0.1713

α3 0.4004 0.1830 0.3514 0.1421 0.2940 0.1087

β3 -0.0676 0.0387 -0.0739 0.0334 -0.0583 0.0354

lnψ12 0.4387 0.2346 0.4116 0.2115 0.1578 0.1899

lnψ13 0.4085 0.2268 0.4752 0.2733 0.4193 0.2286

lnψ23 0.2775 0.1349 0.3634 0.1818 0.3350 0.1642

lnψ123 0.3877 0.4634 0.2283 0.3062 0.2464 0.3099

Pattern 2

α1 0.0105 0.0901 0.0099 0.0907 0.0098 0.0903

β1 -0.0310 0.1397 -0.0302 0.1412 -0.0299 0.1406

α2 0.0030 0.0921 0.0037 0.0915 0.0030 0.0914

β2 -0.0123 0.1392 -0.0133 0.1375 -0.0124 0.1375

α3 0.3241 0.1288 0.3312 0.1350 0.3269 0.1318

β3 -0.0436 0.0416 -0.0578 0.0430 -0.0513 0.0394

lnψ12 0.0132 0.1355 0.0132 0.1355 0.0131 0.1352

lnψ13 0.3225 0.1626 0.3308 0.1716 0.3236 0.1631

lnψ23 0.4009 0.2148 0.3986 0.2167 0.3963 0.2110

lnψ123 -0.1062 0.2881 -0.0678 0.2934 -0.0876 0.2828

data – one for each pattern. The bias and MSE of the pattern-specific parameter

estimates under dropout settings 1 and 2 are given in Tables 6.5 and 6.6, respectively.

Only the results for patterns 1 and 2 are presented, since the results for pattern 3

remain the same as in Table 6.4.

Considering first the results for pattern 2, in general, under both dropout settings,

substantial bias can be observed for the intercept of the third outcome, α3, as well

as the two-way association parameters involving this outcome, i.e., lnψ13 and lnψ23.

This seems reasonable to expect since, for pattern 2, it is this outcome that is imputed,

and thus more susceptible to bias. All other parameters for this pattern exhibit
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Table 6.6: Bias and MSE of the pattern-specific parameter estimates for the trivariate

Dale models fitted to the completed data using various identifying restrictions, for

dropout setting 2.

Parameter
CCMV ACMV NCMV

Bias MSE Bias MSE Bias MSE

Pattern 1

α1 0.0023 0.0472 0.0025 0.0474 0.0025 0.0475

β1 0.0002 0.0740 -0.0001 0.0741 -0.0001 0.0744

α2 0.3107 0.1081 0.2072 0.0574 -0.0436 0.0731

β2 -0.0360 0.0195 -0.0225 0.0228 0.0103 0.1073

α3 0.3978 0.1719 0.3409 0.1272 0.2918 0.0983

β3 -0.0628 0.0228 -0.0619 0.0210 -0.0593 0.0259

lnψ12 0.4298 0.2166 0.4070 0.2025 0.1617 0.1381

lnψ13 0.3973 0.2196 0.5010 0.2942 0.4192 0.2242

lnψ23 0.2726 0.1412 0.3469 0.1681 0.3282 0.1560

lnψ123 0.3557 0.3809 0.2063 0.2328 0.2059 0.2291

Pattern 2

α1 0.0054 0.0542 0.0051 0.0545 0.0054 0.0542

β1 0.0006 0.0839 0.0010 0.0843 0.0006 0.0837

α2 -0.0019 0.0566 -0.0011 0.0569 -0.0017 0.0569

β2 0.0048 0.0847 0.0034 0.0857 0.0044 0.0857

α3 0.3239 0.1182 0.3228 0.1174 0.3223 0.1181

β3 -0.0405 0.0262 -0.0391 0.0250 -0.0459 0.0256

lnψ12 0.0284 0.0977 0.0286 0.0976 0.0287 0.0976

lnψ13 0.3360 0.1665 0.3354 0.1694 0.3390 0.1657

lnψ23 0.4087 0.2208 0.3986 0.2159 0.3969 0.2095

lnψ123 -0.1231 0.2246 -0.1334 0.2282 -0.1467 0.2555

small bias. The MSEs, on the other hand, indicate that the intercepts α1 and α2

for outcomes 1 and 2, respectively, are slightly more precisely estimated than the

treatment effects β1 and β2. For the association parameters, larger MSEs are obtained

for those involving the third outcome, especially so for the three-way association

lnψ123. Finally, it seems that the treatment effect for the third outcome, β3, is the

most precisely estimated of all parameters, as indicated by the smaller MSE for this

parameter under both settings.

For pattern 1, for both settings, it can be generally observed that the intercept

parameters for the second and third outcomes, α2 and α3, respectively, as well as all
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association parameters, have fairly large bias. A particular exception can be seen for

the NCMV case, under which α2, exhibits much smaller bias compared to the CCMV

and ACMV cases. On the other hand, the corresponding treatment effects for the last

two outcomes, β2 and β3, have small bias. With respect to precision, all association

parameters have relatively high MSE. In addition, the MSEs for the intercepts α2 and

α3 are similar in magnitude, whereas those for the treatment effects β2 and β3 are

considerably smaller. Finally, as was observed for pattern 2, the treatment effect for

the third outcome, β3, is also the most precisely estimated parameter in pattern 1.

Comparing now the results across the various identifying restrictions, for a par-

ticular parameter, all three identification schemes yield very similar values for bias

and MSE for pattern 2, under both settings, as might be expected, since the three

restrictions are in fact equivalent for this pattern. That is, information about the last

outcome can only be borrowed from the completers’ pattern 3, which is the neigh-

boring pattern, as well as the only pattern for which such information is available.

For pattern 1, however, the situation is quite different. Discrepancies in bias can be

seen across the various identification schemes for a particular parameter, and these

are larger in value than those observed under pattern 2. Looking further into the

parameters related to the missing outcomes, under both settings, the smallest bias

is observed under the NCMV case for α2, β2, α3, β3 and lnψ12, while for lnψ13 and

lnψ23, the CCMV restriction yields the smallest bias. For lnψ123, it is the ACMV

(NCMV) case that results in the least bias for setting 1 (2). In terms of precision, on

the other hand, the parameters α2, β3, lnψ13 and lnψ23 seem to be estimated fairly

comparably across the identifying restrictions in both settings. The parameter β2 is

most precisely estimated under CCMV in setting 1, and under NCMV in setting 2,

while α3 is most precise under NCMV (both settings). Finally, lnψ123 is most precise

under ACMV (setting 1) and NCMV (setting 2).

To evaluate the effect of the amount of missingness on the fitting procedure, results

for the two dropout settings within a particular pattern are now compared. For

pattern 1, the bias and MSEs of the estimates are generally smaller under setting 2,

with more missingness, i.e., more subjects within this pattern. For pattern 2, the

setting with more missingness shows smaller bias for the α and β parameters, larger

bias for the association parameters, and generally smaller MSEs for all parameters.

These results require careful qualification. With respect to how the results relate

to the identifying restrictions, it is clear from the previous observations that no par-

ticular identifying restriction consistently led to the most precise estimates. This is

understandable as the underlying parameters (Table 6.1) do not reflect any particular

identification scheme. In Section 6.2.3, the performance of the various identifying re-
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strictions are investigated further by specifically choosing underlying parameters that

represent an NCMV setting. Whereas it is entirely possible to explore this situation

within the context of a simulation study, the choice of which restriction leads to supe-

rior results is more difficult when dealing with actual data, since the true underlying

identification pattern is usually unverifiable.

Secondly, particular attention needs to be accorded to the results insofar as the

degree of incompleteness in the data is concerned. Observations seem to indicate that,

within reason, the amount of missingness does not really pose additional difficulty in

applying the proposed method, at least up to cases with moderate incompleteness

(e.g., around 50%). Results showed that better precision is obtained when the data

contains more missingness. Initially, this may seem contrary to what might be ex-

pected, since dropout setting 2 consists of more missing data, and might therefore

be expected to yield worse results. However, it is also necessary to consider the

proportions of subjects within each pattern. It is useful to recall that the condi-

tional probabilities used for the imputations are initially estimated from the observed

data. When a pattern has very few subjects, as would be the case when there are

few dropouts and most subjects are completers, the conditional probabilities for the

incomplete patterns may be poorly determined, thus yielding imputations that are

probably less reliable. Hogan and Laird (1997) suggested that each pattern needs to

be sufficiently “filled,” requiring large numbers of dropouts. This is further validated

by inspection of the results for the completers (Table 6.4), which indicate better pre-

cision for setting 1, under which pattern 3 has more subjects. Hence, in assessing the

effects of the amount of missingness on the pattern-specific estimates, it is essential

that the particular pattern is considered, since more missingness in the data may

imply less subjects in one pattern (e.g., completers), but more subjects in the other

(incomplete) patterns.

6.2.2.3 Marginalized Effects Estimates

The estimates for the marginalized effects (6.13) proposed by Jansen and Molenberghs

(2007) were also computed from the pattern-specific parameter estimates and these

were compared with the true marginalized parameter values of the underlying PMM

(Table 6.3). The results for each identifying restriction and for the two dropout

settings are summarized in Table 6.7. Although scientifically speaking, interest might

really be placed on the marginalized effects estimates for the last outcome, i.e., at the

end of the series, at which point the treatment presumably does or does not take its

desired effect, values for the other outcomes are nevertheless presented here for a more
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Table 6.7: Bias and MSE of the marginalized parameter estimates (6.17) of Jansen

and Molenberghs (2007) for the pattern-mixture model fitted to the completed data

using various identifying restrictions, for both dropout settings. (The marginalized

intercept and treatment effect for the jth outcome, j = 1, 2, 3, are denoted AJMj
and

BJMj
, respectively.)

Parameter
CCMV ACMV NCMV

Bias MSE Bias MSE Bias MSE

Setting 1

AJM1
0.0109 0.0088 0.0110 0.0088 0.0110 0.0088

BJM1
-0.0209 0.0163 -0.0211 0.0164 -0.0210 0.0164

AJM2
0.0486 0.0099 0.0414 0.0096 -0.0039 0.0122

BJM2
-0.0096 0.0143 -0.0101 0.0154 -0.0023 0.0209

AJM3
0.0950 0.0164 0.0891 0.0149 0.0806 0.0141

BJM3
-0.0119 0.0156 -0.0150 0.0150 -0.0123 0.0153

Setting 2

AJM1
0.0170 0.0091 0.0170 0.0091 0.0170 0.0091

BJM1
-0.0322 0.0182 -0.0322 0.0181 -0.0323 0.0182

AJM2
0.0773 0.0128 0.0519 0.0113 -0.0117 0.0154

BJM2
-0.0150 0.0147 -0.0121 0.0177 -0.0045 0.0269

AJM3
0.1603 0.0325 0.1462 0.0281 0.1338 0.0247

BJM3
-0.0261 0.0164 -0.0259 0.0158 -0.0265 0.0171

concise evaluation of the marginalization procedure. In general, the magnitudes of the

bias are small, and MSE values seem to indicate that the procedure for marginalization

works pleasingly stably.

Comparing across identifying restrictions, under both settings, the bias and MSE

are very similar for the marginalized parameters AJM1
and BJM1

, which is reasonable

since this parameter relates to the first outcome, which is always observed and never

imputed. For AJM2
and BJM2

, within both settings, although NCMV exhibits the

least bias for these two parameters, their MSEs are largest under this restriction. For

AJM3
and BJM3

, bias and MSE values are comparable across the identifying restric-

tions and no particular identifying restriction seems to show superiority. In addition,

for setting 2, it can be observed that MSE values for AJM3
are somewhat larger than

those of the other parameters, implying that this parameter seems to be the least

precisely estimated one. With respect to the direction of bias of a particular param-
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Table 6.8: Bias and MSE of the marginalized parameter estimates (6.16) using the

direct linear approach of Park and Lee (1999) for the pattern-mixture model fitted to

the completed data using various identifying restrictions, for both dropout settings.

(The marginalized intercept and treatment effect for the jth outcome, j = 1, 2, 3, are

denoted APLj
and BPLj

, respectively.)

Parameter
CCMV ACMV NCMV

Bias MSE Bias MSE Bias MSE

Setting 1

APL1
0.0122 0.0090 0.0123 0.0090 0.0122 0.0090

BPL1
-0.0225 0.0168 -0.0227 0.0169 -0.0226 0.0169

APL2
0.0513 0.0102 0.0438 0.0100 -0.0029 0.0126

BPL2
-0.0127 0.0147 -0.0131 0.0159 -0.0035 0.0222

APL3
0.0995 0.0174 0.0930 0.0157 0.0840 0.0148

BPL3
-0.0169 0.0160 -0.0197 0.0153 -0.0167 0.0156

Setting 2

APL1
0.0180 0.0092 0.0180 0.0092 0.0180 0.0092

BPL1
-0.0333 0.0186 -0.0334 0.0185 -0.0334 0.0185

APL2
0.0803 0.0134 0.0538 0.0116 -0.0110 0.0158

BPL2
-0.0173 0.0151 -0.0139 0.0182 -0.0052 0.0285

APL3
0.1650 0.0341 0.1499 0.0293 0.1372 0.0257

BPL3
-0.0302 0.0168 -0.0296 0.0161 -0.0302 0.0175

eter, although generally consistent across the two settings within a given identifying

restriction, the NCMV case differs from CCMV and ACMV for the parameter AJM2
.

Finally, it generally seems that the intercept parameters are overestimated, while the

treatment effect parameters are underestimated.

Looking now across the two dropout settings, within a particular identifying re-

striction, bias and MSE values are smaller under setting 1, which has less missingness.

Whereas the amount of missingness affects the pattern-specific estimates differently

across patterns, its effects on the marginalized estimates are in line with what one

would normally expect – that situations with less missing data will tend to show more

accurate results.

Table 6.8 shows the bias and MSE for the marginalized effects estimates using the

direct linear approach (6.11). Magnitudes of bias for almost all parameters are larger

for this approach compared to those using the approximation proposed by Jansen and
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Table 6.9: Trivariate Dale model parameter values specified for each of the three

dropout patterns for the underlying pattern-mixture model having an NCMV structure.

(O: observed, M: missing.)

Pattern α1 β1 α2 β2 α3 β3 ψ12 ψ13 ψ23 ψ123

1 (OMM) 0.190 0.096 0.155 0.067 0.142 0.090 1.4 1.1 1.6 1.2

2 (OOM) 0.214 0.115 0.130 0.084 0.142 0.083 1.6 1.2 1.5 1.5

3 (OOO) 0.220 0.150 0.110 0.125 0.170 0.065 2.2 1.8 2.3 1.7

Molenberghs (2007) (in Table 6.7), as might be predicted, since the former is probably

a less appropriate way of marginalizing the pattern-specific estimates. However, for

the parameters APL2
and BPL2

, under the NCMV case in both settings, the direct

linear approach actually gives slightly smaller magnitudes of bias. For MSE, on the

other hand, in all cases, the Jansen and Molenberghs (2007) approximation (6.13)

gives more precise estimates.

6.2.3 Additional Results

In order to get deeper insight into the performance of the proposed method, addi-

tional simulations were performed, based on a new underlying PMM that was clearly

of an NCMV type. It can be recalled that for the case of 3 outcomes, the identifying

restrictions are equivalent for pattern 2, and therefore, the choice of parameters is

dictated primarily with reference to pattern 1. Hence, in order to reflect an NCMV

setting, pattern 1 parameters were chosen to be more similar to those of pattern 2

than to pattern 3. The values of these chosen parameters are shown in Table 6.9.

Furthermore, an increased sample size of N = 4000 was used to be able to assess

consistency of the previously defined estimates, as well as to be able to freely choose

parameters in an NCMV way, without having to encounter samples with incomplete

combination levels. With respect to missingness, the same dropout settings as in the

primary simulation (Table 6.2) were considered. The underlying SeM-type marginal

effects from these newly-defined PMMs are given in Table 6.10. Finally, as in the

previous simulations, under these settings, S = 500 samples were again generated.

For conciseness, only partial results from these new simulations will be presented

here. Inasmuch as the additional simulations exhibited the same results as the pri-

mary simulations did, at least as far as the effects of the different dropout settings

are concerned, the presentation of results for these new simulations will be restricted

to those under setting 2, having more missingness. In addition, with respect to com-
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Table 6.10: True marginal parameter values for the two underlying pattern-mixture

models having an NCMV structure. (The marginal intercept and marginal treatment

effect for the jth outcome, j = 1, 2, 3, are denoted Aj and Bj, respectively.)

PMM
Y1 Y2 Y3

A1 B1 A2 B2 A3 B3

1 0.2165 0.1303 0.1163 0.1128 0.1647 0.0681

2 0.2136 0.1193 0.1212 0.1048 0.1607 0.0711

parison of the identifying restrictions, only the results for pattern 1 will be discussed,

since the choice of scheme is immaterial in pattern 2, under which they are equiv-

alent. As with the primary simulations, results will be sub-grouped into those for

the initial estimates, for the pattern-specific estimates, and then for the marginalized

effects estimates. Finally, asymptotic variances of the marginalized effects estimates

with the variances obtained from the simulation study will also be compared.

Table 6.11 summarizes the results for the initial estimates for the NCMV-type

PMM under setting 2. Bias for all parameters are quite small and the MSEs are

generally smaller than those for the previous simulation (Table 6.4), demonstrating

the consistency of these estimates for the pattern-specific parameters of the initial

models. Somewhat larger MSEs are observed for the incomplete patterns, as these

consist of fewer subjects than the group of completers (pattern 3). Finally, though

the MSEs indicate fairly precise estimation of the initial parameters, it seems that

the treatment effects and the associations are less accurately estimated than are the

intercepts.

The results for the pattern-specific estimates after imputation of the missing val-

ues are given in Table 6.12. As expected, for any given parameter, bias and MSE

are more or less equal across the identification schemes in pattern 2. Moreover, as

observed under the previous simulations, parameters involving the missing outcome,

namely α3, ψ13, ψ23 and ψ123, exhibit higher bias and MSEs. However, the treatment

effect at the last time point, β3, is quite precisely estimated in comparison with all

the other estimates. Moving on the the results for pattern 1, it can be observed that

both bias and MSE are smallest under the NCMV restriction for most parameters,

except β3 and ψ23, both of which were most precisely estimated under the CCMV

case. For pattern 1, NCMV borrows from pattern 2, but the latter pattern contains

no information about these two parameters and hence the actual information prop-

agates from pattern 3 instead. As a result, uncertainty increases and performance

worsens. The differences, however, in the bias and MSE between the NCMV and
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Table 6.11: Bias and MSE of the parameter estimates for the initial models fitted,

under dropout setting 2, to the observed data: trivariate Dale model for pattern 3,

bivariate Dale model for pattern 2 and logistic model for pattern 1, for the underlying

pattern-mixture model having an NCMV structure.

Parameter
Pattern 1 Pattern 2 Pattern 3

Bias MSE Bias MSE Bias MSE

α1 0.0005 0.0114 -0.0060 0.0138 0.0027 0.0031

β1 -0.0056 0.0169 0.0150 0.0245 -0.0063 0.0077

α2 —— —— 0.0039 0.0136 -0.0008 0.0031

β2 —— —— -0.0082 0.0227 -0.0017 0.0083

α3 —— —— —— —— -0.0024 0.0028

β3 —— —— —— —— 0.0003 0.0068

lnψ12 —— —— 0.0068 0.0211 -0.0028 0.0073

lnψ13 —— —— —— —— -0.0067 0.0083

lnψ23 —— —— —— —— -0.0011 0.0075

lnψ123 —— —— —— —— -0.0018 0.0333

CCMV case for the latter two parameters are much less pronounced than those for

the other parameters. Noticeable too are the higher bias and MSEs for the association

parameters in comparison with the α and β parameters, but the smallest values for

these are generally still obtained under the NCMV case.

Moving on to the results for the marginalized effects estimates, which are tabu-

lated in Table 6.13, a comparison of these results with those for setting 2 in Tables 6.7

and 6.8 is first examined. For both sets of estimates, substantially smaller MSEs are

consistently observed for all parameters and for all identification schemes under this

simulation using N = 4000. With respect to bias, under the NCMV case, all param-

eters exhibit smaller bias compared to the previous simulations with smaller sample

size. Thus, at least under the NCMV strategy, both bias and MSE are considerably

reduced for all parameters, which is compatible with these estimates’ consistency.

Under the CCMV and ACMV schemes, almost all parameter estimates yield smaller

bias for this setting of increased sample size, with the exception of the estimates for

the marginalized intercept for outcome 2, AJM2
or APL2

. For this parameter, bias

actually increased slightly for N = 4000 under CCMV and ACMV. Though this might

seem contrary to intuition, as an increased sample size usually leads to a less biased

estimate, the slight inflation of the bias might be attributed to the use of the incorrect

identifying strategy.
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Table 6.12: Bias and MSE of the pattern-specific parameter estimates for the trivari-

ate Dale models fitted, under dropout setting 2, to the completed data using various

identifying restrictions, for the underlying pattern-mixture model having an NCMV

structure.

Parameter
CCMV ACMV NCMV

Bias MSE Bias MSE Bias MSE

Pattern 1

α1 -0.0000 0.0113 0.0007 0.0113 0.0007 0.0113

β1 -0.0048 0.0169 -0.0059 0.0168 -0.0060 0.0168

α2 0.3086 0.0984 0.2222 0.0528 -0.0239 0.0159

β2 -0.0255 0.0055 -0.0178 0.0058 -0.0006 0.0250

α3 0.3734 0.1424 0.3330 0.1136 0.2831 0.0832

β3 -0.0550 0.0073 -0.0634 0.0085 -0.0669 0.0093

lnψ12 0.4351 0.1979 0.3792 0.1523 0.1455 0.0450

lnψ13 0.4223 0.1929 0.4653 0.2277 0.4056 0.1761

lnψ23 0.2512 0.0782 0.3187 0.1136 0.3039 0.1034

lnψ123 0.4761 0.2872 0.3549 0.1728 0.3380 0.1637

Pattern 2

α1 -0.0058 0.0137 -0.0057 0.0138 -0.0058 0.0137

β1 0.0146 0.0243 0.0145 0.0243 0.0147 0.0243

α2 0.0041 0.0135 0.0039 0.0135 0.0040 0.0136

β2 -0.0085 0.0225 -0.0082 0.0224 -0.0084 0.0227

α3 0.2857 0.0854 0.2853 0.0846 0.2882 0.0868

β3 -0.0485 0.0084 -0.0473 0.0081 -0.0507 0.0086

lnψ12 0.0068 0.0211 0.0068 0.0211 0.0068 0.0211

lnψ13 0.3144 0.1122 0.3113 0.1109 0.3129 0.1108

lnψ23 0.3733 0.1523 0.3726 0.1513 0.3713 0.1494

lnψ123 0.1187 0.0619 0.1206 0.0642 0.1278 0.0689

In terms of the precision of the marginalized effects estimates relative to each other,

it can be observed that the treatment effects generally seem to be more precisely

estimated than the intercepts, for outcomes 2 and 3, under most schemes and for

both sets of estimates – a result that is quite practical since interest is usually on

the treatment effect rather than on the intercept, particulary so on that of the last

outcome. The intercept for the last outcome, however, seems to be beset with a

substantive amount of bias, and hence, a larger MSE, than the other parameters,

for both the Jansen and Molenberghs (2007) and Park and Lee (1999) estimates.

In comparison with the corresponding estimates under the simulations with smaller
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Table 6.13: Bias and MSE of the marginalized parameter estimates (6.17) of Jansen

and Molenberghs (2007) and (6.16) of Park and Lee (1999) for the pattern-mixture

model fitted, under dropout setting 2, to the completed data using various identifying

restrictions, for the underlying pattern-mixture model having an NCMV structure.

(The additional subscript j, j = 1, 2, 3, is used to identify the outcome number.)

Parameter
CCMV ACMV NCMV

Bias MSE Bias MSE Bias MSE

AJM1
-0.0023 0.0021 -0.0021 0.0021 -0.0021 0.0021

BJM1
0.0086 0.0044 0.0083 0.0044 0.0083 0.0044

AJM2
0.0820 0.0085 0.0606 0.0057 -0.0019 0.0036

BJM2
-0.0108 0.0042 -0.0088 0.0045 -0.0047 0.0067

AJM3
0.1423 0.0217 0.1322 0.0190 0.1203 0.0160

BJM3
-0.0182 0.0038 -0.0201 0.0040 -0.0217 0.0039

APL1
-0.0020 0.0021 -0.0018 0.0021 -0.0018 0.0021

BPL1
0.0082 0.0044 0.0079 0.0044 0.0080 0.0044

APL2
0.0839 0.0088 0.0616 0.0059 -0.0017 0.0036

BPL2
-0.0116 0.0042 -0.0095 0.0046 -0.0051 0.0068

APL3
0.1448 0.0225 0.1343 0.0195 0.1221 0.0164

BPL3
-0.0193 0.0039 -0.0212 0.0041 -0.0228 0.0040

sample size, bias, though still substantial, has already improved in this setting with

the use of a larger sample. However, since this improvement is not much, there would

be no reason to believe that it will decrease much further under an even larger sample

size. This might be a reflection of the earlier qualification that the marginalized

effects estimates may be biased for the SeM-type marginal parameters, particularly

when the unconditional pattern proportions are not equal to the conditional ones.

On the one hand, one might try to improve the bias by using the conditional pattern

probabilities as weights in the proposed estimates (6.17) of Jansen and Molenberghs

(2007). In contrast, if focus does not lie on the marginalized intercept but on the

marginalized treatment effect, one may proceed to use the estimates as they are,

since the above results seem to indicate that the treatment effects are fairly well

estimated by the proposed procedure. Finally, with respect to comparisons across the

two sets of estimates, both bias and MSE are slightly higher for the approximation

by Park and Lee (1999).

Finally, to evaluate the efficiency of the marginalized effects estimates, asymp-



102 Chapter 6. MI-Based Pattern-Mixture Modeling

Table 6.14: Asymptotic variance (Asy) and simulation variance (Sim) of the marginal-

ized parameter estimates (6.17) of Jansen and Molenberghs (2007) and (6.16) of

Park and Lee (1999) for the pattern-mixture model fitted, under dropout setting 2, to

the completed data using various identifying restrictions, for the underlying pattern-

mixture model having an NCMV structure. (The additional subscript j, j = 1, 2, 3, is

used to identify the outcome number.)

Parameter
CCMV ACMV NCMV

Asy Sim Asy Sim Asy Sim

AJM1
0.0022 0.0021 0.0021 0.0021 0.0022 0.0021

BJM1
0.0043 0.0043 0.0043 0.0043 0.0043 0.0043

AJM2
0.0016 0.0018 0.0016 0.0021 0.0024 0.0036

BJM2
0.0037 0.0041 0.0037 0.0044 0.0050 0.0067

AJM3
0.0012 0.0015 0.0012 0.0015 0.0012 0.0015

BJM3
0.0026 0.0035 0.0026 0.0036 0.0026 0.0035

APL1
0.0022 0.0021 0.0022 0.0021 0.0022 0.0021

BPL1
0.0043 0.0044 0.0043 0.0043 0.0043 0.0043

APL2
0.0016 0.0018 0.0016 0.0021 0.0024 0.0036

BPL2
0.0037 0.0041 0.0037 0.0045 0.0050 0.0068

APL3
0.0012 0.0015 0.0012 0.0015 0.0012 0.0014

BPL3
0.0026 0.0035 0.0026 0.0036 0.0026 0.0034

totic variances, as given in (6.18) and (6.19) were computed using the underlying

parameter values. Variances and/or covariances of the pattern-specific estimates are

obtained from the simulation runs, while variances and/or covariances of the pattern

proportions are obtained using standard results for the multinomial and/or binomial

distributions. For instance, V ar(π̂t) = πt(1−πt)/n. This was then compared with the

simulation variance for the corresponding marginalized effects estimate. The results

under each identification scheme are shown in Table 6.14. The very small differ-

ences, generally of order (1 × e−04), between the asymptotic and simulation variance

demonstrate efficiency of the marginalized effects estimates.

6.3 Discussion

In this chapter, under simulated settings, a procedure for fitting pattern-mixture

models to categorical data with monotone missingness via the use of identifying re-

strictions was applied. Asymptotic variances for marginalized effects estimates, as
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proposed by Jansen and Molenberghs (2007) and Park and Lee (1999), were derived

and the performance of these marginalized effects was subsequently investigated.

It was observed that although the (maximum likelihood) estimates for the param-

eters of the pattern-specific initial models were consistent, precision was contingent

on the amount of missingness within the pattern. This sparseness in some patterns

may have further consequences on the resulting imputations required for the method,

since within these patterns, conditional probabilities on which the imputations are

based will probably be less reliable. In such situations, identifying strategies that are

based on the more amply filled patterns may prove to be more effective. Similarly,

the pattern-specific estimates of the trivariate Dale model parameters were also influ-

enced by the amount of missing data in the particular pattern. However, even for the

least filled pattern, the precision for the main parameters (e.g., intercepts and treat-

ment effects) seemed to be quite reasonable. The association parameters, on the other

hand, were generally seen to be poorly estimated, but as these are usually regarded as

nuisance parameters, such a result is not too alarming. Moreover, these were specified

in a simplistic manner – as constants – in the underlying Dale models, but one could

always reformulate the Dale model in such a way that these associations are more

meaningfully modeled in terms of some known covariates, thereby possibly improving

their estimation. Interestingly, the results of the simulations showed that the treat-

ment effect at the last time point, on which scientific interest usually lies, was the

most precisely estimated parameter, under any dropout setting or any identification

scheme.

With respect to the marginalized effects estimates, missingness again played a

fairly important role, with decreased precision in the case of more incomplete data.

In addition, the direct linear approach by Park and Lee (1999) yielded slightly more

bias and less precision than the proposed estimates of Jansen and Molenberghs (2007).

Yet again the primary parameter of interest, i.e., the marginalized treatment effect

at the last outcome, was seen to be remarkably stable. The additional simulations

allowed a more objective assessment of the behavior of these marginalized effects esti-

mates in terms of the various identifying restrictions. The most favorable results were

observed under the restriction that was consistent with the underlying identification

scheme, demonstrating that the proposed method and its accompanying marginaliza-

tion actually can be considered successful, provided the appropriate identification is

used. However, the use of an identification scheme that is inconsistent with the under-

lying one could induce bias in some of the less important parameters (e.g., intercept

at the last time point). This, of course, poses a more difficult issue to deal with, in

the sense that the underlying identification pattern is almost always unverifiable. At
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best, the bias might be reduced by using the conditional pattern proportions in the

estimation of the marginalized effects, as opposed to the unconditional ones, whenever

obtaining SeM-type marginal effects from a fitted PMM is the goal.

The assumption of independence of the pattern-specific estimates across patterns

raises a worthwhile point of contention. It would be natural to expect that employ-

ing the CCMV restriction, for instance, would induce some degree of dependence

between the pattern-specific estimates of the incomplete patterns and those of the

completers, thereby contradicting the said assumption. Though drawing from the

parameters’ posterior distribution, separately for each multiple imputation, and only

subsequently generating imputations – in accordance with general MI theory (Little

and Rubin, 1987) – might alleviate this problem, one might be inclined to believe that

dependencies in the pattern-specific estimates across patterns still remain. In such

cases, variance estimates for the marginalized parameters, as derived by the delta

method, can nevertheless be adjusted to account for such dependencies. Formula

(C.5) in Appendix C would still hold and would reduce to a more general formula

than (C.6), and also (C.10), in which pertinent terms, which would not zero out,

would have to be incorporated accordingly.

Regarding the choice of simulation settings, two points deserve mention here. The

first is with regard to the sample size, N = 1000, which is undoubtedly large for a

typical clinical trial. Although not quite realistic except for very large clinical trials,

such a sample size is not unusual for survey-type data, in which case the outcome

vector would be a truly multivariate one, rather than a single outcome measured

longitudinally. The applicability therefore extends beyond longitudinal data. As was

already pointed out earlier, the large sample size was necessary to ensure that all

combinations were present within each pattern, to allow fitting of the initial and

final models; this is a feature, and sometimes a drawback, of the PMM framework,

which is indeed a pragmatic concern. In the simulation study, though this issue was

circumvented through the use of a large sample size, one ought not forget that for real

data analysis settings, sparsely filled or even empty levels are bound to occur. It is

thus relevant to address rather than circumvent this issue. A second point that arises

has to do with the type of missingness: monotone. One might argue that such type of

missingness is more difficult to define for a multivariate outcome vector (e.g., survey

data) than in the longitudinal case, where one can rely on the natural time-ordering

of the measurement sequence. However, when the multivariate outcomes within the

vector can somehow be ranked, e.g., by order of importance of the variables in the

survey, then defining monotone missingness is sometimes an option.

Jansen and Molenberghs (2007) pointed out that the final analysis model can, but
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does not have to be, equal to the initial model fitted to the observed data. That is,

although one fits a pattern-mixture model to the observed data at the first stage, it

is entirely possible to fit a selection model after the identification/imputation stage,

i.e., after the data have been completed. This, however, raises the issue of “proper”

imputation, which Rubin (1987) defines as one where the analysis model is in agree-

ment with the imputation model. This means, broadly, that the imputation model

should ideally be a super-model of the analysis model. Fitting a selection model at

the final stage would therefore pose a conflict in this regard. Thus, to avoid so-called

improper imputation, final models considered here were of the pattern-mixture type.

The nature of the scientific question, however, would, of course, be an important

consideration as well. For instance, if marginal effects are of primary interest, then a

selection model would be the natural choice for final analysis model. Hence, the final

choice would have to be a balance between the desire for proper imputation and the

nature of the scientific question.

Finally, regarding application of the procedure to the non-monotone case, several

concerns arise. The first issue has to do with parsimony. In the case of non-monotone

missingness, a lot more patterns arise, leading to a proliferation of parameters. In

this study, which considered longitudinal sequences of three time points, only three

patterns arise in the monotone case, each employing 10 parameters, and this is only

assuming a very simple structure such as, for example, a single treatment indicator

and/or association parameters that are not allowed to vary over covariate levels. For

the non-monotone case, there will be 8 patterns, and, under the same simple struc-

ture considered here, the PMM will consist of a full set of 80 parameters! It is easy

to see that increasing the number of time points, even just slightly, will necessitate

estimation of an even much larger numbers of parameters. In addition, these patterns

should be more or less sufficiently filled in order to get any useful information from

them. And, unless the study employs a very large sample size, it is quite difficult

to foresee such a situation. In line with this, complete combinations would also be

necessary within each pattern, to fit the proposed models without any computational

challenges, again requiring large numbers of subjects. On a somewhat different note,

difficulties also arise in considering which outcome to impute first. Jansen and Molen-

berghs (2007) discussed that the formulations they presented can be seen merely as

a few points in a vast, continuous, design space. To compound the issue, in the

non-monotone setting, there are no explicit expressions for ACMV, which might be

the more popular choice of identifying restriction as it is the equivalent of MAR a

pattern-mixture framework (Molenberghs et al., 1998). For these reasons, focus and

discussion of the non-monotone case has been deferred, perhaps to a separate study
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on its own, so that such issues can be adequately dealt with and properly discussed

therein.



7
Influence Analysis as a Means

of Sensitivity

In a broad sense, sensitivity analysis can be defined as one in which several statisti-

cal models are considered simultaneously and/or where a statistical model is further

scrutinized using specialized tools, such as diagnostic measures. Such an informal

definition encompasses a wide variety of useful approaches. Among the simplest of

procedures would be to fit a selected number of (non-random) models, which are all

deemed plausible or in which a preferred (primary) analysis is supplemented with a

number of variations. The extent to which conclusions (inferences) are stable across

such a range provides an indication about the degree to which they are robust to inher-

ently untestable assumptions about the missingness mechanism. Variations to a basic

model can be constructed in different ways. The most obvious strategy, cast within

the selection model paradigm, is to consider various dependencies of the missing data

process on the outcomes and/or the covariates. Alternatively, the distributional as-

sumptions of the models can be changed (as will be illustrated in Section 7.3.1.3).

Related to this, one can assess how an MNAR model, or a collection of MNAR mod-

els, differ from the set of models with equal fit to the observed data but that are of

a MAR nature (as was seen in Chapter 4). Additionally, sensitivity analysis can also

be performed at the level of the individual observations rather than at the level of

107
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the models. In such cases, interest is directed towards finding those individuals that

drive the conclusions towards one or more MNAR models, thereby warranting explo-

ration of the influence of every individual separately. Two techniques exist: namely,

global influence and local influence (Cook, 1986). The global influence methodology,

also known as the case-deletion approach (Cook and Weisberg, 1986), was introduced

by Cook (1979, 1986) in linear regression. Thijs, Molenberghs and Verbeke (2000),

Verbeke et al. (2001) and Molenberghs et al. (2003) applied the local influence ap-

proach within the context of linear mixed models. Later, Van Steen et al. (2001)

adapted these ideas to the model of Molenberghs, Kenward and Lesaffre (1997), for

monotone repeated ordinal data. Beunckens et al. (2009) integrated global and lo-

cal influence techniques within a comprehensive sensitivity analysis of the Slovenian

Public Opinion Survey.

In this chapter, various tools for sensitivity analysis are examined. Of particular

interest is the use of influence measures, both on a global as well as on a local scale,

as means by which to assess sensitivity. Both existing and proposed methods, as

well as ideas, are developed using the SPO Survey data – in particular, on responses

arising from the independence and attendance questions – via a comprehensive sen-

sitivity analysis. Parallel to a review of simple analyses of the SPO Survey, three

main strands of sensitivity analysis are considered, i.e., the intervals of ignorance,

influence analysis and the computation of a so-called MAR counterpart to the model

considered (Chapter 4), thereby bringing together and contrasting existing sensitivity

assessments with new, local-influence-based analyses that have never been applied

to the SPO Survey data. Moreover, the local influence technology based on cell

counts rather than parameters is new, as well as the approach of perturbing the cell

probabilities rather than the model parameters. A subsection is devoted to the inte-

gration of all these analyses and their implications on the the primary estimand, i.e.,

the proportion of people voting for independence, further demonstrating the value of

consolidated sensitivity analysis.

7.1 Global Influence

The idea of global influence originates from the concept of case deletion, whereby the

so-called influence of a single subject is assessed by examining the resulting model

differences when the particular subject is excluded from the analysis. With φ denot-

ing the unknown parameter vector of interest, and ℓi(φ) denoting the log-likelihood

contribution of individual i, the log-likelihood for the entire data set can be obtained



7.2. Local Influence 109

as:

ℓ(φ) =

N∑

i=1

ℓi(φ).

Global influence approaches compare the log-likelihoods of the model of interest fit-

ted to the entire data set, ℓ(φ), on the one hand, with that excluding or doubling

one subject, ℓ(±i)(φ), on the other. Cook’s distances (CD) are based on measur-

ing the discrepancy, induced by deletion or doubling of a single case, in either the

log-likelihood

CD1i = 2
[
ℓ̂(φ) − ℓ̂(±i)(φ)

]
, (7.1)

or in the parameter vector

CD2i = 2(φ̂− φ̂(±i))
′ L̈−1 (φ̂− φ̂(±i)), (7.2)

with L̈ the matrix of second derivatives of ℓ(φ), with respect to φ, evaluated at

φ̂. Both measures can be constructed for the entire parameter vector or for sub-

vectors thereof; this includes, of course, a single parameter. The quantities CD1i and

CD2i respectively represent the amount of displacement either in the log-likelihood

or in the parameter values themselves, and larger values would be indicative of some

amount of influence of the deleted or doubled case. Performing a global influence

analysis on data with categorical outcomes is less time consuming than on data with

continuous outcomes, since the data can then be organized into cells and case deletion

(or doubling) need only be done for one case within each cell, rather than for all cases

within that cell.

7.2 Local Influence

One of the drawbacks of global influence is that the specific cause of the influence

is hard to retrieve because, by deleting or adding a subject, all types of influence

stemming from it are lumped together. Local influence (Cook, 1986; Verbeke et al.,

2001) is presumably more suitable in this respect, since influence, in the form of a

perturbation, is introduced into a specific area in the model. The method also often

leads to closed forms.

Denote the log-likelihood corresponding to a particular model by

ℓ(φ|ω) =

N∑

i=1

ℓi(φ|ωi), (7.3)

where φ = (θ,ψ)′ is the s-dimensional vector, grouping, respectively, the parame-

ters of the measurement and dropout models. The vector ω = (ω1, ω2, . . . , ωN )′,



110 Chapter 7. Influence Analysis

belonging to an open subset Ω of RN , denotes a vector defining infinitesimal pertur-

bations around the model studied. Obviously, the original model would correspond

to ωo = (0, 0, . . . , 0)′.

Let φ̂ be the maximum likelihood estimator for φ, obtained by maximizing ℓ(φ|ωo),

and let φ̂ω denote the maximum likelihood estimator for φ under ℓ(φ|ω). The local

influence approach compares φ̂ω with φ̂, and similar values would indicate that the

parameter estimates are robust with respect to perturbations in the direction of the

extended model. Cook (1986) quantified differences between φ̂ω with φ̂ through the

likelihood displacement:

LD(ω) = 2
[
ℓ(φ̂|ωo) − ℓ(φ̂ω |ωo)

]
,

which takes into account the variability of φ̂. LD(ω) will be large if ℓ(φ|ωo) is strongly

curved at φ̂, implying that φ is estimated with high precision. A graph of LD(ω)

against ω, i.e., the geometric surface formed by values of the (N + 1)-dimensional

vector ζ(ω) = (ω′, LD(ω))′, depicts the influence of perturbations. Because this so-

called influence graph (Lesaffre and Verbeke, 1998) can only be depicted when N = 2,

Cook (1986) proposed considering local influence, i.e., the normal curvatures Ch of

ζ(ω) in ωo, in the direction of some N -dimensional vector h of unit length. A general

expression is given by

Ch = 2
∣∣∣h′ ∆′ (L̈)−1 ∆ h

∣∣∣ , (7.4)

where L̈ is the (s × s) matrix of second-order derivatives of ℓ(φ|ωo) with respect to

φ, evaluated at φ = φ̂, i.e., for i, ℓ = 1, 2, . . . , s, the elements of L̈ are:

[L̈]iℓ =
∂2ℓ(φ|ωo)

∂φi∂φℓ

∣∣∣∣
φ=φ̂

,

and ∆ is the (s×N) matrix having, as its ith column, the s-dimensional vector

∆i =
∂2ℓi(φ|ωi)

∂ωi∂φ

∣∣∣∣
φ=φ̂, ωi=0

.

A sensible choice for h is the vector with a one in the ith position and zero elsewhere,

giving rise to say hi and Ci, corresponding to the perturbation of subject i only,

or in the case of contingency tables, perturbation of cell i only. Another important

direction is the direction hmax of maximal normal curvature Cmax. It shows how to

perturb the model to obtain the largest local changes in the likelihood displacement.

Details can be found in Verbeke and Molenberghs (2000).

The above development is geared towards studying the influence on the likelihood

function. Other choices are possible as well. One might assess, for instance, the
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influence of perturbations on a particular function(s) of the parameters, rather than

on the log-likelihood itself. In such cases, letting Z(φ) denote some generic function of

the model parameters, local influence of perturbations around the posited null model

can be evaluated in terms of the difference between Z(φ̂ω) and Z(φ̂). Analogous to

Cook (1986), the following generalized expression for Ch is proposed:

Ch = 2
∣∣∣h′ ∆′ (L̈)−1 Z̈ (L̈)−1 ∆ h

∣∣∣ , (7.5)

with ∆ and L̈ as previously defined, ‖h‖ = 1, and Z̈ is the (s× s) matrix of second-

order derivatives of Z(φ) with respect to φ, evaluated at φ = φ̂, i.e., for i, ℓ =

1, 2, . . . , s, the elements of Z̈ are given by

[Z̈]il =
∂2Z(φ)

∂φi∂φℓ

∣∣∣∣
φ=φ̂

.

It can be easily seen that expression (7.5) reduces to (7.4) when the function of

interest, Z(φ), is the log-likelihood ℓ(φ|ω) itself. Moreover, whereas (7.4) quantifies

influence in terms of the displacement in the log-likelihood, (7.5) describes influence

through the displacement in the particular function of interest, Z(φ).

It is worthwhile to note that the local influence measures described here are not

calibrated, because both (7.4) and (7.5) take the form of a squared second deriva-

tive, owing to the double occurrence of ∆, ‘divided by’ another second derivative, L̈.

Changing units, therefore, changes scale, unlike in the mixed-models application of

Lesaffre and Verbeke (1998) and Verbeke and Molenberghs (2000), where the influ-

ence measures approximately sum to twice the sample size. As a consequence, when

applying local influence as presented here, interpretation ought to be relative rather

than absolute. The important issue remains then as to ‘how large is large?’ It is

extremely hard to provide firm guidelines, but it may be wise, as one possible rule of

thumb, to scrutinize the subjects with the largest 5% of influence values. The issue

has been studied in detail in Jansen et al. (2006).

Local influence is useful when assessing which (groups of) observations are most

influential in driving the conclusions about the nature of the missing data mechanism

in the direction of the more elaborate MNAR model. As Jansen et al. (2006) indi-

cate, such a phenomenon should not be seen as evidence, let alone proof, that some

observations are genuinely influenced by a complex MNAR mechanism rather than,

for example, by a simpler MAR mechanism. Indeed, this would conflict with the

MAR-counterpart results (Chapter 4). Rather, such influence graphs are instructive

when assessing which observations have the power to drive the conclusions towards

a more complex mechanism. Often, the issue is that other outlying features, such as
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Table 7.1: Theoretical distribution of the probability mass over the full and observed

cells, respectively, for a bivariate binary outcome with missingness in none, one, or

both responses.

(a) Complete cells

π11,11 π11,12

π11,21 π11,22

π10,11 π10,12

π10,21 π10,22

π01,11 π01,12

π01,21 π01,22

π00,11 π00,12

π00,21 π00,22

(b) Observed cells

π11,11 π11,12

π11,21 π11,22

π10,1+

π10,2+

π01,+1 π01,+2 π00,++

unusual values or unusual slopes in longitudinal observations, are responsible for the

apparent conclusion about the missing data mechanism. Like the MAR-counterpart

result, this type of sensitivity analysis issues a cautionary warning against excessive

confidence regarding the nature of the missing data mechanism. A limiting feature,

unsurprising in view of the foregoing discussion, is the absence of a ‘yardstick,’ or

a threshold, demarcating influential subjects; arguably, influence graphs will blow a

whistle over subjects that need further scrutiny.

7.3 Sensitivity Analysis of the Slovenian Public

Opinion Survey

For the ensuing analyses, focus lies on the binary outcomes representing the responses

for the independence and attendance questions of the SPO Survey. The general

expression for the cell probabilities can be expressed as

πr1r2,j1j2 = P (R1 = r1, R2 = r2, J1 = j1, J2 = j2),

where R1 and R2 denote the missingness indicators for the attendance and indepen-

dence questions, respectively, while J1 and J2 denote the actual responses for the

same. Further, r1 = 0 (or 1) if the answer to the attendance question is missing (or

observed) and j1 = 1 (or 2) if the answer to the attendance question is YES (or NO).

The indices r2 and j2 are similarly defined for the independence question.

The four-way joint probabilities of the two missingness indicators and the two

binary responses gives rise to a total of 16 theoretical full cell probabilities, which

are depicted in Table 7.1a and which produce 15 full data degrees of freedom. The
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Table 7.2: The Slovenian Public Opinion Survey. Observed cells, collapsed over the

secession question. (A simplified cell indexing system is shown in relation to the

original cell indexing system. The columns refer to ‘independence’ whereas the rows

refer to ‘attendance.’)

Cell 1 Cell 2

Z11,11 = 1439 Z11,12 = 78

Cell 3 Cell 4

Z11,21 = 16 Z11,22 = 16

Cell 5

Z10,1+ = 159

Cell 6

Z10,2+ = 32

Cell 7 Cell 8

Z01,+1 = 144 Z01,+2 = 54

Cell 9

Z00,++ = 136

probabilities for the 9 observed cells are shown in Table 7.1b, in which the four tables

represent, respectively, the cell probabilities for the bivariate binary outcome with

missingness in none, the second, the first, or both responses. The cell counts, in-

stead of probabilities, for the 9 observed cells for the SPO Survey data are shown

in Table 7.2, which also presents the cell indexing system that will be used for the

remainder of this chapter.

The parameter of interest, θ, i.e., the proportion of people answering YES to both

the independence and attendance questions, is the marginal probability that the two

responses are both equal to 1 (marginalized over the missingness indicators), and can

be expressed as

θ =

1∑

r1=0

1∑

r2=0

πr1r2,11 =

1∑

r1=0

1∑

r2=0

P (R1 = r1, R2 = r2, J1 = 1, J2 = 1).

It is clear from the above expression that when the data are complete, evaluation of

θ would simply entail summing the upper-left cells from each the four (2 × 2) tables

in Table 7.1a. However, when the data are incomplete, as in Table 7.1b, the relation

is not straightforward as the collapsed cells have to be split in order to obtain values

for the cells pertinent to the estimation of θ.

7.3.1 Review of Existing Analyses

In this section, an overview of results from previous analyses of the SPO Survey is

presented, in order to complement and compare these with new approaches considered

here, thereby rendering a more comprehensive and integrated sensitivity analysis.

7.3.1.1 Simple Analyses

The SPO Survey data were used by Molenberghs, Kenward and Goetghebeur (2001)

to illustrate their proposed sensitivity analysis tool – the interval of ignorance. Molen-

berghs et al. (2008) used the data to exemplify results about the relationship between
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Table 7.3: The Slovenian Public Opinion Survey. Some estimates of the proportion

θ attending the plebiscite and voting for independence, as presented in Rubin, Stern

and Vehovar (1995) and Molenberghs, Kenward and Goetghebeur (2001), as well as

sensitivity analysis results.

Estimation method
Voting in favor

of independence: θ̂

Standard analyses

Non-parametric bounds [0.694;0.905]

Complete cases 0.928

Available cases 0.929

MAR (2 questions) 0.892

MAR (3 questions) 0.883

MNAR 0.782

Sensitivity analyses

BRD1–BRD9 [0.741;0.892]

Well-fitting BRD6–BRD9 [0.741;0.867]

BRD1(MAR)–BRD9(MAR) [0.892;0.892]

Interval of Ignorance: Model 10 [0.762;0.893]

Interval of Ignorance: Model 11 [0.766;0.883]

Interval of Ignorance: Model 12 [0.694;0.905]

Plebiscite 0.885

MAR and MNAR models (Section 4.3). An overview of various analyses can be found

in Molenberghs and Kenward (2007). These authors used the models proposed by

Baker, Rosenberger and DerSimonian (1992) for the setting of two-way contingency

tables, subject to missingness in either none, one, or both responses. Rubin, Stern

and Vehovar (1995) conducted several analyses of the data. Their main emphasis was

on determining the proportion θ of the population that would attend the plebiscite

and vote for independence. Their estimates are reproduced in Table 7.3.

The pessimistic (optimistic) bounds, or non-parametric bounds, are obtained by

setting all incomplete data that can be considered a YES (NO), as YES (NO). The

complete case estimate for θ is based on the subjects answering all three questions

and the available case estimate is based on the subjects answering the two questions

of interest here. It is noteworthy that both of these estimates are out of bounds. This
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is not a mistake: it should be recalled that the political decision was made to treat a

NO on the attendance question as an effective NO vote in the plebiscite. Disregarding

incomplete cases ignores this aspect and thus discards available information, thereby

causing the estimate to exceed the bounds. Note that the bounds apply only to those

estimators making use of all available data, not to estimators based on subsets.

This underscores the growing conviction that such estimates should be disregarded

in favor of more routine use of MAR (Molenberghs and Kenward, 2007). Nevertheless,

it may sometimes be worthwhile to consider the complete case (CC) analysis as simply

one valid under MCAR. Ideally, it should be set against the background of bounds,

as is done here, or at least against a number of competing models. Rubin, Stern and

Vehovar (1995) considered two MAR models, also reported in Table 7.3, with the first

one based solely on the two questions of direct interest and the second one using all

three. Finally, they considered a single MNAR model, based on the assumption that

missingness on a question depends on the answer to that question but not on the

other questions. Rubin, Stern and Vehovar (1995) concluded, owing to the proximity

of the MAR analysis to the plebiscite value, that MAR in this and similar cases may

be considered a plausible assumption. As argued before (Kenward, Goetghebeur and

Molenberghs, 2001), one has to be careful with this conclusion, however. Arguments

to support this position will be provided in the next section.

7.3.1.2 Missing At Random Counterpart

Molenberghs, Kenward and Goetghebeur (2001) fitted the BRD models (Section 3.7.3)

to the independence and attendance questions of the SPO Survey. These were sup-

plemented by Molenberghs et al. (2008) with estimates obtained by fitting the corre-

sponding MAR counterpart model to a particular (MNAR) BRD model (Section 4.3).

Table 7.4 summarizes the results. It can be recalled from Section 4.3 that the lower-

numbered models BRD1-BRD5 have poor fit, which might be seen as evidence to

disregard the MAR-based estimate of θ̂ = 0.892 from BRD1. Inspection, how-

ever, of the MAR values, θ̂MAR, from each of the counterpart models BRD1(MAR)–

BRD9(MAR) reveals a remarkably stable estimate. Hence, a value of θ̂ = 0.892,

based on the four counterparts BRD6(MAR)–BRD9(MAR) of the well-fitting models

BRD6-BRD9, seems to be a sensible choice. Thus, considering the MAR counter-

parts in this particular example, provides solid basis for the MAR-based estimate,

which, without additional insight from the MAR counterpart models, might have

been discarded on the grounds of poor model fit.
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Table 7.4: The Slovenian Public Opinion Survey, analysis restricted to the indepen-

dence and attendance questions. Summaries on each of the models BRD1–BRD9,

with obvious column labels. The last column, labeled θ̂MAR, refers to the estimate

from the MAR counterpart model corresponding to the given one.

Model Structure d.f. loglik θ̂ C.I. θ̂MAR

BRD1 (α.., β..) 6 -2495.29 0.892 [0.878;0.906] 0.8920

BRD2 (α.., βj1.) 7 -2467.43 0.884 [0.869;0.900] 0.8915

BRD3 (α.j2 , β..) 7 -2463.10 0.881 [0.866;0.897] 0.8915

BRD4 (α.., β.j2) 7 -2467.43 0.765 [0.674;0.856] 0.8915

BRD5 (αj1., β..) 7 -2463.10 0.844 [0.806;0.882] 0.8915

BRD6 (αj1., βj1.) 8 -2431.06 0.819 [0.788;0.849] 0.8919

BRD7 (α.j2 , β.j2) 8 -2431.06 0.764 [0.697;0.832] 0.8919

BRD8 (αj1., β.j2) 8 -2431.06 0.741 [0.657;0.826] 0.8919

BRD9 (α.j2 , βj1.) 8 -2431.06 0.867 [0.851;0.884] 0.8919

7.3.1.3 Intervals of Ignorance

A sample from Table 7.1 produces empirical proportions representing the πs with er-

ror. This imprecision disappears asymptotically. What remains is ignorance regarding

the redistribution of all but the first four πs over the missing values. This leaves ig-

norance regarding any probability in which at least one of the first or second indices

is equal to 0, and hence regarding any derived parameter of scientific interest. For

such a parameter, say θ, a region of possible values which is consistent with Table 7.1

is called a region of ignorance. Evidently, such a region will depend, not only on the

data and the way it is incomplete, but also on the model for which it is constructed.

Analogously, an observed incomplete table leaves ignorance regarding the would-be

observed full table, which leaves imprecision regarding the true full probabilities. The

region of estimators for θ that is consistent with the observed data provides an esti-

mated region of ignorance. For a single parameter, the region becomes the interval of

ignorance. Various ways of constructing regions of ignorance are conceivable. Typ-

ically, one selects the largest possible set of identifiable parameters. The remaining

ones are then termed sensitivity parameters. For every value chosen for the latter, the

former can be estimated by means of, for example, maximum likelihood. Repeating

this for all values of the sensitivity parameters or, practically speaking, a sufficiently
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Table 7.5: The Slovenian Public Opinion Survey. Intervals of ignorance (II) and

intervals of uncertainty (IU) for the proportion θ (confidence interval) of YES votes,

following from fitting overspecified Models 10, 11 and 12.

Model d.f. loglik
θ̂

II IU

10 9 -2431.06 [0.762;0.893] [0.744;0.907]

11 9 -2431.06 [0.766;0.883] [0.715;0.920]

12 10 -2431.06 [0.694;0.905]

refined grid, one effectively obtains a region or, in the univariate case, an interval of

estimates. The (1−α)100% region of uncertainty is a larger region, encompassing the

region of ignorance, in the spirit of a confidence region, designed to capture the com-

bined effects of imprecision and ignorance. In essence, this amounts to constructing,

for every point in the region of ignorance, a confidence region, the union of which then

produces the interval of uncertainty. Details regarding construction and asymptotic

properties can be found in Molenberghs, Kenward and Goetghebeur (2001), Kenward,

Goetghebeur and Molenberghs (2001), and Vansteelandt et al. (2006).

In addition to the 9 BRD models, Molenberghs, Kenward and Goetghebeur (2001)

considered 3 models on which they derived intervals of ignorance and intervals of

uncertainty. Model 10 is defined as (α.j2 , βj1j2) with

βj1j2 = β0 + βj1. + β.j2 , (7.6)

while Model 11 assumes (αj1j2 , βj1.) and uses

αj1j2 = α0 + αj1. + α.j2 . (7.7)

Finally, Model 12 is defined as (αj1j2 , βj1j2), a combination of both (7.6) and (7.7).

The resulting intervals of ignorance and intervals of uncertainty for each of these

models are shown in Table 7.5, while a graphical representation the YES votes is

given in Figure 7.1, along with the results in Tables 7.3 and 7.4. Model 10 shows an

interval of ignorance which is very close to [0.741, 0.892], the range produced by the

models BRD1–BRD9, while Model 11 is somewhat sharper and just fails to cover the

plebiscite value. However, the corresponding intervals of uncertainty contain the true

value.

Interestingly, Model 12 virtually coincides with the non-parametric range even

though it does not saturate the complete data degrees of freedom. To do so, not 2
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Figure 7.1: The Slovenian Public Opinion Survey. Relative positions of the estimates

of the proportion of YES votes, based on the BRD Models, on the nonparametric

pessimistic-optimistic bounds, and on the models considered in Rubin, Stern and Ve-

hovar (1995) and in Molenberghs, Kenward and Goetghebeur (2001), along with the

actual plebiscite result. (Pess(�): pessimistic boundary; Opt(�): optimistic boundary;

MAR(•): Rubin et al.’s MAR model; NI(•): Rubin et al.’s MNAR model; AC(�):

available cases; CC(�): complete cases; Pleb(N): plebiscite outcome. Crosses (×)

and the numbers above them refer to the BRD models. Intervals of ignorance (Models

10–12) are represented by horizontal bars.)

but in fact 7 sensitivity parameters would have to be included. Thus, it appears that a

relatively simple sensitivity analysis is adequate to increase insight in the information

provided by the incomplete data about the proportion of valid YES votes, in the

study under consideration here.

7.3.2 Global Influence

Figure 7.2 shows a selection of the results for the global influence analysis conducted on

the SPO Survey data. Inasmuch as Cook’s distance measure CD2i was approximately

zero for all cells, indicating no substantial influence when adding or removing a single

case from a particular cell, for all other models, only the results for BRD4, BRD7,

and BRD8 are presented. For BRD4, it can be observed that addition of a single

observation to cell 3 has a large influence on the parameters, as well as deletion from

either cells 3 or 5. Cell 3 represents subjects with a NO on the attendance question and

a YES on the independence question. An addition or removal of one such respondent

can largely affect the parameters of BRD4. Similarly, exclusion of a single respondent

with a YES on the attendance question but a missing response on the independence
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Figure 7.2: The Slovenian Public Opinion Survey. Global influence analysis for

BRD4, BRD7 and BRD8, using Cook’s distance measure, CD2i, evaluated when an

observation is added to (first row) or deleted from (second row) the ith observed cell.

question (cell 5), also influences BRD4’s model parameters, though to a lesser extent.

For models BRD7 and BRD8, an additional observation in cell 6 or a deletion from

cell 4 leads to significant influence on these models’ parameters. Thus, adding a

subject with a NO for attendance and a missing independence response, or excluding

a respondent with NO on both questions, yields changes in the model parameters of

BRD7 and BRD8. These findings hint on the influential nature of subjects with a

NO on the attendance question, which is likely related with this group’s sparseness.

7.3.3 Local Influence

In this section, two forms of local influence analysis are described and illustrated using

the BRD models as applied to the SPO Survey data. Whereas the first approach,

developed by Jansen et al. (2003), considers a perturbation in the model parameters,

the second type introduces perturbations in the cell probabilities (Beunckens et al.,

2009). For both cases, local influence measures are obtained not only in terms of the

displacement in the log-likelihood, but also in terms of the displacement in a function

of the log-likelihood, namely, the predicted cell counts.
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7.3.3.1 Perturbing Parameters: One BRD Model vs. Another

The nesting structure within the BRD family of models (Figure 3.1) motivates the

consideration of local influence approaches rooted in perturbations of a given BRD

model in the direction of a more elaborate one (Jansen et al., 2003), i.e., one containing

an additional parameter. For example, BRD4 includes the parameter β.j2 , (j2 = 1, 2),

whereas BRD1 only includes β... For this type of influence analysis, ωi in (7.3) can be

viewed, not as a parameter, but as an infinitesimal perturbation of the simpler model

towards the more complex one, confined to a single subject. For the perturbation

of BRD1 in the direction of BRD4, for instance, one considers β.. and (β.. + ωi).

The vector of all ωis defines the direction in which such a perturbation is considered.

Consider the BRD log-likelihood, which is given by:

ℓ(φ|ω) =
∑

j1,j2

Z11,j1j2 lnπ11,j1j2 +
∑

j1

Z10,j1+ lnπ10,j1+

+
∑

j2

Z01,+j2 lnπ01,+j2 + Z00,++ lnπ00,++,
(7.8)

where πr1r2,j1j2 = pj1j2 qr1r2|j1j2 and

qr1r2|j1j2 =
exp {αj1j2(1 − r1) + βj1j2(1 − r2) + γ(1 − r1)(1 − r2)}
1 + exp (αj1j2) + exp (βj1j2) + exp (αj1j2 + βj1j2 + γ)

. (7.9)

Consider for the moment the perturbation of BRD1 in the direction of BRD4. Letting

β.1 = β.. and β.2 = (β.. + ωi) in expression (7.9) yields, for BRD4:

qr1r2|j11 =
exp {α..(1 − r1) + β..(1 − r2) + γ(1 − r1)(1 − r2)}

1 + exp (α..) + exp (β..) + exp (α.. + β.. + γ)
,

qr1r2|j12 =
exp {α..(1 − r1) + (β.. + ωi) (1 − r2) + γ(1 − r1)(1 − r2)}
1 + exp (α..) + exp (β.. + ωi) + exp (α.. + β.. + ωi + γ)

.

Note that the perturbation ωi defines a difference between the above 2 dropout prob-

abilities, while under the simpler (null) model BRD1, the two expressions reduce to

a single dropout probability. Local influence measures now follow from the general

logic described in Section 7.2.

For the SPO Survey data, the model pairs BRD1 vs. BRD4, BRD3 vs. BRD7, and

BRD4 vs. BRD7 are of particular interest, since it is precisely these pairs having high

influence on the likelihood displacement. Figure 7.3 shows the influence measures Ci,

as well as hmax, plotted against the ith observed cell. For the comparison of BRD1

vs. BRD4, a peak is observed at cell 6, for both Ci and hmax, implying that respon-

dents in this cell drive the data more towards BRD4 (α.., β.j2) rather than BRD1

(α.., β..). That is, subjects with a NO on the attendance question and a missing value
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Figure 7.3: The Slovenian Public Opinion Survey. Local influence analysis, via per-

turbation in parameters, for model pairs (a) BRD1 vs. BRD4, (b) BRD3 vs. BRD7,

and (c) BRD4 vs. BRD7, using local influence measures Ci (first column) and hmax

(second column) at the ith observed cell, evaluated in terms of the displacement in the

log-likelihood.

on the independence question are influential when perturbing the model such that

missingness in the independence question depends on the corresponding unobserved

answer (BRD4) rather than being constant (BRD1). For BRD3 vs. BRD7, a consid-

erably large value is observed at ‘fully missing’ cell 9. This means that missingness

in the independence question is driven to depend on the corresponding unobserved

answer by subjects with missing responses on both questions, and slightly by those

with a NO on attendance and a missing value on independence (cell 6). Finally,

it is primarily subjects with missing responses on both questions (cell 9) that seem
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to push the data from BRD4 (α.., β.j2) towards BRD7 (α.j2 , β.j2). These subjects,

along with those that have a YES on attendance and a missing value on independence

(cell 5), make the missingness in the attendance question depend on the response of

the independence question.

In a contingency-table setting as the SPO Survey, it is instructive to study in-

fluence, not only on the parameters, but also on the predicted cell counts. In this

case, Z(φ) in (7.5) is taken as a particular cell count, Zr1r2,j1j2 , of interest. The

results of the local influence analysis on the 16 fitted cell counts are presented in

Figure 7.4. The first panel, Figure 7.4(a), for model BRD1 vs. BRD4, shows similar

shapes for the influence graphs, albeit with differing magnitudes, for a particular cell

(j1, j2), across the four missingness patterns. For (j1, j2) = (1, 1), it is cell 2 that

shows influence, and also slightly cell 8. Respondents with either a YES or a missing

value on attendance and a NO on independence thus drive the predicted cell count

Zr1r2,11 towards a model in which the missingness in the independence question de-

pends on its value (BRD4). For (j1, j2) = (1, 2), cells 2 and 5, as well as 6 and 9, stand

out. These respondents make the predicted cell count Zr1r2,11 seemingly come from

BRD4 rather than BRD1. For (j1, j2) = (2, 1) and (j1, j2) = (2, 2), similar curves are

obtained across the four missingness patterns, with a clear peak at cell 6, implying

that the “NO-on-attendance/missing-on-independence” responses perturb predicted

cell counts Zr1r2,21 and Zr1r2,22 in the direction of a model in which the missingness

in the independence question is dependent on its value, rather than on one in which

missingness in the independence question is constant.

The resulting patterns for the comparison of BRD3 against BRD7, seen in Fig-

ure 7.4(b), differs from what was observed for BRD1 vs. BRD4. Whereas for the

latter, influence curves for a particular cell (j1, j2) remained the same across the

missingness patterns, for BRD3 vs. BRD7, variations now arise across these missing-

ness patterns, leading to a less clear-cut overall picture. This is further complicated

by what can be observed for (j1, j2) = (2, 1) and (j1, j2) = (2, 2), i.e., the bottom

row of the tables, for which curve shapes vary across the missingness patterns. Con-

sider (j1, j2) = (1, 1) and (j1, j2) = (1, 2). Across missingness patterns, the predicted

cell counts Zr1r2,11 and Zr1r2,12 are primarily influenced by subjects with both re-

sponses missing, and slightly by those having a YES on attendance/NO on indepen-

dence. For cell (j1, j2) = (2, 1), similar graphs are obtained for (r1, r2) = (1, 1) and

(r1, r2) = (0, 0), i.e., the completers and double non-responders, respectively, with

a peak at cell 9. It is therefore subjects with both responses missing that influence

cell counts Z11,21 and Z00,21, in the direction of a model in which missingness in the

independence question depends on its value. For the other two missingness patterns,
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Figure 7.4: The Slovenian Public Opinion Survey. Local influence analysis, via perturbation in parameters, for model pairs

(a) BRD1 vs. BRD4, (b) BRD3 vs. BRD7, and (c) BRD4 vs. BRD7, using local influence measure Ci at the ith observed cell,

evaluated in terms of the displacement in each of the 16 predicted cell counts (in their respective positions as in Table 7.1).
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(r1, r2) = (1, 0) and (r1, r2) = (0, 1), referring to subjects with a single non-response,

peaks occur at cells 6 and 9. Thus, subjects with a NO on attendance/missing on

independence and those with both responses missing have an influence on predicted

cell counts Z10,21 and Z01,21. These same subjects also influence the predicted cell

counts Zr1r2,22.

Whereas the comparison of BRD3 vs. BRD7 presents the most variable influence

graphs, BRD4 vs. BRD7 shows the most consistent ones. All 16 influence curves

exhibit a single shape, although of varying magnitudes, implying that influence on

any predicted cell count is coming from a common source, regardless of the missing-

ness pattern. Here, a clear peak occurs at cells 9 and 5, similar to the likelihood-

displacement results. Subjects with missing responses on both questions and those

with YES on attendance/missingness on independence, have an influence that drives

any predicted cell count towards a model where the missingness in the attendance

question depends on the response of the independence question.

7.3.3.2 Perturbing Cell Probabilities

Alternative to perturbations in the parameters, which, in the case of the BRD fam-

ily, implies perturbing one BRD model in the direction of another, one can consider

introducing, within a given BRD model, infinitesimal perturbations in the cell prob-

abilities, or consequently, perturbations in the cell counts. The perturbed likelihood

is given by

ℓ(φ|ω) =
∑

j1,j2

(Z11,j1j2 +Nω11,j1j2) lnπ11,j1j2

+
∑

j1

(Z10,j1+ +Nω10,j1+) lnπ10,j1+

+
∑

j2

(Z01,+j2 +Nω01,+j2) lnπ01,+j2

+ (Z00,++ +Nω00,++) lnπ00,++,

(7.10)

with all notation as before. Under the null model, ω = ωo = 0, and the above

log-likelihood reduces to the standard multinomial one. Because focus is now on

cell probabilities rather than observations, interpretations will naturally be different,

despite similarities in computation. A peak in the influence curve now represents

the particular observed cell at which a probability perturbation causes substantial

displacement in either the log-likelihood or some function of the parameters of a

specific BRD model.
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Figure 7.5: The Slovenian Public Opinion Survey. Local influence analysis, via per-

turbation in cell probabilities, for each of the nine BRD models, using local influence

measure Ci at the ith observed cell, evaluated in terms of the displacement in the

log-likelihood.

For the SPO Survey data, consider first the influence on the likelihood displace-

ment (Figure 7.5). For most models, the probabilities of cells 3 and/or 4 are influential.

Also notable is the influence of changes in cell 6. Thus, the most influential cells for

almost all models are the completers answering NO on attendance, likely attributable

to the small counts in these cells, while for BRD8, those answering NO on attendance

but with a missing response on independence are influential.

Results of local influence analysis on the predicted cell counts upon perturbing a

particular cell probability are summarized in Table 7.6. Cells 1 and 2 are generally

without influence, owing to large counts. While small perturbations in cell 3 seem to

affect only the predicted cell counts in the top row (j1 = 1, YES on attendance) under

BRD5 and/or BRD6, such changes impact the cell position (j1, j2) = (1, 2) (YES on

attendance/NO on independence) under BRDs 1, 2, 3, 6, and/or 9. Perhaps the most

striking observation that can be made from Table 7.6 is that a perturbation in cell
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Table 7.6: The Slovenian Public Opinion Survey. Local influence analysis, via per-

turbation in cell probabilities, for each of the nine BRD models, using local influence

measure Ci at the ith observed cell, evaluated in terms of the displacement in the each

of the 16 predicted cell counts (in their respective positions as in Table 7.1). Entries in

boxes denote the BRD model number for which influence is largest when the particular

cell probability is perturbed.

Adding ω
Z11,j1j2 Z10,j1j2 Z01,j1j2 Z00,j1j2

to cell

1 --- --- --- --- --- --- --- ---

--- --- --- --- --- --- --- ---

2 --- --- --- --- --- --- --- 3

--- --- --- --- --- --- --- ---

5,6 5,6 5,6 5,6 5,6 5,6 5 5

3 1-3,9 --- 2,3,9 --- 1-3,6 --- 1-3,6 6

4,6,7,9 4-7 4-7,9 4-8 4-7 4-8 4-7,9 3-9

4 4-7,9 2-9 4-7 2-9 4-7,9 2-8 4-7,9 2-5,7,9

5 2 --- 1-3 1,2 --- --- --- ---

--- --- --- --- --- --- --- ---

8 8 8 8 8 --- 8 ---

6 8 1,8 1,8 1 8 --- 8 8

7 3,9 --- 9 --- 1-3,9 --- --- ---

--- --- --- --- --- --- --- ---

8 --- 1-3,9 9 3,9 --- 1-3,9 9 ---

--- --- --- --- --- 1,9 --- ---

9 1,2 --- --- --- --- --- 1-3 1,2

--- --- --- --- --- --- 1 1



7.3. Sensitivity Analysis of the Slovenian Public Opinion Survey 127

probability 4 (NO/NO respondents) yields influence on all 16 predicted cell counts

in most of the higher-numbered BRD4–BRD9. Also, the results for perturbations in

cell 6, indicate that it is primarily under BRD8 where a large influence is observed

in most of the predicted cell counts. Finally, changes in the probability of the doubly

missing cell 9 affect only the predicted cell counts of this missingness pattern and

only under BRDs 1, 2, and/or 3.

7.3.4 How Sensitive is the Proportion of ‘Yes’ Voters?

The inferential target of the Slovenian Public Opinion Survey analyses is estimating

the proportion of people voting in favor of independence – a goal hampered by in-

completeness. It has been argued that putting blind belief in a single model may be

too strong; it is not possible, from a purely statistical point of view, to unambigu-

ously validate a single model, motivating the consideration of sensitivity analyses.

The previous sections featured a variety of these, going beyond conventional sensitiv-

ity analysis applications, which are often confined to a single sensitivity assessment

tool. Table 7.3 summarizes various methods. The simplest analysis considers the

non-parametric bounds and deduces that even the least supportive scenario for in-

dependence would still produce a, roughly, 70% majority. Alternatively, one can fit

a discrete class of models, such as the nine BRD models, or merely the well-fitting

models BRD6–BRD9, and then construct the resulting interval; this narrows the

non-parametric interval and even excludes the plebiscite value. It is here that the

MAR counterparts (Table 7.4) prove to be quite useful, given that they essentially

produce a single point estimate of 89.2% – a value very close to the actual plebiscite

result. The concept of an interval naturally leads to the consideration of intervals

of ignorance, nicely interpolating between the non-parametric interval and a single,

identified model. From Table 7.5, it can be observed that Model 12 reproduces the

non-parametric interval, while Models 10 and 11 further narrow it.

Turning to substantive considerations, the estimates for θ (Table 7.4), can be split

into two:

Optimistic: MAR counterparts, BRD1, BRD3, (BRD5), (BRD6) and BRD9

Pessimistic: BRD4, BRD7 and BRD8

The parenthetical ones are slightly less pronounced than the others. The assumptions

regarding the missingness mechanism, underpinning all twelve models, can be read

from the second column in Table 7.4; they are also spelled out in Table 7.7. It is

striking that the three fully identified, pessimistic estimates allow missingness in the
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Table 7.7: The Slovenian Public Opinion Survey. Meaning of the missingness mecha-

nism in the nine identified models BRD1–BRD9 and its three overspecified extensions

Models 10–12.

Missingness in −→ attendance independence

Depends on −→ attendance independence attendance independence

BRD1 — — — —

BRD2 — —
√

—

BRD3 —
√

— —

BRD4 — — —
√

BRD5
√

— — —

BRD6
√

—
√

—

BRD7 —
√

—
√

BRD8
√

— —
√

BRD9 —
√ √

—

Model 10 —
√ √ √

Model 11
√ √ √

—

Model 12
√ √ √ √

independence question to depend on independence, whereas the other six do not:

these three models support the thesis that there is a large group of people, in favor of

independence, that would not partake in the plebiscite, as can be seen from Table 4.1.

Focusing on BRD7, BRD9, and their MAR counterparts, the pessimistic fit of BRD7

asserts that the proportion of people in favor of independence, yet that would not

attend the plebiscite, amounts to (78 + 155.8 + 44.8 + 112.5)/2074, i.e., 18.9%. The

optimistic BRD9 predicts this fraction to be as low as 7.3%, while for the counterparts

it goes down further to 6.6%. It can thus be inferred, with reasonable confidence, that,

in the actual plebiscite, people expressed their opinion, regardless of real or perceived

pressure, and that an overwhelming majority favored independence, supporting the

optimistic scenario.

There are more nuances in the overspecified Models 10–12. While Models 10 and

12 also include the “pessimistic relationship” of missingness in independence on the

independence answer, the interval is not pessimistic. Rather, the three intervals en-

compass both very pessimistic and very optimistic scenarios. This is because, unlike

the fully identified models, there is no need to sacrifice one type of dependence to
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maintain identifiability. Precisely, while none of BRD4, BRD7 and BRD8 allow miss-

ingness in the independence question to depend on the attendance response, the three

intervals of ignorance do allow for such a dependence – a feature shared with BRD2,

BRD6 and BRD9. It ought not to go unnoticed that, among the optimistic ones,

BRD5 and BRD6 are somewhat less pronounced; these models allow missingness in

the attendance question to depend on the respondent’s attendance position. The

effect of this is similar, but less sharp, than in the ‘independence on independence’

scenario sketched above. It is therefore no longer a surprise that BRD8, where these

two effects play together, produces the most pessimistic estimate.

The question remains why the impact of changing the assumptions is rather spec-

tacular, in the sense that the most pessimistic scenarios are very close to the pes-

simistic bound, whereas the most optimistic scenarios are virtually at the optimistic

bound. It is instructive to return to the global and local influence analyses. First and

foremost, the influence analysis results indicate that there is relatively little influence

altogether, except in BRD4, BRD7 and BRD8, i.e., the entire pessimistic group. This

is clear from the discussion in Sections 7.3.2 and 7.3.3, and from Figures 7.2, 7.3

and 7.5. Global influence results indicate a strong impact of the (relatively small)

NO-on-independence cells in the pessimistic models: changes in these counts can dra-

matically alter the way in which the complete cells are split over the hypothetical

complete cells, rendering θ̂ unstable. Local influence focuses on a different aspect:

which observations/cells drive the conclusions away from a given null model? For

BRD1 vs. BRD4, this is Cell 6 – the not-in-favor-of-independence respondents with-

out declared attendance status. Thus, a small but influential count is simultaneously

responsible for a move towards a pessimistic scenario and the extent of pessimism.

The combined sensitivity analyses and substantive considerations demonstrate

that the optimistic scenarios, whether from the MAR counterparts or the optimistic

group of BRD models, are plausible descriptions of the mechanisms operating during

the plebiscite exercise. The influence analyses show that the pessimistic ones are

rather different from their optimistic counterparts and constitute plausible scenarios

owing primarily to the presence of one or a few influential cells.

7.4 Discussion

In this chapter, a variety of existing and expanded sensitivity analyses have been

presented to gain insight into the impact of missing data generating mechanisms gov-

erning the Slovenian Public Opinion Survey data. A first family of sensitivity analyses
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is based on considering a collection of models, (1) through non-parametric bounds,

(2) a family of identified models, or (3) intervals resulting from over-specified models.

Next to these, observation-varying analyses: (4) global influence, (5) local influence in

terms of infinitesimally varying particular parameters, and (6) local influence through

perturbing cell probabilities, were conducted. The combined conclusions of these sen-

sitivity analyses, along with substantive considerations, lead to a coherent picture

that points to increased confidence in the more optimistic scenarios, and provides a

plausible explanation for these.

How does one then proceed, in similar, related or different data-analysis prob-

lems with incompleteness? First, many of the methods have been developed for

contingency tables and beyond. This is true for local and global influence technology

that also exists for continuous outcomes, possibly with covariates, and intervals of

ignorance that have been developed for logistic regression. For a review, see Molen-

berghs and Kenward (2007). Other methods, not considered here, can be considered

as well. For instance, pattern-mixture models (Thijs et al., 2002) are worthy of

attention, either for their own sake because they might appropriately address a par-

ticular scientific question, or as a useful contrast to selection models either: (1) to

answer the same scientific question, based on these different modeling strategies; or

(2) to gain additional insight by supplementing the selection model results with those

from a pattern-mixture approach. Pattern-mixture models also have a special role

in some multiple-imputation-based sensitivity analyses (Molenberghs and Kenward,

2007). Alternatively, one could also turn towards the shared-parameter framework,

as one of its main advantages is the ability to easily handle non-monotone missing-

ness, but these models are based on very strong parametric assumptions, such as

normality for the shared random effect(s). Sensitivities abound in the selection and

pattern-mixture frameworks as well, but the assumption of unobserved, random, or

latent effects, further complicates the issue (Tsonaka, Verbeke and Lesaffre, 2009;

Rizopoulos, Verbeke and Molenberghs, 2008). Yet a third approach brings together

features of the selection, pattern-mixture and shared-parameter frameworks through

the use of so-called latent-class mixture models (Beunckens et al., 2008). Fourth,

one can take a semi-parametric standpoint, where weighted generalized estimating

equations (WGEE), proposed by Robins, Rotnitzky and Zhao (1994) play a central

role. Rather than jointly modeling the outcome and missingness processes, the cen-

terpiece is inverse probability weighting of a subject’s contribution, where the weights

are specified in terms of factors influencing missingness, such as covariates and ob-

served outcomes (Robins, Rotnitzky and Scharfstein, 1998; Scharfstein, Rotnitzky

and Robins, 1999). Robins, Rotnitzky and Scharfstein (2000) and Rotnitzky et al.
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(2001) use this framework to conduct sensitivity analysis.

The field of sensitivity analysis towards the impact of incomplete data is vibrantly

active and methodology as well as insight surrounding it is bound to emerge in time

to come. The modeler and practitioner have an ever expanding toolkit of sensitivity

analysis machinery at their disposal. Carefully selected sensitivity analysis equipment,

supplemented with substantive arguments, can produce valuable insight and perhaps

even confidence, above and beyond what is obtainable from a single analysis, be it of

the MAR or MNAR type.





8
Gaussian Longitudinal Data

and Missing Not At Random:

Stochastic versus

Non-Stochastic Solutions

In the setting of incomplete longitudinal data arising from clinical studies, the MCAR

case is often regarded as perhaps the most stringent and unrealistic of beliefs regard-

ing the missingness, requiring the simplest methodologies. At the opposite end of

the spectrum lies the considerably reasonable and realistic situation of MNAR, en-

tailing methods that are beset with numerical complexities. MNAR is plausible in

(longitudinal) clinical trials, where it is common to encounter subjects who do well

until midway into the trial, relapse after the last observed visit, and are then lost

to follow-up. If, in such cases, the missed visit is, to some extent, attributable to

the subject’s ‘worsening’ clinical condition, as represented by the yet-to-be observed

response, then the non-response process depends on the missing response (that would

have been recorded had the patient been present for the visit), and consequently, the

missing values are said to be non-randomly missing.

133
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Under ignorability (MCAR or MAR), the observed-data likelihood (3.5) simpli-

fies, obviating the need for any integration, and standard maximum likelihood pro-

cedures can be applied to the reduced form using only the observed data, provided

the method’s implementation can handle unbalanced data, in the sense of allowing

for varying number of measurements per subject. The MNAR case, however, does

not admit simplification and estimation of (3.5) would require evaluation of the in-

tegral numerically. This integration step is what often poses a challenge in fitting

likelihood-based parametric models for non-ignorable missing data. Depending on

the complexity of the model used, not only is the approximation/evaluation of the

integral itself involved, but its subsequent maximization (for maximum likelihood, for

instance) can be computationally demanding.

Broadly speaking, the evaluation and subsequent maximization of the observed-

data likelihood (3.5) under non-ignorable missingness may be approached using either

a stochastic or a non-stochastic solution. Non-stochastic solutions involve maximiza-

tion of either a direct evaluation or a numerical approximation of the integral in (3.5).

Diggle and Kenward (1994) provide such a solution for continuous Gaussian data with

monotone missingness, while Troxel, Harrington and Lipsitz (1998) propose a method

for the non-monotone case. Stochastic methods, on the other hand, involve (itera-

tively) simulating random draws from the underlying non-standard distribution via

Markov chains to fill in the missing data, and subsequently maximizing the likelihood

using the completed data. For this reason, the stochastic approach offers a less com-

putationally demanding alternative because it precludes any numerical integration.

In this chapter, the use of the stochastic expectation-maximization (EM) algorithm

(Celeux and Diebolt, 1985) for fitting selection models for continuous longitudinal data

with MNAR missingness, be it of a monotone or non-monotone type, is explored and

compared with non-stochastic solutions. Within the context of a simulation study,

the merits of the stochastic approach over non-stochastic methods are highlighted,

thereby emphasizing its value as a practical alternative. Ideas are further illustrated

in applications on specific case studies.

8.1 Estimation Methodology

8.1.1 The Expectation-Maximization (EM) Algorithm

The Expectation-Maximization (EM) algorithm (Dempster et al., 1977), which is

a general-purpose iterative algorithm for calculating maximum likelihood estimates,

has become quite popular for handling incomplete data problems, as well as for other
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data-augmented settings, such as latent-variable and random effects models. The

fundamental idea behind the EM algorithm is to associate with the given incomplete

data problem, a complete data problem for which maximum likelihood estimation is

computationally more tractable. Each iteration of the algorithm consists of two steps:

an expectation (E) step and a maximization (M) step. Given initial parameter values,

the E-step calculates the conditional expectation of the complete-data log-likelihood

given the observed data and the parameter estimates. Given then the complete-data

log-likelihood, the M-step finds the parameter estimates to maximize the complete-

data log-likelihood from the E-step. These steps are iterated till convergence.

More concretely, suppose θ(t) is the vector of current values for the parameter

of interest θ. The E-step involves computing the objective function, which, in the

case of a missing data problem, is equal to the expected value of the complete-data

log-likelihood, given the observed data and the current parameters,

Q
(
θ

∣∣∣θ(t)
)

=

∫
ℓ(θ,y)f

(
ym
∣∣∣yo,θ(t)

)
dym = E

[
ℓ(θ|y)

∣∣∣yo,θ(t)
]
, (8.1)

that is, substituting the expected value of Y m, given Y o and θ(t). At the M-step,

the parameter vector that maximizes the log-likelihood of the imputed data, θ(t+1),

is calculated. Thus, θ(t+1) satisfies

Q
(
θ(t+1)

∣∣∣θ(t)
)
≥ Q

(
θ

∣∣∣θ(t)
)

, for all θ.

Among the reasons for the widespread popularity of the EM algorithm is the

guarantee that the likelihood function increases at every iteration, a property not

shared by other optimization methods (e.g., Newton-Raphson), according it consider-

able numerical stability. Among the shortcomings of the EM algorithm, however, are

a painfully slow rate of convergence, and in some cases, intractability of the E-step.

8.1.2 The Stochastic Expectation-Maximization Algorithm

Several stochastic variants of the EM algorithm have been introduced to overcome

possible complexity in the E-step. Stochastic EM (Celeux and Diebolt, 1985), or

SEM, replaces the E-step with an S-step, in which the missing data are imputed with

plausible values, given the observed values and the current parameter estimates. A

subsequent M-step then maximizes the complete-data likelihood based on the pseudo-

complete data. Alternatively, Wei and Tanner (1990) proposed a Monte Carlo imple-

mentation of the E-step, resulting in Monte Carlo EM (MCEM), which generalizes

SEM in the sense that in the S-step, m independent samples are drawn, in contrast to

just one for SEM. Finally, Stochastic Approximation EM (Celeux and Diebolt, 1992),
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or SAEM, provides a hybrid of the EM and SEM algorithms, since, at the current

estimate, a standard EM iteration is performed in addition to the SEM iteration.

A review of the EM algorithm and its extensions can be found in McLachlan and

Krishnan (1997) and Celeux, Chauveau and Diebolt (1995).

Though SEM has been around for some time, there have been few applications

in the area of incomplete longitudinal data. Jolani and Ganjali (2007) applied SEM

to fit a generalized Heckman selection model (Crouchley and Ganjali, 2002), which

extends a sample selection model for missing data to the case of repeated responses

with dropout. In contrast, Gad and Ahmed (2006) used the SEM algorithm for

continuous longitudinal with intermittent missingness. They formulated a Gaussian

model for Y i, with a logistic model for Ri, conditional on the previous and current

responses, but without any specification for the association among the response indi-

cators, thereby implicitly assuming independence among these. Sotto et al. (2009b)

proposed combining two fully multivariate models – a multivariate Gaussian model

for Y i and a multivariate Dale model for Ri – for the joint modeling of continuous

longitudinal data with non-monotone missingness, and obtained solutions using the

stochastic EM algorithm.

The main idea behind stochastic EM (SEM) is to “fill in,” in what is referred to

as the S-step, the missing data with a single draw from the conditional density of

the missing values given the observed values at the current estimate of the parameter

vector, thereby providing a plausible pseudo-complete sample. In the succeeding

M-step, the resulting pseudo-complete sample is used to directly maximize the log-

likelihood to obtain an updated estimate. The algorithm iterates these two steps until

the resulting Markov-Chain converges.

In line with previous notation, let f(yi, ri|θ) = f(yo
i ,y

m
i , ri|θ) denote the joint

density function for the subject i. Each iteration t of the SEM algorithm consists of

the following two steps:

• S-step. At the current estimate of θ, denoted θ(t−1), the missing values for

the ith subject are imputed using a single draw from the conditional distribu-

tion f(ym
i |yo

i , ri,θ
(t−1)). As the latter does not have a standard form, direct

simulation from it is not possible, but an accept-reject procedure can be used:

1. Simulate a candidate value y∗i from the conditional distribution function

f(ym
i |yo

i ,θ
(t−1)).

2. Calculate the probability distribution of the missingness indicators, say

P (Ri = ri|yo
i ,y

∗
i ,θ

(t−1)), according to the assumed non-response model.
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These define a multinomial distribution for the different patterns of miss-

ingness, from which cumulative probabilities and ranges thereof can be

obtained at each missingness pattern.

3. Generate a random variable u from the uniform distribution on the interval

[0,1]. If u falls within the range of cumulative probabilities for the missing-

ness pattern of the ith subject, then the candidate value y∗i is accepted as

the imputation for ym
i . Otherwise, steps 1–3 are repeated until a suitable

imputation is obtained.

• M-step. With the pseudo-complete data, denoted yps, a likelihood maximiza-

tion routine is then used to obtain updated parameters θ(t). The likelihood of

the pseudo-complete data for subject i can be written as

f(yps
i , ri|θ(t−1)) = f(yps

i |θ(t−1)) P (ri|yps
i ,θ

(t−1)).

Alternately imputing pseudo-complete data and performing maximization gener-

ates a Markov chain {θ(m)}, which converges, after a sufficient burn-in period, to a

stationary distribution π(·) under mild conditions (Ip, 1994). Unlike the deterministic

EM algorithm, the final output from stochastic EM is a sample from this stationary

distribution, which is approximately centered at the MLE of θ and its mean can be

considered as an estimate for θ. Diebolt and Ip (1996) refer to this mean as the

stochastic EM estimate θ̃n, which does not, in general, coincide with the MLE.

The variance of θ̃n can be estimated by the inverse of the observed information

matrix, evaluated at θ = θ̃n. Direct computation of this, however, can be just as in-

convenient, because integration over the missing values will be necessary. Louis (1982)

derives a useful identity relating the observed-data log-likelihood and the complete-

data log-likelihood:

I(θ) = −E
(
∂2ℓ(θ|y, r)
∂θ ∂θ′

∣∣∣∣yo, r

)
− Cov

(
∂ℓ(θ|y, r)

∂θ

∣∣∣∣yo, r

)
, (8.2)

Efron (1994) proposes a Monte Carlo method to estimate the expectations and covari-

ances in (8.2) by their empirical versions, by simulating, for the missing values ym, a

set of, say G, independent and identically distributed samples ym1 ,ym2 , . . . ,ymG , us-

ing the conditional distribution f(ym|yo, r,θ), and subsequently approximating (8.2)

using:

E

(
∂2ℓ(θ|y, r)

∂θ ∂θ′

∣∣∣∣ y
o
, r

)
≈

1

G

G∑

j=1

∂2ℓ(θ|yo,ymj , r)

∂θ ∂θ′
,

Cov

(
∂ℓ(θ|y, r)

∂θ

∣∣∣∣ y
o
, r

)
≈

1

G

G∑
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(
∂ℓ(θ|yo,ymj , r)

∂θ

)2

−

(
1

G

G∑

j=1

∂ℓ(θ|yo,ymj , r)

∂θ

)2

,
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where θ is fixed at θ̃. To simulate values from f(ym|yo, r,θ), the same accept-reject

procedure, described in the S-step above, can be used.

The SEM algorithm is expected to converge faster than the EM algorithm, be-

cause calculation of the expected values of the missing data can be computationally

demanding for high-dimensional integration. In addition, the SEM algorithm can

also avoid, owing to its stochastic aspect, the saddle points or irrelevant local maxima

(Diebolt and Ip, 1996). To determine convergence of a Markov chain, the approach

proposed by Gelman and Rubin (1992), which is based on generating multiple, m ≥ 2,

chains in parallel, each of length 2n iterations, can be considered. Convergence of each

scalar parameter is monitored by evaluating the so-called Potential Scale Reduction

Factor (PSRF), which can be calculated as

√
R̂ =

√(
n− 1

n
+
m+ 1

mn

B

W

)
df

df − 2
, (8.3)

where B/n is the variance between the m sequence means, W is the average of the m

within-sequence variances, both based only on the last n iterations of each sequence,

and the term df/(df − 2) adjusts for sampling variability and can be ignored. The

PSRF is the factor by which the scale of the current distribution might be reduced if

the simulations were continued in the limit n → ∞. Convergence is achieved if the

PSRF is close to 1, implying that the parallel Markov chains are essentially overlap-

ping. In such a case, the results are summarized using the simulated values from last

halves of the m chains, rather than a single one. When the PSRF is large, further

simulations may be necessary to improve inferences about the target distribution.

8.2 Simulation Study

To evaluate the performance of the SEM algorithm in fitting non-ignorable models for

incomplete Gaussian longitudinal data, simulations for both the monotone and non-

monotone situations were conducted. Data generating models, simulation settings

and subsequent results under each case are described in the following subsections.

These SEM results were compared with those obtained using Newton-Raphson with

numerical integration, hereinafter referred to as the direct likelihood approach. The

comparison of the two methods was done in terms of the mean squared error (MSE) of

the parameter estimates. Although the true parameters used in the data generation,

as well as the parameters obtained from the complete data, are both available, bias

was computed (for the calculation of MSE) with respect to the latter. This was due

to the fact that some sampling error was observed for some parameters. Moreover,
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since the focus here is to compare how the methods fare in handling the missing data,

the emphasis lies more on bias due to missingness, rather than on bias due to finite

sampling.

8.2.1 Monotone Missingness

The model framework considered for Gaussian longitudinal data with monotone miss-

ingness or dropout is that proposed by Diggle and Kenward (1994), i.e., a selection

model consisting of a marginal Gaussian model for the responses and a logistic re-

gression for dropout conditional on the possibly unobserved outcomes.

8.2.1.1 Data Generation

For the simulation study, trivariate Gaussian outcomes Y i = (Yi1, Yi2, Yi3)
′, a treat-

ment indicator xi(xi = 0, 1), and 3 time periods tij(tij = 1, 2, 3), were assumed to be

related according to the following:

E(Yij |xi, tij ,β) = β0 + βx xi + βt tij + βxt xi tij ,

where β0 = 2.0, βx = 0, βt = 0.5 and βxt = 1.0. This gives rise to the following mean

vector

E(Y i|xi) ≡ µi =

{
(2.5, 3.0, 3.5)′ for xi = 0

(3.5, 5.0, 6.5)′ for xi = 1
, (8.4a)

with a pre-defined unstructured covariance matrix for Y i given by:

Σi =




0.7 0.4 0.2

0.4 0.6 0.3

0.2 0.3 0.5


 . (8.4b)

A total of S = 100 samples, each of size N = 300 (equally distributed between the

two treatment arms), was generated from N3(µ,Σ).

To induce monotone missingness, in line with the Diggle and Kenward (1994)

model, a logistic dropout model of the form (3.31) was used, with ψ0 = −4, ψp = −0.5

and ψc = 1, the latter two denoting the coefficients for the previous and the current

measurements, respectively. Over the S = 100 samples, this dropout model yields

about 55% completers, and about 22% each for the other two dropout patterns.

Denoting by u11, u12, . . . , u33 the elements of the Cholesky decomposition of Σ,

and excluding βx, since βx = 0, as would be assumed in a typical randomized clinical

trial, this data generating mechanism gives rise to the following full parameter vector

θ = (β′,ψ′)′ = (β0, βt, βxt, u11, u12, u13, u22, u23, u33, ψ0, ψp, ψc)
′ .
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8.2.1.2 Results

A Diggle and Kenward (1994) model, consisting of (8.4) and (3.31), was fitted to each

of S = 100 generated samples with monotone missingness using the stochastic EM

algorithm. For each sample, two parallel chains, each with 2n = 1000 iterations, were

simulated. Figure 8.1 depicts, at each iteration, the average value of the estimate

over the S = 100 samples for each of the two chains, as well as for the complete data.
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Figure 8.1: Simulated Data (Monotone). Average parameter estimate per iteration,

over the S = 100 samples, for each of the two simulated stochastic EM algorithm

chains and for the complete data, for the Diggle-Kenward model.
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Table 8.1: Simulated Data (Monotone). True parameter values, average parameter

estimate for S = 100 complete samples, for stochastic EM (SEM) and for direct

likelihood (DL), along with mean squared errors (MSE), for the Diggle-Kenward model.

Effect Parameter True Complete
Estimate MSE × 102

SEM DL SEM DL

Measurement model

Intercept β0 2.00 2.00 2.03 2.00 0.55 0.52

Time βt 0.50 0.50 0.48 0.50 0.11 0.11

Treatment βxt 1.00 1.00 0.98 1.00 0.12 0.13

Variance 1 u11 0.84 0.83 0.83 0.83 0.12 0.12

Covariance 1,2 u12 0.48 0.48 0.47 0.48 0.14 0.21

Covariance 1,3 u13 0.24 0.24 0.23 0.23 0.13 0.27

Variance 2 u22 0.61 0.62 0.60 0.63 0.07 0.14

Covariance 2,3 u23 0.30 0.31 0.30 0.32 0.10 0.32

Variance 3 u33 0.59 0.59 0.58 0.59 0.06 0.12

Dropout model

Intercept ψ0 -4.00 -4.16 -3.91 -4.08 17.99 25.77

Previous ψp -0.50 -0.10 0.01 -0.50 3.19 21.11

Current ψc 1.00 0.81 0.68 1.01 2.93 8.75

The plots indicate convergence of the two chains to a common value, which was quite

similar to the average value using the complete data. To further assess convergence,

the PSRF (8.3) was calculated for each sample, and all S = 100 samples yielded a

PSRF value that was sufficiently close to 1 for all parameters.

Given the convergence of the two chains, as assessed thru the PSRF, a pooled

estimate for each sample was then obtained by averaging the last 500 iterations from

both chains, while the covariance matrix was calculated using (8.2). Finally, the

pooled estimates and covariance matrices were averaged over the S = 100 samples.

The SEM results (estimates and MSEs), as well as those for direct likelihood, are

presented in Table 8.1. The true parameters used in data generation, as well as the

parameters computed from the complete data for the S = 100 samples are provided.

The two methods generally yield comparable estimates for both the measurement

and dropout models, and these are sufficiently close to the parameters obtained using

the complete data. This is not surprising in view of the fact that both approaches are

simply different computational algorithms to obtain maximum likelihood estimates,
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and are naturally expected to produce consistent results. Larger discrepancies be-

tween the methods, however, are observed for the dropout model, but this is often

the case and has been observed elsewhere (Molenberghs and Kenward, 2007).

Comparison of the errors (MSE), however, indicate consistently better estimation

for SEM, except for the parameters β0 and u11, which show slightly smaller MSEs

under direct likelihood. It can be noted that computation of the latter two involve

only the first measurement, which is always observed, requiring no special treatment

for addressing missingness, and as such, are not expected to differ beyond random

variability under the two methods. With regard to computing time, using the same

initial values, the solution for the first sample of the simulation was obtained much

more quickly with SEM (45 min.) in comparison with direct likelihood (roughly 3

hours).

8.2.2 Non-Monotone Missingness

The Diggle and Kenward (1994) model lends applicability to continuous longitudi-

nal data with dropout, and thus for intermittent or non-monotone missingness, an

alternative model framework is necessary. Troxel, Harrington and Lipsitz (1998)

proposed a full likelihood method for analyzing continuous longitudinal data with

non-ignorable, non-monotone missing values, using a selection model consisting of

a multivariate normal model for Y i having a first-order antedependence structure.

Owing to this assumption, the full joint distribution of the responses reduces to the

product of conditional densities of the form f(yij |yi,j−1), and, multiple integrals over

the missing values also factor out as products of single integrals – thereby simplifying

considerably the form of the observed-data likelihood. For the missingness model,

each response indicator was formulated using a logistic model, for which the missing-

ness probabilities depend on the current, possibly unobserved, values of the response.

They further assumed independence of the response indicators, not only enabling the

specification of the full joint distribution of Ri via the marginal distributions of the

Rij , but also precluding the need to model any association between them. These

assumptions, though yielding much more tractable expressions for the observed-data

likelihood, may be somewhat restrictive, especially when the outcomes require a more

general dependence structure and/or when the response indicators necessitate some

dependence among them. And yet despite the simplifications considered, Troxel, Har-

rington and Lipsitz (1998) noted that computations can become quite complicated

and intractable for more than three or four repeated measurements.

For this simulation study, for the case of intermittent missingness, the selection
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model in Sotto et al. (2009b), which combines a multivariate normal model for the

measurements Y i ∼ N(Xiβi, Vi) with a multivariate Dale model (Molenberghs and

Lesaffre, 1994), described in Section 3.7.2, for the non-responses Ri given the mea-

surements, is considered. As no particular assumptions are made on the covariance

structure within the responses, nor on the independence of the non-response indi-

cators, the proposed model provides a more general modeling framework than that

presented by Troxel, Harrington and Lipsitz (1998).

8.2.2.1 Data Generation

For the simulation for the case of non-monotone missingness, bivariate Gaussian out-

comes Y i = (Yi1, Yi2)
′, a treatment indicator xi(xi = 0, 1), and two time periods

tij(tij = 1, 2), were assumed to be related according to the following:

E(Yij |xi, tij ,β) = β0 + βx xi + βt tij + βxt xi tij ,

where β0 = 2.0, βx = 0, βt = 0.5 and βxt = 1.0. A total of S = 100 samples, each

of size N = 300 (equally distributed between the two treatment arms), was gener-

ated from N2(µ,Σ), where the mean vector and pre-defined unstructured covariance

matrix for Y i are:

E(Y i|xi) ≡ µi =

{
(2.5, 3.0)′ for xi = 0

(3.5, 5.0)′ for xi = 1
and Σi =

(
0.7 0.4

0.4 0.6

)
. (8.5)

To induce non-monotone missingness, a bivariate Dale model was defined for the

non-response vector R = (R1, R2)
′, i.e.,

logit p0+ = logit P (Ri1 = 0|xi, yi1,ψ) = ψa0 + ψax xi + ψa1 yi1,

logit p+0 = logit P (Ri2 = 0|xi, yi2,ψ) = ψb0 + ψbx xi + ψb2 yi2, (8.6)

lnψ = ln

(
p00p11

p01p10

)
,

where ψa0 = −3.5, ψax = −2.0, ψa1 = 0.9, ψb0 = −3.0, ψbx = −2.5, ψb2 = 0.8 and

ψ = 3. Across the S = 100 samples, this missingness model led to about 63%

completers, 19% with the second response missing, 8% with the first response missing

and 9% with both responses missing.

With u11, u12, and u22 denoting the elements of the Cholesky decomposition of

Σ, and excluding βx (βx = 0) as in the monotone case, the full parameter vector for

this Gaussian-Bivariate Dale model is given by:

θ = (β′,ψ′)′ = (β0, βt, βxt, u11, u12, u22, ψa0, ψax, ψa1, ψb0, ψbx, ψb2, lnψ)
′
.
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8.2.2.2 Results

For each of the S = 100 generated samples with non-monotone missingness, models

(8.5) and (8.6) were fitted using the stochastic EM algorithm. Two parallel chains,

each with 2n = 1000 iterations, were simulated for each sample. For each of the

simulated chains, the average estimate per iteration was plotted against the iteration

number (Figure 8.2) and these plots indicated fairly acceptable convergence for almost
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Non−Response Model 2

ψψb0

ψψbx

ψψb2

Chain 1    Chain 2   Complete

(b) Non-Response Model

Figure 8.2: Simulated Data (Non-Monotone). Average parameter estimate per itera-

tion, over the S = 100 samples, for each of the two simulated stochastic EM algorithm

chains and for the complete data, for the Gaussian-Bivariate Dale model.
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ln ψψ

Sample 81

Chain 1

Chain 2

Complete

True

Figure 8.3: Simulated Data (Non-Monotone). Estimates for the association param-

eter, lnψ, for each of the two simulated stochastic EM algorithm chains and for the

complete data, for the three divergent samples, along with the true parameter value,

for the Bivariate Dale Model.

all the parameters. Computation of Gelman and Rubin (1992)’s PSRF (8.3) for

all samples confirmed this for all parameters, with the exception of the association

parameter, lnψ, which yielded a PSRF > 1.2 for 3 samples, possibly indicating non-

convergence. The parallel chains for these 3 samples are shown in Figure 8.3, which

clearly illustrates divergence of the association parameter, lnψ, for one or both chains.

A comparison of the average of the two simulated chains was done using all S = 100

samples and excluding the 3 divergent samples (i.e., using only S′ = 97 samples). For

each chain, at each of the 1000 iterations, the 100 (or 97) estimates for lnψ were

averaged to get the mean estimate per iteration. The latter was then plotted against

the iteration number for each of the two chains using S = 100 and S′ = 97 samples.

The results are depicted in Figure 8.4. For Chain 1, when considering all samples

(top left graph), it can be observed that the chain starts out relatively stable and

close to the complete (and true) parameter values. At around iteration 150, however,

the mean estimate moves to a somewhat larger value. The same happens again

at iterations 650 and 900. In contrast, when the 3 divergent samples are excluded

(bottom left graph), the chain remains stable all throughout. The same was observed

for Chain 2. Closer inspection of the said samples did not seem to indicate any

peculiarities, for instance, with regard to sparseness in some of the non-monotone

missingness patterns. In an attempt to resolve the observed divergence, the chains

were extended to 3000 iterations for these 3 identified samples, but no improvement

was attained. Because fairly stable estimates for lnψ were obtained for the remaining

S′ = 97 samples, exclusion of the 3 divergent samples was considered. Moreover,

for some other parameters of the bivariate Dale missingness model, specifically the

intercepts ψa0 and ψb0, stability of the estimates also improved with the exclusion
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Figure 8.4: Simulated Data (Non-Monotone). Average estimate of the association

parameter, lnψ, per iteration, over S = 100 and over S′ = 97 samples, for each of

the two simulated stochastic EM algorithm chains and for the complete data, along

with the true parameter value, for the Bivariate Dale Model.

of the 3 divergent samples. The measurement model parameter estimates, however,

remained more or less stable.

For each of the remaining S′ = 97 samples, a pooled estimate was obtained by

averaging the last 500 iterations from both chains, and the covariance matrix was

calculated as described in Section 8.1.2. Finally, the estimates and covariance matrices

for the S′ = 97 samples were averaged to get the final estimates and quadratic errors

(MSE), presented in Table 8.2. Both the true parameters used in data generation, as

well as the parameters computed from the complete data of the S′ = 97 samples, are

provided.
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Table 8.2: Simulated Data (Non-Monotone). True parameter values, average param-

eter estimate for S′ = 97 complete samples, for stochastic EM (SEM) and for direct

likelihood (DL), along with mean squared errors (MSE), for the Gaussian-Bivariate

Dale model.

Effect Parameter True Complete
Estimate MSE × 102

SEM DL SEM DL

Measurement model

Intercept β0 2.00 2.00 1.99 2.01 0.55 1.04

Time βt 0.50 0.50 0.50 0.52 0.18 0.55

Treatment βxt 1.00 1.00 1.00 0.99 0.16 0.30

Variance 1 u11 0.84 0.84 0.84 0.85 0.10 0.20

Covariance 1,2 u12 0.48 0.48 0.48 0.49 0.13 0.29

Variance 2 u22 0.61 0.61 0.61 0.64 0.05 0.24

Missingness model

Intercept for R1 ψa0 -3.50 -3.57 -3.52 -5.51 27.56 584.31

Treatment for R1 ψax -2.00 -2.04 -2.00 -2.69 16.73 87.69

Current for R1 ψa1 0.90 0.92 0.88 1.50 3.32 53.37

Intercept for R2 ψb0 -3.00 -3.20 -3.19 -4.32 28.15 309.96

Treatment for R2 ψbx -2.50 -2.58 -2.55 -3.24 20.03 121.09

Current for R2 ψb2 0.80 0.86 0.84 1.18 2.64 25.58

Association lnψ 1.10 1.10 1.12 0.77 11.96 33.50

Both approaches give again very similar estimates for the parameters of the mea-

surement model and these values show only slight bias with respect to the complete

parameters. In contrast, quite a bit of discrepancy between the two methods can

be observed for the parameter estimates of the non-response model. Moreover, as

was observed for the monotone case, quadratic errors are also consistently smaller

for SEM. Given that both methods are consistent, the latter observations seem to

indicate that the SEM algorithm is better able to overcome small-sample bias (with

respect to the complete parameters) compared to direct likelihood. Computationally,

with the same starting values, whereas estimates for the first generated sample were

obtained using SEM in about 4 hours, the direct likelihood approach took only 1 hour.
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8.3 Case Studies

In this section, application of the stochastic EM algorithm is illustrated for two lon-

gitudinal data sets, one with dropout and another with non-monotone missingness.

The results are further compared with those obtained using direct likelihood.

8.3.1 Monotone: Age-Related Macular Degeneration Trial

A subset of the ARMD data, consisting of 226 subjects having either a complete set

of responses or dropout type of missingness, was considered for analysis. For the 4

repeated measurements, a saturated means model was formulated, with the treatment

(interferon-α or placebo) received by the patient, denoted xi, as the primary covariate

of interest, and assuming an unstructured covariance for the repeated measures, i.e.,

E(Yij |xi, tij ,β) = β0j + β1j xi Itij
(j) and Σi = [σrc] ,

for i = 1, 2, . . . , 226 and j, r, c = 1, 2, 3, 4. For dropout, in line with the Diggle and

Kenward (1994) model (Section 3.7.4), a logistic dropout model of the form (3.31),

was used. The Diggle and Kenward (1994) measurement and dropout models were

fitted using the SEM algorithm, generating two chains, each consisting of M = 3000

iterations. Convergence of the chains was first checked using the PSRF (Gelman and

Rubin, 1992), all of which indicated fairly stable estimates. The SEM estimates were

then computed using the last halves of these 2 chains and are presented in Table 8.3.

Direct-likelihood estimates and standard errors are also shown.

For both models, all SEM estimates, as well as corresponding standard errors, were

quite comparable with their direct likelihood counterparts, with a slight discrepancy

observed for the intercept of the dropout model. The similarity in the resulting

estimates under the two approaches might be attributed to the fact that the data

contained only a very modest amount (17%) of missingness. Computationally, the

SEM approach took a lot less time to converge than direct likelihood – 6 hours vs. 18

hours, respectively – given the same initial values.

8.3.2 Non-Monotone: Hepatitis B Virus Immunization Trial

For the analysis of the HBV data, the (log-scaled) anti-HBs antibody levels of 214 pa-

tients at months 60 and 61 was considered. Along with completers, all non-monotone

patterns for these two time points were included in the analysis. For the bivariate

measurements, a saturated means model was again formulated, with the number of

booster shots received by the patient during the immunization period, denoted xi,
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Table 8.3: Age-Related Macular Degeneration Trial (Monotone). Parameter estimates

(standard errors) for stochastic EM (SEM) and for direct likelihood (DL), for the

Diggle-Kenward model.

Effect Parameter
SEM DL

Estimate (s.e.) Estimate (s.e.)

Measurement model

Intercept 4 β01 54.00 (1.47) 53.97 (1.47)

Intercept 12 β02 52.98 (1.59) 52.96 (1.59)

Intercept 24 β03 49.08 (1.72) 49.06 (1.73)

Intercept 52 β04 43.58 (1.73) 43.58 (1.82)

Treatment 4 β11 -3.11 (2.10) -3.13 (2.09)

Treatment 12 β12 -4.66 (2.26) -4.68 (2.28)

Treatment 24 β13 -3.79 (2.43) -3.80 (2.49)

Treatment 52 β14 -5.73 (2.43) -5.66 (2.63)

Dropout model

Intercept ψ0 -1.42 (0.39) -1.80 (0.47)

Previous ψp 0.01 (0.01) 0.01 (0.02)

Current ψc -0.04 (0.01) -0.04 (0.02)

as covariate, and further assuming an unstructured covariance for the two repeated

measures, i.e.,

E(Yij |xi, tij ,β) = β0j + β1j xi Itij
(j) and Σi = [σrc] ,

for i = 1, 2, . . . , 214 and j, r, c = 1, 2. The non-monotone missingness in the non-

response vector, R = (R1, R2)
′, was modeled using a bivariate Dale model of the

form:

logit p0+ = logit P (Ri1 = 0|yi1,ψ) = ψ0 + ψc yi1,

logit p+0 = logit P (Ri2 = 0|yi2,ψ) = ψ0 + ψc yi2, (8.7)

lnψ = ln

(
p00p11

p01p10

)
.

The SEM algorithm was applied, again using two chains of M = 3000 iterations

each, and the (Gelman and Rubin, 1992) approach suggested convergence for all the

parameters. Table 8.4 shows the results for both SEM and direct likelihood. As with
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Table 8.4: Hepatitis B Virus Immunization Trial (Non-Monotone). Parameter esti-

mates (standard errors) for stochastic EM (SEM) and for direct likelihood (DL), for

the Gaussian-Bivariate Dale model.

Effect Parameter
SEM DL

Estimate (s.e.) Estimate (s.e.)

Measurement model

Intercept 60 β01 4.69 (0.17) 4.70 (0.27)

Intercept 61 β02 10.98 (0.23) 10.98 (0.44)

No. of Booster Shots 60 β11 -0.37 (0.10) -0.37 (0.13)

No. of Booster Shots 61 β12 -0.87 (0.13) -0.86 (0.24)

Missingness model

Intercept ψ0 -1.08 (0.19) -1.08 (0.20)

Current ψc 0.07 (0.02) 0.07 (0.02)

Association lnψ 4.23 (0.51) 4.22 (0.52)

the ARMD case study, both methods again yield estimates that are generally compa-

rable, for both the response and non-response models, but the standard errors under

SEM are consistently smaller. Larger discrepancies between the two methods might

have been expected, as was observed for the non-monotone simulations. It should

be noted, however, that the missingness model formulated here (8.7) is considerably

simpler than that used in the simulation study (8.6), in the sense that a common

intercept and common slope for the current measurement was used in the logistic

models of both response indicators (a choice arising from some preliminary model

building exercises on the data). As a result, this simplified model is probably unable

to bring out any strengths and/or weaknesses of either method. At the same initial

parameters, running time was roughly 3 hours for SEM as opposed to about 1 hour

for direct likelihood.

8.4 Discussion

In this chapter, the performance of the stochastic EM algorithm – a modification of

the EM algorithm whereby the E-step of the latter is replaced by a simulation step for

the missing data – in fitting non-ignorable selection models for continuous longitudinal

data with monotone or non-monotone missingness was assessed. Stochastic EM is a

convenient alternative to the deterministic EM algorithm in the sense that integration
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of the complete-data likelihood over the missing values is altogether avoided since the

S(imulation) step renders the data “pseudo”-complete. Via a simulation study, the

SEM approach was shown to yield estimates with relatively smaller MSEs compared

to direct likelihood, which exhibited substantial small-sample bias for the parameters

of the non-response model. Though no categorical statement can be made regarding

the superiority of either method in terms of computing time, it might be expected

that what was observed for the monotone case (SEM converging much more quickly)

will probably also be true for the non-monotone case with more repeated measures

(i.e., n > 2), since, in the latter case, the form of the observed-data likelihood would

require more integral evaluations than what has been considered here. Moreover, in

light of the large errors observed under direct likelihood for the non-monotone case,

one might be more inclined to advocate the use of the stochastic approach, despite

its slower convergence.

The simulations and the case studies both suggested that the SEM algorithm

yielded fairly stable results for the measurement model, but less so for the non-

response model. In some situations, despite non-convergence of some missingness

model parameter estimates, those for the measurement model remained close to the

true values, implying some amount of robustness for the measurement model param-

eters. While it is indeed true that in the MAR case, the ignorability assumption

necessarily implies that the measurement process and non-response process param-

eters are independent, one would not expect the same under MNAR. Apparently,

however, the dependence does not appear to be very strong.

Though, at first sight, the instability of the parameter estimates for the missing-

ness model might be perceived as an obstacle to the use of the SEM algorithm, such

parameters are typically not of scientific interest, often being considered nuisance pa-

rameters. They are, however, necessary, within the context of incomplete longitudinal

data, to avoid bias in the analysis. So although non-response is modeled explicitly,

it is uncommon that a researcher is particularly interested in further examination of

this model. Moreover, as researchers are primarily interested in the results for the

measurement model, stochastic EM can most probably provide relatively stable re-

sults. And, in addition, whenever divergence does not present itself to be an issue, the

non-response model parameters are, in fact, quite well estimated using the stochastic

EM approach.

It is also important to note at this point some pragmatic considerations when

using the stochastic EM algorithm. Regarding the number of iterations, one might

consider initially running a chain to some moderately large value, say 2n = 1000, and

assessing its convergence (or lack thereof). If the chain has not seemed to achieve



152 Chapter 8. Stochastic vs. Non-Stochastic Solutions

some stationarity, additional iterations can be made. Also, since it is virtually im-

possible to detect convergence using a single chain, it is strongly recommended to

run the algorithm using at least 2 chains, assessing convergence using the approach

of Gelman and Rubin (1992). With 3 or more chains, when divergence of one chain

is observed, the SEM estimate can still be computed based on the other convergent

chains. In addition, the burn-in period can be reduced by a wise choice of starting

parameters. A practical approach would be to use, as starting values for the MNAR

model, the resulting parameter estimates from an MAR model, which can be easily

implemented using standard likelihood techniques, and some small arbitrary values

for the additional non-ignorable parameters. Finally, with respect to the modeling

framework, a Gaussian model for the repeated measures was combined here with a lo-

gistic model for dropout for the monotone case (Diggle and Kenward, 1994), whereas

for the non-monotone case, the use the use of a Gaussian model for the longitudinal

responses and a multivariate Dale model for the non-responses was proposed. Such

a joint model is quite general, in comparison with, for instance, that proposed by

Troxel, Harrington and Lipsitz (1998). A possible drawback, however, of a Gaussian-

multivariate Dale type model would be a likely proliferation of parameters. For the

simulations conducted here, considering only 2 time points, the missingness model

alone consisted of 7 parameters. One can easily anticipate much more parameters for

longer longitudinal sequences.

On a final note, it is important to emphasize that models for continuous lon-

gitudinal data with non-ignorable monotone or non-monotone missingness can be

approached using either stochastic or non-stochastic methods. While the latter is fre-

quently viewed as being the convention, the former provides a more computationally

efficient approach to obtaining likelihood-based estimates, with, as our simulations

showed, smaller magnitudes of error. In addition, the stochastic approach allows

greater flexibility in the choice of joint model for Y and R, since one need not be

restricted by numerical complexities that would arise in the integration of likelihoods

arising from more general, and consequently, more complicated, joint models. A

stochastic solution can be obtained without such restrictions, especially so for the

measurement model, and barring divergence, also for the non-response model. In

general, whether applied to Gaussian longitudinal data with non-ignorable monotone

or non-monotone missingness, the SEM algorithm appears to be not only a practical

alternative to direct likelihood approaches, but also a useful tool within the context

of a sensitivity analysis.



9
Comparison of Various

Software Tools for Imputation

Statistical methods that address missingness have been extensively studied in recent

years. In general, incompleteness in the data can be addressed either by pre-processing

the data in order to render them complete prior to any analysis, i.e., by imputation

of the missing values, or by employing methods that deal with the missingness di-

rectly in the analysis (e.g, via the use of a weighting scheme). Imputation, in its

broadest sense, has perhaps become the more widely chosen route for dealing with

missing data. The popularity of imputation methods can be attributed not only to its

relatively easy to comprehend rationale, but also to its rather straightforward imple-

mentation. In addition, because imputation “solves” the missing data problem prior

to the analysis, complete-data techniques can subsequently be applied without much

further treatment. Moreover, to less technically equipped end users, more complex

approaches for handling missing data directly in the analysis may seem much less

appealing than imputation.

The widespread popularity of imputation has spurred the development of software-

based implementation routines, procedures, or packages capable of generating impu-

153
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tations for incomplete data. Thus far, evaluation of existing implementations have

frequently centered on the resulting parameter estimates of the prescribed model of

interest after imputing the missing data. In some situations, however, interest may

very well be on the quality of the imputed values at the level of the individual – an

issue that has received relatively little attention.

In this chapter, in the particular setting of longitudinal data with dropout, the

performance of different routines, procedures, or packages for imputing missing data

is investigated. Evaluation of these existing implementations shall be done not only

in terms of the resulting estimates, after imputing the missing data, for the model of

interest, but also with respect to the quality of the generated imputations at the level

of the individual. Via a simulation study, conducted under two different missingness

mechanisms (missing at random and missing not at random), resulting imputations

from the different routines are assessed at the level of the parameter estimates as well

as at the level of the individual. The simulation study is further complemented with

a comparison of the various imputation routines as applied to a case study.

9.1 Overview of Software Implementation

Routines for Imputation

Imputation, which can be done singly or multiply, encompasses an entire scope of

techniques that have been developed to make inferences about incomplete data, rang-

ing from very simple strategies (e.g., mean imputation) to more advanced approaches

that require, for instance, estimation of posterior distributions using MCMC meth-

ods. Additional complexity arises when the number of missingness patterns increases

and/or when both categorical and continuous random variables are involved. Over

the recent years, software-based implementations for these various imputation strate-

gies have become widely available. An overview of some of the existing routines are

presented in Table 9.1.

Horton and Kleinman (2007) evaluated a number of software routines in the con-

text of a simple logistic regression analysis with missing values in the covariates. A

slightly more extensive review of various software packages in Horton and Lipsitz

(2001) investigated missingness in covariates as well as missingness in a single uni-

variate outcome, albeit separately. For the review considered here, the more general

situation of longitudinal outcomes is explored, with particular attention on missing-

ness in the outcomes, rather than in the covariates. Moreover, among the procedures

listed in Table 9.1, only those in boldface type shall be investigated, and for each of
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Table 9.1: Overview of some statistical software implementations for imputing missing data.

Routine Name Software package Provider/Author Approaches Implemented

Amelia II R Honaker, King Hybrid of EM with Bootstrap (amelia)

and Blackwell

Hmisc R and S-Plus Frank Harrell Multiple Imputation using Additive Regression, Boot-

strapping and Predictive Mean Matching (aregImpute)

ICE Stata Patrick Royston Chained equation, imputing missing values by sampling

from the posterior predictive distribution

IVEware SAS or Univ. of Michigan Sequence of regression models, incorporating restriction to a

Standalone relevant subpopulation and logical bounds for the imputation

LogXact LogXact 7 Cytel Maximum likelihood

MICE R and S-Plus van Buuren et al. Chained equation (and potential MNAR models)

PROC MI SAS v9.1 SAS Institute MCMC for Gaussian, Predictive Mean Matching,

regression, logistic, polytomous and discriminant models

Missing Data library S-Plus 7 Insightful Maximum likelihood or conditional Gaussian imputation model

randomForest R Liaw and Imputation of missing values using proximities

Wiener from a Random Forest (rfImpute)

SEM imputation R Sotto et al. MCMC for non-standard dist’n., imputing missing values

by sampling from the posterior predictive distribution

SOLAS Solas Statistical Supports predictive mean model (closest observed value to

Solutions the predicted value), propensity score models and discriminant

models for missing binary and categorical variables

yaimpute R Crookston and Supports nearest neighbor (NN) imputation, nearness based

Finley on distance; also provides random forest imputation (yai)
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these, a general introduction is provided along with discussions regarding any partic-

ular issues related to its implementation.

It is important to mention that, despite the existence of numerous methods and

software implementations for imputing incomplete data (Table 9.1), there is evidence

that their use in applied settings remains limited. Burton and Altman (2004) re-

viewed the reporting (and handling) of missing data in 100 cancer prognostic studies

published in the year 2002. From this total, missing data was reported in 81 articles,

of which only 32 mentioned the use of some method to deal with the incomplete ob-

servations. Among these, the complete case approach, despite its potential for biased

results, among other issues, and the available case method were the most commonly

used tools for addressing missingness (12 articles each). Another 6 articles simply

omitted variables with missing data, 4 included cases with missing values as a sep-

arate category within the modeling procedure, 3 used an ad hoc single-imputation

procedure based on a surrogate variable or on median values from the non-missing

observations, and only 1 paper applied multiple imputation.

Another article (Horton and Switzer, 2005) reviewed the use of statistical methods

in research articles published between 2004 and 2005 in The New England Journal of

Medicine. The authors reviewed a total of 331 papers, of which only 26 (8%) reported

some way of handling missing data in their analysis. From the 26 manuscripts, 12 used

a version of last observation carried forward (LOCF), 13 used an ad hoc imputation

strategy (e.g., mean imputation), and 2 performed a kind of sensitivity analysis, by

replacing missing values with worst case values.

Both of these reviews highlight the fact that, even when statistical methodology

to tackle missing data problems exists, these are not frequently employed in practice.

Of even greater concern is the use of incorrect statistical analyses, in spite of the

clear messages in a suite of research articles arguing against complete case analysis

or LOCF, for instance.

9.1.1 R Package: Amelia II

Amelia II (Honaker, King and Blackwell, 2008) provides features to “multiply im-

pute” missing data in a single cross-sectional study, from time series data, or from a

time-series-cross-sectional data set. It implements a bootstrapping-based algorithm

(King et al., 2001) that provides essentially the same answers as the standard Imputa-

tion Posterior (IP) algorithm (i.e., drawing random simulations from the multivariate

normal observed data posterior using MCMC methods) or EMis approaches. The

algorithm first bootstraps a sample data set with the same dimensions as the original
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data, estimates the sufficient statistics (with priors, if specified) by EM, and then

imputes the missing values in the sample. It repeats this process m times to produce

the m complete data sets, where the observed values are the same and the unobserved

values are drawn from their posterior distributions. Amelia II is usually considerably

faster than existing approaches and can handle a large number of variables. The pro-

gram also generalizes existing approaches by allowing for trends in time series across

observations within a cross-sectional unit, as well as priors that allow experts to incor-

porate beliefs they have about the values of missing cells in their data. Furthermore,

the Amelia II package also includes useful diagnostics to help assess the fit of the

imputation models.

9.1.2 R Package: Hmisc

The Hmisc package (Harrell, 2009) contains the function aregImpute, which can be

used to perform multiple imputation for missing values. The function uses bootstrap-

ping to approximate the process of drawing predicted values from a full Bayesian

predictive distribution. Different bootstrap resamples are used for each of the mul-

tiple imputations. In other words, for the ith imputation of a possibly incomplete

variable, i = 1, 2, . . . ,m, a flexible additive model is fitted on a sample with replace-

ment from the original data and this model is used to predict all of the original

missing and non-missing values for the target variable. The sequence of steps used

by the aregImpute algorithm consists of the following:

• For each incomplete variable, missing values are initialized to values obtained

from a random sample, of the non-missing values (without replacement, if suffi-

cient number of non-missing values exists), of size corresponding to the number

of missing values for that variable.

• The next steps need to be repeated for a total of (nburn-in +m) iterations and

only imputations from the last m iterations are saved.

– For each incomplete variable, a sample with replacement is drawn from

the observations in the entire data set for which the current variable be-

ing imputed is non-missing. A flexible additive model is then fitted and

subsequently used to predict the target variable in all of the original ob-

servations. Imputation can be done using different ways of matching.

– After the imputations are obtained, these randomly drawn imputations are

used in the next iteration, this time taking the current target variable as

a predictor of other sometimes-missing variables.
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Some limitations of the procedure arise from the fact that predictive mean match-

ing may not work well when fewer than three variables are used to predict the target

variable, because many of the multiple imputations for an observation will be identical.

When the missingness mechanism for a variable is so systematic that the distribution

of observed values is truncated, predictive mean matching does not work. It will only

yield imputed values that are near observed values, so intervals in which no values

are observed will not be populated by imputed values.

9.1.3 R Package: randomForest

A random forest is an ensemble of many identically distributed trees generated from

bootstrap samples of the original data. Each tree is constructed via a tree classification

algorithm. The simplest random forest with random features is formed by selecting

randomly, at each node, a small group of input variables to split on. The size of

the group is fixed throughout the process of growing the forest. Each tree is grown

using the CART (classification and regression trees) methodology without pruning

(Breiman et al., 1984). Using the trees, a proximity matrix is constructed, with

proximities based on the number of times a pair of observations ends up in the same

node, divided by two times the number of trees grown. This proximity measure is then

used to update the missing values. In the case of continuous variables, missing values

are imputed using a weighted average of non-missing observations, with proximities as

weights. For categorical variables, the category with the largest average proximity is

used to impute the missing values. It is recommended to repeat this step and update

the proximity measures based on the new imputation.

The randomForest package in R (Breiman and Cutler, 2009) can be used to impute

missing observations using the function rfImpute or na.roughfix. The latter simply

replaces the missing values by their variable medians or most frequent level and is

already incorporated as a first step in the function rfImpute. In the second step of

rfImpute, the random forest method (Breiman, 2001) is used on the complete data.

9.1.4 SAS Procedure: PROC MI

The SAS procedure MI (SAS Institute Inc., 2004), or PROC MI, creates, as do the

previous R packages, multiply imputed data sets for incomplete multivariate data.

It uses methods that incorporate appropriate variability across the m imputations.

The method of choice depends on the patterns of missingness and three different

possibilities are available.
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• The Markov Chain Monte Carlo (MCMC) approach for arbitrary missing data

patterns, uses an MCMC – which simulates random draws from non-standard

distributions via Markov chains (Schafer, 1997) – to create a small number of

independent draws of the missing data from a predictive distribution, and these

draws are then used for multiple-imputation inference. In PROC MI using

MCMC, multiple imputations are drawn from a Bayesian predictive distribution

for normal data. The method can also be used to impute enough values to make

the missing data pattern monotone, enabling the subsequent application of a

more flexible imputation method.

• The regression method for monotone missing data fits a regression model for each

incomplete variable, with the other variables as covariates. Based on the fitted

regression coefficients, a new regression model is simulated from the posterior

predictive distribution of the parameters and is used to impute the missing

values for each variable (Rubin, 1987). The process is repeated sequentially for

variables with missing values.

• The propensity score method for monotone missing data, generates, for each

incomplete variable, a propensity score – generally defined as the conditional

probability of assignment to a particular treatment given a vector of observed

covariates (Rosenbaum and Rubin, 1983) – for each observation to estimate the

probability that the observation is missing. The observations are then grouped

based on these propensity scores, and an approximate Bayesian bootstrap im-

putation is applied to each group.

9.1.5 Stochastic Expectation-Maximization (EM) Algorithm

The stochastic EM (or SEM) algorithm, described in Section 8.1.2, was developed

by Celeux and Diebolt (1985) as a computational scheme to facilitate maximum like-

lihood estimation for incomplete data problems. As such, in a technical sense, the

SEM algorithm in itself is not an imputation technique, but can, in fact, be used

indirectly to impute missing observations. That is, once the resulting SEM generated

Markov Chain attains reasonable convergence, a final pseudo-complete sample can

be obtained by substituting, for the missing observations, random draws from the

estimated conditional density of the missing values given the observed values at the

final SEM parameter estimates.

The rationale behind the use of the SEM algorithm for imputing missing data is

in fact equivalent to that of SAS PROC MI using the MCMC method. The latter,
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however, lends application primarily for multivariate Gaussian outcomes, whereas the

SEM approach can be specifically tailored to admit more general forms (Sotto et al.,

2009b; Gad and Ahmed, 2006; Jolani and Ganjali, 2007).

9.2 Simulation Study

To evaluate the performance of the different routines in fitting ignorable and non-

ignorable models for Gaussian longitudinal data with dropout, simulations for both

scenarios were conducted. Data generating models, simulation settings and subse-

quent results under each case are described in the following subsections. A related

simulation setting was already presented in Sotto et al. (2009b), with primary empha-

sis on the SEM algorithm as an estimation, rather than as an imputation, strategy.

Moreover, these authors did not consider alternative software tools, neither did they

address the MAR situation.

For the simulation study, assessment of the various imputation procedures shall be

done in two respects. First, resulting parameter estimates arising from the imputed

data using the different routines will be compared with the true parameters used

in generating the simulated data. In addition, since imputations at the level of the

individual are also of particular interest here, the performance of the different routines

will be based on a so-called standardized squared imputation bias (SSIB) and the

variability of this measure. The SSIB is calculated as follows:

SSIBij =

(
Y A

ij − Y I
ij

)2

N −
N∑

i=1

Rij

, (9.1)

where Y A
ij is the actual generated value, Y I

ij denotes the imputed value and the de-

nominator is simply the number of missing values at time point j. This measure is

calculated for all subjects in the data set having missing values and the sum over

all subjects, for a particular time point, can be viewed as a measure indicating how

biased the imputations for that time point are for each data set in the simulation.

9.2.1 Missing Not At Random

For the simulations under MNAR, in addition to direct likelihood, 5 imputation rou-

tines will be considered: the SEM algorithm, the MI procedure from SAS, and the

Hmisc, random forest and Amelia II packages from R. While PROC MI, Hmisc and
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Amelia II are known to be designed to deal with MAR models, non-ignorable missing-

ness can be handled under direct likelihood, SEM and possibly random forest. The

impact, in terms of parameter estimates and standard errors, will be further evalu-

ated using two different strategies. In particular, Strategy I consists of imputing the

missing observations first, then performing the analysis for each imputed data set,

and finally combining the results; Strategy II, on the other hand, entails imputing

the missing values and subsequently using the average of the multiple imputations to

perform the final analysis. It should be noted that either Strategy I or Strategy II

can be used for all the methods, except direct likelihood, for which neither strategy

is applicable since no imputation of missing values is done.

9.2.1.1 Data Generation

For the simulation, trivariate Gaussian outcomes Y i = (Yi1, Yi2, Yi3)
′, a treatment

indicator xi(xi = 0, 1), and 3 time periods tij(tij = 1, 2, 3), were assumed to be

related according to the following:

E(Yij |xi, tij ,β) = β0 + βt tij + βxt xi tij , (9.2)

where β0 = 2.0, βt = 0.5, and βxt = 1.0, giving rise to the following mean structure

E(Y i|xi) ≡ µi =





(2.5, 3.0, 3.5)′ for xi = 0

(3.5, 5.0, 6.5)′ for xi = 1
,

with a pre-defined unstructured covariance matrix for Y i given by:

Σi =




0.7 0.4 0.2

0.4 0.6 0.3

0.2 0.3 0.5


 .

A total of S = 100 samples, each of size N = 300 (equally distributed between the

two treatment arms), was then generated from N3(µ,Σ).

To induce monotone missingness of an MNAR nature, in line with the Diggle and

Kenward (1994) model (Section 3.7.4), a logistic dropout model of the form

logit P (Di = j|Di ≥ j, yi,j−1, yij ,ψ) = ψ0 + ψc yij + ψp yi,j−1, (9.3)

was considered, with ψ0 = −4, ψp = −0.5 and ψc = 1, the latter two denoting the

coefficients for the previous and the current measurements, respectively. Over the

S = 100 samples, dropout model (9.3) yields about 55% completers (pattern OOO)

and about 22% each for the other two dropout patterns (OOM and OMM).
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Table 9.2: Simulated Data (Missing Not At Random). True parameter values, average parameter estimates (est) and standard

errors (s.e.) for S = 100 complete samples, for direct likelihood (DL), stochastic EM (SEM) and random forest (RF), for the

Diggle-Kenward model.

Effect Par True Complete
DL

Strategy I Strategy II

SEM RF SEM RF

est (s.e.) est (s.e.) est (s.e.) est (s.e.) est (s.e.)

Measurement Model

Intercept β0 2.0000 2.0005 2.016 (0.071) 2.032 (0.067) 2.062 (0.072) 2.032 (0.071) 2.062 (0.076)

Time βt 0.5000 0.4991 0.489 (0.033) 0.479 (0.028) 0.454 (0.034) 0.480 (0.033) 0.454 (0.034)

Treatment βxt 1.0000 1.0008 0.991 (0.035) 0.976 (0.023) 0.958 (0.039) 0.975 (0.037) 0.959 (0.041)

Variance 1 u11 0.8367 0.8308 0.830 (0.034) 0.830 (0.034) 0.831 (0.036) 0.830 (0.037) 0.831 (0.037)

Covariance 1,2 u12 0.4781 0.4779 0.475 (0.044) 0.472 (0.037) 0.470 (0.039) 0.471 (0.043) 0.470 (0.042)

Covariance 1,3 u13 0.2390 0.2421 0.232 (0.051) 0.228 (0.034) 0.184 (0.034) 0.228 (0.048) 0.184 (0.033)

Variance 2 u22 0.6094 0.6169 0.606 (0.029) 0.604 (0.022) 0.566 (0.025) 0.550 (0.032) 0.566 (0.029)

Covariance 2,3 u23 0.3047 0.3080 0.302 (0.048) 0.298 (0.030) 0.235 (0.030) 0.271 (0.047) 0.235 (0.033)

Variance 3 u33 0.5916 0.5909 0.582 (0.033) 0.576 (0.020) 0.539 (0.022) 0.565 (0.030) 0.543 (0.027)

Dropout Model

Intercept ψ0 -4.0000 -4.1597 -3.718 (0.415) -3.914 (0.345) -3.743 (0.395) -4.049 (0.533) -3.741 (0.480)

Previous ψp -0.5000 -0.1008 -0.282 (0.192) 0.015 (0.136) 0.121 (0.146) -0.093 (0.188) 0.113 (0.164)

Current ψc 1.0000 0.8088 0.792 (0.168) 0.678 (0.110) 0.670 (0.118) 0.789 (0.176) 0.740 (0.127)
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Table 9.3: Simulated Data (Missing Not At Random). True parameter values, average parameter estimates (est) and standard

errors (s.e.) for S = 100 complete samples, for PROC MI, Amelia II and Hmisc, for the Diggle-Kenward model.

Effect Par True Complete
PROC MI Amelia II Hmisc

est (s.e.) est (s.e.) est (s.e.)

Measurement Model

Intercept β0 2.0000 2.0005 2.072 (0.071) 2.280 (0.080) 2.075 (0.071)

Time βt 0.5000 0.4991 0.453 (0.033) 0.325 (0.041) 0.453 (0.034)

Treatment βxt 1.0000 1.0008 0.945 (0.041) 0.833 (0.045) 0.939 (0.040)

Variance 1 u11 0.8367 0.8308 0.831 (0.037) 0.835 (0.038) 0.831 (0.037)

Covariance 1,2 u12 0.4781 0.4779 0.472 (0.044) 0.480 (0.047) 0.467 (0.045)

Covariance 1,3 u13 0.2390 0.2421 0.231 (0.055) 0.212 (0.056) 0.218 (0.051)

Variance 2 u22 0.6094 0.6169 0.545 (0.030) 0.578 (0.038) 0.555 (0.031)

Covariance 2,3 u23 0.3047 0.3080 0.275 (0.054) 0.215 (0.100) 0.275 (0.053)

Variance 3 u33 0.5916 0.5909 0.463 (0.031) 0.697 (0.055) 0.466 (0.029)

Dropout Model

Intercept ψ0 -4.0000 -4.1597 -3.598 (0.457) -2.811 (0.523) -3.611 (0.572)

Previous ψp -0.5000 -0.1008 0.103 (0.173) 1.061 (0.170) 0.120 (0.158)

Current ψc 1.0000 0.8088 0.554 (0.129) -0.400 (0.134) 0.544 (0.128)
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9.2.1.2 Results

For each of the S = 100 generated samples with non-ignorable missingness, models

(9.2) and (9.3) were fitted using 6 different approaches: direct likelihood, the SEM

algorithm, the random forest approach, the MI procedure from SAS, and the Hmisc

and Amelia II packages from R, with M = 5 imputations for the latter 5 cases. Focus

shall first be restricted on the 3 approaches that are possibly capable of handling non-

random missingness, namely, direct likelihood, SEM and random forest, the results

of which, under both strategies, are presented in Table 9.2.

It can be observed that these 3 approaches produce generally comparable results,

with somewhat larger bias under random forest, implying some sensitivity of this

method to non-ignorable missingness. Biases, as well as standard errors, are also gen-

erally larger in magnitude for the parameters of the dropout model. With respect to

two different strategies, similarity in their respective results suggests that the impact

of using the two different strategies does not seem to be too large. Thus, for the other

approaches, only the results obtained using Strategy II will be reported.

In Table 9.3, the results obtained for the other three approaches are shown. In

this particular scenario, PROC MI and Hmisc produced comparable results in terms

of estimates and standard errors for all parameters. Of considerable concern are the

large biases observed in the Amelia II estimates for many of the parameters of both

the measurement and dropout models, indicating that this package should be used

with care, given that conclusions can really be affected, at least as far as dealing with

MNAR is concerned.

A general remark about this simulation study is related to the results obtained

for the dropout model, in particular, the estimated value obtained for the parameter

ψp, denoting the coefficient for the previous outcome. First, it is worth noting the

discrepancy between the value used for simulation and the value obtained for the com-

plete data (average of S = 100 samples), indicating some amount of finite-sampling

bias. Moreover, all methods except direct likelihood produced estimated values above

zero, though the true parameter was negative, which might imply potential problems

in imputing MNAR missing values under these routines. Analysis of the complete

data, however, indicated this parameter to be insignificant (p = 0.6391), which is also

reflected by five of the methods applied, thus possibly explaining why the methods

failed to yield a satisfactory estimate for ψp.

Focusing now on the SSIB for all 5 methods (excluding direct likelihood), it can

be deduced from Figure 9.1 that the sum of SSIB ranges from 0.2 to 1.6 for the

second time point (having around 22% missing observations), indicating that the total
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Figure 9.1: Simulated Data (Missing Not At Random). Histograms and kernel densi-

ties for the average SSIB (over 100 samples), for time points 2 and 3, for each of the

imputation strategies.
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Figure 9.2: Simulated Data (Missing Not At Random). Comparison of histograms

and kernel densities for the average SSIB (over 100 samples), for time points 2 and

3, for the random forest, PROC MI, SEM and Hmisc procedures.

squared bias should be between 13 and 103 units. Amelia II shows larger variability

for the sum of SSIB, while SEM seems to have the smallest variability. In terms

of median location, Hmisc shows the smallest value (0.602), while PROC MI and

Amelia II produced similar values (0.865 and 0.869, respectively). The kernel densities

for time point 3, on the other hand, exhibit similar ranges of values for the PROC MI,

SEM, random forest, and Hmisc imputation techniques, while Amelia II is severely

affected by the increase in percentage of missingness at this time point, having a lower

bound for the sum of SSIB that is even larger than the upper bounds for the other

4 methods. Zooming in on PROC MI, SEM, Hmisc, and random forest (Figure 9.2),

practically no differences between the four routines can be seen for time point 2 with

respect to the range of SSIB values, but differences are observed for time point 3,

with clearly larger values for SSIB under SAS PROC MI.
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9.2.2 Missing At Random

For the simulations under MAR, 4 different imputation routines will be considered:

the MI procedure from SAS, as well as the Hmisc, Amelia II and random forest

packages from R. The SEM approach is not further considered, since in this setting,

the SEM algorithm basically uses the same methodology as that of PROC MI.

9.2.2.1 Data Generation

For the simulations under the MAR setting, the same measurement model (Model 9.2)

as that used for the MNAR case (Section 9.2.1.1) was considered, and S = 100

samples, each of size N = 300, equally distributed between the two treatment arms,

were again generated from N3(µ,Σ).

To induce MAR missingness in the outcomes, a logistic dropout model similar to

that of the Diggle and Kenward (1994) model, but without dependence on the current

possibly unobserved outcome, was used, i.e.,

logit P (Di = j|Di ≥ j, yi,j−1,ψ) = ψ0 + ψp yi,j−1, (9.4)

where ψ0 = −3 and ψp = 0.5. Over the S = 100 samples, this dropout model

produced a percentage of completers (pattern OOO) ranging from 48 and 67%, and

ranging from 13 and 29% each for the other two dropout patterns (OOM and OMM).

9.2.2.2 Results

For each of the S = 100 generated samples, models (9.2) and (9.4) were fitted to

the M = 5 completed data sets obtained using 4 different approaches – the MI

procedure from SAS, as well as the Hmisc, Amelia II and random forest packages

from R, the results of which are presented in Table 9.4. Starting with the parameters

of the measurement model, estimates and standard errors for β0 and u11 are almost

equivalent across the 4 routines, as might be expected since these parameters involve

the outcome at the first time point, which is always observed and never imputed.

For βt, βxt, u13, u23 and u33, the magnitudes of the Amelia II estimates are somewhat

different from those for the other 3 methods. In general, these parameters involve the

last outcome, having the largest proportion of missing values, which seems to affect

the imputations produced under Amelia II. For the other two parameters, u12 and

u22, the 4 procedures give more or less comparable estimates and standard errors.

Finally, it can also be observed that the standard errors under the random forest

approach indicate slightly better precision.
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Table 9.4: Simulated Data (Missing At Random). True parameter values, average parameter estimates (est) and standard

errors (s.e.) for S = 100 complete samples, for direct likelihood (DL), PROC MI, Amelia II, random forest (RF) and Hmisc,

for the Diggle-Kenward model.

Effect Par True Complete
DL PROC MI Amelia II Hmisc RF

est (s.e.) est (s.e.) est (s.e.) est (s.e.) est (s.e.)

Measurement model

Intercept β0 2.000 2.000 2.002 (0.070) 1.999 (0.071) 2.099 (0.077) 2.003 (0.071) 2.009 (0.075)

Time βt 0.500 0.499 0.499 (0.033) 0.500 (0.036) 0.423 (0.039) 0.505 (0.035) 0.488 (0.036)

Treatment βxt 1.000 1.001 0.998 (0.033) 1.000 (0.037) 0.967 (0.039) 0.993 (0.038) 1.004 (0.037)

Variance 1 u11 0.837 0.831 0.830 (0.034) 0.830 (0.037) 0.831 (0.037) 0.830 (0.037) 0.830 (0.037)

Covariance 1,2 u12 0.478 0.478 0.478 (0.045) 0.479 (0.045) 0.494 (0.048) 0.481 (0.048) 0.486 (0.043)

Covariance 1,3 u13 0.239 0.242 0.238 (0.051) 0.240 (0.055) 0.188 (0.047) 0.221 (0.053) 0.222 (0.032)

Variance 2 u22 0.609 0.617 0.615 (0.028) 0.568 (0.028) 0.602 (0.041) 0.592 (0.037) 0.585 (0.028)

Covariance 2,3 u23 0.305 0.308 0.306 (0.047) 0.285 (0.047) 0.204 (0.072) 0.283 (0.052) 0.239 (0.034)

Variance 3 u33 0.592 0.591 0.589 (0.032) 0.483 (0.029) 0.567 (0.048) 0.486 (0.028) 0.462 (0.026)

Dropout model

Intercept ψ0 -3.000 -2.940 -3.011 (0.354) -2.997 (0.359) -3.214 (0.415) -3.222 (0.417) -2.990 (0.362)

Previous ψp 0.500 0.582 0.506 (0.090) 0.596 (0.091) 0.648 (0.102) 0.650 (0.104) 0.596 (0.092)
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Figure 9.3: Simulated Data (Missing At Random). Histograms and kernel densities

for the average SSIB (over 100 samples), for time points 2 and 3, for each of the

imputation strategies.
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Figure 9.4: Simulated Data (Missing At Random). Comparison of histograms and

kernel densities for the average SSIB (over 100 samples), for time points 2 and 3, for

random forest, PROC MI and Hmisc procedures.

A much more distinct pattern is observed for the 4 imputation methods for the

dropout model. For both parameters, ψ0 and ψp, SAS PROC MI and the random

forest approach yield very similar estimates as well as standard errors, and these

estimates are not only very close to the estimates obtained using the complete samples,

but are also only very slightly biased with respect to the true parameter values. The

Amelia II and Hmisc packages, on the other hand, exhibit more biased estimates (with

respect to both the true and complete values), and in addition, substantially larger

standard errors, than the other two techniques.

The histograms and kernel densities for the four routines (Figure 9.3) show wider

ranges of SSIB for Amelia II, while the random forest method shows narrower distri-

butions for SSIB. It is also worthwhile to note that for SAS PROC MI, SSIB ranges

are practically invariant to the time point considered, whereas for Hmisc and random



9.3. Case Study: ARMD Trial 171

forest, SSIB values tend to be smaller for time point 3, which could possibly be due to

the smaller variability in the outcome at this time point. Figure 9.4 further highlights

the similarity of SSIB ranges for SAS PROC MI, Hmisc and random forest at time

point 2. For time point 3, however, the smaller variability of the outcome seems to

play a role in the SSIB values for Hmisc and random forest.

9.3 Case Study: Age-Related Macular Degenera-

tion Trial

The performance of the various imputation routines of interest was further examined

using the ARMD data (Section 2.1). In particular, the subset of 226 ARMD pa-

tients having either a complete set of responses or dropout type of missingness (i.e.,

excluding all non-monotone or fully-missing sequences) was considered for analysis.

Restriction to the monotone cases was considered primarily due to the infeasibility

of fitting a non-response model for non-monotone missingness, which would require

at least a few observed responses in each of the 24 = 16 non-monotone missingness

patterns, for every level of the covariate(s). This would not be possible since there

were only very few cases (<5%) with intermittent missingness.

For the 4 repeated measurements, a saturated means model was formulated, with

the treatment (interferon-α or placebo) received by the patient, denoted xi, as the pri-

mary covariate of interest, and assuming an unstructured covariance for the repeated

measures, i.e.,

E(Yij |xi, tij ,β) = β0j + β1j xi Itij
(j) and Σi = [σrc] ,

for i = 1, 2, . . . , 226 and j, r, c = 1, 2, 3, 4. For dropout, an MNAR logistic model of

the form (9.3) was formulated. These models, measurement and dropout, were fitted

to the ARMD data using direct likelihood and using M = 5 imputations obtained

from the SEM algorithm, SAS PROC MI, as well as the Amelia II, Hmisc and random

forest packages of R. The results, under Strategy I, are summarized in Table 9.5.

For the measurement model, all routines produced quite comparable results in

terms of parameter estimates. Slight discrepancies, however, were observed for the

parameters of the dropout model, with the intercept as estimated by direct likelihood

somewhat different compared to the rest of the methods. The estimated values for the

previous and current measurements are also different, but all methods point towards

non-significant effects. In terms of standard errors, Amelia II produces, in general,

slightly larger values than the rest of the methods applied. Overall conclusions were

generally consistent across all methods.
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Table 9.5: Age-Related Macular Degeneration Trial (Missing Not At Random). Parameter estimates (est) and standard errors (s.e.)

for direct likelihood (DL), stochastic EM (SEM), Amelia II, Hmisc, random forest (RF) and PROC MI, for the Diggle-Kenward model.

Effect Par
DL SEM Amelia II Hmisc RF PROC MI

est (s.e.) est (s.e.) est (s.e.) est (s.e.) est (s.e.) est (s.e.)

Measurement model

Intercept 4 β01 53.974 (1.467) 54.000 (1.470) 54.000 (1.470) 54.000 (1.470) 54.000 (1.470) 54.000 (1.470)

Intercept 12 β02 52.955 (1.594) 52.979 (1.594) 52.976 (1.598) 53.038 (1.597) 52.940 (1.585) 52.991 (1.596)

Intercept 24 β03 49.058 (1.733) 49.075 (1.716) 49.287 (1.757) 48.976 (1.739) 49.251 (1.656) 49.252 (1.727)

Intercept 52 β04 43.583 (1.816) 43.582 (1.730) 44.541 (1.806) 43.732 (1.753) 44.197 (1.586) 44.367 (1.751)

Treatment 4 β11 -3.127 (2.091) -3.108 (2.097) -3.108 (2.098) -3.108 (2.100) -3.108 (2.098) -3.108 (2.098)

Treatment 1 β12 -4.676 (2.279) -4.659 (2.265) -4.851 (2.280) -4.611 (2.292) -4.561 (2.262) -4.496 (2.278)

Treatment 24 β13 -3.799 (2.487) -3.791 (2.434) -3.911 (2.616) -3.916 (2.468) -3.872 (2.363) -3.760 (2.492)

Treatment 52 β14 -5.664 (2.628) -5.729 (2.432) -5.376 (2.544) -5.386 (2.482) -5.301 (2.263) -5.213 (2.527)

Variance 1 u11 15.742 (0.739) 15.764 (0.741) 15.764 (0.800) 15.764 (0.786) 15.764 (0.742) 15.764 (0.809)

Covariance 1,2 u12 14.264 (0.918) 14.293 (0.917) 14.279 (0.991) 14.331 (0.975) 14.171 (0.910) 14.288 (1.002)

Covariance 1,3 u13 13.752 (1.067) 13.768 (1.029) 13.853 (1.137) 13.648 (1.108) 13.744 (0.989) 13.823 (1.141)

Covariance 1,4 u14 11.166 (1.202) 11.169 (1.103) 11.058 (1.228) 10.658 (1.181) 10.877 (1.008) 10.999 (1.224)

Variance 2 u22 9.412 (0.450) 9.421 (0.431) 9.425 (0.478) 9.364 (0.464) 9.384 (0.440) 9.404 (0.483)

Covariance 2,3 u23 6.810 (0.773) 6.844 (0.741) 6.852 (0.823) 6.705 (0.810) 6.627 (0.758) 6.853 (0.822)

Covariance 2,4 u24 7.239 (1.045) 7.380 (0.887) 7.127 (1.031) 6.984 (0.998) 7.074 (0.861) 6.835 (1.028)

Variance 3 u33 10.303 (0.503) 10.289 (0.473) 10.403 (0.528) 10.570 (0.535) 10.441 (0.498) 10.228 (0.525)

Covariance 3,4 u34 8.839 (0.885) 8.830 (0.731) 8.829 (0.855) 9.010 (0.846) 8.651 (0.731) 8.809 (0.854)

Variance 4 u44 10.079 (0.528) 10.004 (0.441) 10.153 (0.515) 9.901 (0.482) 9.795 (0.455) 9.977 (0.512)

Dropout model

Intercept ψ0 -1.797 (0.468) -1.423 (0.395) -1.489 (0.494) -1.336 (0.413) -1.428 (0.398) -1.596 (0.408)

Previous ψp -0.035 (0.023) -0.038 (0.011) -0.0003 (0.024) -0.030 (0.016) -0.014 (0.013) -0.013 (0.014)

Current ψc 0.011 (0.022) 0.014 (0.012) -0.019 (0.020) 0.005 (0.014) -0.007 (0.013) -0.003 (0.014)
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9.4 Discussion

In this chapter, the performance of various imputation routines – SAS PROC MI,

Amelia II, Hmisc, SEM and random forest – was investigated in a simulation exercise

and in a real life example. Comparisons of resulting estimates and standard errors,

for both the measurement and dropout models, were conducted. In addition, for the

simulations, two different missingness scenarios were studied: one considering non-

ignorable missingness, and another, missing at random. The merits of the different

routines were further assessed with respect to a so-called individual imputation bias.

It is important to note that some of these methods are not designed to deal with

MNAR, thus requiring caution in their application under such. These methods, how-

ever, were nevertheless implemented here under such settings, in order to evaluate

the impact of their use in situations under which they are not expected to work well.

In general, Amelia II, SAS PROC MI and Hmisc showed some degree of sensitivity to

the underlying missingness mechanism in the data, because their resulting estimates,

particularly for the dropout model, were inconsistent with those from the other ap-

proaches. The Amelia II package seemed the most affected by this fact – producing

an estimate for the previous measurement that was positive and significant. The

rest of the approaches though provided consistent conclusions, implying insignificant

association between the dropout indicator and the previous measurement.

With respect to the individual imputation bias for the 5 imputation approaches,

smaller values were generally observed for the random forest and Hmisc packages as

compared to the rest of the methods applied. Moreover, results clearly indicated that

the performance of Amelia II was severely affected for the case of non-ignorable miss-

ingness. It was further observed that the ability of the procedures to yield reasonable

individual imputations for monotone non-ignorable missing values seemed to depend

on two factors, namely, the amount of missingness, as well as the amount of variability

in the response measurements.

The availability of easy-to-use software-based imputation routines has perhaps

been a key factor in the widespread popularity of imputation as a means of dealing

with missing data. The review conducted in this chapter, however, stipulates a few

cautionary remarks regarding their use. Not only should such routines be applied

properly, but careful consideration is also warranted regarding the choice of the as-

sumed underlying missingness mechanism, which can ultimately drive the resulting

inferences. It is further recommended that imputation approaches be used as tools

within a sensitivity analysis, so as to obtain more insight about the data at hand, and

consequently, more confidence in the resulting conclusions.
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Conclusion

Research studies that involve the collection of data are often, though perhaps not in-

tentionally, subject to some form of incompleteness, thus necessitating the application

of modified analysis techniques. As a consequence, methodology for handling missing

data has advanced significantly over the recent decades, and can be foreseen to con-

tinue doing so in the coming years. In the past, limitations – both methodological, as

well as computational – have prohibited the use of more sophisticated approaches, and

analyses of incomplete data have historically revolved around simple methods such

as complete case analysis. Recent developments, however, have broadened the possi-

bilities available to the researcher – a number of which have been examined in this

thesis – and the consideration of such should supersede the use of simple techniques

that have been shown to yield substandard results. At best, these näıve approaches

might be used as preliminary steps or supplements to more appropriate methods.

Despite, however, the availability of a wide array of courses of analysis and cor-

responding computational routines for their implementation, the modeling of incom-

plete data remains less than straightforward. This is primarily due to the fact that

the inferential validity of applicable techniques is hinged on unverifiable assumptions

regarding the underlying missing data mechanism. A large part of this thesis has

been devoted to emphasize this, underscoring the importance of sensitivity analysis

in modeling incomplete data.

The different methodologies presented in this thesis have been considered to high-

175
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light either (or both) of two objectives. On the one hand, a number of chapters

(Chapters 5, 6, 8 and 9) serve to demonstrate, review and/or propose modifications

to existing approaches, geared towards providing useful and important information

regarding their application. Chapters 4, 7, and 8, on the other hand, introduce tech-

niques that might serve as tools within the context of a sensitivity analysis, thereby

broadening the possibilities under such. A brief overview of the resulting conclusions

for the pertinent chapters is now presented.

The concept of an MAR counterpart model to a fitted MNAR model (Molen-

berghs et al., 2008) was presented and developed in Chapter 4. Such a counterpart

is equivalent to the fitted MNAR model in the sense that its fit to the observed data

reproduces that of the original MNAR model. Several implications follow from this

result. First, the idea of an MAR counterpart to an MNAR model further underscores

the infeasibility of using the fit of an MNAR model for or against MAR – a theme

similar to arguments previously articulated in Gill, van der Laan and Robins (1997)

and Schafer and Graham (2002). In addition, though the original MNAR model and

its MAR counterpart agree with respect to their fit to the observed data, one can

examine differences in their fits to the unobserved complete data, thereby providing

better understanding as to which parts of the data drive the missingness towards

non-ignorability. Moreover, in cases where a parametric MAR model fails to fit the

observed data sufficiently well, a better-fitting, more versatile MNAR model, along

with its MAR version, might be considered. Finally, MAR counterparts can very well

serve as additional components of a sensitivity analysis.

In Chapter 5, MAR marginal models for incomplete binary longitudinal data were

considered, with particular focus on variations of the semi-parametric approach of

Liang and Zeger (1986) using generalized estimating equations (GEE). Owing to the

frequentist nature of GEE, rendering it essentially valid only under the somewhat

unrealistic setting of MCAR, two modifications for the MAR case were examined,

namely, weighted GEE (Robins, Rotnitzky and Zhao, 1995) and GEE combined with

multiple imputation (Rubin, 1987) or MI-GEE. While asymptotic simulations demon-

strated the theoretical properties of the methods, small-sample simulations provided

evidence for the practical use of either approach (Beunckens, Sotto and Molenberghs,

2008). The attractive properties of weighted GEE were barely reproduced for small

samples, even with an entirely correctly specified analysis, with, under some scenar-

ios, weighted GEE yielding far less precise estimates than those under a misspecified

MI-GEE analysis. Moreover, in contrast with MI-GEE, which demonstrated some

amount of robustness to misspecifications in either the imputation or measurement

model, the weighted GEE approach exhibited sensitivity to misspecifications in ei-
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ther the dropout or measurement model. In line with a number of related references

(Scharfstein, Rotnitzky and Robins, 1999; Clayton et al., 1998; Carpenter, Kenward

and Vansteelandt, 2006), these results reinforce the strengths of multiple imputation

over weighting, specifically in their application to generalized estimating equations.

Pattern-mixture models (PMM) for categorical data with monotone missingness

were the subject of Chapter 6. Through the use of simulated data, the approach pro-

posed by Jansen and Molenberghs (2007), which makes use of identifying restrictions

to fit PMMs, was examined. Additionally, asymptotic variances for the marginal-

ized effects estimates of the same authors were derived (Sotto et al., 2009a). Results

indicated that the precision of the estimates was largely contingent on the amount

of missingness within the various dropout patterns, implying, perhaps, a preference

for an identification scheme based on the more amply filled patterns. Nevertheless,

even within the sparse patterns, precision of the main parameters of interest generally

seemed reasonable, with the treatment effect at the last time point being the most

precisely estimated parameter, regardless of the dropout setting or the identifying

restriction used. With respect to the marginalized effects estimates, those proposed

by Jansen and Molenberghs (2007) exhibited slightly less bias and better precision

than the direct linear approach (Park and Lee, 1999), which is a viable route for

marginalizing pattern-specific estimates arising from a PMM for continuous (Gaus-

sian) outcomes.

Chapter 7 explored the use of influence measures as possible tools for sensitiv-

ity. Influence-based sensitivity approaches, such as global and local influence, which

revolve around observation-varying ideas, were combined with model-based tools for

sensitivity, e.g., non-parametric bounds, a family of identified models, and intervals

resulting from over-specified models, yielding a considerably comprehensive sensitivity

analysis conducted on the plebiscite-related questions added to the Slovenian Public

Opinion Survey (Beunckens et al., 2009). Generalized local influence measures were

derived and variations to existing ideas regarding the nature of perturbations were

further introduced.

Fitting likelihood-based non-ignorable models for longitudinal data often presents

numerical challenges due to the need to integrate the full-data likelihood over the

missing values. In Chapter 8, the use of a computational algorithm to address such

difficulties was proposed. Sotto et al. (2009b) considered the application of the so-

called stochastic expectation-maximization or SEM algorithm (Celeux and Diebolt,

1985) – a variation of the highly popular expectation-maximization (EM) algorithm

– to fit likelihood-based models for longitudinal data with non-ignorable missingness.

The substitution of the E-step with an S(imulation)-step to fill in the missing values
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is particularly advantageous in the latter setting, as completion of the data altogether

obviates the need for any integration in the computation of the likelihood. Within a

simulation study, stochastic and non-stochastic solutions were compared and results

indicated fairly stable results for the former, with slightly better precision than the

latter. Moreover, the SEM algorithm not only provides a computationally efficient

alternative to direct likelihood, but also admits greater flexibility in the choice for

the joint model of the outcomes and the non-response indicators, since one need

not be restricted by numerical complexities arising from more complicated forms of

likelihoods. Finally, the SEM approach, when not taken as the primary course of

analysis, can further serve as an additional tool within a sensitivity analysis.

The focus of Chapter 9 of this thesis is the comparison of various software im-

plementations for the imputation of missing data. Under simulated settings, these

imputation routines were assessed not only with respect to resulting estimates for the

prescribed model, but also in terms of a measure of individual imputation bias, i.e.,

the amount of bias in the imputation evaluated at the level of individual. While the

procedures generally led to estimates and standard errors that were fairly comparable

in magnitude, differences were observed in the amount of individual imputation bias.

Moreover, the performance of the various routines seemed to depend on two factors,

namely, the amount of missingness, as well as the amount of variability in the response

measurements.

The ideas developed in this thesis were presented to feature and provide further

insight on currently existing methodology useful for the analysis of incomplete data.

The choice regarding the type of analysis to be employed is usually dictated by several

pragmatic considerations, which typically include the particular scientific objectives,

computational issues, as well as the magnitude of incompleteness expected to be

present in the data. Because such a choice can often be daunting to the researcher,

the examination of the different procedures considered herein has hopefully provided

additional useful information regarding their use. Alongside highlighting the relative

merits of various techniques available to the researcher, the thesis also emphasized

the practicality and importance of conducting so-called sensitivity analyses. Several

tools for such were introduced, explored and illustrated. Especially in the face of

uncertainty about the underlying missing data mechanism, the application of several

approaches can only increase the researcher’s confidence in the resulting conclusions,

and is therefore strongly recommended.
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Appendix A

Derivation of Local Influence

Measures on A Function of

the Parameters

In line with the notations used in Section 7.2, let ℓ(φ|ω) denote the log-likelihood

corresponding to a particular model. Under the null model, ω = ωo = (0, 0, . . . , 0)′.

Further denote by φ̂ be the maximum likelihood estimator for φ, obtained by maxi-

mizing ℓ(φ|ωo). For any general function of the parameters, Z(φ), say a particular

predicted cell count, the corresponding maximum likelihood estimator under the null

model is Z(φ̂).

Consider now the perturbed model, where ω 6= (0, 0, . . . , 0)′. Let φ̂ω denote the

maximum likelihood estimator for φ, obtained by maximizing ℓ(φ|ω), and Z(φ̂ω)

is the corresponding maximum likelihood estimator for the predicted cell count of

interest (or any other function of the parameters).

The difference now between the null model and the perturbed model in terms of

the predicted cell count is:

Dk(ω) = Zk(φ̂) − Zk(φ̂ω), for k = 1, 2, . . . , 16,

where k represents the index of the particular predicted cell count of interest.
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One can look at the surface (ω, Dk(ω)), which is dim(ω)+1 = 10-dimensional, since

there are 9 observed cells on which a perturbation can be introduced. Now, suppress-

ing k from notation, say

α(ω) = (α1(ω), α2(ω)) = (ω, Dk(ω)).

α(ω) is a surface in Rq+1, where q=dim(ω)=9.

How does α(ω) deviate from its tangent plane at ωo?

• Normal curvatures are curvatures of normal sections which are formed by the

intersection of the surface with planes containing the vector that is normal

(orthogonal) to the tangent plane at ωo.

• These curvatures are used to characterize the behavior of the influence around

ωo.

How does one represent a normal section?

• First consider a straight line passing through ωo:

ω(a) = ωo + ah,

where a ∈ R and h ∈ R9 with ‖h‖ = 1.

• This is a lifted line on the surface/graph α(ω) through α(ωo). Each direction h

specifies a lifted line, and each lifted line corresponds to a normal section.

The tangent plane at ωo is spanned by columns of (q+1)× q matrix V with elements

∂αi(ω)

∂ωj

∣∣∣∣
ω=ωo

, for





i = 1, 2, . . . , q + 1

j = 1, 2, . . . , q
.

Thus, V T = (Iq, Ḋ) with

Ḋj =
∂D(ω)

∂ωj

∣∣∣∣
ω=ωo

.

For ω = ωo, φ̂ = φ̂ω .

This means Ḋ(ωo) = 0 or D has local minimum at ωo, i.e.,

∂D(ω)

∂ωj

∣∣∣∣
ω=ωo

= 0.
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Consequently,

• V T = (Iq,0).

• The subspace orthogonal to the tangent plane is spanned by the basis vector

for Rq+1, i.e., (0, 0, . . . , 0, 1), with a 1 in the last position, and zeros elsewhere.

• A normal section can now be viewed as that portion of the influence graphs,

α(ω), cut out by the plane spanned by the vectors (0, 0, . . . , 0, 1) and (h′,0).

It follows that each lifted line α(ω(α)) is a normal section.

Note that a plane curve, i.e., a curve in 2 dimensions, can be expressed as:

Plane Curve: f(ω) = (f1(ω), f2(ω)).

From Stoker (1969) and Goetz (1970), the curvature of a plane curve at ωo is:

C =

∣∣∣ḟ1f̈2 − ḟ2f̈1

∣∣∣
(ḟ2

1 + ḟ2
2 )3/2

,

with derivatives evaluated at ωo.

This can be applied to the plane curve ρ′(a) = (a,D(ω(a))) at a = 0, which is then

the lifted line α(ω(a)) in rotated coordinates!

The individual curvatures in the family of plane curves ρ, obtained by letting h range

over all unit vectors in R9, form the basis for our characterization of α.

ρ̇1 =
∂ρ1(a)

∂a
=

∂a

∂a
= 1 and ρ̈1 = 0

ρ̇2 =
∂ρ2(a)

∂a

∣∣∣∣
ω=ωo

=
∂D(ω(a))

∂a

∣∣∣∣
ω=ωo

=

(
∂D(ω(a))

∂ω(a)

∣∣∣∣
ω=ωo

) (
∂ω(a)

∂a

∣∣∣∣
ω=ωo

)

=
∂D(ω)

∂ω

∣∣∣∣
ω=ωo︸ ︷︷ ︸

× h

= 0 , since ωo is a local minimum

So, ρ̇2 = 0.
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Deriving now ρ̈2, by the Chain Rule,

ρ̈2 ≡ D̈(ω(a)) =
∂2D(ω(a))

∂a2
=

∂ω(a)

∂a
· ∂

2D(ω(a))

∂(ω(a))2
· ∂ω(a)

∂a
.

Thus,

D̈(ω(a))
∣∣∣
ω=ωo

= h′ ∂2D(ω(a))

∂(ω(a))2

∣∣∣∣
ω=ωo

h

= h′ ∂2D(ω)

∂ω2

∣∣∣∣
ω=ωo

h.

This yields

ch = |ρ̈2| =
∣∣∣D̈(ω(a))

∣∣∣
ω=ωo

=
∣∣∣ h′ F̈ h

∣∣∣ , (A.1)

where F̈ is a q × q matrix with elements

[F̈ ]jk =
∂2D(ω)

∂ωj ∂ωk

∣∣∣∣
ω=ωo

.

To evaluate F̈ ,

[F̈ ]jk =
∂2D(ω)

∂ωj ∂ωk

∣∣∣∣
ω=ωo

=
∂2
(
Z(φ̂) − Z(φ̂ω)

)

∂ωj ∂ωk

∣∣∣∣∣∣
ω=ωo

= −∂
2Z(φ̂ω)

∂ωj ∂ωk

∣∣∣∣∣
ω=ωo

.

Applying the Chain Rule twice gives:

F̈ = −J ′ Z̈ J, (A.2)

where J is a p× q matrix with elements

[J ]ij =
∂φ̂i,ω

∂ωj

∣∣∣∣∣
ω=ωo

,

for i = 1, 2, . . . , p and j = 1, 2, . . . , q, and Z̈ is a p× p matrix with elements

[Z̈]il =
∂2Z(φ̂ω)

∂φ̂i,ω ∂φ̂l,ω

∣∣∣∣∣
ω=ωo

or [Z̈]il =
∂2Z(φ)

∂φi ∂φl

∣∣∣∣
φ=φ̂

.

Substituting expression (A.2) into (A.1) gives

ch =
∣∣∣ h′ (−J ′ Z̈ J) h

∣∣∣

ch =
∣∣∣ h′ J ′ Z̈ J h

∣∣∣ .
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Since φ̂ω is the maximum likelihood estimator for φω under the perturbed model,

∂ℓ(φ|ω)

∂φj

∣∣∣∣
φ=φ̂ω

= 0.

Differentiating this with respect to ω and evaluating at ω = ωo,

∂

∂ω

(
∂ℓ(φ|ω)

∂φj

∣∣∣∣
φ=φ̂ω

)
= 0.

Recall the following result:

If f(ω) = f (g(ω), h(ω)) , then
∂f

∂ω
=

∂f

∂g
· ∂g
∂ω

+
∂f

∂h
· ∂h
∂ω

.

Letting

f
(
φ̂ω ,ω

)
=
∂ℓ(φ|ω)

∂φj

∣∣∣∣
φ=φ̂ω

,

the previous result implies:

∂

∂ω

(
f(φ̂ω ,ω)

)
=

∂f(φ̂ω ,ω)

∂φ̂ω
· ∂φ̂ω
∂ω

+
∂f(φ̂ω,ω)

∂ω
· ∂ω
∂ω

= 0,

or, in terms of the log-likelihood,

∂

∂φ̂ω

(
∂ℓ(φ|ω)

∂φj

∣∣∣∣
φ=φ̂ω

)
· ∂φ̂ω
∂ω

+
∂

∂ω

(
∂ℓ(φ|ω)

∂φj

∣∣∣∣
φ=φ̂ω

)
= 0.

Evaluating at ω = ωo gives:

0 =

(
∂2ℓ(φ|ωo)

∂φk∂φj

∣∣∣∣
φ=φ̂

)
·
(
∂φ̂ω
∂ω

∣∣∣∣∣
ω=ωo

)
+

(
∂2ℓ(φ|ω)

∂ω∂φj

∣∣∣∣
φ=φ̂,ω=ωo

)

0 = L̈ J + ∆,

from which

J = −(L̈)−1 ∆.
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Hence, a final expression for ch can be obtained as:

ch =
∣∣∣ h′ J ′ Z̈ J h

∣∣∣

ch =
∣∣∣ h′ ∆′ (L̈)−1 Z̈ (L̈)−1 ∆ h

∣∣∣ ,

with

⊲ ‖h‖ = 1,

⊲ ∆ is a p× q matrix with elements:

[∆]ij =
∂2ℓ(φ|ω)

∂φi ∂ωj

∣∣∣∣
φ=φ̂,ω=ωo

,

⊲ L̈ is a p× p matrix with elements:

[L̈]il =
∂2ℓ(φ|ωo)

∂φi ∂φl

∣∣∣∣
φ=φ̂

, and,

⊲ Z̈ is a p× p matrix with elements:

[Z̈]il =
∂2Z(φ)

∂φi ∂φl

∣∣∣∣
φ=φ̂

.
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B.1 Local Influence with Perturbations in the Model

Parameters

Log-Likelihood Expression

The observed-data log-likelihood for the BRD family of models is given by:

ℓ(φ|ω) =
∑

j,k

Z11,jk lnπ11,jk +
∑

j

Z10,j+ lnπ10,j+ +

∑

k

Z01,+k lnπ01,+k + Z00,++ lnπ00,++, (B.1)

where the cell probabilities, πr1r2,jk, via a selection model factorization, can be ex-

pressed in terms of the marginal response probabilities multiplied by the conditional

probabilities of the response indicators given the outcomes, i.e.,

πr1r2,jk = pjk qr1r2|jk, (B.2)

with,

pjk = P (Y1 = j, Y2 = k) and

qr1r2|jk =
exp {αjk(1 − r1) + βjk(1 − r2) + γ(1 − r1)(1 − r2)}

1 + exp (αjk) + exp (βjk) + exp (αjk + βjk + γ)
. (B.3)

Alternatively, using the cell indexing system in Table 7.2, terms in (B.1) can be

indexed by the labels for the observed cells, c = 1, 2, . . . , 9, thereby yielding the

following re-expression:

ℓ(φ|ω) =

9∑

c=1

Zc lnπc =

9∑

c=1

Lc. (B.4)

The 2nd partial derivatives of ℓ(φ|ω) with respect to the elements of ω and the

elements of φ are required, i.e.,

∂2ℓ(φ|ω)

∂φs∂ωi
=

∂2

∂φs∂ωi

9∑

c=1

Zc lnπc =

9∑

c=1

∂2Zc lnπc

∂φs∂ωi
=

9∑

c=1

∂2Lc

∂φs∂ωi
. (B.5)
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Taking derivatives first with respect to ω:

∂ℓ(φ|ω)

∂ωi
=

9∑

c=1

∂Lc

∂ωi

=

9∑

c=1

∂Zc lnπc

∂ωi

=

9∑

c=1

Zc
∂ lnπc

∂ωi

=

9∑

c=1

Zc

∂pcqr1r2|c

∂ωi

=

9∑

c=1

Zc pc

∂qr1r2|c

∂ωi

∂ℓ(φ|ω)

∂ωi
=

2∑

j=1

2∑

k=1

Zr1r2,jk pjk

∂qr1r2|jk

∂ωi︸ ︷︷ ︸

see Section B.1.1

Differentiating further with respect to φ:

∂2ℓ(φ|ω)

∂φs∂ωi
=

9∑

c=1

Zc
∂

∂φs

(
pc

∂qr1r2|c

∂ωi

)

=

9∑

c=1

Zc

(
∂pc

∂φs

∂qr1r2|c

∂ωi
+ pc

∂2qr1r2|c

∂φs∂ωi

)

=

2∑

j=1

2∑

k=1

Zr1r2,jk

(
∂pjk

∂φs

∂qr1r2|jk

∂ωi
+ pjk

∂2qr1r2|jk

∂φs∂ωi

)

∂2ℓ(φ|ω)

∂φs∂ωi
=

2∑

j=1

2∑

k=1

Zr1r2,jk


∂pjk

∂φs︸ ︷︷ ︸

∂qr1r2|jk

∂ωi︸ ︷︷ ︸
+ pjk

∂

φs

(
∂qr1r2|jk

∂ωi

)

︸ ︷︷ ︸




§ B.1.3 § B.1.1 § B.1.2
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The BRD Models

Each of the 9 BRD models consists of a different set of parameters. For ease of

notation, let

p11 ≡ p1, p12 ≡ p2, p21 ≡ p3, and p22 = 1 − p1 − p2 − p3.

The respective parameter vectors for each of the 9 BRD models are enumerated in

the following table.

BRD Model
Parameter Vector

φ = (p1, p2, p3,α,β, γ)
′

BRD1: (α.., β..)
′ φ = (p1, p2, p3, α.., β.., γ)

′

BRD2: (α.., βj.)
′ φ = (p1, p2, p3, α.., β1., β2., γ)

′

BRD3: (α.k, β..)
′ φ = (p1, p2, p3, α.1, α.2, β.., γ)

′

BRD4: (α.., β.k)′ φ = (p1, p2, p3, α.., β.1, β.2, γ)
′

BRD5: (αj., β..)
′ φ = (p1, p2, p3, α1., α2., β.., γ)

′

BRD6: (αj., βj.)
′ φ = (p1, p2, p3, α1., α2., β1., β2., γ)

′

BRD7: (α.k, β.k)′ φ = (p1, p2, p3, α.1, α.2, β.1, β.2, γ)
′

BRD8: (αj., β.k)′ φ = (p1, p2, p3, α1., α2., β.1, β.2, γ)
′

BRD9: (α.k, βj.)
′ φ = (p1, p2, p3, α.1, α.2, β1., β2., γ)

′

Within Figure 3.1, a total of 12 model nestings are possible, and for each case, the log-

likelihood expression (B.1) and the cell probabilities defined in (B.2) retain the same

expressions. However, the general expression (B.3) for qr1r2|jk will change depending

on the particular BRD model pair of interest. These expressions shall now be defined

for each of the possible nested model pairs.
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BRD1 vs. BRD2

BRD1: (α.., β..)
′ =⇒ φBRD1 = (p1, p2, p3, α.., β.., γ)

′

BRD2: (α.., βj.)
′ =⇒ φBRD2 = (p1, p2, p3, α.., β1., β2., γ)

′

with: β1. = β.. and β2. = β.. + ωi

=⇒ φBRD2 = (p1, p2, p3, α.., β.., β.. + ωi, γ)
′

qr1r2|1k =
exp {α..(1 − r1) + β..(1 − r2) + γ(1 − r1)(1 − r2)}

1 + exp (α..) + exp (β..) + exp (α.. + β.. + γ)

qr1r2|2k =
exp {α..(1 − r1) + (β.. + ωi) (1 − r2) + γ(1 − r1)(1 − r2)}
1 + exp (α..) + exp (β.. + ωi) + exp (α.. + β.. + ωi + γ)

BRD1 vs. BRD3

BRD1: (α.., β..)
′ =⇒ φBRD1 = (p1, p2, p3, α.., β.., γ)

′

BRD3: (α.k, β..)
′ =⇒ φBRD3 = (p1, p2, p3, α.1, α.2, β.., γ)

′

with: α.1 = α.. and α.2 = α.. + ωi

=⇒ φBRD3 = (p1, p2, p3, α.., α.. + ωi, β.., γ)
′

qr1r2|j1 =
exp {α..(1 − r1) + β..(1 − r2) + γ(1 − r1)(1 − r2)}

1 + exp (α..) + exp (β..) + exp (α.. + β.. + γ)

qr1r2|j2 =
exp {(α.. + ωi) (1 − r1) + β..(1 − r2) + γ(1 − r1)(1 − r2)}
1 + exp (α.. + ωi) + exp (β..) + exp (α.. + ωi + β.. + γ)

BRD1 vs. BRD4

BRD1: (α.., β..)
′ =⇒ φBRD1 = (p1, p2, p3, α.., β.., γ)

′

BRD4: (α.., β.k)′ =⇒ φBRD4 = (p1, p2, p3, α.., β.1, β.2, γ)
′

with: β.1 = β.. and β.2 = β.. + ωi

=⇒ φBRD4 = (p1, p2, p3, α.., β.., β.. + ωi, γ)
′

qr1r2|j1 =
exp {α..(1 − r1) + β..(1 − r2) + γ(1 − r1)(1 − r2)}

1 + exp (α..) + exp (β..) + exp (α.. + β.. + γ)

qr1r2|j2 =
exp {α..(1 − r1) + (β.. + ωi) (1 − r2) + γ(1 − r1)(1 − r2)}
1 + exp (α..) + exp (β.. + ωi) + exp (α.. + β.. + ωi + γ)
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BRD1 vs. BRD5

BRD1: (α.., β..)
′ =⇒ φBRD1 = (p1, p2, p3, α.., β.., γ)

′

BRD5: (αj., β..)
′ =⇒ φBRD5 = (p1, p2, p3, α1., α2., β.., γ)

′

with: α1. = α.. and α2. = α.. + ωi

=⇒ φBRD5 = (p1, p2, p3, α.., α.. + ωi, β.., γ)
′

qr1r2|1k =
exp {α..(1 − r1) + β..(1 − r2) + γ(1 − r1)(1 − r2)}

1 + exp (α..) + exp (β..) + exp (α.. + β.. + γ)

qr1r2|2k =
exp {(α.. + ωi) (1 − r1) + β..(1 − r2) + γ(1 − r1)(1 − r2)}
1 + exp (α.. + ωi) + exp (β..) + exp (α.. + ωi + β.. + γ)

BRD2 vs. BRD6

BRD2: (α.., βj.)
′ =⇒ φBRD2 = (p1, p2, p3, α.., β1., β2., γ)

′

BRD6: (αj., βj.)
′ =⇒ φBRD6 = (p1, p2, p3, α1., α2., β1., β2., γ)

′

with: α1. = α.. and α2. = α.. + ωi

=⇒ φBRD6 = (p1, p2, p3, α.., α.. + ωi, β1., β2., γ)
′

qr1r2|1k =
exp {α..(1 − r1) + β1.(1 − r2) + γ(1 − r1)(1 − r2)}

1 + exp (α..) + exp (β1.) + exp (α.. + β1. + γ)

qr1r2|2k =
exp {(α.. + ωi) (1 − r1) + β2.(1 − r2) + γ(1 − r1)(1 − r2)}
1 + exp (α.. + ωi) + exp (β2.) + exp (α.. + ωi + β2. + γ)

BRD2 vs. BRD9

BRD2: (α.., βj.)
′ =⇒ φBRD2 = (p1, p2, p3, α.., β1., β2., γ)

′

BRD9: (α.k, βj.)
′ =⇒ φBRD9 = (p1, p2, p3, α.1, α.2, β1., β2., γ)

′

with: α.1 = α.. and α.2 = α.. + ωi

=⇒ φBRD9 = (p1, p2, p3, α.., α.. + ωi, β1., β2., γ)
′

qr1r2|j1 =
exp {α..(1 − r1) + βj.(1 − r2) + γ(1 − r1)(1 − r2)}

1 + exp (α..) + exp (βj.) + exp (α.. + βj. + γ)

qr1r2|j2 =
exp {(α.. + ωi) (1 − r1) + βj.(1 − r2) + γ(1 − r1)(1 − r2)}
1 + exp (α.. + ωi) + exp (βj.) + exp (α.. + ωi + βj. + γ)
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BRD3 vs. BRD7

BRD3: (α.k, β..)
′ =⇒ φBRD3 = (p1, p2, p3, α.1, α.2, β.., γ)

′

BRD7: (α.k, β.k)′ =⇒ φBRD7 = (p1, p2, p3, α.1, α.2, β.1, β.2, γ)
′

with: β.1 = β.. and β.2 = β.. + ωi

=⇒ φBRD7 = (p1, p2, p3, α.1, α.2, β.., β2. + ωi, γ)
′

qr1r2|j1 =
exp {α.1(1 − r1) + β..(1 − r2) + γ(1 − r1)(1 − r2)}

1 + exp (α.1) + exp (β..) + exp (α.1 + β.. + γ)

qr1r2|j2 =
exp {α.2(1 − r1) + (β.. + ωi) (1 − r2) + γ(1 − r1)(1 − r2)}
1 + exp (α.2) + exp (β.. + ωi) + exp (α.2 + β.. + ωi + γ)

BRD3 vs. BRD9

BRD3: (α.k, β..)
′ =⇒ φBRD3 = (p1, p2, p3, α.1, α.2, β.., γ)

′

BRD9: (α.k, βj.)
′ =⇒ φBRD9 = (p1, p2, p3, α.1, α.2, β1., β2., γ)

′

with: β1. = β.. and β2. = β.. + ωi

=⇒ φBRD9 = (p1, p2, p3, α.1, α.2, β.., β2. + ωi, γ)
′

qr1r2|1k =
exp {α.k(1 − r1) + β..(1 − r2) + γ(1 − r1)(1 − r2)}

1 + exp (α.k) + exp (β..) + exp (α.k + β.. + γ)

qr1r2|2k =
exp {α.k(1 − r1) + (β.. + ωi) (1 − r2) + γ(1 − r1)(1 − r2)}
1 + exp (α.k) + exp (β.. + ωi) + exp (α.k + β.. + ωi + γ)

BRD4 vs. BRD7

BRD4: (α.., β.k)′ =⇒ φBRD4 = (p1, p2, p3, α.., β.1, β.2, γ)
′

BRD7: (α.k, β.k)′ =⇒ φBRD7 = (p1, p2, p3, α.1, α.2, β.1, β.2, γ)
′

with: α.1 = α.. and α.2 = α.. + ωi

=⇒ φBRD7 = (p1, p2, p3, α.., α.. + ωi, β.1, β.2, γ)
′

qr1r2|j1 =
exp {α..(1 − r1) + β.1(1 − r2) + γ(1 − r1)(1 − r2)}

1 + exp (α..) + exp (β.1) + exp (α.. + β.1 + γ)

qr1r2|j2 =
exp {(α.. + ωi) (1 − r1) + β.2(1 − r2) + γ(1 − r1)(1 − r2)}
1 + exp (α.. + ωi) + exp (β.2) + exp (α.. + ωi + β.2 + γ)
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BRD4 vs. BRD8

BRD4: (α.., β.k)′ =⇒ φBRD4 = (p1, p2, p3, α.., β.1, β.2, γ)
′

BRD8: (αj., β.k)′ =⇒ φBRD8 = (p1, p2, p3, α1., α2., β.1, β.2, γ)
′

with: α1. = α.. and α2. = α.. + ωi

=⇒ φBRD8 = (p1, p2, p3, α.., α.. + ωi, β.1, β.2, γ)
′

qr1r2|1k =
exp {α..(1 − r1) + β.k(1 − r2) + γ(1 − r1)(1 − r2)}

1 + exp (α..) + exp (β.k) + exp (α.. + β.k + γ)

qr1r2|2k =
exp {(α.. + ωi) (1 − r1) + β.k(1 − r2) + γ(1 − r1)(1 − r2)}
1 + exp (α.. + ωi) + exp (β.k) + exp (α.. + ωi + β.k + γ)

BRD5 vs. BRD6

BRD5: (αj., β..)
′ =⇒ φBRD5 = (p1, p2, p3, α1., α2., β.., γ)

′

BRD6: (αj., βj.)
′ =⇒ φBRD6 = (p1, p2, p3, α1., α2., β1., β2., γ)

′

with: β1. = β.. and β2. = β.. + ωi

=⇒ φBRD6 = (p1, p2, p3, α1., α2., β.., β.. + ωi, γ)
′

qr1r2|1k =
exp {α1.(1 − r1) + β..(1 − r2) + γ(1 − r1)(1 − r2)}

1 + exp (α1.) + exp (β..) + exp (α1. + β.. + γ)

qr1r2|2k =
exp {α2.(1 − r1) + (β.. + ωi) (1 − r2) + γ(1 − r1)(1 − r2)}
1 + exp (α2.) + exp (β.. + ωi) + exp (α2. + β.. + ωi + γ)

BRD5 vs. BRD8

BRD5: (αj., β..)
′ =⇒ φBRD5 = (p1, p2, p3, α1., α2., β.., γ)

′

BRD8: (αj., β.k)′ =⇒ φBRD8 = (p1, p2, p3, α1., α2., β.1, β.2, γ)
′

with: β.1 = β.. and β.2 = β.. + ωi

=⇒ φBRD8 = (p1, p2, p3, α.., α.. + ωi, β.1, β.2, γ)
′

qr1r2|j1 =
exp {αj.(1 − r1) + β..(1 − r2) + γ(1 − r1)(1 − r2)}

1 + exp (αj.) + exp (β..) + exp (αj. + β.. + γ)

qr1r2|j2 =
exp {αj.(1 − r1) + (β.. + ωi) (1 − r2) + γ(1 − r1)(1 − r2)}
1 + exp (αj.) + exp (β.. + ωi) + exp (αj. + β.. + ωi + γ)
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B.1.1 Derivatives of qr1r2|jk with respect to ω

BRD1 vs. BRD2

∂qr1r2|1k

∂ωi
= 0

∂qr1r2|2k

∂ωi
=





−q11|2k q+0|2k for r1 = 1 and r2 = 1

q10|2k (1 − q+0|2k) for r1 = 1 and r2 = 0

−q01|2k q+0|2k for r1 = 0 and r2 = 1

q00|2k (1 − q+0|2k) for r1 = 0 and r2 = 0

BRD1 vs. BRD3

∂qr1r2|j1

∂ωi
= 0

∂qr1r2|j2

∂ωi
=





−q11|j2 q0+|j2 for r1 = 1 and r2 = 1

−q10|j2 q0+|j2 for r1 = 1 and r2 = 0

q01|j2 (1 − q0+|j2) for r1 = 0 and r2 = 1

q00|j2 (1 − q0+|j2) for r1 = 0 and r2 = 0

BRD1 vs. BRD4

∂qr1r2|j1

∂ωi
= 0

∂qr1r2|j2

∂ωi
=





−q11|j2 q+0|j2 for r1 = 1 and r2 = 1

q10|j2 (1 − q+0|j2) for r1 = 1 and r2 = 0

−q01|j2 q+0|j2 for r1 = 0 and r2 = 1

q00|j2 (1 − q+0|j2) for r1 = 0 and r2 = 0

BRD1 vs. BRD5

∂qr1r2|1k

∂ωi
= 0

∂qr1r2|2k

∂ωi
=





−q11|2k q0+|2k for r1 = 1 and r2 = 1

−q10|2k q0+|2k for r1 = 1 and r2 = 0

q01|2k (1 − q0+|2k) for r1 = 0 and r2 = 1

q00|2k (1 − q0+|2k) for r1 = 0 and r2 = 0
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BRD2 vs. BRD6

∂qr1r2|1k

∂ωi
= 0

∂qr1r2|2k

∂ωi
=





−q11|2k q0+|2k for r1 = 1 and r2 = 1

−q10|2k q0+|2k for r1 = 1 and r2 = 0

q01|2k (1 − q0+|2k) for r1 = 0 and r2 = 1

q00|2k (1 − q0+|2k) for r1 = 0 and r2 = 0

BRD2 vs. BRD9

∂qr1r2|j1

∂ωi
= 0

∂qr1r2|j2

∂ωi
=





−q11|j2 q0+|j2 for r1 = 1 and r2 = 1

−q10|j2 q0+|j2 for r1 = 1 and r2 = 0

q01|j2 (1 − q0+|j2) for r1 = 0 and r2 = 1

q00|j2 (1 − q0+|j2) for r1 = 0 and r2 = 0

BRD3 vs. BRD7

∂qr1r2|j1

∂ωi
= 0

∂qr1r2|j2

∂ωi
=





−q11|j2 q+0|j2 for r1 = 1 and r2 = 1

q10|j2 (1 − q+0|j2) for r1 = 1 and r2 = 0

−q01|j2 q+0|j2 for r1 = 0 and r2 = 1

q00|j2 (1 − q+0|j2) for r1 = 0 and r2 = 0

BRD3 vs. BRD9

∂qr1r2|1k

∂ωi
= 0

∂qr1r2|2k

∂ωi
=





−q11|2k q+0|2k for r1 = 1 and r2 = 1

q10|2k (1 − q+0|2k) for r1 = 1 and r2 = 0

−q01|2k q+0|2k for r1 = 0 and r2 = 1

q00|2k (1 − q+0|2k) for r1 = 0 and r2 = 0
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BRD4 vs. BRD7

∂qr1r2|j1

∂ωi
= 0

∂qr1r2|j2

∂ωi
=





−q11|j2 q0+|j2 for r1 = 1 and r2 = 1

−q10|j2 q0+|j2 for r1 = 1 and r2 = 0

q01|j2 (1 − q0+|j2) for r1 = 0 and r2 = 1

q00|j2 (1 − q0+|j2) for r1 = 0 and r2 = 0

BRD4 vs. BRD8

∂qr1r2|1k

∂ωi
= 0

∂qr1r2|2k

∂ωi
=





−q11|2k q0+|2k for r1 = 1 and r2 = 1

−q10|2k q0+|2k for r1 = 1 and r2 = 0

q01|2k (1 − q0+|2k) for r1 = 0 and r2 = 1

q00|2k (1 − q0+|2k) for r1 = 0 and r2 = 0

BRD5 vs. BRD6

∂qr1r2|1k

∂ωi
= 0

∂qr1r2|2k

∂ωi
=





−q11|2k q+0|2k for r1 = 1 and r2 = 1

q10|2k (1 − q+0|2k) for r1 = 1 and r2 = 0

−q01|2k q+0|2k for r1 = 0 and r2 = 1

q00|2k (1 − q+0|2k) for r1 = 0 and r2 = 0

BRD5 vs. BRD8

∂qr1r2|j1

∂ωi
= 0

∂qr1r2|j2

∂ωi
=





−q11|j2 q+0|j2 for r1 = 1 and r2 = 1

q10|j2 (1 − q+0|j2) for r1 = 1 and r2 = 0

−q01|j2 q+0|j2 for r1 = 0 and r2 = 1

q00|j2 (1 − q+0|j2) for r1 = 0 and r2 = 0
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B.1.2 Derivatives of qr1r2|jk with respect to φ

Derivatives of q11|jk

∂q11|jk

∂pj′k′

= 0, ∀ (j′, k′) and ∀ (j, k)

∂q11|jk

∂αj′k′

=





−q11|jk q0+|jk if (j′, k′) = (j, k)

0 otherwise

∂q11|jk

∂βj′k′

=





−q11|jk q+0|jk if (j′, k′) = (j, k)

0 otherwise

∂q11|jk

∂γ
= −q11|jk q00|jk, ∀ (j, k)

Derivatives of q10|jk

∂q10|jk

∂pj′k′

= 0, ∀ (j′, k′) and ∀ (j, k)

∂q10|jk

∂αj′k′

=





−q10|jk q0+|jk if (j′, k′) = (j, k)

0 otherwise

∂q10|jk

∂βj′k′

=





q10|jk (1 − q+0|jk) if (j′, k′) = (j, k)

0 otherwise

∂q10|jk

∂γ
= −q10|jk q00|jk, ∀ (j, k)
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Derivatives of q01|jk

∂q01|jk

∂pj′k′

= 0, ∀ (j′, k′) and ∀ (j, k)

∂q01|jk

∂αj′k′

=





q01|jk (1 − q0+|jk) if (j′, k′) = (j, k)

0 otherwise

∂q01|jk

∂βj′k′

=





−q01|jk q+0|jk if (j′, k′) = (j, k)

0 otherwise

∂q01|jk

∂γ
= −q01|jk q00|jk, ∀ (j, k)

Derivatives of q00|jk

∂q00|jk

∂pj′k′

= 0, ∀ (j′, k′) and ∀ (j, k)

∂q00|jk

∂αj′k′

=





q00|jk (1 − q0+|jk) if (j′, k′) = (j, k)

0 otherwise

∂q00|jk

∂βj′k′

=





q00|jk (1 − q+0|jk) if (j′, k′) = (j, k)

0 otherwise

∂q00|jk

∂γ
= q00|jk (1 − q00|jk), ∀ (j, k)
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B.1.3 Derivatives of pjk with respect to φ

BRD1 vs. BRD2-5

∂pjk

∂p1
=





1 for j = 1 and k = 1

−1 for j = 2 and k = 2

0 otherwise

∂pjk

∂α..
= 0

∂pjk

∂p2
=





1 for j = 1 and k = 2

−1 for j = 2 and k = 2

0 otherwise

∂pjk

∂β..
= 0

∂pjk

∂p3
=





1 for j = 2 and k = 1

−1 for j = 2 and k = 2

0 otherwise

∂pjk

∂γ..
= 0

BRD2 vs. BRD6&9

∂pjk

∂p1
=





1 for j = 1 and k = 1

−1 for j = 2 and k = 2

0 otherwise

∂pjk

∂α..
= 0

∂pjk

∂p2
=





1 for j = 1 and k = 2

−1 for j = 2 and k = 2

0 otherwise

∂pjk

∂βj.
= 0, for j = 1, 2

∂pjk

∂p3
=





1 for j = 2 and k = 1

−1 for j = 2 and k = 2

0 otherwise

∂pjk

∂γ..
= 0

BRD3 vs. BRD7&9

∂pjk

∂p1
=





1 for j = 1 and k = 1

−1 for j = 2 and k = 2

0 otherwise

∂pjk

∂α.k
= 0, for k = 1, 2

∂pjk

∂p2
=





1 for j = 1 and k = 2

−1 for j = 2 and k = 2

0 otherwise

∂pjk

∂β..
= 0

∂pjk

∂p3
=





1 for j = 2 and k = 1

−1 for j = 2 and k = 2

0 otherwise

∂pjk

∂γ..
= 0
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BRD4 vs. BRD7&8

∂pjk

∂p1
=





1 for j = 1 and k = 1

−1 for j = 2 and k = 2

0 otherwise

∂pjk

∂α..
= 0

∂pjk

∂p2
=





1 for j = 1 and k = 2

−1 for j = 2 and k = 2

0 otherwise

∂pjk

∂β.k
= 0, for k = 1, 2

∂pjk

∂p3
=





1 for j = 2 and k = 1

−1 for j = 2 and k = 2

0 otherwise

∂pjk

∂γ..
= 0

BRD5 vs. BRD6&8

∂pjk

∂p1
=





1 for j = 1 and k = 1

−1 for j = 2 and k = 2

0 otherwise

∂pjk

∂αj.
= 0, for j = 1, 2

∂pjk

∂p2
=





1 for j = 1 and k = 2

−1 for j = 2 and k = 2

0 otherwise

∂pjk

∂β..
= 0

∂pjk

∂p3
=





1 for j = 2 and k = 1

−1 for j = 2 and k = 2

0 otherwise

∂pjk

∂γ..
= 0
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B.2 Local Influence with Perturbations in Cell

Probabilities

Log-Likelihood Expression

The perturbed observed-data log-likelihood for the BRD family of models is given by:

ℓω =
∑

j,k

(Z11,jk +Nω11,jk) lnπ11,jk +
∑

j

(Z10,j+ +Nω10,j+) lnπ10,j+ +

∑

k

(Z01,+k +Nω01,+k) lnπ01,+k + (Z00,++ +Nω00,++) lnπ00,++,

where the cell probabilities, πr1r2,jk, via a selection model factorization, can be ex-

pressed in terms of the marginal response probabilities multiplied by the conditional

probabilities of the response indicators given the outcomes, i.e.,

πr1r2,jk = pjk qr1r2|jk,

with,

pjk = P (Y1 = j, Y2 = k) and

qr1r2|jk =
exp {αjk(1 − r1) + βjk(1 − r2) + γ(1 − r1)(1 − r2)}

1 + exp (αjk) + exp (βjk) + exp (αjk + βjk + γ)
.

As before, the 2nd partial derivatives of ℓω with respect to the elements of ω and the

elements of φ are required, i.e.,

∂2ℓω
∂φi ∂ωr1r2,jk

.

Consider taking first derivatives with respect to ω,

∂ℓω
∂ωr1r2,jk

= lnπr1r2,jk,

and then further differentiating with respect to φ yields:

∂2ℓω
∂φi ∂ωr1r2,jk

=
1

πr1r2,jk

∂πr1r2,jk

∂φi︸ ︷︷ ︸
.

see Section B.2.2
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B.2.1 Derivatives of the Log-Likelihood ℓω with respect to ω

and with respect to φ

For r1 = 1 and r2 = 1:

∂ℓω
∂ω11,jk

= lnπ11,jk

∂2ℓω
∂φi ∂ω11,jk

=
1

π11,jk

∂π11,jk

∂φi

For r1 = 1 and r2 = 0:

∂ℓω
∂ω10,j+

= lnπ10,j+ = ln (π10,j1 + π10,j2)

∂2ℓω
∂φi ∂ω10,j+

=
1

π10,j+

∂π10,j+

∂φi
=

1

π10,j+

(
∂π10,j1

∂φi
+
∂π10,j2

∂φi

)

For r1 = 0 and r2 = 1:

∂ℓω
∂ω01,+k

= lnπ01,+k = ln (π01,1k + π01,2k)

∂2ℓω
∂φi ∂ω01,+k

=
1

π01,+k

∂π01,+k

∂φi
=

1

π01,+k

(
∂π01,1k

∂φi
+
∂π01,2k

∂φi

)

For r1 = 0 and r2 = 0:

∂ℓω
∂ω00,++

= lnπ00,++ = ln (π00,11 + π00,12 + π00,21 + π00,22)

∂2ℓω
∂φi ∂ω00,++

=
1

π00,++

∂π00,++

∂φi

=
1

π00,++

(
∂π00,11

∂φi
+
∂π00,12

∂φi
+
∂π00,21

∂φi
+
∂π00,22

∂φi

)
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B.2.2 Derivatives of πr1r2,jk with respect to φ

∂πr1r2,jk

∂p11
=





qr1r2|jk for j = 1 and k = 1

−qr1r2|jk for j = 2 and k = 2

0 otherwise

∂πr1r2,jk

∂p12
=





qr1r2|jk for j = 1 and k = 2

−qr1r2|jk for j = 2 and k = 2

0 otherwise

∂πr1r2,jk

∂p21
=





qr1r2|jk for j = 2 and k = 1

−qr1r2|jk for j = 2 and k = 2

0 otherwise

∂πr1r2,jk

∂αj′k′

=
∂πr1r2,jk

∂qr1r2|jk︸ ︷︷ ︸

∂qr1r2|jk

∂αj′k′︸ ︷︷ ︸

= pjk see § B.2.3

∂πr1r2,jk

∂βj′k′

=
∂πr1r2,jk

∂qr1r2|jk︸ ︷︷ ︸

∂qr1r2|jk

∂βj′k′︸ ︷︷ ︸

= pjk see § B.2.3

∂πr1r2,jk

∂γ
=

∂πr1r2,jk

∂qr1r2|jk︸ ︷︷ ︸

∂qr1r2|jk

∂γ︸ ︷︷ ︸

= pjk see § B.2.3
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B.2.3 Derivatives of qr1r2|jk with respect to φ

Derivatives of q11|jk

∂q11|jk

∂αj′k′

=

{
−q11|jk q0+|jk if (j′, k′) = (j, k)

0 otherwise

∂q11|jk

∂βj′k′

=

{
−q11|jk q+0|jk if (j′, k′) = (j, k)

0 otherwise

∂q11|jk

∂γ
= −q11|jk q00|jk, ∀ (j, k)

Derivatives of q10|jk

∂q10|jk

∂αj′k′

=

{
−q10|jk q0+|jk if (j′, k′) = (j, k)

0 otherwise

∂q10|jk

∂βj′k′

=

{
q10|jk (1 − q+0|jk) if (j′, k′) = (j, k)

0 otherwise

∂q10|jk

∂γ
= −q10|jk q00|jk, ∀ (j, k)

Derivatives of q01|jk

∂q01|jk

∂αj′k′

=

{
q01|jk (1 − q0+|jk) if (j′, k′) = (j, k)

0 otherwise

∂q01|jk

∂βj′k′

=

{
−q01|jk q+0|jk if (j′, k′) = (j, k)

0 otherwise

∂q01|jk

∂γ
= −q01|jk q00|jk, ∀ (j, k)

Derivatives of q00|jk

∂q00|jk

∂αj′k′

=

{
q00|jk (1 − q0+|jk) if (j′, k′) = (j, k)

0 otherwise

∂q00|jk

∂βj′k′

=

{
q00|jk (1 − q+0|jk) if (j′, k′) = (j, k)

0 otherwise

∂q00|jk

∂γ
= q00|jk (1 − q00|jk), ∀ (j, k)
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Derivation of Asymptotic

Variances of Marginalized

Estimates of Pattern-Mixture

Models

Marginalized Parameters

For the case of 3 time points, and hence, 3 dropout patterns, the marginalized pa-

rameters of a PMM as defined by Jansen and Molenberghs (2007) are

AJM = logit

(
3∑

k=1

πk

eαk

1 + eαk

)
and BJM =

3∑

k=1

πkβk

eαk

1 + eαk

1

1 + eαk

(
3∑

k=1

πk

eαk

1 + eαk

)(
3∑

k=1

πk

1

1 + eαk

) , (C.1)

with corresponding estimators given by

ÂJM = logit

(
3∑

k=1

π̂k

eα̂k

1 + eα̂k

)
and B̂JM =

3∑

k=1

π̂kβ̂k

eα̂k

1 + eα̂k

1

1 + eα̂k

(
3∑

k=1

π̂k

eα̂k

1 + eα̂k

)(
3∑

k=1

π̂k

1

1 + eα̂k

) .
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The marginalized parameters of a PMM as defined by Park and Lee (1999) are

APL =
3∑

k=1

πkαk and BPL =
3∑

k=1

πkβk, (C.2)

with corresponding estimators

ÂPL =

3∑

k=1

π̂kα̂k and B̂PL =

3∑

k=1

π̂kβ̂k. (C.3)

Asymptotic Variances of Marginalized Parameter

Estimates

For the case considered here, the parameter vector of interest is:

θ = (α1, β1, α2, β2, α3, β3, π1, π2, π3)
′,

where αk and βk, k = 1, 2, 3, denote the intercept and treatment effect, respectively,

for the kth pattern, and πk denotes the probability that a subject belongs to the kth

pattern.

For AJM and BJM (Jansen and Molenberghs, 2007)

Define the following expressions:

U ≡ f1(θ) =

3∑

k=1

πk
eαk

1 + eαk
,

V ≡ f2(θ) =

3∑

k=1

πk
1

1 + eαk
, and

W ≡ f3(θ) =

3∑

k=1

πkβk
eαk

1 + eαk

1

1 + eαk
,

with corresponding estimators given by:

Û ≡ f1(θ̂) =
3∑

k=1

π̂k
eα̂k

1 + eα̂k
,

V̂ ≡ f2(θ̂) =

3∑

k=1

π̂k
1

1 + eα̂k
, and

Ŵ ≡ f3(θ̂) =

3∑

k=1

π̂kβ̂k
eα̂k

1 + eα̂k

1

1 + eα̂k
.
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Note that AJM and BJM can be expressed in terms of the above expressions as

AJM = logit(U) = ln

(
U

1 − U

)
and BJM =

W

UV
.

Further, define Q as the vector

Q =




U

V

W


 =



f1(θ)

f2(θ)

f3(θ)


 with estimator Q̂ =




Û

V̂

Ŵ


 =



f1(θ̂)

f2(θ̂)

f3(θ̂)


 .

Using the delta method, the asymptotic covariance of Q̂ can be obtained as:

Cov(Q̂) =

(
∂Q

∂θ

)′

Cov(θ̂)

(
∂Q

∂θ

)
, (C.4)

(3 × 3) = (3 × 9) (9 × 9) (9 × 3)

where:

Cov(θ̂) =
[
Cov(θ̂i, θ̂j)

]
i,j=1,2,...,9

=




Var(θ̂1) Cov(θ̂1, θ̂2) · · · Cov(θ̂1, θ̂9)

Cov(θ̂2, θ̂1) Var(θ̂2) · · · Cov(θ̂2, θ̂9)
...

...
. . .

...

Cov(θ̂9, θ̂1) Cov(θ̂9, θ̂2) · · · Var(θ̂9)




=




Var(α̂1) Cov(α̂1, β̂1) · · · Cov(α̂1, π̂3)

Cov(β̂1, α̂1) Var(β̂1) · · · Cov(β̂1, π̂3)

Cov(α̂2, α̂1) Cov(α̂2, β̂1) · · · Cov(α̂2, π̂3)
...

...
. . .

...

Cov(π̂3, α̂1) Cov(π̂3, β̂1) · · · Var(π̂3)



,

and

(
∂Q

∂θ

)′

=

[
∂fi

∂θj

]

i = 1, 2, 3,

j = 1, 2, . . . , 9

=




∂U

∂α1

∂U

∂β1
· · · ∂U

∂π3

∂V

∂α1

∂V

∂β1
· · · ∂V

∂π3

∂W

∂α1

∂W

∂β1
· · · ∂W

∂π3



.
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Multiplying out the matrices yields the following expression for the (i, j)th element of

Cov(Q̂):

[
Cov(Q̂)

]
i,j

=
9∑

s=1

9∑

t=1

∂fi

∂θs

∂fj

∂θt
Cov(θ̂s, θ̂t)

=

9∑

s=1

∂fi

∂θs

∂fi

∂θs
Var(θ̂s) +

∑

s6=t

∂fi

∂θs

∂fj

∂θt
Cov(θ̂s, θ̂t)

In terms of the pattern proportions and the pattern-specific parameters, and their

corresponding estimates,

[
Cov(Q̂)

]
i,j

=

3∑

k=1

∂fi

∂αk

∂fj

∂αk
Var(α̂k)

+

3∑

k=1

∂fi

∂βk

∂fj

∂βk
Var(β̂k)

+

3∑

k=1

∂fi

∂πk

∂fj

∂πk
Var(π̂k)

+

3∑

k=1

(
∂fi

∂αk

∂fj

∂βk
+
∂fi

∂βk

∂fj

∂αk

)
Cov(α̂k, β̂k)

+

3∑

k=1

(
∂fi

∂αk

∂fj

∂πk
+
∂fi

∂πk

∂fj

∂αk

)
Cov(α̂k, π̂k)

+

3∑

k=1

(
∂fi

∂βk

∂fj

∂πk
+
∂fi

∂πk

∂fj

∂βk

)
Cov(β̂k, π̂k) (C.5)

+
∑

k<ℓ

(
∂fi

∂αk

∂fj

∂αℓ
+
∂fi

∂αℓ

∂fj

∂αk

)
Cov(α̂k, α̂ℓ)

+
∑

k<ℓ

(
∂fi

∂βk

∂fj

∂βℓ
+
∂fi

∂βℓ

∂fj

∂βk

)
Cov(β̂k, β̂ℓ)

+
∑

k<ℓ

(
∂fi

∂πk

∂fj

∂πℓ
+
∂fi

∂πℓ

∂fj

∂πk

)
Cov(π̂k, π̂ℓ)

+
∑

k<ℓ

(
∂fi

∂αk

∂fj

∂βℓ
+
∂fi

∂βℓ

∂fj

∂αk

)
Cov(α̂k, β̂ℓ)

+
∑

k<ℓ

(
∂fi

∂αk

∂fj

∂πℓ
+
∂fi

∂πℓ

∂fj

∂αk

)
Cov(α̂k, π̂ℓ)

+
∑

k<ℓ

(
∂fi

∂βk

∂fj

∂πℓ
+
∂fi

∂πℓ

∂fj

∂βk

)
Cov(β̂k, π̂ℓ)
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• Independence of pattern-specific estimates across patterns implies, ∀k 6= ℓ,

Cov(α̂k, α̂ℓ) = 0, Cov(β̂k, β̂ℓ) = 0 and Cov(α̂k, β̂ℓ) = 0.

• Independence of estimates for pattern probabilities and (measurement model)

pattern-specific estimates further implies:

Cov(α̂k, π̂k) = 0 and Cov(β̂k, π̂k) = 0, ∀k = 1, 2, 3,

Cov(α̂k, π̂ℓ) = 0 and Cov(β̂k, π̂ℓ) = 0, ∀k 6= ℓ.

Thus,
[
Cov(Q̂)

]
i,j

reduces to

[
Cov(Q̂)

]
i,j

=

3∑

k=1

∂fi

∂αk

∂fj

∂αk
Var(α̂k)

+

3∑

k=1

∂fi

∂βk

∂fj

∂βk
Var(β̂k)

+

3∑

k=1

∂fi

∂πk

∂fj

∂πk
Var(π̂k) (C.6)

+

3∑

k=1

(
∂fi

∂αk

∂fj

∂βk
+
∂fi

∂βk

∂fj

∂αk

)
Cov(α̂k, β̂k)

+
∑

k<ℓ

(
∂fi

∂πk

∂fj

∂πℓ

∂fi

∂πℓ

∂fj

∂πk

)
Cov(π̂k, π̂ℓ).

Note that for k = 1, 2, 3,

∂U

∂αk
= πk

eαk

(1 + eαk)2
∂U

∂βk
= 0

∂U

∂πk
=

eαk

1 + eαk

∂V

∂αk
= πk

−eαk

(1 + eαk)2
∂V

∂βk
= 0

∂V

∂πk
=

1

1 + eαk

∂W

∂αk
= πkβk

eαk(1 − eαk)

(1 + eαk)3
∂W

∂βk
= πk

eαk

(1 + eαk)2
∂W

∂πk
= βk

eαk

(1 + eαk)2

(C.7)

Asymptotic variances can then be obtained by using (C.7) in (C.6), for specific values

of i and j.
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Variance of Û

Var(Û) =
[
Cov(Q̂)

]
1,1

=
3∑

k=1

∂U

∂αk

∂U

∂αk

Var(α̂k) +
3∑

k=1

∂U

∂βk

∂U

∂βk

Var(β̂k) +
3∑

k=1

∂U

∂πk

∂U

∂πk

Var(π̂k)

+

3∑

k=1

(
∂U

∂αk

∂U

∂βk

+
∂U

∂βk

∂U

∂αk

)
Cov(α̂k, β̂k)

+
∑

k<ℓ

(
∂U

∂πk

∂U

∂πℓ

+
∂U

∂πℓ

∂U

∂πk

)
Cov(π̂k, π̂ℓ)

=

3∑

k=1

(
∂U

∂αk

)2

Var(α̂k) +

3∑

k=1

(
∂U

∂βk

)2

Var(β̂k) +

3∑

k=1

(
∂U

∂πk

)2

Var(π̂k)

+
3∑

k=1

2

(
∂U

∂αk

∂U

∂βk

)
Cov(α̂k, β̂k) +

∑

k<ℓ

2

(
∂U

∂πk

∂U

∂πℓ

)
Cov(π̂k, π̂ℓ)

Var(Û) =

3∑

k=1

πk
2 (eαk)2

(1 + eαk)4
Var(α̂k) +

3∑

k=1

(eαk )2

(1 + eαk )2
Var(π̂k)

+ 2
∑

k<ℓ

eαkeαℓ

(1 + eαk)(1 + eαℓ)
Cov(π̂k, π̂ℓ)

Variance of V̂

Var(V̂ ) =
[
Cov(Q̂)

]
2,2

=

3∑

k=1

∂V

∂αk

∂V

∂αk

Var(α̂k) +

3∑

k=1

∂V

∂βk

∂V

∂βk

Var(β̂k) +

3∑

k=1

∂V

∂πk

∂V

∂πk

Var(π̂k)

+
3∑

k=1

(
∂V

∂αk

∂V

∂βk

∂V

∂βk

∂V

∂αk

)
Cov(α̂k, β̂k)

+
∑

k<ℓ

(
∂V

∂πk

∂V

∂πℓ

+
∂V

∂πℓ

∂V

∂πk

)
Cov(π̂k, π̂ℓ)

=

3∑

k=1

(
∂V

∂αk

)2

Var(α̂k) +

3∑

k=1

(
∂V

∂βk

)2

Var(β̂k) +

3∑

k=1

(
∂V

∂πk

)2

Var(π̂k)

+
3∑

k=1

2

(
∂V

∂αk

∂V

∂βk

)
Cov(α̂k, β̂k) +

∑

k<ℓ

2

(
∂V

∂πk

∂V

∂πℓ

)
Cov(π̂k, π̂ℓ)

Var(V̂ ) =
3∑

k=1

πk
2 (−eαk)2

(1 + eαk)4
Var(α̂k) +

3∑

k=1

1

(1 + eαk)2
Var(π̂k)

+ 2
∑

k<ℓ

1

(1 + eαk)(1 + eαℓ)
Cov(π̂k, π̂ℓ)



Appendix C 221

Variance of Ŵ

Var(Ŵ ) =
[
Cov(Q̂)

]
3,3

=

3∑

k=1

∂W

∂αk

∂W

∂αk

Var(α̂k) +

3∑

k=1

∂W

∂βk

∂W

∂βk

Var(β̂k) +

3∑

k=1

∂W

∂πk

∂W

∂πk

Var(π̂k)

+
3∑

k=1

(
∂W

∂αk

∂W

∂βk

+
∂W

∂βk

∂W

∂αk

)
Cov(α̂k, β̂k)

+
∑

k<ℓ

(
∂W

∂πk

∂W

∂πℓ

+
∂W

∂πℓ

∂W

∂πk

)
Cov(π̂k, π̂ℓ)

=
3∑

k=1

(
∂W

∂αk

)2

Var(α̂k) +
3∑

k=1

(
∂W

∂βk

)2

Var(β̂k) +
3∑

k=1

(
∂W

∂πk

)2

Var(π̂k)

+

3∑

k=1

2

(
∂W

∂αk

∂W

∂βk

)
Cov(α̂k, β̂k) +

∑

k<ℓ

2

(
∂W

∂πk

∂W

∂πℓ

)
Cov(π̂k, π̂ℓ)

Var(Ŵ ) =
3∑

k=1

πk
2
βk

2 (eαk)2(1 − eαk)2

(1 + eαk)6
Var(α̂k) +

3∑

k=1

πk
2 (eαk)2

(1 + eαk)4
Var(β̂k)

+

3∑

k=1

βk
2 (eαk)2

(1 + eαk)4
Var(π̂k) + 2

3∑

k=1

πk
2
βk

(eαk)2(1 − eαk)

(1 + eαk)5
Cov(α̂k, β̂k)

+ 2
∑

k<ℓ

βkβℓ

eαkeαℓ

(1 + eαk)2(1 + eαℓ)2
Cov(π̂k, π̂ℓ)

Covariance of Û and V̂

Cov(Û , V̂ ) =
[
Cov(Q̂)

]
1,2

=

3∑

k=1

∂U

∂αk

∂V

∂αk
Var(α̂k) +

3∑

k=1

∂U

∂βk

∂V

∂βk
Var(β̂k) +

3∑

k=1

∂U

∂πk

∂V

∂πk
Var(π̂k)

+

3∑

k=1

(
∂U

∂αk

∂V

∂βk
+
∂U

∂βk

∂V

∂αk

)
Cov(α̂k, β̂k)

+
∑

k<ℓ

(
∂U

∂πk

∂V

∂πℓ
+
∂U

∂πℓ

∂V

∂πk

)
Cov(π̂k, π̂ℓ)

Cov(Û , V̂ ) =

3∑

k=1

πk
2(−1)

(eαk)2

(1 + eαk)4
Var(α̂k) +

3∑

k=1

eαk

(1 + eαk)2
Var(π̂k)

+
∑

k<ℓ

eαk + eαℓ

(1 + eαk)(1 + eαℓ)
Cov(π̂k, π̂ℓ)
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Covariance of Û and Ŵ

Cov(Û , Ŵ ) =
[
Cov(Q̂)

]
1,3

=
3∑

k=1

∂U

∂αk

∂W

∂αk
Var(α̂k) +

3∑

k=1

∂U

∂βk

∂W

∂βk
Var(β̂k) +

3∑

k=1

∂U

∂πk

∂W

∂πk
Var(π̂k)

+
3∑

k=1

(
∂U

∂αk

∂W

∂βk
+
∂U

∂βk

∂W

∂αk

)
Cov(α̂k, β̂k)

+
∑

k<ℓ

(
∂U

∂πk

∂W

∂πℓ
+
∂U

∂πℓ

∂W

∂πk

)
Cov(π̂k, π̂ℓ)

Cov(Û , Ŵ ) =

3∑

k=1

πk
2βk

(eαk)2(1 − eαk)

(1 + eαk)5
Var(α̂k) +

3∑

k=1

βk
(eαk)2

(1 + eαk)3
Var(π̂k)

+

3∑

k=1

πk
2 (eαk)2

(1 + eαk)4
Cov(α̂k, β̂k)

+
∑

k<ℓ

eαkeαℓ
βk(1 + eαℓ) + βℓ(1 + eαk)

(1 + eαk)2(1 + eαℓ)2
Cov(π̂k, π̂ℓ)

Covariance of V̂ and Ŵ

Cov(V̂ , Ŵ ) =
[
Cov(Q̂)

]
2,3

=

3∑

k=1

∂V

∂αk

∂W

∂αk
Var(α̂k) +

3∑

k=1

∂V

∂βk

∂W

∂βk
Var(β̂k) +

3∑

k=1

∂V

∂πk

∂W

∂πk
Var(π̂k)

+

3∑

k=1

(
∂V

∂αk

∂W

∂βk
+
∂V

∂βk

∂W

∂αk

)
Cov(α̂k, β̂k)

+
∑

k<ℓ

(
∂V

∂πk

∂W

∂πℓ
+
∂V

∂πℓ

∂W

∂πk

)
Cov(π̂k, π̂ℓ)

Cov(V̂ , Ŵ ) =

3∑

k=1

πk
2(−1)βk

(eαk)2(1 − eαk)

(1 + eαk)5
Var(α̂k) +

3∑

k=1

βk
eαk

(1 + eαk)3
Var(π̂k)

+

3∑

k=1

πk
2(−1)

(eαk)2

(1 + eαk)4
Cov(α̂k, β̂k)

+
∑

k<ℓ

(1 + eαk)βℓe
αℓ + (1 + eαℓ)βke

αk

(1 + eαk)2(1 + eαℓ)2
Cov(π̂k, π̂ℓ)
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Asymptotic Variance of ÂJM

Applying the delta method to obtain the asymptotic variance of ÂJM ,

Var(ÂJM ) = Var

[
ln

(
Û

1 − Û

)]

∼=
[
d

dU
ln

(
U

1 − U

)]2
Var(Û)

∼=
[(

1 − U

U

)
1

(1 − U)2

]2
Var(Û)

Var(ÂJM ) ∼= 1

U2(1 − U)2
Var(Û)

Asymptotic Variance of B̂JM

Since BJM is a function of U, V and W , the delta method can also be applied to

obtain its asymptotic variance as follows:

Var(B̂JM ) = Var

(
Ŵ

ÛV̂

)

∼=
[

∂B

∂U

∂B

∂V

∂B

∂W

]



Var(Û) Cov(Û , V̂ ) Cov(Û , Ŵ )

Cov(V̂ , Û) Var(V̂ ) Cov(V̂ , Ŵ )

Cov(Ŵ , Û) Cov(V̂ , Ŵ ) Var(Ŵ )







∂B

∂U
∂B

∂V
∂B

∂W




∼=
(
∂B

∂U

)2

Var(Û) +

(
∂B

∂V

)2

Var(V̂ ) +

(
∂B

∂W

)2

Var(Ŵ )

+ 2

(
∂B

∂U

)(
∂B

∂V

)
Cov(Û , V̂ ) + 2

(
∂B

∂U

)(
∂B

∂W

)
Cov(Û , Ŵ )

+ 2

(
∂B

∂V

)(
∂B

∂W

)
Cov(V̂ , Ŵ )

where:

∂B

∂U
=

−W
U2V

,
∂B

∂V
=

−W
UV 2

and
∂B

∂W
=

1

UV

Var(B̂JM ) ∼= W 2

U4V 2
Var(Û) +

W 2

U2V 4
Var(V̂ ) +

1

U2V 2
Var(Ŵ )

+
2W 2

U3V 3
Cov(Û , V̂ ) − 2W

U3V 2
Cov(Û , Ŵ ) − 2W

U2V 3
Cov(V̂ , Ŵ )
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For APL and BPL (Park and Lee, 1999)

Define the following expressions and their corresponding estimators:

Y ≡ f1(θ) =

3∑

k=1

πkαk Ŷ ≡ f1(θ̂) =

3∑

k=1

π̂kα̂k

Z ≡ f2(θ) =

3∑

k=1

πkβk Ẑ ≡ f2(θ̂) =

3∑

k=1

π̂kβ̂k

Note that APL = Y and BPL = Z, with, for k = 1, 2, 3,

∂Y

∂αk
= πk

∂Y

∂βk
= 0

∂Y

∂πk
= αk

∂Z

∂αk
= 0

∂Z

∂βk
= πk

∂Z

∂πk
= βk

(C.8)

Let G be the vector

G =

[
Y

Z

]
=

[
f1(θ)

f2(θ)

]
with estimator Ĝ =

[
Ŷ

Ẑ

]
=

[
f1(θ̂)

f2(θ̂)

]
.

Using the delta method, the asymptotic covariance of Ĝ can be obtained as:

Cov(Ĝ) =

(
∂G

∂θ

)′

Cov(θ̂)

(
∂G

∂θ

)
(C.9)

(2 × 2) = (2 × 9) (9 × 9) (9 × 2)

where:

Cov(θ̂) =
[
Cov(θ̂i, θ̂j)

]
i,j=1,2,...,9

=




Var(α̂1) Cov(α̂1, β̂1) · · · Cov(α̂1, π̂3)

Cov(β̂1, α̂1) Var(β̂1) · · · Cov(β̂1, π̂3)

Cov(α̂2, α̂1) Cov(α̂2, β̂1) · · · Cov(α̂2, π̂3)
...

...
. . .

...

Cov(π̂3, α̂1) Cov(π̂3, β̂1) · · · Var(π̂3)




and

(
∂G

∂θ

)′

=

[
∂fi

∂θj

]

i = 1, 2,

j = 1, 2, . . . , 9

=




∂Y

∂α1

∂Y

∂β1
· · · ∂Y

∂π3

∂Z

∂α1

∂Z

∂β1
· · · ∂Z

∂π3



.
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Multiplication of these matrices and simplifications arising from the independence

assumptions lead to the following expression for the (i, j)th element of Cov(Ĝ), which

is similar to that in (C.6).

[
Cov(Ĝ)

]
i,j

=

3∑

k=1

∂fi

∂αk

∂fj

∂αk
Var(α̂k) +

3∑

k=1

∂fi

∂βk

∂fj

∂βk
Var(β̂k)

+

3∑

k=1

∂fi

∂πk

∂fj

∂πk
Var(π̂k) (C.10)

+

3∑

k=1

(
∂fi

∂αk

∂fj

∂βk
+
∂fi

∂βk

∂fj

∂αk

)
Cov(α̂k, β̂k)

+
∑

k<ℓ

(
∂fi

∂πk

∂fj

∂πℓ
+
∂fi

∂πℓ

∂fj

∂πk

)
Cov(π̂k, π̂ℓ)

Asymptotic variances can then be obtained by using (C.8) in (C.10), for specific values

of i and j.

Asymptotic Variance of ÂPL

Var(ÂPL) ≡ Var(Ŷ ) =
[
Cov(Ĝ)

]
1,1

=
3∑

k=1

(
∂Y

∂αk

)2

Var(α̂k) +
3∑

k=1

(
∂Y

∂βk

)2

Var(β̂k) +
3∑

k=1

(
∂Y

∂πk

)2

Var(π̂k)

+
3∑

k=1

2

(
∂Y

∂αk

∂Y

∂βk

)
Cov(α̂k, β̂k) +

∑

k<ℓ

2

(
∂Y

∂πk

∂Y

∂πℓ

)
Cov(π̂k, π̂ℓ)

Var(ÂPL) ≡ Var(Ŷ ) =

3∑

k=1

πk
2Var(α̂k) +

3∑

k=1

αk
2Var(π̂k) + 2

∑

k<ℓ

αkαℓCov(π̂k, π̂ℓ)

Asymptotic Variance of B̂PL

Var(B̂PL) ≡ Var(Ẑ) =
[
Cov(Ĝ)

]
2,2

=

3∑

k=1

(
∂Z

∂αk

)2

Var(α̂k) +

3∑

k=1

(
∂Z

∂βk

)2

Var(β̂k) +

3∑

k=1

(
∂Z

∂πk

)2

Var(π̂k)

+

3∑

k=1

2

(
∂Z

∂αk

∂Z

∂βk

)
Cov(α̂k, β̂k) +

∑

k<ℓ

2

(
∂Z

∂πk

∂Z

∂πℓ

)
Cov(π̂k, π̂ℓ)

Var(B̂PL) ≡ Var(Ẑ) =

3∑

k=1

πk
2Var(β̂k) +

3∑

k=1

βk
2Var(π̂k) + 2

∑

k<ℓ

βkβℓCov(π̂k, π̂ℓ)
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Covariance of ÂPL and B̂PL

Cov(ÂPL, B̂PL) ≡ Cov(Ŷ , Ẑ) =
[
Cov(Ĝ)

]
1,2

=
3∑

k=1

∂Y

∂αk

∂Z

∂αk
Var(α̂k)

+

3∑

k=1

∂Y

∂βk

∂Z

∂βk
Var(β̂k)

+

3∑

k=1

∂Y

∂πk

∂Z

∂πk
Var(π̂k)

+

3∑

k=1

(
∂Y

∂αk

∂Z

∂βk
+
∂Y

∂βk

∂Z

∂αk

)
Cov(α̂k, β̂k)

+
∑

k<ℓ

(
∂Y

∂πk

∂Z

∂πℓ
+
∂Y

∂πℓ

∂Z

∂πk

)
Cov(π̂k, π̂ℓ)

Cov(ÂPL, B̂PL) ≡ Cov(Ŷ , Ẑ)

=
3∑

k=1

αkβkVar(π̂k) +
3∑

k=1

πk
2Cov(α̂k, β̂k)

+
∑

k<ℓ

(αkβℓ + αℓβk)Cov(π̂k, π̂ℓ)
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