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Chapter 1

Introduction

Stochastic processes serve as mathematical models of random phenomena in

time evolution. Lévy processes are stochastic processes with stationary inde-

pendent increments. They constitute a fundamental class of stochastic pro-

cesses which possess nice properties and, thus, proved to find a wide range of

applications in different areas such as risk theory and finance, physics, bio-

sciences and telecommunications, queueing theory, fragmentation theory etc.

For instance, Lévy processes are an excellent tool for modeling price processes

in mathematical finance. This fact emphasizes the importance of studying

Lévy processes, their path properties and various characteristics. Also the

asymptotic behavior of the Lévy process and its important functionals is an

important topic. On the other hand, the Lévy processes are important from

a theoretical point of view, since other classes of stochastic processes, such

as semi-Markov processes, semi-martingales are obtained as generalizations of

Lévy processes.

Theory of Lévy processes goes back to the 1920s, and mainly originated from

Lévy and Khintchine, when the key stones of modern probability were laid.

Their general structure has been gradually discovered by de Finetti, Kol-

mogorov, Lévy, Khintchine. Lévy processes were named after a famous French

mathematician Paul Lévy who himself called them a sub-class of processus ad-
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ditifs (additive processes). After P. Lévy’s characterization in the 1930s of all

processes in this class, many researchers have studied properties of the dis-

tributions and behavior of sample functions. Later, the fluctuation theory

for random walks was developed mainly by Spitzer (1964), Wendel (1960),

Feller (1966), and then later for random processes (Borovkov (1972), Rogozin

(1966), Fristedt and Pruitt (1971), Fristedt (1974)). More recent work on

this topic is Alili and Chaumont (2001). The main weakness of fluctuation

identities for general Lévy processes is that they involve the one-dimensional

distributions of the process which are seldom explicitly known. In the case

of absence of negative (positive) jumps (a so-called spectrally one-sided Lévy

process) these identities can be expressed directly in terms of the root of the

characteristic equation, involving the Laplace exponent of the process and the

scale functions. Excursion theory, use of local times were further developed by

Greenwood and Pitman (1980), Doney (2004), Bertoin (1996a), Kesten and

Maller (1998). Excellent monographs on Lévy processes are due to Gihman

and Skorokhod (1973), Bertoin (1996a), Kyprianou (2006), Sato (1999).

One of the most popular and most applicable problems in the study of Lévy

processes is the so called boundary problem (or one- and two-sided exit prob-

lem). It is a problem of determining the law of the first passage of a level

(first exit time from a fixed interval) by the process and other characteris-

tics such as position of the process at this instant, the value of the overshoot

through the level, sojourn time inside the interval, number of intersections

of the interval, etc. Motivated by needs of applied sciences, first passage

problems and exit problems became a topic of many researchers. These prob-

lems were considered starting from Zolotarev (1964), Emery (1973), Suprun

(1976) and others. For evaluation of the first passage times for spectrally

one-sided Lévy processes see Rogers (2000). The first passage problem in

the context of ruin theory, insurance and dam theory has found a lot of ap-

plications (see for instance Chiu and Yin (2005), Klueppelberg et al. (2004),

Klueppelberg and Kyprianou (2006), Avram et al. (2009), Huzak et al. (2004),

Yang and Zhang (2001), Patie (2004), Avram and Usabel (2003)), options

pricing (Madan and Schoutens (2007), Mordecki (2002), Chesney and Jean-
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blanc (2004), Boyarchenko and Levendorskii (2002), Avram et al. (2002), Kou

et al. (2003), Chesney and Jeanblanc (2004)). Asmussen et al. (2004) con-

sidered first passage problems for phase-type Lévy processes in the context

of pricing American options, and also in context of equity default swaps for

CGMY Lévy process, see Asmussen et al. (2008). For an overview of the

applications of Lévy processes in finance we refer to an excellent monograph

Schoutens (2003), see also Schoutens and Symens (2003), Cont and Tankov

(2004), Schoutens (2006). Later on, one-boundary characteristics were gener-

alized to a more complicated problem, i.e. a two-boundary problem. A lot of

significant contributions were made by Doney, Bertoin, Kyprianou and many

others. We particulary refer to a very comprehensive book by Kyprianou

(2006) on Lévy processes. Two-boundary problems for spectrally one-sided

Lévy processes were considered in Bertoin (1996b), (1997), Lambert (2000),

see also Doney (2005), Avram et al. (2004), Perry et al. (2005). Many of

these authors proposed new methods for the two-sided exit problem based

on martingale approach and the Ito excursions. Analytical properties of the

scale function were further studied in Doney (2005), Chan et al. (2007), Biffis

and Kyprianou (2008). Applications of scale functions in potential analysis of

subordinators were presented in Kyprianou and Rivero (2008) and Hubalek

and Kyprianou (2007), while Kyprianou et al. (2008b) deduced possible ap-

plications in control theory. Rogers Rogers (2000) and Surya (2008) provided

robust methods for numerical computation of scale functions. Zhou (2005)

made an important contribution from the general point of view of Lévy in-

surance risk processes and introduced the use of so-called scale functions in

his analysis of the Gerber-Shiu function. Following Zhou (2005), Biffis and

Morales (2008) provided an explicit characterization of a generalized version

of the Gerber-Shiu function in terms of scale functions. Generalization of the

scale functions for Markov additive processes was considered in Gerber et al.

(2006).

Scale functions have also found applications in risk insurance, more specif-

ically, in optimal barrier strategies (see: Zhou (2005), Renaud and Zhou

(2007), Kyprianou and Palmowski (2007) Albrecher et al. (2008), Loeffen
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(2008) Kyprianou et al. (2008b) Kyprianou and Loeffen (2008). In the context

of last ruin times Chiu and Yin (2005) and Baurdoux (2008) also make exten-

sive use of the theory of scale functions. Moreover, generalized analogues of

scale functions appear in the first passage problem of a Markov additive pro-

cess and positive self-similar Markov processes. (see Breuer (2008), Kyprianou

et al. (2008a), Chaumont et al. (2008). Motivated by classical considerations

from risk theory, Kyprianou and Loeffen (2008) investigated boundary cross-

ing problems for refracted Lévy processes. The latter is a Lévy process whose

dynamics change by subtracting off a fixed linear drift whenever the aggregate

process is above a pre-specified level.

For applications of Lévy processes in biosciences, chemistry and theory of

branching processes we refer to Le Gall and Le Jan (1998) and Pakes (1996).

Another interesting part of the theory of Lévy processes is a study of reflected

processes. Stochastic processes with two absorbing or reflecting barriers occur

in sequential analysis, queueing theory, insurance risk, mathematical finance

and other applications areas (see Bertoin (1997)). For example, the optimal

time to exercise a Russian option is the first time that the reflected process

crosses a fixed level (see Pistorius (2003), Pistorius (2004)). In the context of

dams, for fluid queues with on-off inputs, the reflected Lévy processes were

studied in Dube et al. (2004), and in the context of queueing models using

martingale techniques in Kella et al. (2006). Hansen (2006) studied the max-

imum of the reflected random walk and considered application in structural

biology. For applications in sequential analysis we refer to Karlin and Dembo

(1992).

Solving optimal stopping problems driven by Lévy processes has been a chal-

lenging task and has found many applications in modern theory of mathemat-

ical finance.

Asymptotic analysis of the distributions of the boundary functionals of the

process constitutes one of the most difficult parts of the theory of Lévy pro-

cesses. The asymptotic expansions of the distributions of the two-boundary

functionals of random walks satisfying the Cramer’s condition were derived in

Lotov (1979a), Lotov (1979b). Analysis of the asymptotic properties of the
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two-boundary characteristics of Lévy processes and random walks was made

in Lotov and Khodzhibaev (1984), Lotov and Khodzhibayev (1993), Lotov

and Khodzhibaev (1998a), Lotov and Khodzhibaev (1998b). Recently Lotov

and Orlova (2004), Lotov and Orlova (2005) studied asymptotic behaviour of

the two-boundary functionals for random walks defined on a Markov chain.

In the present work, we address both two-sided exit problems and the asymp-

totic analysis for various two-boundary characteristics of general Lévy pro-

cesses and the difference of two compound renewal processes. The methodol-

ogy we use is mainly based on a probabilistic approach, use of one-boundary

characteristics of the process and theory of Fredholm equations of the second

kind. This approach appears to be quite universal: it works for general Lévy

processes, general random walks, and even for certain semi-Markov processes.

The solution of most problems is given in the form of a Neumann series. For

the special case of Lévy processes, results are given in closed form, namely

in terms of the scale function of the process. More details on our results are

given in the next section.

This thesis consists of five self-contained parts, and it is structured as follows.

Chapter 2, consisting of 7 sections, is devoted to the study of various two-

boundary characteristics of Lévy processes. For this class of stochastic pro-

cesses we determine the Laplace transforms of several functionals connected

with the exit from a fixed interval. The results presented in Chapter 2 can be

found in the following published articles.

Kadankova (2003a). On the distribution of the number of the intersec-

tions of a fixed interval by the semi-continuous process with independent

increments. Theor. of Stoch. Proc., 1-2, 73-81.

Kadankova (2003b). Two-boundary problems for random walks with

negative jumps which have geometrical distribution. Theor. Prob. and

Math. Statist., 68, 60-67.

Kadankova (2004). On the joint distribution of supremum, infimum and

the magnitude of a process with independent increments Theor. Prob.
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and Math. Statist., 70, 61-70.

Kadankov and Kadankova (2004). On the distribution of duration of

stay in an interval of the semi-continuous process with independent in-

crements. Random Operators and Stochastic Equations, 2004 , 12(4) ,

365-388

Kadankov and Kadankova (2005a). Intersections of an interval by a

process with independent increments Theor. of Stoch. Proc., 11(1-2),

54-68.

Kadankova and Veraverbeke (2005). Several two-boundary problems for

Lévy processes. Proceedings of the 4-th Actuarial and Financial Mathe-

matics Day. Ed. A. De Schepper et al, KVAB, Brussels, 97–106.

Kadankov and Kadankova (2005b). On the distribution of the first exit

time from an interval and the value of overshoot through the borders for

processes with independent increments and random walks. Ukr. Math.

J., 10(57), 1359-1384.

Kadankova and Veraverbeke (2007). On several two-boundary problems

for a particular class of Lévy processes. J. Theor. Probab., 20(4), 1073-

1085.

Anderluch and Kadankova (2008). Double-sided knock-in calls in an

exponential compound Poisson framework. Technical report TR08007.

It appears that the method introduced for Lévy processes can be applied for

another class of stochastic processes, namely for a difference of the compound

renewal processes and semi-Markov random walks with drift. In Chapter 3 we

study several two-boundary characteristics for the difference of a compound

Poisson process and a compound renewal process. The results presented rely

on the following papers.

Kadankov and Kadankova (2008c). A two-sided exit problem for a dif-

ference of a compound Poisson process and a compound renewal process

with a discrete phase space. Stoch. Models, 24(1), 152-172.
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Kadankov, Kadankova and Veraverbeke (2009). Intersections of an in-

terval by a difference of a compound Poisson process and a compound

renewal process Stochastic Models, 25(2), 270-300.

Kadankov and Kadankova (2007). Two-boundary problems for a semi-

Markov walk with a linear drift. Random Oper. and Stoch. Equ. 15,

223-251.

Chapter 4 is concerned with possible applications in queueing theory. Queue-

ing systems with batch arrivals and finite buffer have wide applications in

the performance evaluation, telecommunications, and manufacturing systems.

One of the crucial performance issues of the single-server queue with finite

buffer room) is losses, namely, customers (packets, cells, jobs) that were not

allowed to enter the system due to the buffer overflow. This issue is espe-

cially important in the analysis of telecommunication networks. Motivated by

this fact, we derived the most important performance measurements of several

queueing systems of this type. More precisely, we consider the Mκ|Gδ |1|B and

Gδ |Mκ|1|B queueing systems with finite waiting room (see a rigorous descrip-

tion of such systems in Chapter 4) and their modifications. For these systems

we study their main characteristics such as the busy period, the time of the

first loss of the customer, virtual waiting time and the number of customers

in the system at arbitrary time. The results presented can be found on the

following papers.

Kadankov and Kadankova (2008a). Busy period, time of the first loss

of a customer and the number of the customers in Mκ|Gδ |1|B system

Queueing Systems, (submitted).

Kadankov and Kadankova (2008b). Busy period, virtual waiting time

and number of the customers in Gδ|Mκ|1|B system. Queueing Systems,

(submitted).

Kadankova and Veraverbeke (2008). Exit problems for an oscillating

compound Poisson process. J.Theor. Probab. (submitted).

Finally, we discuss the results and open problems in Chapter 5.





Chapter 2

Two-boundary problems for

Lévy processes

2.1 Overview

In this chapter we will solve several two-boundary problems for a Lévy process

whose Laplace exponent is of the general form (2.2.1). We first determine the

joint distribution of the first exit time and the value of the overshoot through

the boundary. Employing this distribution, we derive the Laplace transform

of the joint distribution of the supremum, infimum and the position of the

process. Next we find the joint distribution of the number of the upward and

downward intersections of the interval. We then apply the results obtained

to particular classes of Lévy processes, namely for the spectrally one-sided

Lévy process (2.2.7), the compound Poisson process with jumps of both signs

(2.2.13) and for the Wiener process.

We will also study the distribution of the total stay time inside and outside the

interval, which in our opinion is one of the most difficult two-boundary char-

acteristic of the process. This functional plays an important role in finance

applications, more specific in pricing corridor and hurdle options. Other appli-

11
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cations are, as suggested in Taleb (1997), to the management of a portfolio for

the computation of the expected amount of time a trader will spend in the red.

A similar problem for the standard Brownian excursion can be found in chem-

istry as well, and in particular, in the theory of ring polymers, as explained

in Jansons (1997). Fusai (2000) found Laplace transforms of the occupation

time inside the interval for the case of a Wiener process with drift. In Sec-

tion 7 we consider the occupation time for several classes of Lévy processes,

such as the compound Poisson process with positive jumps and negative drift,

the spectrally one-sided Lévy process and the compound Poisson process with

arbitrary positive jumps and exponential negative jumps.

The integral transforms of the two-boundary characteristics are obtained in

terms of the integral transforms of the one-boundary functionals of the process.

We employ probabilistic methods, the strong Markov property of the process

and its spatial and time homogeneity property. The majority of the equations

which appear, are linear integral equations. They are solved by means of the

method of the successive iterations. The solutions of the equations are given

in terms of the Neumann series, which for particular cases become geometric

progressions.

As a particular case, we also consider the Wiener process. It appears, that

the distributions of its boundary functionals are the limit distributions for the

corresponding distributions of the characteristics of the general Lévy processes

(after an appropriate scaling of time and space). To illustrate this, we state

and prove some limit theorems for the spectrally one-sided Lévy process and

for the compound Poisson process (2.2.13).
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2.2 One-boundary characteristics of the process

In this section we will give the definition of the general Lévy process and its

special subclasses and consider their one-boundary characteristics. It is well

known that distributions of the increments of Lévy processes are infinitely

divisible (Kyprianou (2006)).

Definition 2.2.1. A distribution F is said to be infinitely divisible if for every

n there exists a distribution Fn such that F is n-fold convolution of Fn : F =

Fn∗
n . That is to say, a random variable X has an infinitely divisible distribution

F if for every n X can be represented as the sum X = X1,n +X2,n + · · ·+Xn,n

of n independent random variables with a common distribution Fn.

It can be shown that a random variable X has an infinitely divisible distribu-

tion if its Laplace transform admits the Lévy-Khintchine representation:

k(p) = log Ee−pX = −ap+
σ2

2
p2+

∫

R

(

e−xp − 1 + xp I{|x|≤1}
)

Π(dx), ℜ(p) = 0,

where a ∈ R, σ > 0 and the Lévy measure Π is a Radon measure on R such

that Π ({0}) = 0 and
∫

R

min
(

1, x2
)

Π(dx) < ∞.

Definition 2.2.2. A stochastic process {Xt; t ≥ 0}, X0 = 0 defined on a

filtered probability space (Ω, F, {Ft}, P) is said to be a Lévy process if it has

stationary and independent increments, and its paths are P-almost surely right

continuous with left limits ( cadlag).

It follows from the definition of the Lévy process that for every t > 0 the ran-

dom variable Xt can be written as a sum of n independent variables distributed

as X t
n

:

Xt = X t
n

+ (X 2t
n
− X t

n
) + · · · + (Xt − X (n−1)t

n

)

Hence, the distribution of Xt is infinitely divisible. Conversely, every family

of infinitely divisible distributions with Laplace transform of the form etk(p)

can regulate a Lévy process. It is then possible to construct a Markov process
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X = {Xt; t ≥ 0} with stationary increments such that X0 = 0 and E e−pXt =

etk(p), ℜ(p) = 0 (Kyprianou (2006, p.5)).

Let {Xt; t ≥ 0}, X0 = 0 be the real-valued Lévy process defined on the

filtered probability space (Ω, F, {Ft}, P). Then the Laplace transform of the

increments of the process is of the form Ee−p(Xt−X0) = etk(p), ℜ(p) = 0. The

function k(p) is called the Laplace exponent, and it is given by means of the

Lévy-Khintchine representation:

k(p) = −ap +
σ2

2
p2 +

∫

R

(

e−xp − 1 + xp I{|x|≤1}
)

Π(dx), ℜ(p) = 0, (2.2.1)

where α ∈ R, σ2 ∈ R+, and Π(dx) is a measure of the jumps such that
∫

R

min
(

1, x2
)

Π(dx) < ∞.

Observe, that this process is a strong Markov process (Dynkin (1965, p.99)).

Recall that a Markov process X = (xt, ζ, Ft, Px) is given by

(i) ζ(w) on Ω taking values in [0,∞)

(ii) a function x(t, w) = xt(w) defined for w ∈ Ω, t ∈ [0, ζ(w)] and taking

values in the state space (E,B)

(iii) for each t ≥ 0 a sigma-algebra Ft on the space Ωt = {w : ζ(w) > t}

(iv) for x ∈ E a function Px(A) on some sigma-algebra F0 on the space Ω

containing Ft for all t ≥ 0.

Definition 2.2.3. The real-valued function τ(w) is called a Markov time if

(i) 0 ≤ τ(w) ≤ ζ(w)

(ii) for each t ≥ 0 {τ ≤ t < ζ} ∈ Ft

Definition 2.2.4. A measurable Markov process X = (xt, ζ, Ft, Px) is called

a strong Markov process on the state space (E,B) if for any Markov time τ

and for any t ≥ 0 x ∈ E, Γ ∈ B

Px[xτ+t ∈ Γ/Fτ ] = Pxτ [xt ∈ Γ] (a.s. Ωτ ,Px).
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In order to solve the two-boundary problems for the process Xt, we will require

the integral transforms of the one-boundary characteristics of the process.

Denote by

X+
t = sup

u≤t
Xu, X−

t = inf
u≤t

Xu,

the running supremum and infimum of the process, and by νs ∼ exp(s) an

exponential random variable with expectation 1/s, independent of the process.

The following identity (due to Spitzer (1964) and Rogozin (1966)) plays an

important role for solving boundary problems:

Ee−pXνs =
s

s − k(p)
= Ee−pX+

νsEe−pX−
νs , ℜ(p) = 0, (2.2.2)

where

Ee−pX±
νs = exp

(∫ ∞

0

1

t
e−stE

[

e−pXt − 1;±Xt > 0
]

dt

)

, ±ℜ(p) ≥ 0.

For all x ≥ 0 define

τx = inf{t : Xt > x}, T x = Xτx − x, τx = inf{t : Xt < −x}, Tx = −Xτx − x

the first passage time of the positive (negative −x) level x and the value of

the overshoot through this level. We use the convention that inf{∅} = ∞,

and on the events {τx = ∞}, {τx = ∞} we assume that T x = ∞, Tx = ∞
respectively.

Here and in the sequel we will use the following notation

fx(du, s) = E
[

e−sτx
;T x ∈ du, τx < ∞

]

, fx(s) = E
[

e−sτx
; τx < ∞

]

,

fx(du, s) = E
[

e−sτx ;Tx ∈ du, τx < ∞
]

, fx(s) = E
[

e−sτx ; τx < ∞
]

.

Lemma 2.2.1. Let {Xt; t ≥ 0} be the real-valued Lévy process whose Laplace

exponent is given by (2.2.1). Then

(i) the integral transforms of the joint distributions of {τx, T x}, {τx, Tx} are

such that

Ee−sτx−pT x
=
(

Ee−pX+
νs

)−1
E
[

e−p(X+
νs−x);X+

νs
> x

]

, ℜ(p) ≥ 0,

Ee−sτx−pTx =
(

EepX−
νs

)−1
E
[

ep(X−
νs+y);−X−

νs
> x

]

, ℜ(p) ≥ 0;

(2.2.3)
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the integral transforms of the joint distribution of {Xνs ,X
±
νs
} obey the

equalities for s ≥ 0

E
[

e−pXνs ;X+
νs

≤ x
]

= Ee−pX−
νsE

[

e−pX+
νs ;X+

νs
≤ x

]

, ℜ(p) ≤ 0,

(2.2.4)

E
[

e−pXνs ;X−
νs

≥ −x
]

= Ee−pX+
νsE

[

e−pX−
νs ;X−

νs
≥ −x

]

, ℜ(p) ≥ 0.

Proof. The integral transforms of these joint distributions were determined

by Pecherskii and Rogozin (1969), see also Darling et al. (1972). We sketch

a brief proof of the formulae (2.2.3), (2.2.4), applying the Spitzer-Rogozin

factorization identity (2.2.2) and probabilistic reasoning. The total probability

law combined with the strong Markov property of the process allow us to write

the following equation for ℜ(p) = 0

Ee−pXνs = E
[

e−pXνs ;X+
νs

≤ x
]

+ Ee−sτx−pXτxEe−pXνs . (2.2.5)

Observe, that the increments of the process {Xt; t ≥ 0} on the exponential

interval [0, νs] are realized either on the sample paths which do not cross

the upper level x (the first term of the right-hand side) or on the sample

paths which do cross the upper level x, and then the evaluation of the process

on [0, νs] is its probabilistic copy (the second term in the right-hand side).

In accordance with the total probability law and taking into account that

{X+
t ≤ x} = {τx > t}, we can write for ℜ(p) = 0

Ee−pXt = E
[

e−pXt; τx ≥ t
]

+ E
[

e−pXt ; τx < t
]

= E
[

e−pXt;X+
t ≤ x

]

+ E
[

e−pXτx e−pθτxXt−τx ; τx < t
]

, (2.2.6)

where θt is a shift operator (Gihman and Skorokhod (1973, p.432)). Since τ x

is a Markov time, the increments of the process θτxXt−τx do not depend on

the sigma-algebra Fτx, generated by the events {X(u) < v} ∩ {τx > u} for all

u, v. Hence

E
[

e−pXτxe−pθτxXt−τx ; τx < t
]

=

∫ t

0
E
[

e−pXu; τx ∈ du
]

Ee−pXt−u.
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Substituting the right-hand side of this formula into (2.2.6), we find

Ee−pXt = E
[

e−pXt ;X+
t ≤ x

]

+

∫ t

0
E
[

e−pXu; τx ∈ du
]

Ee−pXt−u.

Multiplying the latter equality by the density s e−st of the random variable

νs, and integrating it with respect to t ≥ 0, we obtain the equality (2.2.5). In

view of the identity (2.2.2) we rewrite (2.2.5) as follows:

(

Ee−pX−
νs

)−1
E
[

e−p(Xνs−x);X+
νs

≤ x
]

− E
[

e−p(X+
νs−x);X+

νs
≤ x

]

=

= E
[

e−p(X+
νs−x);X+

νs
> x

]

− Ee−pX+
νsEe−sτx−pT x

, ℜ(p) = 0.

The function which enters the left-hand side of the latter equality is analytic

in Re p < 0, and continuous including the boundary Re p = 0. By means of

this equality it is analytically extended to an analytic function in ℜ(p) < 0,

remaining bounded. Hence, in view of the Liouville theorem this function

is a constant with respect to p, say C(s). In order to find this constant,

we compute the limit as p → ∞ which yields C(s) = 0. This standard

factorization reasoning (see Borovkov (1972, p.115)) yields two formulae

Ee−sτx−pT x
=
(

Ee−pX+
νs

)−1
E
[

e−p(X+
νs−x);X+

νs
> x

]

, ℜ(p) ≥ 0

E
[

e−pXνs ;X+
νs

≤ x
]

= Ee−pX−
νsE

[

e−pX+
νs ;X+

νs
≤ x

]

, ℜ(p) ≤ 0

for the integral transforms of the joint distribution of {τx, T x}, and of {Xνs ,X
+
νs
}.

Applying the first formula to the dual process {−Xt, ; t ≥ 0}, we will derive

the second equality (2.2.3) of the lemma. Applying the second formula to the

dual process {−Xt; t ≥ 0}, we obtain the second equality of (2.2.4). N

2.2.1 Spectrally one-sided case

We will now derive the one-boundary characteristics for a Lévy process which

has only positive jumps (this means that the Lévy measure Π has no mass on

(−∞, 0)). Let {Xt; t ≥ 0}, X0 = 0 be the spectrally positive Lévy process

whose Laplace exponent is given by
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k(p) =
1

2
p2σ2 − αp +

∫ ∞

0

(

e−xp − 1 + xp I{x≤1}
)

Π(dx), ℜ(p) ≥ 0. (2.2.7)

We will exclude subordinators (processes with non-decreasing paths) from the

consideration. In this case the integral transforms of the distributions of X+
νs

,

X−
νs

are of the following form (see for instance Zolotarev (1964), Borovkov

(1972) or Bertoin (1996a)):

Ee−pX−
νs =

c(s)

c(s) − p
, ℜ(p) ≤ 0, Ee−pX+

νs =
s

c(s)

p − c(s)

k(p) − s
, ℜ(p) ≥ 0,

(2.2.8)

where c(s) > 0 is a unique solution of the characteristic equation k(p)−s = 0,

s > 0 in ℜ(p) > 0. It follows from (2.2.3) that the integral transforms of the

joint distributions of {τx, T x}, {τx, Tx} are such that ( ℜ(p),ℜ(z) ≥ 0)

E
[

e−sτx ;Tx ∈ du
]

= e−xc(s) δ(u) du,
∫ ∞

0
e−pxEe−sτx−zXτxdx =

1

p

(

1 − p + z − c(s)

k(p + z) − s

k(z) − s

z − c(s)

)

, (2.2.9)

where δ(u) is the delta function, whose fundamental property is as follows:
∞
∫

−∞
f(u) δ(u − a) du = f(a).

One of the well-studied and the most applied spectrally one-sided Lévy pro-

cesses is a compound Poisson process with a linear drift. Its Laplace exponent

is such that

k(p) = αp + c
(

Ee−pη − 1
)

, α, η > 0 ℜ(p) ≥ 0, (2.2.10)

where η is the size of the positive jumps, c is the rate of the jumps, and −α

is a coefficient of the negative drift. That is to say that

Xt =

N(t)
∑

k=0

ηk − α t, t ≥ 0

where η0 = 0, ηk ∼ η are positive independent identically distributed variables,

{N(t); t ≥ 0}, N(0) = 0 is an ordinary Poisson process with parameter c,

independent from {ηk; k ≥ 0}. Such process and its generalizations serve for

modeling risk processes, storage processes etc.
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2.2.2 Scale function

In this subsection we introduce a so called scale function (or resolvent function

in Ukrainian and Russian literature) which plays a key role in the theory of

spectrally one-sided Lévy processes. In the context of ruin theory, scale func-

tions appeared in Zolotarev (1964), Takacs (1967) and then later in Suprun

and Shurenkov (1975), Suprun (1976), Suprun and Shurenkov (1986), Ko-

rolyuk (1975) and Pistorius (2004). The importance of scale functions as

a class with which one may express a whole range of fluctuation identities

for spectrally negative Lévy processes became apparent in Chaumont (1996),

Bertoin (1996a) and a number of other articles (see for example Doney (2005),

Alili and Kyprianou (2005) and Lambert (2000)). In addition, the scale func-

tions often appear in martingale relations (see Chan et al. (2007)). They also

found applications in queueing theory (see for instance Dube et al. (2004),

Bekker et al. (2008)), in risk theory and optimal control Avram et al. (2006),

Loeffen (2008), Renaud and Zhou (2007).. Motivated by their wide applica-

tions, Borovskikh (1979) and Borovskikh and Korolyuk (1981) studied their

asymptotic properties. More recently, Chan et al. (2007) studied smoothness

of the scale functions. Hubalek and Kyprianou (2007) described a parametric

family of scale functions explicitly. They constructed a spectrally negative

Lévy process having a particular pre-determined Wiener-Hopf factorization.

Kyprianou and Rivero (2008) employed the approach proposed in Hubalek

and Kyprianou (2007) and combined it with methods of the potential analysis

of subordinators. It appears that the theory of special Bernstein functions is

closely related to the theory of scale functions. The authors found pairs of

spectrally negative Lévy processes whose scale functions are conjugate to one

another in an appropriate sense. They also proposed new explicit examples of

conjugate pairs of scale functions. Surya (2008) developed a robust numerical

method to compute the scale function of a general spectrally negative Lévy

process. The method is based on the Esscher transform of a measure under

which the scale function is determined.

Notion of resolvent goes back to 60s of the last century. Takács (1966) de-

termined the probabilities of the first exit from an interval [−y, x] by a semi-
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continuous process without Gaussian component:

P[Ay] =
W (x)

W (B)
, P[Ax] = 1 − W (x)

W (B)
, B = x + y.

The function W (x), x ≥ 0 was defined by its Laplace transform:
∫ ∞

0
e−pxW (x) dx =

1

k(p)
, ℜ(p) > c,

where c ≥ 0 is a unique root of the equation k(p) = 0 in the semi-plane ℜ(p) ≥
0. Its modification, the function W s(x), x ≥ 0, whose Laplace transform is

given as follows
∫ ∞

0
e−pxW s(x) dx =

1

k(p) − s
, ℜ(p) > c(s), s ≥ 0

is known as a scale function or the resolvent. Here c(s) > 0, s > 0 is the

unique positive solution of the equation k(p)−s = 0 in the semi-plane Rep > 0.

Korolyuk (1975) introduced the term resolvent and potential for the functions

W s(x), x ≥ 0 and W (x), x ≥ 0, and the notation Rs(x), Rs in case of the

compound Poisson process with positive jumps and negative drift with Laplace

exponent (2.2.10). Later the function W s(x), x ≥ 0, was introduced in Suprun

and Shurenkov (1975), Suprun (1976), Borovskikh (1979) for the spectrally

one-sided Lévy processes. The authors also used notation and terminology

as in Korolyuk (1975). Here and in the sequel we will adopt the following

definition and notation.

Definition 2.2.5. The function Rs(x) : [0,∞) → [0,∞), x ≥ 0, given by

Rs(x) =
1

2πi

∫ γ+i∞

γ−i∞
exp 1

k(p) − s
dp, γ > c(s) s ≥ 0, (2.2.11)

is called the scale function of the spectrally one-sided Lévy process. Here c(s)

is the unique root of the equation k(p) − s = 0 in the semi-plane ℜ(p) > 0.

2.2.3 Compound Poisson process with two-sided jumps

Another important example of a Lévy process is the compound Poisson process

{Xt; t ≥ 0} whose Laplace exponent is given by

k(p) = c

∫ ∞

0

(

e−px − 1
)

dF (x), ℜ(p) = 0, (2.2.12)
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where ξ is a jump size, F (x) = P [ξ ≤ x] , x ∈ R is the cumulative distribution

function of the jumps, c > 0 is the rate of the jumps.

That is to say that

X(t) =

N(t)
∑

k=0

ξk, t ≥ 0

where ξ0 = 0, ξk ∼ ξ are independent identically distributed variables with

distribution function F (x); {N(t); t ≥ 0}, N(0) = 0 is an ordinary Poisson

process withe parameter c, independent from {ξk; k ≥ 0}. In particular, if the

distribution function is of the form

F (x) = aexλI{x≤0} + (a + (1 − a)P [η < x])I{x>0}, a ∈ (0, 1), λ > 0,

where the r.v. η ∈ (0,∞), then

k(p) = a1
p

λ − p
+ a2

(

E e−pη − 1
)

, ℜ(p) = 0, (2.2.13)

where a1 = ac, a2 = (1 − a)c, c > 0, a ∈ (0, 1).

Note, that inter-arrival times of the jumps of the process Xt are exponentially

distributed with parameter c. With probability 1 − a there occur positive

jumps of size η, and with probability a there occur negative jumps of value

−γ, where γ is exponentially distributed with parameter λ. Here and in the

sequel we will call such process the compound Poisson process with a negative

exponential component. The first term of (2.2.13) is the simplest case of a

rational function, while the second term is nothing but the Laplace exponent

of a compound Poisson process with positive jumps of value η and intensity

of jumps a2. It is a well-known fact (see for instance Borovkov (1972)), that

in this case the characteristic equation k(p) − s = 0, s > 0 has a unique root

c(s) ∈ (0, λ) in the semi-plane ℜ(p) > 0. In this case the integral transforms

of X+
νs

, X−
νs

are such that

E e−pX−
νs =

c(s)

λ

λ − p

c(s) − p
, ℜ(p) ≤ 0, (2.2.14)

E e−pX+
νs =

sλ

c(s)
(p − c(s))R(p, s), ℜ(p) ≥ 0, (2.2.15)
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where

R(p, s) =
1

(λ − p)(k(p) − s)
, ℜ(p) ≥ 0, p 6= c(s). (2.2.16)

It follows from the first two equalities of (2.2.3) and the formulae (2.2.14),

(2.2.15) that the integral transforms of the joint distributions of {τx, T x},
{τx, Tx} are given by

E
[

e−sτx ;Tx ∈ du
]

= (λ − c(s)) e−xc(s)−λu du = Ee−sτxP[γ ∈ du], (2.2.17)

∫ ∞

0
e−px Ee−sτx−zXτx dx =

1

p

(

1 − p + z − c(s)

z − c(s)

R(p + z, s)

R(z, s)

)

, (2.2.18)

where ℜ(p) > 0, ℜ(z) ≥ 0. Note that the random variables τx, Tx are indepen-

dent and for all x ≥ 0 the value of the overshoot Tx is exponentially distributed

with parameter λ. This property is a characteristic feature of the process in-

troduced. Observe that the function R(p, s) is analytic in the semi-plane

ℜ(p) > c(s) with respect to p, and lim
p→∞

R(p, s) = 0. Therefore, it allows a rep-

resentation in the form of an absolutely convergent Laplace integral (Ditkin

and Prudnikov (1966, p.71)):

R(p, s) =

∫ ∞

0
e−pxRs(x) dx, ℜ(p) > c(s). (2.2.19)

We will call the function Rx(s), x ≥ 0 the resolvent of the compound Poisson

process with a negative exponential component. We assume that Rs(x) = 0,

for x < 0. Note, that Rs(0) = lim
p→∞

p R(p, s) = (c + s)−1, (p is real) and

P[X−
νs

= 0] =
c(s)

λ
, P[X+

νs
= 0] =

sλ

c(s)(s + c)
.

It follows from (2.2.15) that

R(p, s) =
c(s)

sλ

1

p − c(s)
E e−pX+

νs , ℜ(p) > c(s). (2.2.20)

The functions which enter the right-hand side of (2.2.20), are the Laplace

transforms of certain functions for ℜ(p) > c(s). Therefore, the original func-

tions of the left-hand side and the right-hand side of (2.2.20) coincide, and

Rs(x) =
c(s)

sλ

∫ x

−0
ec(s)(x−u)dP[X+

νs
< u], x ≥ 0, (2.2.21)
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which is the resolvent representation of the compound Poisson process with

a negative exponential component. The representation (2.2.21) implies that

Rs(x), x ≥ 0 is a positive, monotone, continuous, increasing function of an

exponential order, i.e. there exists 0 < A(s) < ∞ such that for all x ≥ 0

Rs(x) < A(s) exp{xc(s)}, A(s) < ∞. Therefore,

∫ ∞

0
Rs(x)e−αxdx < ∞, α > c(s).

Moreover, in the neighborhood of any x ≥ 0 the function Rs(x) has bounded

variation. Hence, the inversion formula Ditkin and Prudnikov (1966, p. 68) is

valid:

Rs(x) =
1

2πi

∫ α+i∞

α−i∞
expR(p, s) dp, α > c(s). (2.2.22)

The latter formula can serve as a definition of the resolvent of the compound

Poisson process with exponential component. This definition is useful for solv-

ing two-boundary problems, since it allows to invert the Laplace transforms

that appear in the analytic expressions for the functionals studied. In order

to illustrate this, we give some examples:

fx(s) = 1 − sλ

c(s)
Rs(x) + sλSs(x),

f̃x(c(s)) = E
[

e−sτx−c(s)T x
; τx < ∞

]

= exc(s) − Rs(x)r(s), (2.2.23)

where

Ss(x) =

∫ x

0
Rs(u) du r(s) =

d

dp
R(p, s)−1

∣

∣

∣

∣

p=c(s)

.

The relations (2.2.23) can be derived from formula (2.2.18) for z = 0 and

z = c(s) respectively and from the definition of the resolvent (2.2.22).

The knowledge of the one-boundary characteristics of the process allows to

solve a more complicated problem, i.e. a two-sided exit problem, which is the

topic of the next section.
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2.3 First exit from the interval

The first two-boundary problem we are going to consider is determining the

integral transform of the joint distribution of the first exit time and the value

of the overshoot through the boundary at this instant. This joint distribution

will play a key role for solving other two-boundary problems. Let B > 0 be

fixed, x ∈ [0, B], y = B − x, X0 = 0. Denote by

χ = inf{t > 0 : Xt /∈ [−y, x]}

the first exit time from the interval [−y, x] by the process. Note, that χ is

a Markov time of the process (Skorokhod (1964)), and that P [χ < ∞] = 1.

Observe, that the exit from the interval can occur either through the upper

boundary x, or through the lower boundary −y. In view of this remark we

introduce the following events

Ax = {Xχ > x}, i.e. the exit occurs through the upper boundary;

Ay = {Xχ < −y}, i.e. the process exits the interval through the lower bound-

ary. Denote by

T = (Xχ − x)IAx + (−Xχ − y)IAy ∈ R+, P [Ax + Ay] = 1

the value of the overshoot through the boundary at the instant of the first exit

from the interval. Here IA = IA(ω) is the indicator of the set A.

We now give a short review of the existing literature related to the study of

the joint distribution of the first exit time χ and the value of the overshoot T.

Ito and McKean (1965) derived the Laplace transforms of the first exit time

χ from the interval by the Wiener process. Takacs (1967) determined the

exit probabilities for the spectrally one-sided Lévy process without Gaussian

component (σ = 0 in the defining formula (2.2.7) of Laplace exponent) in

terms of the scale function. Emery (1973) obtained the exit probabilities

for the spectrally one-sided Lévy process (2.2.7) in terms of the scale func-

tions. For the general Lévy process with Laplace exponent (2.2.1) Gihman and

Skorokhod (1973) (p.450) determined the joint distribution of {X−
t ,Xt,X

+
t },

where X+
t = sup

u≤t
Xu, X−

t = inf
u≤t

Xu. For determining the joint distribution of
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χ, {χ, T} Shurenkov, for instance, suggested to use the formulae of Dynkin

(1965, p.191) which are valid for any homogeneous Markov process. Utilizing

this idea, Suprun and Shurenkov (1975) obtained the representations for the

Laplace transform of the distribution of the first exit time χ in terms of the

scale functions. (s ≥ 0)

E
[

e−sχ;Ay

]

=
Rs(x)

Rs(B)
, (2.3.1)

E
[

e−sχ;Ax
]

= 1 − Rs(x)

Rs(B)
− s

Rs(x)

Rs(B)

∫ B

0
Rs(u) du + s

∫ x

0
Rs(u) du,

For the compound Poisson process with negative drift whose Laplace expo-

nent is given by (2.2.10), the representations (2.3.1) were found by Korolyuk

(1975). Korolyuk and Shurenkov (1977) determined main boundary func-

tionals for the random walks defined on a Markov chain. In particular, they

introduced a matrix resolvent and found matrix analogues of the formulae

(2.3.1). Shurenkov (1978) redetermined the Laplace transforms of the joint

distribution of {χ,Xχ} in terms of the joint distribution of {X−
t ,Xt,X

+
t } and

the measure Π(A), for the spectrally one-sided Lévy processes:

E
[

e−sχ;Xχ < l
]

=

∫ x

−y

[

Rs(y)

Rs(B)
Rs(x − u) − Rs(−u)

]

Π([l − y − u,−∞)) du,

(2.3.2)

where s > 0, l < −y,

Rs(y)

Rs(B)
Rs(x − u)du−Rs(−u) du =

∫ ∞

0
e−stP[−y ≤ X−

t , Xt ∈ du, X+
t ≤ x] dt.

In the same article the weak convergence was established for the distribution

of the overshoot through the boundary. To prove (2.3.2), the author employed

the Dynkin’s formulae, Dynkin (1965, p.191). Kemperman (1963) derived the

factorization identities for random walks, and Pecherskii (1974) proved these

identities for Lévy processes. It is worth mentioning that in Kemperman

(1963), Pecherskii (1974), Shurenkov (1978) the joint distribution of {χ, T}
was determined in terms of the joint distribution of {X−

t ,Xt,X
+
t } and the

measure Π(A). This fact makes it difficult to employ these formulae for solving
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other two-boundary problems. Our contribution is that we use one-boundary

functionals of the process, which allows to determine other characteristics of

the process.

We now present the main result of this section. For all x, u ≥ 0 we define

fx(du, s) = E
[

e−sτx
;T x ∈ du

]

, fx(du, s) = E
[

e−sτx ;Tx ∈ du
]

.

For x ∈ [0, B], y = B − x we will use the following notation

F x(du, s) = fx(du, s) −
∫ ∞

0
fy(dv, s)f v+B(du, s),

Fy(du, s) = fy(du, s) −
∫ ∞

0
fx(dv, s)fv+B(du, s).

Theorem 2.3.1 (Kadankov and Kadankova (2005b)). Let {Xt; t ≥ 0} X(0) =

0 be the real-valued Lévy process with Laplace exponent (2.2.1), B > 0 be fixed

and x ∈ [0, B], y = B−x. Then the integral transforms of the joint distribution

of {χ, T} satisfy the following formulae for s > 0

V x(du, s) = E
[

e−sχ;T ∈ du,Ax
]

= F x(du, s) +

∫ ∞

0
F x(dv, s)Ks

+(v, du),

Vy(du, s) = E
[

e−sχ;T ∈ du,Ay

]

= Fy(du, s) +

∫ ∞

0
Fy(dv, s)Ks

−(v, du),

(2.3.3)

where

Ks
±(v, du) =

∑

n∈N

K
(n)
± (v, du, s), v ≥ 0 (2.3.4)

are the Neumann series of the successive iterations, N = {1, 2, ...};

K
(1)
± (v, du, s) = K±(v, du, s),

K
(n+1)
± (v, du, s) =

∫ ∞

0
K

(n)
± (v, dl, s)K±(l, du, s), n ∈ N, (2.3.5)

are the successive iterations of the kernels K±(v, du, s), which are defined as

follows:

K+(v, du, s) =

∫ ∞

0
fv+B(dl, s)f l+B(du, s),

K−(v, du, s) =

∫ ∞

0
f v+B(dl, s)fl+B(du, s). (2.3.6)
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Proof. In view of the total probability law combined with the strong Markov

property of the process we can write the following system for the functions

V x(du, s), Vy(du, s) :

fx(du, s) = V x(du, s) +

∫ ∞

0
Vy(dv, s)f v+B(du, s),

fy(du, s) = Vy(dv, s) +

∫ ∞

0
V x(dv, s)fv+B(du, s). (2.3.7)

The first equation reflects the fact the first passage time of the upper boundary

x can be realized either on the sample paths of the process Xt which do not

intersect the lower boundary −y (the first term in the right-hand side) or on

the sample paths which do intersect the lower boundary −y and then intersect

the upper boundary x (the second term in the right-hand side). We also give

a brief explanation of this equation. It is obvious that

E
[

e−sτx
;T x ∈ du, τx < τy

]

= E
[

e−sχ;T ∈ du,Ax
]

,

E
[

e−sτy ;Ty ∈ du, τ y < τx
]

= E
[

e−sχ;T ∈ du,Ay

]

.

In view of the total probability law the following chain of equalities is valid:

E
[

e−sτx
;T x ∈ du

]

= E
[

e−sτx
;T x ∈ du, τx < τy

]

+ E
[

e−sτx
;T x ∈ du, τy < τx

]

= E
[

e−sχ;T ∈ du,Ax
]

+ E
[

e−sχe−sτB+T
;TB+T ∈ du,Ay

]

. (2.3.8)

Since χ is a Markov time of the process, then the random variables τB+T , TB+T

do not depend on the sigma algebra Fχ, generated by the events {X(u) <

v } ∩ {χ > u } for all u, v. Hence

E
[

e−sχe−sτB+T
;TB+T ∈ du,Ay

]

=

∫ ∞

0
Vy(dv, s)E

[

e−sτv+B
;T v+B ∈ du

]

.

Substituting the right-hand side of the latter equality in (2.3.8), we get the

first formula of (2.3.7). The second equality can be verified analogously. Let

us turn now to the system of the integral equations (2.3.7). It is analogous

to a system of linear equations with two unknowns and can be solved by a

substitution method. In view of this remark we substitute the expression for

the function Vy(du, s) from the second equation into the first one, which yields

V x(du, s) = F x(du, s) +

∫ ∞

l=0

∫ ∞

v=0
V x(dv, s)fv+B(dl, s)f l+B(du, s). (2.3.9)
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Changing the order of integration in the second term of the equation (2.3.9),

we obtain

V x(du, s) = F x(du, s) +

∫ ∞

0
V x(dv, s)K+(v, du, s) (2.3.10)

i.e. a linear integral equation for the function V x(du, s). The kernel K+(v, du, s)

of this equation obeys the following inequality for v, u ∈ R+, s > s0 > 0

K+(v, du, s) =

∫ ∞

0
E
[

e−sτv+B ;Tv+B ∈ dl
]

E
[

e−sτ l+B
;T l+B ∈ du

]

≤
∫ ∞

0
E
[

e−sτv+B ;Tv+B ∈ dl
]

Ee−sτ l+B

≤ Ee−sτB

∫ ∞

0
E
[

e−sτv+B ;Tv+B ∈ dl
]

≤ Ee−sτB
Ee−sτB ≤ λ < 1, s > s0 > 0,

where

λ = Ee−s0τB
Ee−s0τB < 1, s0 > 0.

To derive this chain of inequalities, we used the relation Ee−sτv+B ≤ Ee−sτB
,

v ≥ 0, which is the result of the following chain of relations

Ee−sτv+B
= E

[

e−sτB
;TB > v

]

+

∫ v

0
E
[

e−sτB
;TB ∈ du

]

Ee−sτv−u

≤ E
[

e−sτB
;TB > v

]

+ E
[

e−sτB
;TB ≤ v

]

= Ee−sτB
.

It can be shown similarly that Ee−sτv+B ≤ Ee−sτB , v ≥ 0. For the sequence of

the n-th iterations

K
(1)
+ (v, du, s) = K+(v, du, s), K

(n+1)
+ (v, du, s) =

∫ ∞

0
K

(n)
+ (v, dl, s)K+(l, du, s),

of the kernel K+(v, du, s), we deduce by means of the mathematical induction

that for all v, u ∈ R+, s > s0 > 0 K
(n)
+ (v, du, s) < λn, n ∈ N. Thus, the

series

Ks
+(v, du) =

∑

n∈N

K
(n)
+ (v, du, s) < λ (1 − λ)−1

of the successive iterations of the kernel K+(v, du, s) converges uniformly for all

v, u ∈ R+, s > s0 > 0. Thus, we can apply the method of successive iterations
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(Petrovskii (1965)) to solve the integral equation (2.3.10). This yields

V x(du, s) = F x(du, s) +

∫ ∞

0
F x(dv, s)Ks

+(v, du), s > s0.

Letting s → 0, we get the first equality of the theorem. The second equality

can be verified analogously. N

2.3.1 First exit from the interval by a spectrally positive Lévy

process

Let {Xt; t ≥ 0} be the spectrally positive Lévy process whose Laplace exponent

is given by (2.2.7). In order to determine the joint distribution of {χ, T}, we

apply the results of Theorem 2.3.1. In this case the Neumann series (2.3.4)

are the geometric series. We now state a corollary of Theorem 2.3.1.

Corollary 2.3.1. Let {Xt; t ≥ 0} be the spectrally positive Lévy process whose

Laplace exponent is given by (2.2.7), s > 0. Then

(i) the integral transforms of the joint distribution of {χ, T} satisfy the

equalities:

E
[

e−sχ;Ay

]

= e−yc(s) 1 − Gs
x(c(s))

1 − Gs
B(c(s))

, (2.3.11)

V x(du, s) = E
[

e−sτx
;T x ∈ du

]

− E
[

e−sχ;Ay

]

E
[

e−sτB
;TB ∈ du

]

,

where

Gs
x(z) = E

[

e−sτx−zXτx ; τx < ∞
]

= 1 − e−xc(s)Rs(x)r(s), x ≥ 0;

(ii) the integral transform of the distribution of the first exit time is such

that

E
[

e−sχ;Ay

]

=
Rs(x)

RB(s)
, (2.3.12)

E
[

e−sχ;Ax
]

= 1 − Rs(x)

RB(s)
− s

Rs(x)

RB(s)

∫ B

0
Rs(u) du + s

∫ x

0
Rs(u) du,

where Rs(x) is the scale function (2.2.11) of the spectrally positive Lévy

process.
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Proof. It is worth mentioning that these results are not new. Formulae

(2.3.12) were obtained by means of the resolvent methods in Suprun (1976)

and Suprun and Shurenkov (1975). In case of the Poisson process with positive

jumps and negative drift (2.2.10) formulae (2.3.12) were derived in Korolyuk

(1975). Equalities (2.3.11) were obtained in Kadankov and Kadankova (2004)

and in Kadankova (2003a) after solving the system (2.3.7) for a spectrally

positive Lévy process. These results can also be found in the monograph

Kyprianou (2006) (see also Pistorius (2004) and the references therein).

Note, that it is the knowledge of the distribution of the value of the overshoot

through the boundary which allows us to solve other two-boundary problems

for the spectrally one-sided Lévy processes (see next sections).

We now verify equalities (2.3.11) by applying the results of the theorem. For

the spectrally positive Lévy process the function Fy(du, s) and the successive

iterations K
(n)
− (v, du, s), n ∈ N are easy to calculate:

Fy(du, s) = e−yc(s) (1 − Gs
x(c(s))) δ(u) du,

K
(n)
− (v, du, s) = evc(s)Gs

v+B(c(s)) (G s
B(c(s)))n−1 δ(u) du, n ∈ N,

where δ(·) is the delta function,
∞
∫

−∞
f(u) δ(u − a) du = f(a). The Neumann

series of the successive iterations K−(v, du, s) is a geometric progression, whose

sum is equal to:

Ks
−(v, du) =

∑

n∈N

K
(n)
− (v, du, s) = evc(s) Gs

v+B(c(s))

1 − Gs
B(c(s))

δ(u) du,

Substituting the expressions for the functions Fy(du, s), Ks
−(v, du) into the

second formula of the theorem, we find that

Vy(du, s) = E
[

e−sχ;T ∈ du,Ay

]

= e−yc(s) 1 − Gs
x(c(s))

1 − Gs
B(c(s))

δ(u) du. (2.3.13)

Integrating (2.3.13) with respect to u ∈ R+ yields the first formula of (2.3.11).

The function F x(du, s) and the successive iterations K
(n)
+ (v, du, s) are given

as follows:

F x(du, s) = E
[

e−sτx
;T x ∈ du

]

− e−yc(s) E
[

e−sτB
;TB ∈ du

]

,

K
(n)
+ (v, du, s) = e−c(s)(v+B) (Gs

B(c(s)))n−1 E
[

e−sτB
;TB ∈ du

]

, n ∈ N.
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The Neumann series of the successive iterations of the kernel K+(v, du, s) is a

geometric progression, whose sum is equal to:

Ks
+(v, du) =

∑

n∈N

K
(n)
+ (v, du, s) =

e−c(s)(v+B)

1 − Gs
B(c(s))

E
[

e−sτB
;TB ∈ du

]

.

Substituting the expression for the functions F x(du, s), Ks
+(v, du) into the first

formula of the theorem, we obtain

V x(du, s) = E
[

e−sτx
;T x ∈ du

]

− e−yc(s) 1 − Gs
x(c(s))

1 − Gs
B(c(s))

E
[

e−sτB
;TB ∈ du

]

(2.3.14)

i.e. the second formula of (2.3.11). Integrating the equalities (2.3.13), (2.3.14)

with respect to u ∈ R+, we get

E
[

e−sχ;Ay

]

= e−yc(s) 1 − Gs
x(c(s))

1 − Gs
B(c(s))

,

E
[

e−sχ;Ax
]

= Ee−sτx − e−yc(s) 1 − Gs
x(c(s))

1 − Gs
B(c(s))

Ee−sτB
.

Employing the definition of the scale function (2.2.11) and the integral trans-

form of the joint distribution of {τx, T x} (2.2.9), we derive the representation

of the functions Gs
x(c(s)), Ee−sτx

in terms of the scale function:

Gs
x(c(s)) = 1 − r(s)e−xc(s)Rs(x), Ee−sτx

= 1 − s

c(s)
Rs(x) + s

∫ x

0
Rs(u) du,

where r(s) = d
dpk(p)

∣

∣

∣

p=c(s)
. Substituting these expressions into the latter

equalities, we derive

E
[

e−sχ;Ay

]

=
Rs(x)

RB(s)
,

E
[

e−sχ;Ax
]

= 1 − Rs(x)

RB(s)
− s

Rs(x)

RB(s)

∫ B

0
Rs(u) du + s

∫ x

0
Rs(u) du

i.e. the formulae (2.3.12) of the corollary. N
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2.3.2 Exit by a standard Wiener process

Let {wt; t ≥ 0} be a standard Wiener process whose Laplace exponent is

k(p) = σ2p2/2. In this case P[T x = Tx = 0] = 1,

E
[

e−sτx
;T x ∈ du

]

= e−x
√

2s/σδ(u) du = E
[

e−sτx ;Tx ∈ du
]

,

and the formulae of Theorem 2.3.1 have a very simple form.

Corollary 2.3.2. Let {wt; t ≥ 0}, w0 = 0 be the standard real-valued Wiener

process, x ∈ [0, B], y = B − y, and

χ = inf{t > 0 : wt /∈ [−y, x]}, Ax = {wχ = x}, Ay = {wχ = −y}

be the first exit time from the interval [−y, x] and the events on which it can

take place. Then

(i) the Laplace transforms of χ are such that

E
[

e−sχ;Ax
]

=
sinh

(

y
√

2s/σ
)

sinh
(

B
√

2s/σ
) , E

[

e−sχ;Ay

]

=
sinh

(

x
√

2s/σ
)

sinh
(

B
√

2s/σ
) ,

Ee−sχ = cosh

(

x − y

2

√
2s/σ

)/

cosh

(

B

2

√
2s/σ

)

; (2.3.15)

(ii) the distribution of χ admits the following representation:

P [χ ∈ dt;Ax] =
πσ2

B2

∑

k∈N

k exp

(

− t

2
(kπσ/B)2

)

sin
( x

B
kπ
)

dt,

P [χ ∈ dt;Ay] =
πσ2

B2

∑

k∈N

k exp

(

− t

2
(kπσ/B)2

)

sin
( y

B
kπ
)

dt,

(2.3.16)

P [χ ∈ dt] =
2πσ2

B2

∞
∑

k=0

(2k + 1)e−
t
2
((2k+1)πσ/B)2 sin

( x

B
(2k + 1)π

)

dt;

(iii) the moments of χ can be calculated as follows:

Eχn =
1

(2n − 1)!!

(

B

2σ

)2n n
∑

k=0

(−1)k
(

x − y

B

)2k (2n

2k

)

En−k, n ∈ N.

(2.3.17)
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In particular, for x = y = B/2

Eχn =
1

(2n − 1)!!

(

B

2σ

)2n

En, n ∈ N+,

where E1 = 1, E2 = 5, . . . are the Euler numbers, defined by their

generating function:

sec x − 1 ≡ E1x
2

2!
+

E2x
4

4!
+

E3x
6

6!
+ . . . (2.3.18)

n!! =



















n × (n − 2) × . . . 5 × 3 × 1, n is odd;

n × (n − 2) × . . . 6 × 4 × 2, n is even;

1, n=-1,0.

Proof. For the Wiener process we have that

K±(v, du, s) = e−(v+2B)
√

2s/σδ(u) du, Ks
±(v, du) =

e−(v+2B)
√

2s/σ

1 − e−2B
√

2s/σ
δ(u) du.

Inserting these expressions into the equalities (2.3.3), we derive formulae (2.3.15)

of the corollary. It is worth mentioning that formulae (2.3.15) were derived in

Ito and McKean (1965). In order to determine the functions

E
[

e−sχ;Ax
]

= E
[

e−sχ; τx < τy

]

, E
[

e−sχ;Ay

]

= E
[

e−sχ; τy < τx
]

,

the authors of Ito and McKean (1965) derived a system of the equations similar

to (2.3.7), for the case of the Wiener process. They also found that

P [χ ∈ dt;Ax] =
1

2πi

∫ γ+i∞

γ−i∞
est ey

√
2s/σ − e−y

√
2s/σ

eB
√

2s/σ − e−B
√

2s/σ
ds, γ > 0.

Observe that the integrand in the later expression has simple poles in

sk = −1/2 (kπσ/B)2 , k ∈ Z+ = {0, 1, . . . }.

Thus, choosing an appropriate integration contour (see Ditkin and Prudnikov

(1966)), we evaluate the latter integral, which results into the first equality

of (2.3.16). The second and the third formula of (2.3.16) follow from the
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first one. It is worth mentioning that the distributions (2.3.16) are the limit

distributions for the corresponding distributions of the first exit time for the

Lévy processes and random walks. Moreover, the formulae (2.3.16) are the

asymptotic expansions of the probabilities which enter their left-hand sides.

The formula (2.3.17) can be derived from the series expansion of the functions

coshx and (cosh x)−1. N

Remark 2.3.1. As a byproduct we also state the formula for the following

series (x, y > 0, x + y = B)

∞
∑

k=0

(−1)k

(2k + 1)2n+1
cos

(

x − y

2B
(2k + 1)π

)

=
π2n+1

22n+2

n
∑

k=0

(−1)k
(

x − y

B

)2k En−k

(2k)!(2n − 2k)!
,

which can be derived from (2.3.17) and the third formula of (2.3.16). In par-

ticular, for x = y, we obtain

∞
∑

k=0

(−1)k

(2k + 1)2n+1
=

π2n+1

22n+2

1

(2n)!
En, E0 = 1, n ∈ Z+,

where En, n ≥ 0 are the Euler numbers defined by (2.3.18).

2.3.3 Exit from the interval by a compound Poisson process

with arbitrary positive and exponential negative jumps

In this section we will apply the results of Theorem 2.3.1, to determine the

joint distribution of the first exit time and the value of the overshoot by the

compound Poisson process with Laplace exponent (2.2.13).

Corollary 2.3.3 (Kadankov and Kadankova (2006)). Let {Xt; t ≥ 0} be the

compound Poisson process with Laplace exponent (2.2.13). Then for s > 0 :

(i) the integral transforms of the joint distribution of {χ, T} satisfy the

equalities:

Vy(du, s) = fy(s)
(

1 − Ee−sτx−c(s)Xτx

)

(1 − T (s))−1λe−λudu,

V x(du, s) = fx(du, s) − E
[

e−sχ;Ay

]

Efγ+B(du, s), (2.3.19)
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where fy(s) = Ee−sτy ,

Efγ+B(du, s) = λ

∫ ∞

0
e−λvf v+B(du, s) dv,

T (s) = fB(s)

∫ ∞

0
Efγ+B(du, s)e−uc(s);

(ii) the Laplace transforms of χ are such that

Vy(s) = E
[

e−sχ;Ay

]

= fy(s)
(

1 − Ee−sτx−c(s)Xτx

)

(1 − T (s))−1,

V x(s) = E
[

e−sχ;Ax
]

= fx(s) −E
[

e−sχ;Ay

]

Efγ+B(s), (2.3.20)

where

fx(s) = Ee−sτx
, Efγ+B(s) = λ

∫ ∞

0
e−λvf v+B(s) dv;

(iii) the Laplace transform of χ admits the following representation:

Vy(du, s) =
Rs(x)

Rλ
s (B)

λe−λu du, Vy(s) =
Rs(x)

Rλ
s (B)

, (2.3.21)

V x(s) = 1 − Rs(x)

Rλ
s (B)

[

1 + sλSλ
s (B)

]

+ sλSs(x), (2.3.22)

∫ ∞

0
e−stP[χ > t] dt = λ

Rs(x)

Rλ
s (B)

Sλ
s (B) − λSs(x), (2.3.23)

where Rs(x), x ≥ 0 is the scale function (2.2.22) of the compound Pois-

son process with negative exponential component, Ss(x) =
∫ x
0 Rs(u) du,

Rλ
s (B) = λ

∫ ∞

0
e−λvRs(v + B) du, Sλ

s (B) = λ

∫ ∞

0
e−λvSs(v + B) du.

Proof. To verify the statements of the corollary, we will use the results of

Theorem 2.3.1. Employing the equalities (2.2.17), (2.2.18) and the definitions

(2.3.6) of the kernels K±(v, du, s), we find that

K−(v, du, s) = fB(s)E
[

e−sτv+B−c(s)T v+B
]

λe−λudu,

K+(v, du, s) = e−c(s)vfB(s)Efγ+B(du, s).



36

Employing these equalities, mathematical induction and the formula (2.3.5),

we determine the successive iterations K
(n)
± (v, du, s), n ∈ N of the kernels

K±(v, du, s) :

K
(n)
− (v, du, s) = fB(s)E

[

e−sτv+B−c(s)T v+B
]

T (s)n−1λe−λu du,

K
(n)
+ (v, du, s) = e−vc(s)fB(s)T (s)n−1Efγ+B(du, s).

The series Ks
±(v, du) of the successive iterations K

(n)
± (v, du, s) are the geomet-

rical progressions, whose sums are equal to:

Ks
−(v, du) = fB(s)E

[

e−sτv+B−c(s)T v+B
]

(1 − T (s))−1 λe−λudu,

Ks
+(v, du) = e−vc(s)fB(s) (1 − T (s))−1 Efγ+B(du, s).

Inserting the expressions for the functions Ks
±(v, du) into (2.3.4) of Theorem

2.3.1, we obtain the equalities (2.3.19) of the corollary. Integrating (2.3.19)

with respect to u ≥ 0, we get (2.3.20). Now, using the definition (2.2.22) of

the scale function and the formulae (2.2.17), (2.2.18), we find the following

representations for the functions fx(s), Ee−sτx−c(s)Xτx :

fx(s) = 1 − sλ

c(s)
Rs(x) + sλSx(s),

E
[

e−sτx−c(s)Xτx
]

= 1 − e−xc(s)Rs(x)r(s), (2.3.24)

where r(s) = d
dpR(p, s)−1

∣

∣

∣

p=c(s)
. Substituting these expressions into (2.3.20),

we derive the representations (2.3.21)-(2.3.23) of the corollary. It is worth

mentioning that the representations similar to (2.3.21)-(2.3.23) were derived

for random walks with negative geometrical jumps in Kadankova (2003b). N

Another part of our research is studying the asymptotic behavior of the two-

boundary characteristics of the process. One of the results is given in the

following lemma. Denote µ = Eη, d2 = Eη2.

Lemma 2.3.1. Let {Xt; t ≥ 0} be the compound Poisson process whose

Laplace exponent is given by (2.2.13). Suppose, the following conditions are

satisfied:

EX1 = a1/λ − a2µ = 0, EX2
1 = 2a1/λ

2 + a2d
2 = σ2 < ∞. (2.3.25)
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Then for all x ≥ 0 the following limit equalities hold:

lim
B→∞

1

B
Rs/B2(xB) =

1

λσ

√

2

s
sinh

(

x
√

2s/σ
)

,

lim
B→∞

1

B
Rλ

s/B2(xB) =
1

λσ

√

2

s
sinh

(

x
√

2s/σ
)

, (2.3.26)

lim
B→∞

1

B2
Ss/B2(xB) =

1

λs

[

cosh
(

x
√

2s/σ
)

− 1
]

,

lim
B→∞

1

B2
Sλ

s/B2(xB) =
1

λs

[

cosh
(

x
√

2s/σ
)

− 1
]

. (2.3.27)

Proof. The proof of the lemma is based on using asymptotic properties of the

scale function of the process, which were studied for spectrally one-sided Lévy

processes in Takacs (1967), Shurenkov (1978), Suprun and Shurenkov (1981),

Suprun and Shurenkov (1989), and more profoundly in Borovskikh (1979),

Borovskikh and Korolyuk (1981), see also Kyprianou (2006). In the proof we

will use the explicit form of the Laplace exponent (2.2.13) of the process and

the following limiting equality

Ee−pη = 1 − µp +
1

2
σ2p2 + o(p2),

which is valid for small values of p > 0. Let us verify the first equality

of (2.3.26). Under the assumptions (2.3.25) the function R(p, s) (defined by

(2.2.16)) admits the following chain of equalities for B → ∞

R(p/B, s/B2) =
(

a1p/B + (λ − p/B)
[

a2(d
2p2/2B2 − µp/B) − s/B2 + o(1/B2

])−1

=
1

λ

(

1

B2
(σ2p2/2 − s) + o(1/B2)

)−1

, p, s > 0.

Hence

lim
B→∞

1

B2
R(p/B, s/B2) =

λ−1

σ2p2/2 − s
=

1

λσ

√

2

s

∫ ∞

0
e−px sinh

(

x
√

2s/σ
)

dx.

Since

1

B2
R(p/B, s/B2) =

1

B2

∫ ∞

0
e−up/BRs/B2(u) du =

1

B

∫ ∞

0
e−xpRs/B2(xB) dx,
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then

lim
B→∞

1

B
Rs/B2(xB) =

1

λσ

√

2

s
sinh

(

x
√

2s/σ
)

.

The second equality of (2.3.26) can be verified analogously. We are now ready

to verify the first equality of (2.3.27). The function

S(p, s) =

∫ ∞

0
e−xpSs(x) dx =

1

p
R(p, s), p, s > 0

obeys the following expansion under the assumptions (2.3.25) for large enough

values of B :

S(p/B, s/B2) =
B

λp

(

1

B2
(σ2p2/2 − s) + o(1/B2)

)−1

, p, s > 0.

It follows from the latter equality that

lim
B→∞

1

B3
S(p/B, s/B2) =

1

λp

1

σ2p2/2 − s
=

1

λs

∫ ∞

0
e−px

[

cosh
(

x
√

2s/σ
)

− 1
]

dx.

Since

1

B3
S(p/B, s/B2) =

1

B2

∫ ∞

0
e−xpSs/B2(xB) dx,

then

lim
B→∞

1

B2
Ss/B2(xB) =

1

λs

[

cosh
(

x
√

2s/σ
)

− 1
]

.

The second formula of (2.3.27) can be established analogously. N

Corollary 2.3.4. Let {Xt; t ≥ 0} be the compound Poisson process with

negative exponential component whose Laplace exponent is given by (2.2.13),

x, y > 0, x + y = 1, and let

χ(B) = inf{t : Xt /∈ [−yB, xB]}
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be the first exit time from the interval [−yB, xB]. Under the assumptions

(2.3.25) the following relations hold:

lim
B→∞

P

[

χ(B)

B2
∈ dt,AxB

]

= πσ2
∑

k∈N

ke−
t
2
(kπσ)2 sin (xkπ) dt,

lim
B→∞

P

[

χ(B)

B2
∈ dt,AyB

]

= πσ2
∑

k∈N

ke−
t
2
(kπσ)2 sin (ykπ) dt, (2.3.28)

lim
B→∞

P

[

χ(B)

B2
∈ dt

]

= 2πσ2
∞
∑

k=0

(2k + 1)e−
t
2
((2k+1)πσ)2 sin (x(2k + 1)π) dt.

Proof. Let x, y be such that x + y = 1. The formula (2.3.21) implies that

E

[

e−s χ(B)

B2 ;AyB

]

=
Rs/B2(xB)

Rλ
s/B2(B)

,

It follows from the limiting equalities (2.3.26) that

lim
B→∞

E

[

e−s χ(B)

B2 ;AyB

]

=
sinh

(

x
√

2s/σ
)

sinh
(√

2s/σ
) = E

[

e−sχ∗

;Ay

]

,

where χ∗ = inf{t : wt /∈ [−y, x]} is the first exit time form the interval by the

Wiener process with dispersion σ2. In view of the formulae (2.3.16) for B = 1

we have:

lim
B→∞

P

[

χ(B)

B2
∈ dt,AyB

]

= P [χ∗ ∈ dt,Ay] = πσ2
∑

k∈N

ke−
t
2
(kπσ)2 sin (ykπ) dt.

The formula (2.3.22) implies that

E

[

e−s
χ(B)

B2 ;AxB

]

= 1 −
Rs/B2(xB)

Rλ
s/B2(B)

[

1 +
sλ

B2
Sλ

s/B2(B)

]

+
sλ

B2
Ss/B2(xB).

Calculating the limits in the right-hand side of the latter equality as B → ∞,

we get

lim
B→∞

E

[

e−s χ(B)

B2 ;AxB

]

=
sinh

(

y
√

2s/σ
)

sinh
(√

2s/σ
) = E

[

e−sχ∗

;Ax
]

,

This equality and the formula (2.3.16) imply for B = 1 that

lim
B→∞

P

[

χ(B)

B2
∈ dt,AxB

]

= P [χ∗ ∈ dt,Ax] = πσ2
∑

k∈N

ke−
t
2
(kπσ)2 sin (xkπ) dt.
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The third equality of (2.3.28) immediately follows from the other two. Hence,

we established the weak convergence of the distribution of χ(B)/B2 to the

distribution of χ∗.N It is worth noting that Doney and Maller (2002) studied

the asymptotic behaviour of a Lévy process at the instant of the first exit. See

also Bertoin (1997) for the asymptotic behaviour of the first exit time by a

spectrally one-sided Lévy process.
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2.4 Supremum, infimum and the position of the

process

The aim of this section is to determine the joint distribution of the supremum,

infimum and the value of the Lévy process. We will derive the integral trans-

forms of this joint distribution in terms of the joint distribution of the first

exit time and the value of the overshoot through the boundary.

Let {Xt; t ≥ 0}, X0 = 0 be the Lévy process with Laplace exponent (2.2.1),

x, y ≥ 0. We will determine the function

Qs
p(−y, x) =

∫ x

−y
e−upP

[

−y ≤ X−
νs

, Xνs ∈ du, X+
νs

≤ x
]

= E
[

e−pXνs ;χ > νs

]

.

It is worth mentioning that the joint distribution of {X−
νs

,Xνs ,X
+
νs
} was ob-

tained in the monograph Skorokhod (1964), in terms of the distributions of Xt,

{τx, T x} and {τy, Ty}. In order to derive the equations for the unknown func-

tion, the authors used probabilistic reasoning based on the inclusion-exclusion

formula. The method of the successive iterations was applied to solve the

integral equations. Our contribution is that we find the joint distribution of

{X−
νs

,Xνs ,X
+
νs
} in terms of the distribution {χ, T} and of {Xνs ,X

±
νs
}, which

are given by (2.2.4). The following statement is true.

Theorem 2.4.1 (Kadankov and Kadankova (2005b)). Let {Xt; t ≥ 0}, X0 = 0

be the Lévy process whose Laplace exponent is given by (2.2.1), x, y ≥ 0,

B = x + y. Then the integral transform Qs
p(−y, x) of the joint distribution of

{X−
νs

,Xνs ,X
+
νs
} admits the following representation:

Qs
p(−y, x) = Ux(s, p) − eyp

∫ ∞

0
evpVy(dv, s)Uv+B(s, p),

Qs
p(−y, x) = Uy(s, p) − e−xp

∫ ∞

0
e−vpV x(dv, s)Uv+B(s, p), (2.4.1)

where

Ux(s, p) = E
[

e−pXνs ;X+
νs

≤ x
]

= Ee−pX−
νsE

[

e−pX+
νs ;X+

νs
≤ x

]

, ℜ(p) ≤ 0,

Uy(s, p) = E
[

e−pXνs ;X−
νs

≥ −y
]

= Ee−pX+
νsE

[

e−pX−
νs ;X−

νs
≥ −y

]

, ℜ(p) ≥ 0.
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In particular

P [χ > νs] = P
[

X+
νs

≤ x
]

−
∫ ∞

0
E
[

e−sχ;T ∈ dv,Ay

]

P
[

X+
νs

≤ v + B
]

(2.4.2)

= P
[

X−
νs

≥ −y
]

−
∫ ∞

0
E
[

e−sχ;T ∈ dv,Ax
]

P
[

X−
νs

≥ −v − B)
]

.

Proof. We start by verifying the first formula of (2.4.1). Observe, that the

increments of the process Xt on the exponential time interval [0, νs] given that

the upper boundary x is not exceeded, can be realized either on the sample

paths of the process which do not intersect the lower boundary −y, or on

the sample paths which do intersect the lower boundary −y, and then do

not exceed the upper boundary. In view of this remark, employing the total

probability law combined with the strong Markov property and the spacial

homogeneity of the process, we can write the following equation:

E
[

e−pXνs ;X+
νs

≤ x
]

= E
[

e−pXνs ;χ > νs

]

+

+

∫ ∞

0
E
[

e−sχ;T ∈ dv,Ay

]

e(v+y)pE
[

e−pXνs ;X+
νs

≤ v + B
]

, ℜ(p) ≤ 0.

(2.4.3)

Let us give more explantation, how we derived this equation. It is obvious that

the event {X+
t ≤ x} is equivalent to the event {τx > t}. Then in accordance

with the total probability law we write

E
[

e−pXt ;X+
t ≤ x

]

= E
[

e−pXt ;X+
t ≤ x, τy > t

]

+ E
[

e−pXt ; τx > t, τy ≤ t
]

=

E
[

e−pXt ;X−
t ≥ −y,X+

t ≤ x
]

+ E
[

ep(y+T )e−pθχXt−χ ;χ ≤ t, τB+T > t − χ,Ay

]

,

where θt is a shift operator. Since χ is a Markov time of the process, then

the increments of the process θχXt−χ and τB+T do not depend on the sigma

algebra Fχ. Hence,

E
[

ep(y+T )e−pθχXt−χ ;χ ≤ t, τB+T > t − χ,Ay

]

=

= epy

∫ t

0

∫ ∞

0
epvP [χ ∈ du, T ∈ dv,Ay]E

[

e−pXt−u ; τv+B > t − u
]

.
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Substituting the right-hand side of this equation into the previous equality,

we find that

E
[

e−pXt ;X+
t ≤ x

]

= E
[

e−pXt ;X−
t ≥ −y,X+

t ≤ x
]

+

+ epy

∫ t

0

∫ ∞

0
epvP [χ ∈ du, T ∈ dv,Ay ]E

[

e−pXt−u ;X+
t−u ≤ v + B

]

.

Multiplying this equality by the density s e−st of νs and integrating it with

respect to t ≥ 0, we obtain the formula (2.4.3). The equality (2.4.3) implies

the first formula of (2.4.1). The second formula of (2.4.1) can be verified

analogously. The equality (2.4.2) follows from (2.4.1) for p = 0. N

2.4.1 Supremum, infimum and the value of the spectrally pos-

itive Lévy process

Let {Xt; t ≥ 0}, X0 = 0 be the spectrally positive Lévy process with Laplace

exponent (2.2.7). The integral transforms of the joint distribution of {X−
νs

,Xνs ,X
+
νs
}

can be derived from (2.4.1) in terms of the scale function of the process. For

−y ≤ α < β ≤ x denote

Q̃s
α,β(−y, x) =

∫ ∞

0
e−stP

[

−y ≤ X−
t , Xt ∈ [α, β], X+

t ≤ x
]

dt. (2.4.4)

Corollary 2.4.1. Let {Xt; t ≥ 0}, X0 = 0 be the spectrally positive Lévy

process. Then the integral transform Qs
p(−y, x) of the joint distribution of

{X−
t ,Xt,X

+
t } is such that

Qs
p(−y, x) = Ux(s, p) − epy Rs(x)

Rs(B)
UB(s, p), B = x + y, (2.4.5)

Q̃s
α,β(−y, x) =

Rs(x)

Rs(B)

β
∫

α

Rs(u + y) du −
max{0,β}
∫

max{0,α}

Rs(u) du, (2.4.6)

where

Ux(s, p) = E
[

e−pXνs ;X+
νs

≤ x
]

=
c(s)

c(s) − p
E
[

e−pX+
νs ;X+

νs
≤ x

]

, (2.4.7)
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Proof. It follows from the corollary 2.3.1 that

Vy(du, s) = E
[

e−sχ;T ∈ du,Ay

]

=
Rs(x)

Rs(B)
δ(u) du.

Inserting the expression for Vy(du, s) into the first formula of (2.4.1) of Theo-

rem 2.4.1, we get the equality (2.4.5) of the corollary.

Now we will determine the function Ux(s, p), x ≥ 0. Employing formulae

(2.2.8) for the integral transforms of the distributions of X−
νs

, X+
νs

, and the

equality (2.2.4), we obtain the integral transform of the joint distribution of

{Xνs ,X
+
νs
} :

∫ ∞

0
e−zxUx(s, p) dx =

s

c(s) − p

(

1 − c(s) − p

z

)

1

k(p + z) − s
, ℜ(z) ≥ 0.

Taking into account the defining formula (2.2.11) of the scale function, we

invert the Laplace transforms with respect to z which enter the right-hand

side of the latter equality. This yields

Ux(s, p) =
s

c(s) − p
e−xpRs(x) − s

∫ x

0
e−upRs(u) du, x ≥ 0

i.e. the representation of Ux(s, p), x ≥ 0 in terms of the scale function. Sub-

stituting the expression for Ux(s, p) into (2.4.5), we find that

Qs
p(−y, x) = s

∫ x

−y
e−up

[

Rs(x)

Rs(B)
Rs(u + y) − Rs(u)

]

du

where Rs(x) = 0 for x < 0. Inverting the Laplace transforms in the right-hand

side of the latter equality, we get

P
[

−y ≤ X−
νs

, Xνs ∈ du, X+
νs

≤ x
]

= s
Rs(x)

Rs(B)
Rs(u + y) du − sRs(u) du

(2.4.8)

This density of the joint distribution of {X−
νs

,Xνs ,X
+
νs
} was determined (by

employing Dynkin’s formula) in Suprun (1976), Shurenkov (1978). Integrating

the equality (2.4.8) over the interval [α, β], we obtain (2.4.6). N

Corollary 2.4.2 (Kadankova (2004)). Let {wt; t ≥ 0}, w0 = 0 be the Wiener

process whose Laplace exponent is such that k(p) = σ2p2/2. Denote by w−
t =
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inf
u≤t

wu the running infimum and by w+
t = sup

u≤t
wu the running supremum of

the process. Then the joint distribution

q̄t
α,β(−y, x) = P

[

−y ≤ w−
t , wt ∈ [α, β], w+

t ≤ x
]

, −y ≤ α < β ≤ x

obeys the following equality for all x, y ≥ 0 (B = x + y)

q̄t
α,β(−y, x) =

4

π

∞
∑

ν=1

1

ν
exp

(

− t

2
(πνσ/B)2

)

× sin
( x

B
πν
)

sin

(

2x − α − β

2B
πν

)

sin

(

β − α

2B
πν

)

. (2.4.9)

Proof. Firstly, we calculate the scale function of the Wiener process.

Rs(x) =
1

2πi

γ+i∞
∫

γ−i∞

epx d p
1
2 p2σ2 − s

=
1

σ

√

2

s
sinh

(x

σ

√
2s
)

, (2.4.10)

where γ >
√

2s/σ, sinhu = (eu − e−u) /2. Inserting the expression for the

scale function (2.4.10) into (2.4.6), we obtain

Q̃s
α,β(−y, x) =

1

s

sinh x
σ

√
2s

sinh B
σ

√
2s

[

cosh

(

y + β

σ

√
2s

)

− cosh

(

y + α

σ

√
2s

)]

− 1

s

[

cosh

(

β+

σ

√
2s

)

− cosh

(

α+

σ

√
2s

)]

, (2.4.11)

where α+ = max{0, α}, β+ = max{0, β}, cosh u = (eu + e−u) /2. We have to

distinguish three cases, namely 0 ≤ α < β, α < 0 < β, α < β ≤ 0. Then the

formula (2.4.11) implies that

Q̃s
α,β(−y, x) =

2

s

sinh y
σ

√
2s

sinh B
σ

√
2s

sinh

(

2x − α − β

2σ

√
2s

)

sinh

(

β − α

2σ

√
2s

)

,

0 ≤ α < β;

Q̃s
α,β(−y, x) =

2

s

sinh y
σ

√
2s

sinh B
σ

√
2s

sinh

(

2x − β

2σ

√
2s

)

sinh

(

β

2σ

√
2s

)

(2.4.12)

+
2

s

sinh x
σ

√
2s

sinh B
σ

√
2s

sinh

(

2y + α

2σ

√
2s

)

sinh

(−α

2σ

√
2s

)

, α < 0 < β;

Q̃s
α,β(−y, x) =

2

s

sinh x
σ

√
2s

sinh B
σ

√
2s

sinh

(

2y + α + β

2σ

√
2s

)

sinh

(

β − α

2σ

√
2s

)

,

α < β ≤ 0.
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Let us consider the first equality of (2.4.12). Employing the inversion formula

(Doutsch (1960)), we get

q̄t
α,β(−y, x) =

1

2πi

∫ γ+i∞

γ−i∞
est Q̃s

α,β(−y, x) ds, γ > 0.

The integrand is analytic in the entire complex plane apart from the points

sν = −1

2

(πνσ

B

)2
, ν ∈ N,

where it has simple poles. Hence, choosing an appropriate integration contour

(Doutsch (1960)), we calculate the residues in these poles. This yields

q̄t
α,β(−y, x) =

∑

ν∈N

Ress=sνest Q̃s
α,β(−y, x) (2.4.13)

=
4

π

∞
∑

ν=1

1

ν
e−

1
2
t(πνσ/B)2 sin

( x

B
νπ
)

sin

(

2x − α − β

2B
νπ

)

sin

(

β − α

2B
νπ

)

.

In the same vain we establish that for all three cases of (2.4.12) that the

equality (2.4.13) holds. N

Remark 2.4.1. It is worth mentioning that the distribution (2.4.13) is the

limit distribution for the corresponding distribution of Lévy processes and ran-

dom walks. Note, that the right-hand side of this equality is the asymptotic

expansion of the probability which enters its left-hand side. This distribution

admits the following representation:

P

[

−y ≤ inf
u≤t

wu, wt ∈ [α, β], sup
u≤t

wu ≤ x

]

=

=
1√
2πt

∫ β

α

( ∞
∑

k=−∞
e−(u−2k(x+y))2/2tσ2 −

∞
∑

k=−∞
e−(u−2x−2k(x+y))2/2tσ2

)

du,

which is due to Lévy (1948).

We now establish the asymptotic results for the joint distribution (2.4.4).

Corollary 2.4.3 (Kadankova (2004)). Let {Xt; t ≥ 0}, X0 = 0 be the

spectrally positive Lévy process with Laplace exponent (2.2.7). Assume that
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EX1 = 0, EX2
1 = σ2 < ∞, x, y > 0, x + y = 1, −y ≤ α < β ≤ x, and denote

by

qtB2

αB,βB(−yB, xB) = P
[

−yB ≤ X−
tB2 , XtB2 ∈ [αB, βB], X+

tB2 ≤ xB
]

the joint distribution of {X+,X,X−} re-scaled with respect to time by the

coefficient B2, and with respect to space by the coefficient B. Then this re-scaled

joint distribution qtB2

αB,βB(−yB, xB) converges weakly as B → ∞ to the joint

distribution of the infimum, supremum and the value of the Wiener process wt

with Laplace exponent k(p) = σ2p2/2. Besides, the following equality holds:

lim
B→∞

qtB2

αB,βB(−yB, xB) = q̄t
α,β(−y, x) =

=
4

π

∞
∑

ν=1

1

ν
e−

1
2
t(πνσ)2 sin (xπν) sin

(

2x − α − β

2
πν

)

sin

(

β − α

2
πν

)

.

(2.4.14)

Proof. We suppose that the assumptions of Corollary 2.4.3 are satisfied. The

following chain of the equalities is obvious

s

B2
Q̃

s/B2

αB,βB(−yB, xB) =

=
s

B2

∫ ∞

0
e−us/B2

P
[

−yB ≤ X−
u , Xu ∈ [αB, βB], X+

u ≤ xB
]

du

= s

∫ ∞

0
e−stP

[

−yB ≤ X−
tB2 , X(tB2) ∈ [αB, βB], X+

tB2 ≤ xB
]

dt

= s

∫ ∞

0
e−stqtB2

αB,βB(−yB, xB) dt.

Thus, formula (2.4.6) of Corollary 2.4.1 implies that

lim
B→∞

s

∫ ∞

0
e−stqtB2

αB,βB(−yB, xB) dt = lim
B→∞

s

B2
Q̃

s/B2

αB,βB(−yB, xB) =

= lim
B→∞

s

B2







Rs/B2(xB)

Rs/B2(B)

B(y+β)
∫

B(y+α)

Rs/B2(u) du −
B max{0,β}
∫

B max{0,α}

Rs/B2(u) du






.

(2.4.15)

We will use the asymptotic properties of the scale function of the spectrally

positive Lévy process (Borovskikh (1979), Borovskikh and Korolyuk (1981)).
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We will need the following relations:

lim
B→∞

1

B
Rs/B2(xB) =

1

σ

√

2

s
sinh

(x

σ

√
2s
)

,

lim
B→∞

s

B2

∫ xB

0
Rs/B2(u) du = cosh

(x

σ

√
2s
)

− 1.

Taking into account these equalities, we calculate the limit in the right-hand

side of (2.4.15), which yields

lim
B→∞

∫ ∞

0
e−stqtB2

αB,βB(−yB, xB) dt =
1

s

[

cosh

(

α+

σ

√
2s

)

− cosh

(

β+

σ

√
2s

)]

+
1

s

sinh x
σ

√
2s

sinh 1
σ

√
2s

[

cosh

(

y + β

σ

√
2s

)

− cosh

(

y + α

σ

√
2s

)]

.

The right-hand side of this equality coincides with the right-hand side of

(2.4.11) for B = 1. Hence, the left-hand sides also coincide and

lim
B→∞

∫ ∞

0
e−stP

[

−yB ≤ X−
tB2 , XtB2 ∈ [αB, βB], X+

tB2 ≤ xB
]

dt =

=

∫ ∞

0
e−stP

[

−y ≤ inf
u≤t

wu, wt ∈ [α, β], sup
u≤t

wu ≤ x

]

dt.

where x, y > 0, x + y = 1. Thus we established the weak convergence of

the joint distribution qtB2

αB,βB(−yB, xB) to the corresponding distribution of

the Wiener process as B → ∞. The equality (2.4.14) follows from (2.4.9) for

B = 1. N

2.4.2 Supremum, infimum and the value of a compound Pois-

son process with jumps of both signs

Let {Xt; t ≥ 0}, X0 = 0 be the compound Poisson process whose Laplace

exponent is given by (2.2.13). We will now apply the results of Theorem 2.4.1

to determine the joint distribution of {X+
νs

,Xνs ,X
−
νs
} for this process.

Corollary 2.4.4 (Kadankov and Kadankova (2006)). Let {Xt; t ≥ 0}, X0 = 0

be the compound Poisson process whose Laplace exponent is given by (2.2.13),

x, y ≥ 0, B = x + y. Then the joint distribution of {X−
νs

,Xνs ,X
+
νs
} obeys the
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formula:

Q̃s
u(−y, x) = P

[

−y ≤ inf
t≤νs

Xt, Xνs ≤ u, sup
t≤νs

Xt ≤ x

]

= (2.4.16)

= sλ
Rs(x)

Rλ
s (B)

u+y
∫

0

Rs(v) dv − sλ

u
∫

0

Rs(v) dv + sRs(u), u ∈ [−y, x].

where Rs(v) = 0 for v < 0.

Proof. Firstly, we find the expression for Ux(s, p), x ≥ 0, in case of the

compound Poisson process with negative exponential component. Employing

formulae (2.2.14), (2.2.15) for the integral transforms of X−
νs

, X+
νs

, and the

equality (2.2.4), we find the integral transform of the joint distribution of

{Xνs ,X
+
νs
} :

∫ ∞

0
e−zxUx(s, p) dx = s

λ − p

c(s) − p

(

1 − c(s) − p

z

)

R(p + z, s), ℜ(z) ≥ 0.

Taking into the account the defining formula of the scale function (2.2.22),

we invert the Laplace transforms in the right-hand side of the latter equality,

which yields

Ux(s, p) = s
λ − p

c(s) − p
e−xpRs(x) − s(λ − p)

∫ x

0
e−upRs(u) du, x ≥ 0

i.e. the representation of Ux(s, x), x ≥ 0 in terms of the scale function. It

follows from (2.3.11) and from Corollary 2.3.3 that

Vy(du, s) = E
[

e−sχ;T ∈ du,Ay

]

=
Rs(x)

Rλ
s (B)

λe−λudu.

Inserting the expression for the functions Ux(s, p), x ≥ 0, Vy(du, s) into the

first formula of (2.4.1) of Theorem 2.4.1, we obtain

Qs
p(−y, x) = s(p − λ)

∫ x

0
e−upRs(u) du + se−xpRs(x)

+ sλ
Rs(x)

Rλ
s (B)

∫ B

0
e−p(u−y)Rs(u) du.
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It is not difficult to derive the equality
∫ x

−y
e−upP [Xνs ≤ u, χ > νs] du =

1

p

(

Qs
p(−y, x) − P [χ > νs] e

−xp
)

. (2.4.17)

Now taking into account the obvious identity λSλ
s (B) = Rλ

s (B) + λSs(B), we

derive from the formula (2.3.23) the expression for P [χ > νs]

P [χ > νs] = sRs(x) + sλ
Rs(x)

Rλ
s (B)

∫ B

0
Rs(u) du − sλ

∫ x

0
Ru(s) du.

Inserting the expressions for Qs
p(−y, x), P [χ > νs] into (2.4.17) and performing

some manipulations, we get
∫ x

−y
e−puP

[

−y ≤ inf
t≤νs

Xt, Xνs ≤ u, sup
t≤νs

Xt ≤ x

]

du =

=

∫ x

−y
e−pu



sλ
Rs(x)

Rλ
s (B)

u+y
∫

0

Rs(v) dv − sλ

u
∫

0

Rs(v) dv + sRs(u)



 du,

where Rs(u) = 0 for u < 0. The latter formula is the equality of the Laplace

transforms. Hence, the original functions coincide as well, which yields the

formula (2.4.16). N

Corollary 2.4.5. Let {Xt; t ≥ 0}, X(0) = 0 be the compound Poisson process

whose Laplace exponent is give by (2.2.13). Assume that EX1 = 0, EX2
1 =

σ2 < ∞, x, y > 0, x + y = 1, u ∈ [−y, x]. Denote by

qtB2

uB (−yB, xB) = P
[

−yB ≤ X−
tB2 , XtB2 ≤ uB, X+

tB2 ≤ xB
]

the joint distribution of {X+,X,X−} re-scaled with respect to time by pa-

rameter B2, and with respect to space by parameter B. Then this re-scaled

distribution qtB2

uB (−yB, xB) converges weakly as B → ∞ to the joint distribu-

tion of the supremum, infimum and the value of the Wiener process wt whose

Laplace transform is of the form k(p) = σ2p2/2. In addition, the following

relation is valid:

lim
B→∞

qtB2

uB (−yB, xB) = q̄t
u(−y, x) =

=
4

π

∑

k∈N

(−1)k−1

k
e−

t
2
(πkσ)2 sin (xkπ)

[

sin

(

y + u

2
kπ

)]2

. (2.4.18)
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Proof. We assume that the conditions imposed in the Corollary 2.4.5 are

satisfied. We start proof by writing the obvious chain of the equalities.

s

B2
Q̃

s/B2

uB (−yB, xB) =

=
s

B2

∫ ∞

0
e−vs/B2

P
[

−yB ≤ X−
v , Xv ≤ uB, X+

v ≤ xB
]

dv

= s

∫ ∞

0
e−stP

[

−yB ≤ X−
tB2 , X(tB2) ≤ uB, X+

tB2 ≤ xB
]

dt

= s

∫ ∞

0
e−stqtB2

uB (−yB, xB) dt.

Taking into account the formulae (2.4.16) of Corollary 2.4.4, we derive

lim
B→∞

s

∫ ∞

0
e−stqtB2

uB (−yB, xB) dt = lim
B→∞

s

B2
Q̃

s/B2

uB (−yB, xB) = (2.4.19)

= lim
B→∞

sλ

B2







Rs/B2(xB)

Rλ
s/B2(B)

(u+y)B
∫

0

Rs/B2(v) dv −
uB
∫

0

Rs/B2(v) dv +
1

λ
Rs/B2(uB)






.

In order to calculate the limits in the right-hand side of (2.4.19), we employ

the limit equalities (2.3.26), (2.3.27) of Lemma 2.3.1. This step implies that

lim
B→∞

∫ ∞

0
e−stqtB2

uB (−yB, xB) dt =
1

s

[

cosh
(

u+
√

2s/σ
)

− 1
]

+
1

s

sinh
(

x
√

2s/σ
)

sinh
(√

2s/σ
)

[

cosh
(

(y + u)
√

2s/σ
)

− 1
]

.

u+ = max{0, u}. The right-hand side of this equality coincides with the right-

hand side of (2.4.11) for B = 1, α = −y, β = u. Thus, the left-hand sides

coincide as well and

lim
B→∞

∫ ∞

0
e−stP

[

−yB ≤ X−
tB2 , XtB2 ≤ uB, X+

tB2 ≤ xB
]

dt =

=

∫ ∞

0
e−stP

[

−y ≤ inf
u≤t

wu, wt ≤ u, sup
u≤t

wu ≤ x

]

dt,

where x, y > 0, x + y = 1. Hence, we established the weak convergence of the

distribution qtB2

uB (−yB, xB) to the corresponding distribution of the Wiener

process as B → ∞. The formula (2.4.18) follows from (2.4.9) for B = 1,

α = −y, β = u. N
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2.5 Intersections of the interval

Let {Xt; t ≥ 0}, X0 = 0 be a general Lévy process. Following the notation

from Lotov and Orlova (2004), we introduce the random sequences (k ∈ N)

i±0 = 0, i−k = inf{t > i+k−1 : Xt < −y}; i+k = inf{t > i−k : Xt > x},

where inf{∅} = ∞. Denote by

α+
t = max{k ∈ Z+ : i+k ≤ t} ∈ Z+,

the number of the up-crossings of the interval [−y, x] by the process Xt on the

time interval [0, t]. Similarly, we introduce

ĩ±0 = 0, ĩ+k = inf{t > ĩ−k−1 : Xt > x}; ĩ−k = inf{t > ĩ+k : Xt < −y}.

Define

α−
t = max{k ∈ Z+ : ĩ−k ≤ n} ∈ Z+,

i.e. the number of the down-crossings of the interval [−y, x] by the process Xt

on the time interval [0, t]. For all k, l ∈ Z+, |k − l| ≤ 1 introduce the following

notation:

pl
k(t) = P

[

α+
t = k, α−

t = l
]

, p±k (t) = P
[

α±
t = k

]

, pk(t) = P [αt = k] ,

(2.5.1)

where αt = α+
t + α−

t is the total number of the intersections of the interval

[−y, x] by the process Xt. Here and in the sequel we will denote the length of

the interval B = x + y.

It is worth mentioning that the distribution p±k (νs), k ∈ Z+ was found in

Lotov and Orlova (2004) for random walks, by using the projectors applied to

the factorization components of the random walk. Our contribution is that

we obtain the distributions (2.5.1) in terms of the joint distribution of {χ, T}
and of the successive iterations K

(n)
± (v, du, s), n ∈ N (2.3.5).
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Let v ≥ 0, a, b ∈ [0, 1], and introduce the generating functions

hv(s, a, b) = E
[

aα+
νs bα−

νs /X0 = x + v
]

,

h(s, a, b) = E
[

aα+
νs bα−

νs /X0 = 0
]

,

hv(s, a, b) = E
[

aα+
νs bα−

νs /X0 = −(y + v)
]

.

Theorem 2.5.1 (Kadankov (2005)). Let {Xt; t ≥ 0}, X0 = 0 be the general

Lévy process. Then

(i) the generating functions of the joint distribution of {α+
νs

, α−
νs
} are given

as follows:

hv(s, a, b) =

∫ ∞

0
Ks

+(v, du, a, b) (1 − fu+B(s))

+ b

∫ ∞

0
Ks

+(v, du, a, b)

∫ ∞

0
fu+B(dl, s)

(

1 − f l+B(s)
)

,

(2.5.2)

hv(s, a, b) =

∫ ∞

0
Ks
−(v, du, a, b)

(

1 − fu+B(s)
)

+ a

∫ ∞

0
Ks
−(v, du, a, b)

∫ ∞

0
fu+B(dl, s) (1 − fl+B(s)) , (2.5.3)

h(s, a, b) = 1 − Ee−sχ

+

∫ ∞

0
V x(dv, s)hv(a, b, s) +

∫ ∞

0
Vy(dv, s)hv(a, b, s), (2.5.4)

where fx(s) = Ee−sτx
, fx(s) = Ee−sτx ,

Ks
±(v, du, a, b) = δ(u − v) du +

∑

n∈N

(ab)nK
(n)
± (v, du, s);

(ii) the joint distribution

p̃l
k(s) = pl

k(νs), k, l ∈ Z+, |k − l| ≤ 1
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of {α+
νs

, α−
νs
} obeys the relations for n ∈ Z+

p̃n+1
n (s) =

∞
∫

0

V x(dv, s)

∞
∫

0

K
(n)
+ (v, du, s)

∞
∫

0

fu+B(dl, s)(1 − f l+B(s)),

(2.5.5)

p̃n
n+1(s) =

∫ ∞

0
Vy(dv, s)

∫ ∞

0
K

(n)
− (v, du, s)

∫ ∞

0
fu+B(dl, s) (1 − fl+B(s)) ,

p̃n
n(s) = I{n=0}

(

1 −
∫ ∞

0
V x(dv, s)fv+B(s) −

∫ ∞

0
Vy(dv, s)f v+B(s)

)

+ I{n∈N}

∫ ∞

0
V x(dv, s)

∫ ∞

0
K

(n)
+ (v, du, s) (1 − fu+B(s))

+ I{n∈N}

∫ ∞

0
Vy(dv, s)

∫ ∞

0
K

(n)
− (v, du, s)

(

1 − fu+B(s)
)

;

(iii) the distributions p̃±n (s) = P
[

α±
νs

= n
]

, n ∈ Z+ are such that

p̃+
0 (s) = 1 −

∫ ∞

0
Vy(dv, s)f v+B(s) −

∫ ∞

0
V x(dv, s)K

(1)
+ (v, s),

p̃+
n (s) =

∫ ∞

0
V x(dv, s)

[

K
(n)
+ (v, s) − K

(n+1)
+ (v, s)

]

(2.5.6)

+

∫ ∞

0
Vy(dv, s)

∫ ∞

0

[

K
(n−1)
− (v, du, s) − K

(n)
− (v, du, s)

]

fu+B(s), n ∈ N,

p̃−0 (s) = 1 −
∫ ∞

0
V x(dv, s)fv+B(s) −

∫ ∞

0
Vy(dv, s)K

(1)
− (v, s)

p̃−n (s) =

∫ ∞

0
Vy(dv, s)

[

K
(n)
− (v, s) − K

(n+1)
− (v, s)

]

(2.5.7)

+

∫ ∞

0
V x(dv, s)

∫ ∞

0

[

K
(n−1)
+ (v, du, s) − K

(n)
+ (v, du, s)

]

fu+B(s), n ∈ N,

where K
(0)
+ (v, du, s) = δ(u − v) du,

K
(n)
± (v, s) =

∫ ∞

0
K

(n)
± (v, du, s), n ∈ N;
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(iiii) for the distributions p̃n(s) = P [ανs = n] , n ∈ Z+ the following equalities

hold:

p̃0(s) = 1 −
∫ ∞

0
V x(dv, s)fv+B(s) −

∫ ∞

0
Vy(dv, s)f v+B(s),

p̃2n(s) =

∫ ∞

0
V x(dv, s)

[

K
(n)
+ (v, s) −

∫ ∞

0
K

(n)
+ (v, du, s)fu+B(s)

]

(2.5.8)

+

∫ ∞

0
Vy(dv, s)

[

K
(n)
− (v, s) −

∫ ∞

0
K

(n)
− (v, du, s)fu+B(s)

]

, n ∈ N,

p̃2n+1(s) =

∞
∫

0

V x(dv, s)

[
∫ ∞

0
K

(n)
+ (v, du, s)fu+B(s) − K

(n+1)
+ (v, s)

]

(2.5.9)

+

∫ ∞

0
Vy(dv, s)

[∫ ∞

0
K

(n)
− (v, du, s)fu+B(s) − K

(n+1)
− (v, s)

]

, n ∈ Z+.

Proof. To verify the formulae of the theorem, we will follow the reasoning

similar to those from the previous sections. That is to say, we will set up a

system of equations for unknown functions and will use the solution of the two-

sided exit problem. The total probability law combined with the spatial and

time homogeneity of the process Xt and Markov property of τx, τx, χ allow

us to write the following system of the equations for the functions hv(s, a, b),

hv(s, a, b), h(s, a, b) :

hv(s, a, b) = 1 − Ee−sτv+B + b

∫ ∞

0
fv+B(du, s)hu(s, a, b),

hu(s, a, b) = 1 − Ee−sτu+B
+ a

∫ ∞

0
fu+B(dv, s)hv(s, a, b), (2.5.10)

h(s, a, b) = 1 − Ee−sχ +

∫ ∞

0
V x(dv, s)hv(s, a, b) +

∫ ∞

0
Vy(du, s)hu(s, a, b).

Substituting the expression for the function hu(s, a, b) from the second equa-

tion into the first one, we find that

hv(s, a, b) = 1 − fv+B(s) + b

∫ ∞

0
fv+B(du, s)

(

1 − fu+B(s)
)

+ ab

∫ ∞

0
K+(v, du, s)hu(s, a, b), v ≥ 0,
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i.e. a linear integral equation for the function hv(s, a, b). Employing the

method of successive iterations (Petrovskii (1965)), we obtain

hv(s, a, b) =

∫ ∞

0
Ks

+(v, du, a, b)
(

1 − Ee−sτu+B
)

+ b

∫ ∞

0
Ks

+(v, du, a, b)

∫ ∞

0
fu+B(dl, s)

(

1 − Ee−sτ l+B
)

i.e. the formula (2.5.2) of Theorem 2.5.1. The function hu(s, a, b) can be

determined analogously, and the function h(s, a, b) is then determined by

means of the equality (2.5.8). Comparing the coefficients of ambn, m, n ∈ Z+,

|m−n| ≤ 1 in both sides of the first part of Theorem 2.5.1, we get the equalities

of the second part of 2.5.1.

We now turn to proving (2.5.6). Letting b = 1 in (2.5.2) implies for the

generating function

hv(s, a, 1) = E
[

aα+
νs /X0 = x + v

]

, a ∈ [0, 1],

of the joint distribution P
[

α+
νs

= n/X0 = x + v
]

that

hv(s, a, 1) = 1 − K
(1)
+ (v, s) +

∑

n∈N

an
[

K
(n)
+ (v, s) − K

(n+1)
+ (v, s)

]

. (2.5.11)

Similarly for the generating function hv(s, a, 1) of the distribution

P
[

α+
νs

= n/X0 = −v − y
]

in view of (2.5.3) for b = 1, we find

hv(s, a, 1) = 1 − f v+B(s)

+
∑

n∈N

an

∫ ∞

0

[

K
(n−1)
− (v, du, s) − K

(n)
− (v, du, s)

]

fu+B(s). (2.5.12)

Inserting the right-hand sides of the formulae (2.5.11), (2.5.12) into the third

equality of the system (2.5.10), we derive for the generating function h(s, a, 1)

of the distribution P
[

α+
νs

= n
]

the following relation:

h(s, a, 1) = 1 −
∫ ∞

0
Vy(dv, s)f v+B(s) −

∫ ∞

0
V x(dv, s)K

(1)
+ (v, s)

+
∑

n∈N

an

∫ ∞

0
V x(dv, s)

[

K
(n)
+ (v, s) − K

(n+1)
+ (v, s)

]

+
∑

n∈N

an

∫ ∞

0
Vy(dv, s)

∫ ∞

0

[

K
(n−1)
− (v, du, s) − K

(n)
− (v, du, s)

]

fu+B(s).
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Comparing the coefficients of ambn, m, n ∈ Z+, |m − n| ≤ 1 in both sides of

the latter equality yields the formulae (2.5.6). The equalities (2.5.7) can be

verified analogously. We now verify (2.5.8), (2.5.9). Letting b = a in (2.5.2)

yields for the generating function

hv(s, a, a) = E [aανs /X0 = x + v] , a ∈ [0, 1],

of the distribution P [ανs = n/X0 = x + v] the following relation:

hv(s, a, a) =
∑

n∈Z+

a2nK
(n)
+ (v, s) − a

∑

n∈Z+

a2nK
(n+1)
+ (v, s)

− (1 − a)
∑

n∈Z+

a2n

∫ ∞

0
K

(n)
+ (v, du, s)fu+B(s). (2.5.13)

Similarly for the generating function hv(s, a, a) of the distribution

P [ανs = n/X0 = −v − y] it follows from (2.5.3) for b = 1 that

hv(s, a, a) =
∑

n∈Z+

a2nK
(n)
− (v, s) − a

∑

n∈Z+

a2nK
(n+1)
− (v, s)

− (1 − a)
∑

n∈Z+

a2n

∫ ∞

0
K

(n)
− (v, du, s)fu+B(s). (2.5.14)

Inserting the right-hand sides of (2.5.13), (2.5.14) into (2.5.4) of Theorem

2.5.1, and then comparing the coefficients of a2n, a2n+1, n ∈ Z+, we derive the

formulae (2.5.8), (2.5.9). N

2.5.1 Intersections by a spectrally positive Lévy process

Let {Xt; t ≥ 0}, X0 = 0 be the spectrally positive Lévy process whose Laplace

exponent is given by (2.2.7). Recall, that in this case the lower boundary

is reached continuously, i.e. P [Tx = 0] = 1. The integral transforms of τx,

{τx, T x} are such that

E
[

e−sτx ;Tx ∈ du
]

= e−xc(s)δ(u) du,
∫ ∞

0
e−pxEe−sτx−zXτxdx =

1

p

(

1 − p + z − c(s)

k(p + z) − s

k(z) − s

z − c(s)

)

, (2.5.15)
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where c(s) > 0, s > 0 is a unique solution of the equation k(p) − s = 0 in the

semi-plane ℜ(p) > 0, and δ(·) is the delta function. The following corollary

from Theorem 2.5.1 is true.

Corollary 2.5.1 (Kadankova (2003a)). Let {Xt; t ≥ 0}, X0 = 0 be the spec-

trally positive Lévy process whose Laplace exponent is given by (2.2.7). Then

(i) the joint distribution of {α+
νs

, α−
νs
} obeys the following equalities for n ∈

Z+

p̃n+1
n (s) =

[

1 − fB(s)
]

(

e−yc(s) − Rs(x)

Rs(B)

)

Gs
B(c(s))n,

p̃n
n+1(s) =

[

fB(s) − Gs
B(c(s))

] Rs(x)

Rs(B)
Gs

B(c(s))n, (2.5.16)

p̃n
n(s) = I{n=0}

(

1 − e−yc(s)
)

+
[

1 − fB(s)
] Rs(x)

Rs(B)
Gs

B(c(s))n

+ I{n∈N}
[

fB(s) − Gs
B(c(s))

]

(

e−yc(s) − Rs(x)

Rs(B)

)

Gs
B(c(s))n−1,

where Rs(x), x ≥ 0 is the scale function (2.2.11), and

Gs
x(c(s)) = 1−r(s)e−xc(s)Rs(x), fx(s) = 1− s

c(s)
Rs(x)+s

∫ x

0
Rs(u) du;

(ii) the distributions of α+
νs

, α−
νs

are given by

p̃+
0 (s) = 1 − e−yc(s)fB(s),

p̃+
n (s) = e−yc(s)fB(s) [1 − Gs

B(c(s))] Gs
B(c(s))n−1, n ∈ N, (2.5.17)

p̃−0 (s) = 1 − e−yc(s)Gs
x(c(s)),

p̃−n (s) = e−yc(s)Gs
x(c(s)) [1 − Gs

B(c(s))] Gs
B(c(s))n−1, n ∈ N; (2.5.18)
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(iii) the distribution of ανs is such that

p̃0(s) = 1 − fB(s)
Rs(x)

Rs(B)
−
(

e−yc(s) − Rs(x)

Rs(B)

)

,

p̃2n(s) =
Rs(x)

Rs(B)

[

1 − fB(s)
]

Gs
B(c(s))n−1

+
[

fB(s) − Gs
B(c(s))

]

(

e−yc(s) − Rs(x)

Rs(B)

)

Gs
B(c(s))n−1, n ∈ N,

p̃2n+1(s) =
Rs(x)

Rs(B)

[

fB(s) − Gs
B(c(s))

]

Gs
B(c(s))n

+
[

1 − fB(s)
]

(

e−yc(s) − Rs(x)

Rs(B)

)

Gs
B(c(s))n, n ∈ Z+.

(2.5.19)

Proof. It is worth noticing that formulae (2.5.16) of the corollary were ob-

tained in Kadankova (2003a) as the result of solving the system (2.5.10) for the

case when Xt is a spectrally positive Lévy process. Let us verify the equalities

(2.5.16)–(2.5.19) of Corollary 2.5.1.

In Section 2.3.1 we already determined the successive iterations

K
(n)
− (v, du, s) = evc(s)Gs

v+B(c(s)) Gs
B(c(s))n−1 δ(u) du, n ∈ N,

K
(n)
+ (v, du, s) = e−c(s)(v+B)Gs

B(c(s))n−1fB(du, s), n ∈ N, (2.5.20)

and the integral transforms of the joint distribution of {χ, T}

Vy(du, s) = E
[

e−sχ;T ∈ du,Ay

]

=
Rs(x)

Rs(B)
δ(u) du,

V x(du, s) = E
[

e−sχ;T ∈ du,Ax
]

= fx(du, s) − Rs(x)

Rs(B)
fB(du, s). (2.5.21)

Inserting the expressions for the functions K
(n)
± (v, du, s), Vy(du, s), V x(du, s)

into the formulae (2.5.15)–(2.5.9) of Theorem 2.5.1, we derive the formulae of

the corollary. N

We now apply the results of Theorem 2.5.1 to determine the distributions

(2.5.1) for the standard Wiener process.

Corollary 2.5.2. Let {wt; t ≥ 0} be the Wiener process whose Laplace expo-

nent is of the form k(p) = σ2p2/2. Then
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(i) the joint distribution of {α+
νs

, α−
νs
} obeys the equalities for n ∈ Z+

p̃n+1
n (s) =

ey
√

2s/σ − e−y
√

2s/σ

1 + e−B
√

2s/σ
e−2B(n+1)

√
2s/σ, (2.5.22)

p̃n
n+1(s) =

ex
√

2s/σ − e−x
√

2s/σ

1 + e−B
√

2s/σ
e−2B(n+1)

√
2s/σ,

p̃0
0(s) = 1 − ex

√
2s/σ + ey

√
2s/σ

1 + e−B
√

2s/σ
e−2B

√
2s/σ,

p̃n
n(s) =

ex
√

2s/σ + ey
√

2s/σ

1 + e−B
√

2s/σ

(

1 − e−B
√

2s/σ
)

e−B(2n+1)
√

2s/σ, n ∈ N;

(ii) the distributions of α+
νs

, α−
νs

are such that

p̃+
0 (s) = 1 − e−(y+B)

√
2s/σ,

p̃+
n (s) =

(

1 − e−2B
√

2s/σ
)

e−y−B(2n−1)
√

2s/σ, n ∈ N,

p̃−0 (s) = 1 − e−(x+B)
√

2s/σ,

p̃−n (s) =
(

1 − e−2B
√

2s/σ
)

e−x−B(2n−1)
√

2s/σ, n ∈ N;

(iii) the distribution of ανs is given as follows:

p̃0(s) = 1 − ex
√

2s/σ + ey
√

2s/σ

1 + e−B
√

2s/σ
e−2B

√
2s/σ,

p̃n(s) =
ex

√
2s/σ + ey

√
2s/σ

1 + e−B
√

2s/σ

(

1 − e−B
√

2s/σ
)

e−B(n+1)
√

2s/σ n ∈ N.

Proof. For the Wiener process we can easily calculate

fx(s) = fx(s) = e−x
√

2s/σ, K
(n)
± (v, du, s) = e−(v+2Bn)

√
2s/σδ(u) du,

V x(du, s) =
sinh

(

y
√

2s/σ
)

sinh
(

B
√

2s/σ
) δ(u) du, Vy(du, s) =

sinh
(

x
√

2s/σ
)

sinh
(

B
√

2s/σ
) δ(u) du.

Substituting the expressions for these functions into the equalities of Theorem

2.5.1, we get the formulae of the corollary. N

Observe, that the Laplace transforms in the formulae of the corollary can be

easily inverted, and, hence, we can determine the distributions themselves.
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Denote

µt(a, b) = P[wt ∈ (a, b)] =
1

σ
√

2πt

b
∫

a

e−u2/2tσ2
du, µt(a) = µt(a,∞).

Corollary 2.5.3. Let {wt; t ≥ 0} be the Wiener process whose Laplace expo-

nent is of the form k(p) = σ2p2/2. Then

(i) the joint distribution of {α+
t , α−

t } admits the following expansion for

n ∈ Z+

pn+1
n (t) = 2

∑

k≥2n+2

(−1)kµt(−y + kB, y + kB),

pn
n+1(t) = 2

∑

k≥2n+2)

(−1)kµt(−x + kB, x + kB), (2.5.23)

p0
0(t) = 1 − 2

∑

k∈N

(−1)k−1 [µt(x + kB) + µt(y + kB)] ,

pn
n(t) = 2

∑

k≥2n+1

(−1)k−1 [µt(−x + kB, x + kB) + µt(−y + kB, y + kB)] ;

(ii) the distributions of the number of the up-crossings α+
t and of the down-

crossings α−
t obey the formulae for n ∈ N

p+
0 (t) = 1 − 2µt(y + B), P

[

α+
t ≥ n

]

= 2µt(y + (2n − 1)B),

p−0 (t) = 1 − 2µt(x + B), P
[

α−
t ≥ n

]

= 2µt(x + (2n − 1)B); (2.5.24)

(iii) the distribution of the total number of intersections αt is such that for

n ∈ N

p0(t) = 1 − 2
∑

k∈N

(−1)k−1 [µt(x + kB) + µt(y + kB)] ,

P [αt ≥ n] = 2
∑

k≥n

(−1)k−n [µt(x + kB) + µt(y + kB)] . (2.5.25)

Proof. Let us verify the first formula of (2.5.23). Taking into account the

expansion
(

1 + e−B
√

2s/σ
)−1

=
∑

k∈Z+

(−1)ke−kB
√

2s/σ,
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we derive from (2.5.22) that

∫ ∞

0
e−stpn+1

n (t) dt =
∑

k∈Z+

(−1)k
1

s
e−(−y+kB+2(n+1)B)

√
2s/σ

−
∑

k∈Z+

(−1)k
1

s
e−(y+kB+2(n+1)B)

√
2s/σ. (2.5.26)

In order to invert the latter integral, we will employ the following well-known

identity for the Wiener process P [τx ≤ t] = 2P [wt > x] , x ≥ 0 and the inver-

sion formula:

1

2πi

γ+i∞
∫

γ−i∞

est 1

s
e−u

√
2s/σds = 2P[wt > u], γ > 0.

This formula combined with (2.5.26) yields

pn+1
n (t) = 2

∑

k∈Z+

(−1)kµt(−y + kB + 2(n + 1)B)−

− 2
∑

k∈Z+

(−1)kµt(y + kB + 2(n + 1)B) =

= 2
∑

k≥2n+2

(−1)kµt(−y + kB, y + kB)

i.e. the fist equality of (2.5.23). Other equalities can be proven analogously.

N

It is worth mentioning that the distribution of the total number of the in-

tersections pn(t), n ∈ Z+ was found in Androchuk (2001) for a symmetric

Bernoulli random walk and for a symmetric Wiener process. The author used

the symmetry principle and the reflection principle to obtain formulae similar

to (2.5.25).

Remark 2.5.1. Taking into account the equalities (2.3.16), we can derive the
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following expansions for the density of χ

P [χ ∈ dt;Ax] =
πσ2

B2

∑

k∈N

k e−
t
2
(kπσ/B)2sin

( x

B
kπ
)

dt,

P [χ ∈ dt;Ay] =
πσ2

B2

∑

k∈N

k e−
t
2
(kπσ/B)2sin

( y

B
kπ
)

dt, (2.5.27)

P [χ ∈ dt] =
2πσ2

B2

∞
∑

k=0

(2k + 1)e−
t
2
((2k+1)πσ/B)2sin

( x

B
(2k + 1)π

)

dt.

The formulae (2.5.23), (2.5.25) re-written in terms of the density of χ take a

more compact form. For instance, the joint distribution of {α+
t , α−

t } admits

the following representation for n ∈ Z+

pn+1
n (t) = 2

∫ t

0
P [χ ∈ du;Ax] µt−u((2n + 1)B, 2(n + 1)B),

pn
n+1(t) = 2

∫ t

0
P [χ ∈ du;Ay]µt−u((2n + 1)B, 2(n + 1)B),

p0
0(t) = 1 − 2

∫ t

0
P [χ ∈ du] µt−u(B),

pn
n(t) = 2

∫ t

0
P [χ ∈ du] µt−u(2nB, (2n + 1)B), n ∈ N. (2.5.28)

The distribution of αt is such that

P [αt = 0] = 1 − 2

∫ t

0
P [χ ∈ du]P [wt−u > B] ,

P [αt ≥ n] = 2

∫ t

0
P [χ ∈ du]P [wt−u > nB] , n ∈ N. (2.5.29)

Now we study the asymptotic behavior of the number of intersections. Denote

by

α+ = lim
t→∞

α+
t , α− = lim

t→∞
α−

t

the number of the upward and downward intersections of the interval [−y, x]

by the process {Xt; t ≥ 0} with an infinite time horizon respectively. For all

k, l ∈ Z+, |k − l| ≤ 1 introduce the notation

pl
k = P

[

α+ = k, α− = l
]

, p±k = P
[

α± = k
]

, pk = P [α = k] ,
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where α = α+ + α− is the total number of intersections of the interval [−y, x]

by the process {Xt; t ≥ 0}, X0 = 0. Denote m = E[X1] = −k′(0).

Corollary 2.5.4. Let {Xt; t ≥ 0} be the spectrally positive Lévy process whose

Laplace exponent is given by (2.2.7). Then

(i) if m > 0 the joint distribution of {α+, α−} satisfies the formulae:

pn
n+1 =

R(x)

R(B)
[1 − G(B)]G(B)n, pn+1

n = 0, n ∈ Z+, (2.5.30)

p0
0 = 1 − e−yc, pn

n =

(

e−yc − R(x)

R(B)

)

(1 − G(B))G(B)n−1, n ∈ N,

where c = lim
s→0

c(s),

R(x) = lim
s→0

Rs(x), G(x) = 1 − e−xck′(c)R(x);

(ii) if m < 0 then the joint distribution of {α+, α−} admits the representa-

tions for n ∈ Z+

pn
n = P[X+ < x] (P[X+ > B])n, pn

n+1 = 0,

pn+1
n = P[x < X+ < B](P[X+ > B])n, (2.5.31)

where

X+ = sup
t≥0

Xt, P[X+ < x] = −mR(x).

Proof. Assume that m > 0. Then

lim
s→0

Ee−sτx
= P[τx < ∞] = 1, lim

s→0
c(s) = c > 0.

Calculating the limits in (2.5.16) as s → 0, we derive (2.5.30) of the corollary.

Note that the function R(x), x ≥ 0 determined by its Laplace transform

∫ ∞

0
e−pxR(x)dx = k(p)−1, ℜ(p) > c,

enters the right-hand sides of the latter equalities. Let m < 0. Then

lim
s→0

c(s) = 0, lim
s→0

Ee−sτx
= P[X+ > x] < 1.



65

The equality (2.2.8) implies that

Ee−pX+
= −m

p

k(p)
⇒ P[X+ ≤ x] = −mR(x).

Calculating the limits in (2.5.16) as s → 0, we derive formulae (2.5.31) of the

corollary. Taking into account formulae (2.5.17)–(2.5.19), one can derive for

α±, α the equalities similar to (2.5.30), (2.5.31). N

It is worth mentioning that the distributions of the number of the intersections

for the Wiener process (2.5.23)–(2.5.25) serve as the limiting distributions for

the corresponding distributions for Lévy processes and random walks. As an

example we state such limit equalities for a spectrally positive Lévy process.

Corollary 2.5.5. Let {Xt; t ≥ 0}, X0 = 0 be the spectrally positive Lévy

process whose Laplace exponent is given by (2.2.7). Assume that EX1 = 0,

EX2
1 = σ2 < ∞ and x, y > 0, x+y = 1, B > 0. Denote by α+

tB2(B) the number

of the upward intersections of the interval [−yB, xB] by the process X on the

time interval [0, tB2]; by α−
tB2(B) the number of the downward intersections of

the interval [−yB, xB] by the process X on the time interval [0, tB2]; and let

pk
l (t, B) = P

[

α+
tB2(B) = k, α−

tB2(B) = l
]

, k, l ∈ Z+.

Then this distribution is such that

lim
B→∞

pn+1
n (t, B) = 2

∑

k≥2(n+1)

(−1)kµt(−y + k, y + k) = p̄n+1
n (t), (2.5.32)

lim
B→∞

pn
n+1(t, B) = 2

∑

k≥2(n+1)

(−1)kµt(−x + k, x + k) = p̄n+1
n (t),

lim
B→∞

p0
0(t, B) = 1 − 2

∑

k∈N

(−1)k−1 [µt(x + k) + µt(y + k)] = p̄0
0(t),

lim
B→∞

pn
n(t, B) = 2

∑

k≥2n+1

(−1)k−1 [µt(−x + k, x + k) + µt(−y + k, y + k)] = p̄n
n(t),

where

p̄k
l (t) = P

[

ᾱ+(t) = k, ᾱ−(t) = l
]

, k, l ∈ Z+,

ᾱ+(t), ᾱ−(t) are the number of the upward and downward intersections respec-

tively of the interval [−y, x], x, y > 0, x + y = 1 by the Wiener process with

the Laplace exponent k(p) = σ2p2/2.
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Proof. Suppose the conditions of the corollary are met. Consider the first

equality of (2.5.16) and employ it for the case when [−yB, xB] as s → s/B2.

This yields

s

B2

∫ ∞

0
e−su/B2

pn+1
n (u) du =

=
[

1 − fB(s/B2)
]

(

e−yBc(s/B2) −
Rs/B2(xB)

Rs/B2(B)

)

G
s/B2

B (c(s/B2))n. (2.5.33)

Since

s

B2

∫ ∞

0
e−su/B2

pn+1
n (u) du =

= s

∫ ∞

0
e−stP

[

α+
tB2(B) = n, α−

tB2(B) = n + 1
]

dt = s

∫ ∞

0
e−stpn+1

n (t, B) dt,

then

lim
B→∞

∫ ∞

0
e−stpn+1

n (t, B) dt = (2.5.34)

=
1

s
lim

B→∞

[

1 − fB(s/B2)
]

(

e−yBc(s/B2) −
Rs/B2(xB)

Rs/B2(B)

)

G
s/B2

B (c(s/B2))n.

We will now use the asymptotic properties of the scale function and we will

employ the following identity:

lim
B→∞

1

B
Rs/B2(xB) =

1

σ

√

2

s
sinh

(x

σ

√
2s
)

, lim
B→∞

Bc(s/B2) =
√

2s/σ,

lim
B→∞

s

B2

∫ xB

0
Rs/B2(u) du = cosh

(x

σ

√
2s
)

− 1, x ∈ [0, 1].

Taking into account these equalities, we find that

lim
B→∞

G
s/B2

xB (c(s/B2)) = e−2x
√

2s/σ, x ∈ [0, 1].

Calculating the limits in the right-hand side of (2.5.34), we obtain

lim
B→∞

∫ ∞

0
e−stpn+1

n (t, B) dt =
1

s

sinh(y
√

2s/σ)

sinh(
√

2s/σ)

(

1 − e−
√

2s/σ
)

e−(2n+1)
√

2s/σ

=
1

s

(

e−(−y+2(n+1))
√

2s/σ − e−(y+2(n+1))
√

2s/σ
)(

1 + e−
√

2s/σ
)−1

. (2.5.35)
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The right-hand side of this equality coincides with the right-hand side of the

first formula of (2.5.22) for B = 1. This means that the left-hand sides of

these formulae should coincide as well. This results to the following equality:

lim
B→∞

∫ ∞

0
e−stpn+1

n (t, B) dt =

∫ ∞

0
e−stp̄n+1

n (t) dt.

By means of this equality we established the weak convergence of the distri-

bution pn+1
n (t, B) to the distribution p̄n+1

n (t) of the symmetric Wiener process

in case when x, y > 0, x + y = 1. Further, it follows from (2.5.22), (2.5.28) for

B = 1 that

p̄n+1
n (t) = 2

∑

k≥2(n+1)

(−1)kµt(−y + k, y + k) =

= 2πσ2
∑

k∈N

∫ t

0
k e−

u
2
(kπσ)2sin (ykπ) µt−u(2n + 1, 2n + 2) du

i.e. the first formula of (2.5.32). The second formula can be verified analo-

gously. N

2.5.2 Intersections of the interval by a compound Poisson pro-

cess with arbitrary positive and exponential negative

jumps

Corollary 2.5.6 (Kadankov and Kadankova (2006)). Let {Xt; t ≥ 0}, X0 = 0

be the compound Poisson process with Laplace exponent (2.2.13). Then

(i) the joint distribution of {α+
νs

, α−
νs
} obeys the formulae n ∈ Z+

p̃n+1
n (s) =

[

1 − Efγ+B(s)
]

(

fy(s) −
Rs(x)

Rλ
s (B)

)

T (s)n,

p̃n
n+1(s) =

[

Efγ+B(s) − T (s)
] Rs(x)

Rλ
s (B)

T (s)n, (2.5.36)

p̃n
n(s) = I{n=0} (1 − fy(s)) +

[

1 −Efγ+B(s)
] Rs(x)

Rλ
s (B)

T (s)n

+ I{n∈N}
[

Efγ+B(s) − T (s)
]

(

fy(s) −
Rs(x)

Rλ
s (B)

)

T (s)n−1,
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where Rs(x), x ≥ 0 is the scale function of the process (2.2.22),

Efγ+B(du, s) = λ

∫ ∞

0
e−λvf v+B(du, s) dv = 1 − sλ

c(s)
Rλ

s (B) + sλSλ
s (B),

T (s) = fB(s)

∫ ∞

0
Efγ+B(du, s)e−uc(s) = 1 − fB(s)Rλ

s (B)r(s); (2.5.37)

(ii) the distributions of α+
νs

, α−
νs

are such that

p̃+
0 (s) = 1 − fy(s)Efγ+B(s),

p̃+
n (s) = fy(s)Efγ+B(s) [1 − T (s)] T (s)n−1, n ∈ N,

p̃−0 (s) = 1 − f̃x(c(s)),

p̃−n (s) = f̃x(c(s)) (1 − T (s)) T (s)n−1, n ∈ N, (2.5.38)

where

f̃x(c(s)) =

∫ ∞

0
e−uc(s)fx(du, s) = exc(s) − Rs(x)r(s);

(iii) the distribution of ανs admits the following representation:

p̃0(s) = 1 −Efγ+B(s)
Rs(x)

Rλ
s (B)

−
(

fy(s) −
Rs(x)

Rλ
s (B)

)

,

p̃2n(s) =
Rs(x)

Rλ
s (B)

[

1 − Efγ+B(s)
]

T (s)n−1

+
[

Efγ+B(s) − T (s)
]

(

fy(s) −
Rs(x)

Rλ
s (B)

)

T (s)n−1, n ∈ N,

p̃2n+1(s) =
Rs(x)

Rλ
s (B)

[

Efγ+B(s) − T (s)
]

T (s)n

+
[

1 − Efγ+B(s)
]

(

fy(s) −
Rs(x)

Rλ
s (B)

)

T (s)n, n ∈ Z+.

(2.5.39)

Proof. In Section 2.3.3 we already determined the integral transforms of the

joint distribution of {χ, T} :

Vy(du, s) =
Rs(x)

Rλ
s (B)

λe−λudu,

V x(du, s) = fx(du, s) − Rs(x)

Rλ
s (B)

Efγ+B(du, s), (2.5.40)
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and the successive iterations

K
(n)
− (v, du, s) = fB(s)f̃ v+B(c(s))T (s)n−1λe−λu du,

K
(n)
+ (v, du, s) = e−vc(s)fB(s)T (s)n−1Efγ+B(du, s),

where

f̃x(c(s)) =

∫ ∞

0
fx(du, s)e−uc(s) = exc(s) − Rs(x)r(s),

T (s) = fB(s)

∫ ∞

0
Efγ+B(du, s)e−uc(s) = 1 − fB(s)Rλ

s (B)r(s). (2.5.41)

Substituting the expressions for K
(n)
± (v, du, s), Vy(du, s), V x(du, s) into the

formulae (2.5.5)–(2.5.9) of Theorem 2.5.1 we derive the equalities of the corol-

lary. N

Corollary 2.5.7. Let {Xt; t ≥ 0}, X0 = 0 be the compound Poisson whose

Laplace exponent is given by (2.2.13). Suppose that EX1 = 0, EX2
1 = σ2 < ∞

and x, y > 0, x + y = 1, B > 0. Denote by

α+
tB2(B) the number of the upward intersections of the interval [−yB, xB] by

the process X on the time interval [0, tB2];

α−
tB2(B) the number of the downward intersections of the interval [−yB, xB]

by the process X on the time interval [0, tB2]; and

pk
l (t, B) = P

[

α+
tB2(B) = k, α−

tB2(B) = l
]

, k, l ∈ Z+.

Then this distribution satisfies the following equalities:

lim
B→∞

pn+1
n (t, B) = 2

∑

k≥2(n+1)

(−1)kµt(−y + k, y + k) = p̄n+1
n (t), (2.5.42)

lim
B→∞

pn
n+1(t, B) = 2

∑

k≥2(n+1)

(−1)kµt(−x + k, x + k) = p̄n+1
n (t),

lim
B→∞

p0
0(t, B) = 1 − 2

∑

k∈N

(−1)k−1 [µt(x + k) + µt(y + k)] = p̄0
0(t),

lim
B→∞

pn
n(t, B) = 2

∑

k≥2n+1

(−1)k−1 [µt(−x + k, x + k) + µt(−y + k, y + k)] = p̄n
n(t),
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where

p̄k
l (t) = P

[

ᾱ+(t) = k, ᾱ−(t) = l
]

, k, l ∈ Z+,

ᾱ+(t), ᾱ−(t) are the numbers of the upward and downward intersections of the

interval [−y, x], x, y > 0, x + y = 1 by the Wiener process with the Laplace

exponent of the form k(p) = σ2p2/2.

Proof. Suppose that the assumptions of the corollary are met. Then taking

into account (2.5.37) and the equalities (2.3.26), (2.3.27) when B → ∞, we

find that

Efγ+B
( s

B2

)

= 1 − sλ

c(s/B2)B2
Rλ

s/B2(B) +
sλ

B2
Sλ

s/B2(B) → e−
√

2s/σ.

(2.5.43)

The Laplace exponent of the process can be written as follows for small p > 0

k(p) =
1

2
σ2p2 + o(p2).

In view of the latter equality and the identity k(c(s)) = s, we derive

lim
B→∞

Bc(s/B2) =
√

2s/σ, lim
B→∞

r(s/B2) = λσ
√

2s. (2.5.44)

Then the function T (s) is such that (when B → ∞)

T
( s

B2

)

= 1 − fB(s/B2)Rλ
s/B2(B)r(s/B2) → e−2

√
2s/σ. (2.5.45)

Let us consider the equality (2.5.36) for the case when [−yB, xB] and s →
s/B2. This yields

s

B2

∫ ∞

0
e−su/B2

pn+1
n (u) du = s

∫ ∞

0
e−stpn+1

n (t, B) dt =

=
[

1 − Efγ+B(s/B2)
]

(

fyB(s/B2) −
Rs/B2(xB)

Rλ
s/B2(B)

)

(

T (s/B2)
)n

.

Hence,

lim
B→∞

∫ ∞

0
e−stpn+1

n (t, B) dt =
ey

√
2s/σ − e−y

√
2s/σ

1 + e−
√

2s/σ
e−2(n+1)

√
2s/σ.
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The right-hand side of the latter equality coincides with right-hand side of

(2.5.22) for B = 1. Then, necessarily the left-hand sides of these equalities

coincide as well, so that we derive

lim
B→∞

∫ ∞

0
e−stpn+1

n (t, B) dt =

∫ ∞

0
e−stp̄n+1

n (t) dt.

By means of the latter equality we established the weak convergence of the

distribution pn+1
n (t, B) to the distribution p̄n+1

n (t) of the Wiener process for

the case when x, y > 0, x + y = 1. It follows from (2.5.22), (2.5.28) for B = 1

that

p̄n+1
n (t) = 2

∑

k≥2(n+1)

(−1)kµt(−y + k, y + k) =

= 2πσ2
∑

k∈N

∫ t

0
k e−

u
2
(kπσ)2sin (ykπ) µt−u(2n + 1, 2n + 2) du

i.e. the first formula of (2.5.42). Other formulae can be verified analogously.

N
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2.6 Occupation time of an interval

Let {Xt; t ≥ 0}, X0 = 0 be a general Lévy process. Fix B > 0 and introduce

the indicator functions:

g(x) = I{x∈[0,B]}, g∗(x) = 1 − g(x), x ∈ R.

Define the following random variables

σy(t) =

∫ t

0
g(y + Xu) du, σ∗

y(t) = t − σy(t)

i.e. the sojourn occupation time inside the interval [0, B] by the process y+Xu,

u ∈ [0, t] till the time t, and the total occupation time outside the interval [0, B]

by the process y + Xu, u ∈ [0, t] till time t. This section is concerned with

determining the integral transforms of the joint distribution of {σy(t), σ
∗
y(t)}

denoted as follows:

Cs
y(a, b) = s

∫ ∞

0
e−stEe−aσy(t)−bσ∗

y (t) dt, a, b ≥ 0.

We will focus on the compound Poisson process with positive jumps and nega-

tive drift, the spectrally one-sided Lévy process and on the compound Poisson

with arbitrary positive jumps and exponential negative jumps. For a symmet-

ric Wiener process we are able to invert analytically the Laplace transform

Cs
y(a, b) with respect to s, a, b, which results into the distributions of the ran-

dom variables σy(t), σ
∗
y(t). These distributions appear to be the limiting dis-

tributions for the corresponding distributions of the spectrally one-sided Lévy

process. Under the conditions EX1 = 0, EX2
1 < ∞ and after re-scaling time

and space, we will prove weak convergence of the distributions of σy(t), σ
∗
y(t)

to the corresponding distributions of the Wiener process.

2.6.1 Compound Poisson process with linear drift

Let {Xt; t ≥ 0}, X0 = 0 be the compound Poisson process with positive jumps

and negative drift whose Laplace exponent is such that

k(p) = αp + µ(E−pκ − 1), α, µ ≥ 0, κ ∈ (0,∞), (2.6.1)
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where µ is the intensity of he jumps, κ is the jump size, and α is a coefficient

of the drift. Introduce the scale function of the process by means of its Laplace

transform Rs(x) : [0,∞) → [0,∞), x ≥ 0

Rs(x) =
1

2πi

∫ γ+i∞

γ−i∞
exp 1

k(p) − s
dp, γ > c(s) s ≥ 0, (2.6.2)

where c(s) > 0 is a unique root of the characteristic equation k(p) − s = 0

in the semi-plane ℜ(p) > 0. Per definition we set Rs(x) = 0 for all x < 0.

Observe, that

Rs(0) = lim
p→∞

p(k(p) − s)−1 = 1/α > 0.

In order to determine the Laplace transforms Cs
y(a, b), we first need to calculate

the auxiliary function which is defined below. Let y ∈ R+, τy = inf{t > 0 :

y + Xt < 0}, σy = σy(τy), σ∗
y = σ∗

y(τy). Denote by

Ds
y(a, b) = E

[

e−sτy−aσy−bσ∗
y , τy < ∞

]

, a, b, s ≥ 0

the integral transform of the joint distribution of {τy, σy, σ
∗
y}, where σy is the

duration of stay inside the interval [0, B] by the process y +X(·) until the first

passage time τy of the lower boundary 0, and σ∗
y = τy − σy.

Lemma 2.6.1. Let {Xt; t ≥ 0}, X0 = 0 be the compound Poisson process

whose Laplace exponent is given by (2.6.1). Then the integral transform of the

joint distribution of {τy, σy, σ∗
y} are such that:

Ds
y(a, b) =

U s
B−y(a, b)

U s
B(a, b)

e−yc(s+b), y ≥ 0, (2.6.3)

where U s
x(a, b) = 1 for x < 0,

U s
x(a, b) = 1 + (a − b)

∫ x

0
e−uc(s+b) Rs+a(u)du, x ≥ 0. (2.6.4)

Proof. Let y ∈ [0, B], x = B − y and denote by

χ = inf{t : y + Xt /∈ [0, B]}, T = (Xχ − x)IAx + (−y − Xχ)IAy

the first exit time from the interval and the value of the overshoot through

the boundary at this instant. Note that Ax = {Xχ > x}, Ay = {Xχ < −y}
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are the events on which the exit can take place. Taking into account spatial

homogeneity of the process, the Markov property of χ, and employing the total

probability law, we can write for the function Ds
y(a, b), y ∈ R+ the following

equations:

Ds
y(a, b) = E

[

e−(s+a)χ;Ay

]

+

∫ ∞

0
E
[

e−(s+a)χ;T ∈ du,Ax
]

e−uc(s+b)Ds
B(a, b), y ∈ [0, B],

Ds
y(a, b) = Ds

B(a, b)e−(y−B)c(s+b), y > B. (2.6.5)

Letting z = c(s+b) in (2.2.18), we derive for the function Gs
x(z) = Ee−sτx−zXτx ,

x ∈ R+ the following representation

Gs+a
x (c(s + b)) = 1 − a − b

c(s + a) − c(s + b)
Rs+a(x) e−xc(s+b)

+ (a − b)

∫ x

0
e−uc(s+b)Rs+a(u) du. (2.6.6)

Employing the latter equality and (2.3.11), (2.3.12), we get for the function

Ṽ x(z, s) = E
[

e−sχ−zXχ ;Ax
]

for z = c(s + b), s → s + a

Ṽ x(c(s + b), s + a) = U s
x(a, b)exc(s+b) − Rs+a(x)

Rs+a(B)
U s

B(a, b)eBc(s+b). (2.6.7)

Substituting the expression for the function Ṽ x(z, s) into the first equation of

(2.6.5), we get (x = B − y)

Ds
y(a, b) =

Rs+a(x)

Rs+a(B)

+

[

U s
x(a, b)exc(s+b) − Rs+a(x)

Rs+a(B)
U s

B(a, b)eBc(s+b)

]

Ds
B(a, b), y ∈ [0, B].

Letting y = B in this equality, we find that

Ds
B(a, b) =

1

U s
B(a, b)

e−Bc(s+b).

Substituting the latter expression for Ds
B(a, b) into (2.6.5), we derive the for-

mula (2.6.3) of Lemma 2.6.1. N

The next step is to determine the auxiliary function

Qs
y(a, b) = E

[

e−aσy(νs)−bσ∗
y(νs); τy > νs

]

, y ≥ 0.
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Lemma 2.6.2. Let {Xt; t ≥ 0} be the compound Poisson process with Laplace

exponent (2.6.1). Then the integral transform of the joint distribution of

{σy, σ∗
y} on the event {τy > νs} is such that

Qs
y(a, b) =

s

s + b

(

us
B−y(a, b) − us

B(a, b)Ds
y(a, b)

)

, y ≥ 0, (2.6.8)

where us
x(a, b) = 1 for x < 0,

us
x(a, b) = 1 + (a − b)

∫ x

0
Rs+a(u) du, x ≥ 0, (2.6.9)

and the function Ds
y(a, b), y ≥ 0 is given by (2.6.3).

Proof. Employing the total probability law, homogeneity of the process and

Markov property of χ, we write for Qs
y(a, b), y ∈ R+ the following system of

equations:

Qs
y(a, b) =

s

s + a

(

1 − Ee−(s+a)χ
)

+
s

s + b

∫ ∞

0
E
[

e−(s+a)χ;T ∈ du,Ax
] (

1 − e−uc(s+b)
)

(2.6.10)

+

∫ ∞

0
E
[

e−(s+a)χ;T ∈ du,Ax
]

Qs
B(a, b)e−uc(s+b), y ∈ [0, B],

Qs
y(a, b) =

s

s + b

(

1 − e−(y−B)c(s+b)
)

+ Qs
B(a, b) e−(y−B)c(s+b), y > B.

Taking into account (2.6.7) and (2.3.11), (2.3.12), we re-write the first equation

of (2.6.10) as follows (x = B − y)

Qs
y(a, b) =

s

s + b

(

us
x(a, b) − U s

x(a, b)exc(s+b)
)

− s

s + b

(

us
B(a, b) − U s

B(a, b)eBc(s+b)
) Rs+a(x)

Rs+a(B)
(2.6.11)

+ Qs
B(a, b)

(

U s
x(a, b)exc(s+b) − Rs+a(x)

Rs+a(B)
U s

B(a, b)eBc(s+b)

)

, y ∈ [0, B].

Letting y = B in the latter equality, we find

Qs
B(a, b) =

s

s + b
− s

s + b

us
B(a, b)

U s
B(a, b)

e−Bc(s+b).

Inserting this expression for the function Qs
B(a, b) into (2.6.10), we derive the

second formula (2.6.8) of Lemma 2.6.2. N
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Thus, we found the auxiliary functions Ds
y(a, b), Qs

y(a, b), y ∈ R+ (formulae

2.6.3, 2.6.8), and we are now able to determine the function of interest:

Cs
y(a, b) = s

∫ ∞

0
e−stEe−aσy(t)−bσ∗

y (t) dt, a, b ≥ 0.

Denote τy = inf{t > 0 : Xt > y}, T y = Xτy − y, y ≥ 0,

fy(dv, s) = E
[

e−sτy
;T y ∈ dv, τy < ∞

]

, fy(s) = E
[

e−sτy
; τy < ∞

]

.

Theorem 2.6.1. Let {Xt; t ≥ 0} be the compound Poisson process with

Laplace exponent (2.6.1), us
x(a, b) = U s

x(a, b) = 1, for x < 0,

U s
x(a, b) = 1 + (a − b)

∫ x

0
e−uc(s+b) Rs+a(u)du, x ≥ 0,

us
x(a, b) = 1 + (a − b)

∫ x

0
Rs+a(u) du, x ≥ 0.

Then the following equalities are valid for the integral transforms of the joint

distribution of {σy(t), σ
∗
y(t)}, y ∈ R

Cs
y(a, b) =

s

s + b

(

us
B−y(a, b) − C(B)U s

B−y(a, b)e−yc(s+b)
)

, y ∈ R+,

Cs
−y(a, b) =

s

s + b

(

1 + (a − b)

∫ B

0
fy(du, s + b)

∫ B−u

0
Rs+a(v) dv

)

(2.6.12)

− s

s + b
C(B)

∫ ∞

0
fy(dv, s + b)U s

B−v(a, b)e−vc(s+b), y > 0,

where k′(c(s + b)) = d
dpk(p)

∣

∣

∣

p=c(s)
,

C(B) =
a − b

c(s + b)

U s
B(a, b) eBc(s+b) − us

B(a, b)

k′(c(s + b)) + (a − b)
∫ B
0 U s

x(a, b) dx
.

Proof. Again, in view of the total probability law, spatial homogeneity of the

process and Markov property of χ, we write the system of equations for the

function Cs
y(a, b), y ∈ R

Cs
y(a, b) = Qs

y(a, b) + Ds
y(a, b)Cs

0−(a, b), y ≥ 0, (2.6.13)

Cs
−y(a, b) =

s

s + b
(1 − fy(s + b)) +

∫ ∞

0
fy(dv, s + b)Cs

v(a, b), y > 0,
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where Cs
0−(a, b) = lim

y→0
Cs
−y(a, b). Inserting the expression for the function

Cs
y(a, b), y ≥ 0 from the second equation into the first one implies that

Cs
−y(a, b) =

s

s + b
(1 − fy(s + b)) +

∫ ∞

0
fy(dv, s + b)Qs

v(a, b)

+ Cs
0−(a, b)

∫ ∞

0
fy(dv, s + b)Ds

v(a, b), y > 0.

Letting y → 0 in this equation, we derive a linear equation for the function

Cs
0−(a, b), solving which yields

Cs
0−(a, b) =

s
s+b

(

1 − f0(s + b)
)

+
∫∞
0 f0(dv, s + b)Qs

v(a, b)

1 −
∫∞
0 f0(dv, s + b)Ds

v(a, b)
.

Using the equalities (2.6.3), (2.6.8) and performing some calculations, we find

Cs
0−(a, b) =

s

s + b
(us

B(a, b) − U s
B(a, b)C(B)) . (2.6.14)

While performing the calculations, we also used the relations:
∫ B

0
f0(dv, s + b)e−vc(s+b)

∫ B−v

0
e−uc(s+b)Rs+a(u) du =

=

∫ B

0
e−uc(s+b)Rs+a(u) du +

1

α

∫ B

0
U s

x(a, b) dx,

∫ B

0
f0(dv, s + b)

∫ B−v

0
Rs+a(u) du =

∫ B

0
Rs+a(u) du−

− 1

αc(s + b)

[

eBc(s+b)U s
B(a, b) − us

B(a, b)
]

,

which follow from (2.2.17, 2.2.18) and the definition of the resolvent (2.6.2).

Substituting the expression for the function Cs
0−(a, b) (2.6.14) into (2.6.13),

we get formulae (2.6.12) of Theorem 2.6.1. N

2.6.2 Spectrally one-sided Lévy process

Let {Xt; t ≥ 0}, X0 = 0 be the spectrally positive Lévy process whose Laplace

exponent is given by (2.2.7). In this section we will assume that σ > 0. In this

case lim
x→0

Rs(x) = lim
p→∞

p(k(p)− s)−1 = 0, p > 0. It is well-known (see Pistorius

(2004)), that the function R′
s(x) = d

dxRs(x), x > 0 is continuous and

lim
x→0

R′
s(x) = lim

p→∞
p2(k(p) − s)−1 = σ−2, x, p > 0.
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The function Cs
y(a, b), y ∈ R obeys the integro-differential equation of the

second kind (Skorokhod (1964)), and d
dy Cs

y(a, b), y ∈ R is a continuous function

with respect to y. Note, that the functions d
dyDs

y(a, b), d
dy Qs

y(a, b) possess the

same properties for y > 0.

Let y ∈ R+, τy = inf{t > 0 : y + Xt < 0}, σy = σy(τy), σ∗
y = σ∗

y(τy),

Ds
y(a, b) = E

[

e−sτy−aσy−bσ∗
y , τy < ∞

]

, a, b, s ≥ 0.

Lemma 2.6.3. Let {Xt; t ≥ 0}, X0 = 0 be the spectrally positive Lévy process

whose Laplace exponent is given by (2.2.7). Then the integral transform of the

joint distribution of {τy, σy, σ∗
y} is such that

Ds
y(a, b) =

U s
B−y(a, b)

U s
B(a, b)

e−yc(s+b), y ≥ 0, (2.6.15)

where U s
x(a, b) = 1, for x < 0,

U s
x(a, b) = 1 + (a − b)

∫ x

0
e−uc(s+b) Rs+a(u)du, x ≥ 0,

Rs(x), x ≥ 0 is the scale function (2.2.11) of the process.

Corollary 2.6.1. Let {Xt; t ≥ 0} be the standard Wiener process with Laplace

exponent k(p) = 1
2 p2 and y ∈ [0, B], x = B − y. Then

(i) the integral transform of the joint distribution of {τy, σy, σ
∗
y} is given by

Ds
y(a, b) =

√
s + a cosh(x

√

2(s + a)) +
√

s + b sinh(x
√

2(s + a))√
s + a cosh(B

√

2(s + a)) +
√

s + b sinh(B
√

2(s + a))
,

(2.6.16)

where sinh x, cosh x are the hyperbolic sine and cosine;

(ii) the Laplace transforms of σy, σ∗
y are such that

Ee−aσy =
cosh x

√
2a

cosh B
√

2a
, Ee−bσ∗

y =
1 + x

√
2b

1 + B
√

2b
;
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(iii) the following equalities are valid for the random variables σy, σ∗
y

P[σy > t] =
4

π

∞
∑

n=0

(−1)n

2n + 1
exp

(

−t
(2n + 1)2π2

8B2

)

cos
xπ

2B
(2n + 1),

(2.6.17)

P[σ∗
y = 0] =

x

B
, P[σ∗

y > t] =
y

B
et/2B2

√

2

π

∫ ∞

√
t/B

e−u2/2 du;

(2.6.18)

(iv) σ∗
y does not have moments, but the moments of the random variable σy

are given as follows:

Eσn
y =

B2n

(2n − 1)!!

n
∑

k=0

(−1)k
( x

B

)2k
(

2n

2k

)

En−k, n ∈ N, (2.6.19)

where En, n ∈ N are the Euler numbers defined by (2.3.18).

Proof. Let y ∈ [0, B], x = B − y and denote by

χ = inf{t : y + Xt /∈ [0, B]}, T = (Xχ − x)IAx + (−y − Xχ)IAy

the first exit time from the interval and the value of the overshoot at this

instant. Here Ax = {Xχ > x}, Ay = {Xχ < −y} are the events on which

the exit can take place. It is not difficult to derive the following system of

equations for the function Ds
y(a, b), y ∈ R+

Ds
y(a, b) = E

[

e−(s+a)χ;Ay

]

+

∫ ∞

0
E
[

e−(s+a)χ;T ∈ du,Ax
]

e−uc(s+b)Ds
B(a, b), y ∈ [0, B],

Ds
y(a, b) = Ds

B(a, b)e−(y−B)c(s+b), y > B. (2.6.20)

Here we used the Markov property of χ, spatial homogeneity of the process and

total probability law. Let us explain this system. The first equation means

that the sojourn occupation inside the interval [0, B] till the first passage

time of the lower boundary occurs either on the sample paths of the process
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which do not intersect the upper boundary, or on the paths which exit the

interval [0, B] through the upper boundary. The second equation is evident.

In view of (2.2.9) we can write the following representation for the function

Gs
x(z) = Ee−sτx−zXτx , x ∈ R+ for z = c(s + b)

Gs+a
x (c(s + b)) = 1 − a − b

c(s + a) − c(s + b)
Rs+a(x) e−xc(s+b)

+ (a − b)

∫ x

0
e−uc(s+b)Rs+a(u) du.

Taking into account the latter expression and (2.3.11), (2.3.12), we find for

the function Ṽ x(z, s) = E
[

e−sχ−zXχ ;Ax
]

for z = c(s + b), s → s + a that

Ṽ x(c(s + b), s + a) = U s
x(a, b)exc(s+b) − Rs+a(x)

Rs+a(B)
U s

B(a, b)eBc(s+b). (2.6.21)

Inserting the expression for the function Ṽ x(z, s) into (2.6.20), we get (x =

B − y)

Ds
y(a, b) =

Rs+a(B − y)

Rs+a(B)
+

+

[

U s
B−y(a, b)e(B−y)c(s+b) − Rs+a(x)

Rs+a(B)
U s

B(a, b)eBc(s+b)

]

Ds
B(a, b), y ∈ [0, B],

Ds
y(a, b) = Ds

B(a, b)e−(y−B)c(s+b), y > B. (2.6.22)

Differentiating the equalities (2.6.22) and letting y = B, we obtain the follow-

ing system of equations:

− d

dy
Ds

y(a, b)

∣

∣

∣

∣

y=B

=
R′

s+a(0)

Rs+a(B)
+ c(s + b)Ds

B(a, b)−

− Ds
B(a, b)

R′
s+a(0)

Rs+a(B)
U s

B(a, b)eBc(s+b),

d

dy
Ds

y(a, b)

∣

∣

∣

∣

y=B

= −c(s + b)Ds
B(a, b),

where R′
s+a(0) = d

dxRs+a(x)
∣

∣

x→0
= σ−2 > 0. Solving this system, we find

Ds
B(a, b) = U s

B(a, b)−1 exp{−Bc(s + b)}.

Substituting this expression into (2.6.22), we derive (2.6.15). Thus, Lemma

2.6.3 is proved. We now verify the statements of Corollary 2.6.1. Using the
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definition (2.2.11), we now calculate the scale function of the standard Wiener

process. For γ > c(s) =
√

2s we have

Rs(x) =
1

2πi

γ+i∞
∫

γ−i∞

exp 1
1
2 p2 − s

dp =

√

2

s
sinh

(

x
√

2s
)

. (2.6.23)

Substituting this expression for the scale function into (2.6.15) and performing

necessary calculations, we obtain formula (2.6.16) of Corollary 2.6.1.

Further, letting step by step in (2.6.16) s = 0, b = 0 and then s = 0, a = 0,

we derive the Laplace transforms of the random variables σy, σ∗
y

Ee−aσy =
cosh x

√
2a

cosh B
√

2a
, Ee−bσ∗

y =
1 + x

√
2b

1 + B
√

2b
, x = B − y.

Calculating the contour integrals (Ditkin and Kuznecov (1951))

1

2πi

γ+i∞
∫

γ−i∞

eat 1

a

(

1 − cosh x
√

2a

cosh B
√

2a

)

da,

1

2πi

γ+i∞
∫

γ−i∞

ebt 1

b

(

1 − 1 + x
√

2b

1 + B
√

2b

)

db, (γ > 0),

we find the distributions of σy, σ∗
y

P [σy > t] =
4

π

∞
∑

n=0

(−1)n

2n + 1
exp

(

−t
(2n + 1)2π2

8B2

)

cos
xπ

2B
(2n + 1), (2.6.24)

P
[

σ∗
y = 0

]

=
x

B
, P

[

σ∗
y > t

]

=
y

B
et/2B2

√

2

π

∫ ∞

√
t/B

e−u2/2 du. (2.6.25)

The formula (2.6.24) is also the asymptotic expansion for the probability which

enters its left-hand side. For instance, restricting us only to the first term of

the series of (2.6.24), we can write for t → ∞

P [σB > t] =
4

π
exp

(

−t
π2

8B2

)

+ o

(

e−t π2

8B2

)

.
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Using the asymptotic expansion of the integral (Dwight (2005)), we get from

the formula (2.6.25) as t → ∞

P
[

σ∗
y > t

]

=
y√
2πt

(

1 +

n
∑

k=1

(−1)k
B2k

tk
(2k − 1)!!

)

+ o

(

1

tn+ 1
2

)

, y ∈ [0, B].

In order to determine the moments of the random variable σy (2.6.25), whose

Laplace transform is given by

Ee−aσy =
cosh x

√
2a

cosh B
√

2a
, x = B − y,

it is necessary to use the series expansion (Dwight (2005)) of the function

sech = cosh−1 . N

Now we will determine the auxiliary function

Qs
y(a, b) = E

[

e−aσy(νs)−bσ∗
y(νs); τy > νs

]

, y ≥ 0.

Lemma 2.6.4. Let {Xt; t ≥ 0}, X0 = 0 be the spectrally positive Lévy process

with Laplace exponent (2.2.7). Then for the integral transform of the joint

distribution of {σy, σ∗
y} on the event {τy > νs} the following equalities are

valid:

Qs
y(a, b) =

s

s + b

(

us
B−y(a, b) − us

B(a, b)Ds
y(a, b)

)

, y ≥ 0, (2.6.26)

where us
x(a, b) = 1 for x < 0

us
x(a, b) = 1 + (a − b)

∫ x

0
Rs+a(u) du, x ≥ 0,

the functions Ds
y(a, b), y ≥ 0 are determined by the equalities (2.6.15) of

Lemma 2.6.3.

Proof. According to the total probability law and Markov property of χ, spa-

tial homogeneity of the process, we can write the following system of equations
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for the function Qs
y(a, b), y ∈ R+

Qs
y(a, b) =

s

s + a

(

1 − Ee−(s+a)χ
)

+
s

s + b

∫ ∞

0
E
[

e−(s+a)χ;T ∈ du,Ax
] (

1 − e−uc(s+b)
)

(2.6.27)

+

∫ ∞

0
E
[

e−(s+a)χ;T ∈ du,Ax
]

Qs
B(a, b)e−uc(s+b), y ∈ [0, B],

Qs
y(a, b) =

s

s + b

(

1 − e−(y−B)c(s+b)
)

+ Qs
B(a, b) e−(y−B)c(s+b), y > B.

The three summands which enter the right-hand side of the first equation

mean that the total time of staying inside the interval [0, B] (outside the

interval [0, B]) by the process without intersection of the lower boundary can

be realized either on the sample paths of the process which do not leave the

interval [0, B], or on the paths which do leave the interval through the upper

boundary and never return back, or on the paths which do leave the interval

through the upper boundary and then return inside. The second equation

is evident. Employing (2.6.21) and (2.3.11), (2.3.12), we re-write the system

(2.6.27) as follows:

Qs
y(a, b) =

s

s + b

(

us
B−y(a, b) − U s

B−y(a, b)e(B−y)c(s+b)
)

− s

s + b

(

us
B(a, b) − U s

B(a, b)eBc(s+b)
) Rs+a(B − y)

Rs+a(B)
(2.6.28)

+ Qs
B(a, b)

(

U s
B−y(a, b)e(B−y)c(s+b) − Rs+a(B − y)

Rs+a(B)
U s

B(a, b)eBc(s+b)

)

, y ∈ [0, B],

Qs
y(a, b) =

s

s + b

(

1 − e−(y−B)c(s+b)
)

+ Qs
B(a, b) e−(y−B)c(s+b), y > B.

Differentiating the equalities (2.6.28) and then letting y = B yields the fol-

lowing system:

d

dy
Qs

y(a, b)

∣

∣

∣

∣

y=B

=
s

s + b

(

c(s + b) +
(

us
B(a, b) − U s

B(a, b)eBc(s+b)
) R′

s+a(0)

Rs+a(B)

)

− Qs
B(a, b)

(

c(s + b) − U s
B(a, b)eBc(s+b) R′

s+a(0)

Rs+a(B)

)

,

d

dy
Qs

y(a, b)

∣

∣

∣

∣

y=B

=
s

s + b
c(s + b) − Qs

B(a, b)c(s + b).
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Solving this system, we find that

Qs
B(a, b) =

s

s + b

(

1 − us
B(a, b)

U s
B(a, b)

e−Bc(s+b)

)

.

Substituting this expression for the function Qs
B(a, b) in the equality (2.6.28),

we obtain the formulae (2.6.24) of the Lemma 2.6.4. N

Hence, the auxiliary functions Ds
y(a, b), Qs

y(a, b), y ∈ R+ are determined by

(2.6.15), (2.6.16), and we are now able to find the function

Cs
y(a, b) = s

∫ ∞

0
e−stEe−aσy(t)−bσ∗

y (t) dt, a, b ≥ 0.

Denote τy = inf{t > 0 : Xt > y}, T y = Xτy − y, y ≥ 0,

fy(dv, s) = E
[

e−sτy
;T y ∈ dv, τy < ∞

]

, fy(s) = E
[

e−sτy
; τy < ∞

]

.

Theorem 2.6.2 (Kadankov and Kadankova (2004)). Let {Xt; t ≥ 0}, X0 =

0 be the spectrally positive Lévy process with Laplace exponent (2.2.7) and

{Rs(x)}x≥0 be the scale function of the process (2.2.11). Denote

U s
x(a, b) = 1 + (a − b)

∫ x

0
e−uc(s+b) Rs+a(u)du, x ≥ 0,

us
x(a, b) = 1 + (a − b)

∫ x

0
Rs+a(u) du, x ≥ 0,

us
x(a, b) = U s

x(a, b) = 1, for x < 0.

Then the integral transforms of the joint distribution of {σy(t), σ
∗
y(t)}, y ∈ R

are such that

Cs
y(a, b) =

s

s + b

(

us
B−y(a, b) − C(B)U s

B−y(a, b)e−yc(s+b)
)

, y ∈ R+,

Cs
−y(a, b) =

s

s + b

(

1 + (a − b)

∫ B

0
fy(du, s + b)

∫ B−u

0
Rs+a(v) dv

)

(2.6.29)

− s

s + b
C(B)

∫ ∞

0
fy(dv, s + b)U s

B−v(a, b)e−vc(s+b), y > 0,

where r(s, b) = k′(c(s + b)) = d
dpk(p)

∣

∣

∣

p=c(s)
,

C(B) =
a − b

c(s + b)

U s
B(a, b) eBc(s+b) − us

B(a, b)

r(s, b) + (a − b)
∫ B
0 U s

x(a, b) dx
.
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Proof. One can find that the function Cs
y(a, b), y ∈ R obeys to the following

system of the equations:

Cs
y(a, b) = Qs

y(a, b) + Ds
y(a, b)Cs

0−(a, b), y ≥ 0, (2.6.30)

Cs
−y(a, b) =

s

s + b
(1 − fy(s + b)) +

∫ ∞

0
fy(dv, s + b)Cs

v(a, b), y > 0,

where Cs
0−(a, b) = lim

y→0
Cs
−y(a, b). We again used the total probability law,

spatial homogeneity of the process and Markov property of χ. Now inserting

the expression for the function Cs
y(a, b) y ≥ 0 from the first equation into the

second one, we find that

Cs
−y(a, b) =

s

s + b
(1 − fy(s + b)) +

∫ ∞

0
fy(dv, s + b)Qs

v(a, b)

+ Cs
0−(a, b)

∫ ∞

0
fy(dv, s + b)Ds

v(a, b), y > 0. (2.6.31)

It follows from (2.6.15), (2.6.26) that

d

dy
Ds

y(a, b)

∣

∣

∣

∣

y→0

= −c(s + b) − a − b

U s
B(a, b)

Rs+a(B)e−Bc(s+b),

d

dy
Qs

y(a, b)

∣

∣

∣

∣

y→0

= − s

s + b
(a − b)Rs+a(B)+

+
s

s + b
us

B(a, b)

(

c(s + b) +
a − b

U s
B(a, b)

Rs+a(B)e−Bc(s+b)

)

. (2.6.32)

Taking into account (2.2.9), (2.6.21) and the definition of the scale function

(2.2.11), we calculate the following limits:

d

dy

∫ B

0
fy(dv, s + b)

∫ B−v

0
Rs+a(u) du

∣

∣

∣

∣

y→0

=

= Rs+a(B) − σ−2
[

U s
B(a, b)eBc(s+b) − us

B(a, b)
]

c(s + b)−1,

d

dy

∫ B

0
fy(dv, s + b)e−vc(s+b)

∫ B−v

0
e−uc(s+b)Rs+a(u) du

∣

∣

∣

∣

y→0

= Rs+a(B)e−Bc(s+b)

+ c(s + b)

∫ B

0
e−uc(s+b)Rs+a(u) du − 1

σ2

∫ B

0
U s

x(a, b) dx,

d

dy

∫ ∞

0
fy(dv, s + b)e−vc(s+b)

∣

∣

∣

∣

y→0

= c(s + b) − r(s, b)σ−2. (2.6.33)
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Since the function d
dy Cs

y(a, b), y ∈ R is continuous, we have

d

dy
Cs

y(a, b)

∣

∣

∣

∣

y→0

= − d

dy
Cs
−y(a, b)

∣

∣

∣

∣

y→0

.

Employing the latter equality, we calculate the limits (2.6.32), (2.6.33). Then

differentiating the first equality of (2.6.30) and the formula (2.6.31), we obtain

an equation with respect to the function Cs
0−(a, b) :

0 =
s

s + b
As(a, b) + Bs(a, b)Cs

0−(a, b), (2.6.34)

where

As(a, b) =
us

B(a, b)

U s
B(a, b)

(

r(s, b) + (a − b)

∫ B

0
U s

x(a, b) dx

)

σ−2

− a − b

c(s + b)

(

U s
B(a, b)eBc(s+b) − us

B(a, b)
)

σ−2,

Bs(a, b) =
σ−2

U s
B(a, b)

(

r(s, b) + (a − b)

∫ B

0
U s

x(a, b) dx

)

.

It follows from (2.6.34) that

Cs
0−(a, b) =

s

s + b
us

B(a, b) − s

s + b
U s

B(a, b)C(B).

Inserting the expression for Cs
0−(a, b) into the first equality of (2.6.30), we get

the formulae (2.6.31) of Theorem 2.6.2. N

Remark 2.6.1. It is worth noting that the formulae (2.6.15), (2.6.26), (2.6.29)

for the integral transforms of the distributions σy(t), y ∈ R for the spectrally

positive Lévy processes are identical to the formulae (2.6.3), (2.6.8), (2.6.12)

for the compound Poisson process. The reason is as follows. A spectrally

one-sided Lévy process can be approximated by a sequence of compound Pois-

son processes with a drift (Gihman and Skorokhod (1973, ch.4,§2)). This fact

assures the weak convergence of boundary functionals of the approximating

Poisson processes to the corresponding boundary functionals of the spectrally

one-sided Lévy process.
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2.6.3 Standard Wiener process

Now we apply the results obtained in the previous sections to determine the

distribution of the sojourn occupation inside the fixed interval by a standard

Wiener process {w(t); t ≥ 0}.

Corollary 2.6.2. Let {w(t); t ≥ 0} be the standard Wiener process with the

Laplace exponent k(p) = 1
2p2. Then

(i) the integral transform

Cs
y(a, b) = s

∫ ∞

0
e−stE

[

e−aσy(t)−bσ∗
y (t)
]

dt, y ∈ R

of the joint distribution of {σy(t), σ
∗
y(t)} satisfies the following equalities:

Cs
y(a, b) =

s

s + b

(

1 − a − b√
s + a

sinh( B√
2

√
s + a) exp{−(y − B)

√

2(s + b)}
√

s + a sinh( B√
2

√
s + a) +

√
s + b cosh( B√

2

√
s + a)

)

,

y > B, (2.6.35)

Cs
y(a, b) =

s

s + a

(

1 +
a − b√
s + b

cosh(B−2y√
2

√
s + a)

√
s + a sinh( B√

2

√
s + a) +

√
s + b cosh( B√

2

√
s + a)

)

,

y ∈ [0, B], (2.6.36)

Cs
y(a, b) =

s

s + b

(

1 − a − b√
s + a

sinh( B√
2

√
s + a) exp{y

√

2(s + b)}
√

s + a sinh( B√
2

√
s + a) +

√
s + b cosh( B√

2

√
s + a)

)

,

y < 0; (2.6.37)

(ii) the expectations of σy(t), σ∗
y(t) are such that

Eσ∗
y(t) =

∫ t

0
P[w(u) > y] du +

∫ t

0
P[w(u) > B − y] du,

Eσy(t) = t − Eσ∗
y(t), y ∈ [0, B], (2.6.38)

Eσy(t) =

∫ t

0
P[w(u) > y − B] du −

∫ t

0
P[w(u) > y] du,

Eσ∗
y(t) = t − Eσy(t), y > B,
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where

∫ t

0
P[w(u) > x] du =

t + x2

√
2πt

∫ ∞

x
e−

u2

2t du − x
√

t√
2π

e−
x2

2t .

It is worth noting that for b = 0 the formulae (2.6.35)−(2.6.37) are given in Fu-

sai (2000). Inverting the Laplace transforms in the equalities (2.6.35)−(2.6.37)

yields the distributions of σy(t), σ∗
y(t). The following statement contains the

equalities for these distributions in the case when y ∈ [0, B].

Theorem 2.6.3 (Kadankov and Kadankova (2004)). Let {w(t); t ≥ 0} be the

standard Wiener process,

σy(t) =

∫ t

0
g( y + w(u)) du, σ∗

y(t) =

∫ t

0
g∗( y + w(u)) du, y ∈ [0, B]

be the sojourn occupation times inside and outside the interval [0, B] by the

process y +w(·) till time t. Then the distributions of σy(t), σ∗
y(t) are such that

P [σy(t) < u] =
2

π

∞
∑

n=0

(−1)n
∫ u

0
exp

(

−(y + nB)2

2v

)

Kn

(

t − u

t − v

)

dv arcsin

√

v

t

+
2

π

∞
∑

n=0

(−1)n
∫ u

0
exp

(

−(x + nB)2

2v

)

Kn

(

t − u

t − v

)

dv arcsin

√

v

t
,

u ∈ (0, t),

P
[

σ∗
y(t) < u

]

= 1 − 2

π

∞
∑

n=0

(−1)n
∫ t−u

0
e−(y+nB)2/2v Kn

(

u

t − v

)

dv arcsin

√

v

t

− 2

π

∞
∑

n=0

(−1)n
∫ t−u

0
e−(x+nB)2/2v Kn

(

u

t − v

)

dv arcsin

√

v

t
,

where x = B − y, u ∈ (0, t) and

Kn(x) =

n
∑

k=0

(−1)k
(

n

k

)2

xk (1 − x)n−k, x ∈ [0, 1].
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In particular,

P
[

σ∗
y(t) = 0

]

= P [σy(t) = t]

= 1 − 2

π

∞
∑

n=0

(−1)n
∫ t

0
exp

(

−(y + nB)2

2v

)

dv arcsin

√

v

t

− 2

π

∞
∑

n=0

(−1)n
∫ t

0
exp

(

−(x + nB)2

2v

)

dv arcsin

√

v

t
.

For the proof we refer to Kadankov and Kadankova (2004).

2.6.4 Compound Poisson process with arbitrary positive and

exponential negative jumps

Theorem 2.6.4 (Kadankova and Veraverbeke (2005)). Let {Xt; t ≥ 0}, X0 =

0 be the compound Poisson process with Laplace exponent (2.2.13),

vs
a(x) = 1 + aλ

∫ x

0
Rs+a(u) du, x ≥ 0; vs

a(x) = 1, x < 0,

V s
a (x) = 1 + a(λ − c(s))

∫ x

0
e−uc(s)Rs+a(u) du, x ≥ 0; V s

a (x) = 1, x < 0.

Then the integral transform Cs
a(y) of σy(t), y ∈ R satisfies the equalities for

B > 0, s > 0, a ≥ 0

Cs
a(y) = v s

a (B − y) − aRs+a(B − y) + Ds
a(y)C∗(B), y ≥ 0, (2.6.39)

Cs
a(−y) = 1 −Ee−sτy

+

∫ ∞

0
E
[

e−sτy
;T y ∈ du

]

Cs
a(u), y > 0,

where r(c(s), s) = d
dp(λ − p)(k(p) − s)

∣

∣

∣

p=c(s)
,

C∗(B) =

aλ
c(s)

(

vs
a(B) − V s

a (B)ec(s)B
)

V s
a (B)

r(c(s), s) + a(λ − c(s))
B
∫

0

(

V s
a (x) − ae−xc(s)Rs+a(x)

)

dx

.

The proof is quit technical and can be found in Kadankova and Veraverbeke

(2005).





Chapter 3

Difference of two compound

renewal processes

3.1 Introduction

The methodology developed in the previous chapter can be applied to an-

other class of stochastic processes. This chapter deals with the difference of

the compound Poisson process and the compound renewal process. Such pro-

cesses have proven to be appropriate models in many applied fields of probabi-

lity theory, such as telecommunication networks, cash management, computer

networks, and in particular, in queueing theory. In Chapter 4 we will illustrate

how our results are applied for certain queueing systems with finite buffer.

For this class of stochastic processes we determine several two-boundary charac-

teristics. The corresponding results are obtained by means of employing sim-

ilar methods as for Lévy processes and random walks. Note, that the process

under consideration is not a Markov process in general. In order to employ

the method from Chapter 2, we introduce an auxiliary two-component Markov

process by adding to the original process a linear component (called age pro-

cess).

We start with a short overview of the existing literature related to our problem.
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Distributions of the one-boundary functionals for the difference of renewal pro-

cesses have been studied by Lindley (1952), Prabhu (1980) and Cohen (1982).

The two-sided exit problem for such processes is closely related to the G|G|1
type queueing models. A summary of known results for the G|G|1 type model

can be found in Cohen (1982). The joint distributions of the one-boundary

functionals for the difference of compound renewal processes have been con-

sidered by Nasirova (1984) in terms of the solutions of linear integral equa-

tions. Special cases of the difference of renewal processes have been studied by

many authors: Pirdzhanov (1990), Ezhov (1993), Bratiychuk and Pirdzhanov

(1991), Ezhov and Kadankov (2002). One-boundary functionals for the dif-

ference of two compound Poisson processes with drifts and with various jump

distributions have been studied by Perry et al. (2002), Perry et al. (2005).

Two-boundary problems for the difference of two compound Poisson processes

with exponential negative jumps were solved in Kadankov and Kadankova

(2006).

This chapter is structured as follows. Firstly, we introduce the process and

state some auxiliary results. In Section 3 we derive the integral transforms

of the one-boundary characteristics of the process. Then the two-sided exit

problem is solved for the difference of the compound Poisson process and the

compound renewal process. The Laplace transforms of the joint distribution of

the first exit time, the value of the overshoot and the value of the age process

at this instant are determined (Section 4). In Section 5 we determine the joint

distribution of the infimum, supremum and the value of the process in terms

of the integral transforms of the one-boundary characteristics of the process.

The results obtained are applied for a particular case of this process, namely,

for the difference of the compound Poisson process and the renewal process

whose jumps are geometrically distributed. The advantage is that these results

are in a closed form, in terms of the resolvent sequences of the process, so that

we can derive the exit probabilities.

In this case the limit distributions of the one-boundary and two-boundary

functionals are found when ρ = 1, σ2 < ∞. The weak convergence is es-

tablished to the distributions of the corresponding functionals of the Wiener
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process with dispersion σ2 in Section 6. The two final sections deal with the

reflected processes. We determine the distribution of the first passage time of

the lower boundary, distribution of the increments of the process and asymp-

totic behavior of the process. We consider the reflections generated by infimum

(Section 7) and by supremum (Section 8) of the process. These processes serve

to study the main characteristics of queueing systems with batch arrivals and

finite buffer (see Chapter 4).

We also determined the Laplace transforms of the distribution of the number

of intersections of the interval and investigated the limit behavior of this func-

tional. But this part of the study is not included in this thesis, and we refer

to Kadankov et al. (2009) for the results.

The results of this chapter can be found in the following articles:

Kadankov and Kadankova (2007). Two-boundary problems for semi-

Markov walk with a linear drift. Random Oper. and Stoch. Equ.

(ROSE), 15(3), 223-251.

Kadankov and Kadankova (2008c). A two-sided exit problem for a dif-

ference of a compound Poisson process and a compound renewal process

with a discrete phase space. Stochastic Models, 24(1), 152-172.

Kadankov et al. (2009). Intersections of an interval by a difference of a

compound Poisson process and a compound renewal process. Stochastic

Models, 25(2), 270-300.
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3.2 Definitions and auxiliary results

Let κ, δ ∈ N = {1, 2, . . . } be independent integer random variables, and

η ∈ (0,∞) be a positive random variable independent of κ, δ with the dis-

tribution function F (x) = P [η ≤ x] , x ≥ 0. We will assume that Eκ, Eδ,

Eη < ∞. Introduce the sequences {η, η′n}, {κ, κ′
n}, {δ, δ′n}, n ∈ N of indepen-

dent identically distributed (inside of each sequence) variables and define the

renewal sequences

η0(x) = 0, η1(x) = ηx, ηn+1(x) = ηx + η′1 + · · · + η′n, n ∈ N, (3.2.1)

κ0 = 0, κn = κ′
1 + · · · + κ′

n; δ0 = 0, δn = δ′1 + · · · + δ′n; n ∈ N,

where ηx ∈ (0,∞) is the random variable with the following distribution func-

tion

Fx(u) = P [ηx ≤ u] = [F (x + u) − F (x)](1 − F (x))−1, u ≥ 0.

Denote by {π(t)}t≥0 ∈ Z+ = {0, 1, . . . } a compound Poisson process with the

generating function of the form

E θπ(t) = etk(θ), k(θ) = µ (E θκ − 1) , |θ| ≤ 1,

where µ > 0 is the intensity of the jumps and κ is a jump size. For all

t ≥ 0 define a delayed renewal process generated by the random sequence

{ηn(x)}n∈Z+ :

Nx(t) = max{n ∈ Z+ : ηn(x) ≤ t} ∈ Z+, x ≥ 0. (3.2.2)

Introduce a right-continuous step process for all x ≥ 0

Dx(t) = π(t) − δNx(t) ∈ Z, t ≥ 0; Dx(0) = 0. (3.2.3)

We will call the process {Dx(t)}t≥0 a difference of the compound Poisson

process and the compound renewal process. Observe, that this process is not

a Markov process in general. To be able to apply the method from the previous
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chapter, we require a supplementary process. Therefore, for all t ≥ 0 introduce

a right-continuous linear process

η +
x (t) =







t + x, 0 ≤ t < ηx,

t − ηNx(t)(x), t ≥ ηx

∈ R+ = [0,∞), x ∈ R+. (3.2.4)

The process {η +
x (t)}t≥0 increases linearly on the intervals [ηn(x), ηn+1(x)),

n ∈ Z+, it is killed to zero at the points ηn(x), n ∈ N, and the value of the

process at the instant t0 ≥ ηx is equal to the time elapsed from the moment of

the last renewal of the renewal process (3.2.2) till t0. We will call the process

(3.2.4) a linear component. Note, that this linear component is sometimes

referred to as the age process (age since the last renewal). By adding this

linear component to the process {Dx(t)}t≥0 , we obtain a right-continuous

Markov process

{Xt}t≥0 =
{

Dx(t), η +
x (t)

}

t≥0
∈ Z × R+, X0 = {0, x}, x ∈ R+, (3.2.5)

which governs the process {Dx(t)}t≥0. Note, that the process defined in (3.2.5)

is homogeneous with respect to the first component (Ezhov and Skorokhod

(1969)). It means that the transient probability of the process

P t
k,x(A, y) = P

[

Dx(t) ∈ A, η +
x (t) ≤ y/ Dx(0) = k, η +

x (0) = x
]

enjoys the following property for all k ∈ Z, y ≥ 0 :

P t
k,x(A, y) = P t

0,x(A−k, y),

where A is a subset of Z, A−k is the subset of integers k′ such that k′ + k ∈
A. This property will be constantly used when setting up the equations. If

Xt0 = {k, u}, k ∈ Z, u ≥ 0, then the evolution of the process {Xt}t≥t0 in

the sequel does not depend on the value k of the first component. The first

jump of the process {π(t)}t≥t0 (which is distributed as κ) will occur after

an exponential period of time with parameter µ. The first renewal instant of

the process {Nx(t)}t≥t0 (with jump size distributed as δ) will take place after

elapsing of time ηu.
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To determine the two-boundary characteristics of the original process, we first

derive the one-boundary characteristics of the process {Xt}t≥0. We now define

an auxiliary right-continuous step process which will be used in the sequel.

Introduce a generating sequence as follows (n ∈ N)

ξ0(x) = 0, ξ1(x) = π(ηx) − δ, ξn+1(x) = ξ1(x) +

n
∑

i=1

ξ′i, ξn = ξn(0),

where ξ = π(η)−δ ∈ Z, {ξ, ξ′n}, n ∈ N is a sequence of i.i.d. random variables.

Define the process

{Sx(t)}t≥0 =
{

ξNx(t)(x)
}

t≥0
∈ Z, Sx(0) = 0, x ∈ R+. (3.2.6)

The sample paths of this process are the constants on the time intervals

[ηn(x), ηn+1(x)), n ∈ Z+, and there occur jumps at the instants ηn(x), n ∈ N.

These jumps have the same distribution as ξ
.
= π(η)− δ, where n ∈ {2, 3, . . . },

and ξ1(x)
.
= π(ηx)−δ for n = 1. Here and in the sequel we will call the process

{Sx(t)}t≥0 a semi-Markov random walk generated by the sequences {ηn(x)},
{ξn(x)}, n ∈ Z+. This name originated from Nasirova (1984).

For all x ∈ R+, |θ| ≤ 1 denote

f̃x(s) = Ee−sηx , f̃(s) = f̃0(s), f̃x(s, θ) = f̃x(s − k(θ)) = E
[

e−sηxθπ(ηx)
]

.

The following statement relates the Laplace transforms of the processes Nx(t),

Dx(t), η+
x (t) and Sx(t), t ≥ 0.

Lemma 3.2.1. Let Nx(t), Dx(t), η+
x (t), Sx(t), t ≥ 0 be the random processes

defined by formulae (3.2.2)-(3.2.6), and νs ∼ exp(s) be an exponential random

variable independent of these processes. Then for all x ∈ R+, s > 0, |a| ≤ 1,

|θ|, |b| = 1, p ≥ 0 the following equality holds:

Es
x(a, b, θ, p) = EaNx(νs)bDx(νs)θSx(νs)e−pη+

x (νs) =
se−px

s + p − k(b)
(1 − f̃x(s + p, b))

+
sa

s + p − k(b)
f̃x(s, θb)E(θb)−δ 1 − f̃(s + p, b)

1 − af̃(s, θ)E(θb)−δ
. (3.2.7)
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In particular, for all x ∈ R+, s > 0, the following formula is valid:

EθSx(νs) = 1 − f̃x(s) + f̃x(s, θ)Eθ−δ 1 − f̃(s)

1 − f̃(s, θ)Eθ−δ
, |θ| = 1. (3.2.8)

Proof. It is not difficult to establish that the mathematical expectation

Es
x(a, b, θ, p) obeys the following equation for x ∈ R+, s > 0, |a| ≤ 1, |θ|, |b| = 1,

p ≥ 0

Es
x(a, b, θ, p) = s

1 − f̃x(s + p, b)

s + p − k(b)
e−px + af̃x(s, θb)E(θb)−δEs

0(a, b, θ, p).

In order to write this equation, we used the total probability law, independence

of the random variables δ and η1(x), homogeneity of the process {Xt}t≥0 with

respect to the first component and the fact that the random time η1(x) is a

Markov time. Setting x = 0 in this equation, we get

Es
0(a, b, θ, p) =

s

s + p − k(b)

1 − f̃(s + p, θb)

1 − af̃(s, θb)E(θb)−δ
.

Substituting the expression for Es
0(a, b, θ, p) into the previous equality, we get

(3.2.7). Formula (3.2.8) follows from (3.2.7) for p = 0, a = b = 1. N

To determine the one-boundary characteristics of the process, we require the

one-boundary functionals of the semi-Markov walk {Sx(t)}t≥0 (3.2.6). We now

formally define them. For all x ∈ R+, k ∈ Z+ denote by

τ̃k(x) = inf{t : Sx(t) > k}, T̃ k(x) = Sx(τ̃k(x)) − k ∈ N,

τ̃k=τ̃k(0), T̃ k=T̃ k(0), the instant of the first overshoot of the upper level k by

the process {Sx(t)}t≥0 and the value of the overshoot through this level; and

by

τ̃k(x) = inf {t : Sx(t) < −k}, T̃k(x) = −Sx(τ̃k(x)) − k ∈ N,

τ̃k=τ̃k(0), T̃k=T̃k(0), the instant of the first overshoot of the lower level −k by

the process {Sx(t)}t≥0 and the value of the overshoot at this instant. Observe,

that the random variables τ̃k(x), τ̃k(x) take their values from a countable set

{ηn(x), n ∈ N}, and they are Markov times of the process {Sx(t)}t≥0. We now
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formulate and prove some results for the one-boundary characteristics of the

semi-Markov walk {Sx(t)}t≥0 which appear to be analogous to the results for

usual random walks and Lévy processes (due to Spitzer (1964), Rogozin and

Pecherskii (1966), Pecherskii and Rogozin (1969)).

Lemma 3.2.2. Let {S0(t)}t≥0 ∈ Z be the semi-Markov walk (3.2.6), and

S+
t = sup

u≤t
S0(u), S−

t = inf
u≤t

S0(u), u, t ≥ 0

be the running supremum and the infimum of the process {S0(t)}t≥0, s > 0.

Then

(i) the following identity (Spitzer (1964), Rogozin(1966)) is valid for the

semi-Markov walk {S0(t)}t≥0

EθS0(νs) =
1 − f̃(s)

1 − f̃(s, θ)Eθ−δ
= EθS+

νs EθS−
νs , |θ| = 1, (3.2.9)

where the random variables −S−
νs

, S+
νs

∈ Z+ are infinitely divisible and

their Laplace transforms are given as follows:

EθS±
νs = exp

{

∑

n∈N

1

n
E
[

e−sηn

(

θξn − 1
)

;±ξn > 0
]

}

, |θ|±1 ≤ 1;

(3.2.10)

(ii) the Laplace transforms of the joint distributions of {τ̃k, T̃ k}, {τ̃k, T̃k},
k ∈ Z+ of the semi-Markov walk {S0(t)}t≥0 obey the following equalities

(Pecherskii and Rogozin (1969)) (|θ| ≤ 1)

E
[

e−sτ̃k
θT̃ k

; τ̃k < ∞
]

=
(

E θS+
νs

)−1
E
[

θS+
νs−k;S+

νs
> k

]

,

E
[

e−sτ̃kθT̃k ; τ̃k < ∞
]

=
(

E θ−S−
νs

)−1
E
[

θ−S−
νs−k; S−

νs
< −k

]

; (3.2.11)

(iii) the integral transforms of the joint distributions of {S0(νs), S±
νs
} are such

that for all k ∈ Z+

E
[

θS0(νs); S+
νs

≤ k
]

= EθS−
νsE

[

θS+
νs ;S+

νs
≤ k

]

, |θ| ≥ 1,

E
[

θS0(νs);S−
νs

≥ −k
]

= EθS+
νsE

[

θS−
νs ;S−

νs
≥ −k

]

, |θ| ≤ 1. (3.2.12)
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The proof is based on the factorization method (Borovskikh (1979)) and it is

given in Kadankov and Kadankova (2005b).

We now consider a particular case, when the random variable δ ∈ N is geo-

metrically distributed with parameter λ ∈ [0, 1) :

P[δ = n] = (1 − λ)λn−1, n ∈ N, Eθ−δ =
1 − λ

θ − λ
, |θ| ≥ 1. (3.2.13)

This assumption means that the process {Dx(t)}t≥0 has geometrically dis-

tributed negative jumps at time instants {ηn(x)}n∈N. Here and in the sequel

we will denote the distribution (3.2.13) as follows δ ∼ ge(λ). In this case

all characteristics of the process can be expressed in terms of a certain func-

tion which we introduce in the next section (see the defining formulae (3.3.4),

(3.3.5)).

Lemma 3.2.3 (Kadankov and Kadankova (2008c)). Let f̃(s) = Ee−sη. Then

for s > 0 the equation

θ − λ = (1 − λ)f̃(s − k(θ)), |θ| < 1 (3.2.14)

has a unique solution c(s) inside the circle |θ| < 1. This solution is positive

and c(s) ∈ (λ, 1). If E[κ],E[η] < ∞, ρ = µ(1 − λ)E[κ]E[η], then for ρ > 1,

lim
s→0

c(s) = c ∈ (λ, 1); and for ρ ≤ 1, lim
s→0

c(s) = 1.

Corollary 3.2.1. Let δ ∼ ge(λ), s > 0, k ∈ Z+. Then

(i) the generating functions of S−
νs

, S+
νs

are such that

EθS−
νs =

1 − c(s)

1 − λ

1 − λ/θ

1 − c(s)/θ
, |θ| ≥ 1,

EθS+
νs =

1 − λ

1 − c(s)

(1 − f̃(s))(θ − c(s))

θ − λ − (1 − λ)f̃(s, θ)
, |θ| ≤ 1; (3.2.15)

(i) the generating functions of the joint distributions of {τ̃k, T̃k}, {τ̃k, T̃ k}
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are given as follows:

E
[

e−sτ̃k ; T̃k = m
]

= (c(s) − λ)c(s)kλm−1 = Ee−sτ̃k(1 − λ)λm−1,

(3.2.16)

∑

k∈Z+

θkE
[

e−sτ̃k
zT̃ k
]

=
1

1 − θ/z

[

1 − θ − c(s)

z − c(s)

(1 − λ)f̃(s, z) + λ − z

(1 − λ)f̃(s, θ) + λ − θ

]

.

Proof. The equalities (3.2.15) can be derived from (3.2.14) after taking into

account the fact that the factorization expansion is unique. Formulae (3.2.16)

follow from (3.2.11) of Lemma 3.2.2 and from (3.2.15). The first equality of

(3.2.16) implies that the random variable T̃k is independent from τ̃k for all

k ∈ Z+, and it is geometrically distributed with parameter λ. N
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3.3 One-boundary functionals of the process

In this section we will determine the one-boundary characteristics of the pro-

cess {Dx(t)}t≥0 generated by the first overshoot time of a fixed level. Let

X0 = {0, x}, x ∈ R+, k ∈ Z+. Define

τk(x) = inf{t : Dx(t) < −k}, Tk(x) = −Dx(τk(x)) − k, inf{∅} = ∞

i.e. the first overshoot time of the negative level −k by the process {Dx(t)}t≥0

and the value of the overshoot at this instant. We will use the convention that

on the event {τk(x) = ∞} Tk(x) = ∞. Denote Bk(x) = {τk(x) < ∞},

fk(x,m, s) = E
[

e−sτk(x);Tk(x) = m,Bk(x)
]

, m ∈ N.

Lemma 3.3.1. The generating function f̃k(x, θ, s)
def
=

∑

m∈N

θmfk(x,m, s) is

such that

f̃k(0, θ, s) =
(

E θ−S−
νs

)−1
E
[

θ−S−
νs−k; S−

νs
< −k

]

,

f̃k(x, θ, s) = E
[

e−sηxθ−ξ1(x)−k; ξ1(x) < −k
]

+

+
∑

i∈Z+

E
[

e−sηx ; ξ1(x) = i − k
]

f̃i(0, θ, s), (3.3.1)

where ξ1(x)
.
= π(ηx) − δ and S−

νs
= inf

t≤νs

S0(t) is the running infimum of the

semi-Markov walk {S0(t)}t≥0.

Proof. Observe, that the processes Dx(t), Sx(t), t ≥ 0 do not decrease on

the intervals [ηn(x), ηn+1(x)). It follows from the definitions of these processes

(3.2.3), (3.2.6) that the negative jumps of Dx(t), Sx(t), t ≥ 0 can only occur

at instants {ηn(x), n ∈ N}. It also follows from (3.2.3), (3.2.6) that

Dx(ηn(x)) = Sx(ηn(x)) = π(ηn(x)) − δn, n ∈ Z+.

Thus, the first overshoot time τ̃k(x) of the negative level −k and the value

of the overshoot T̃k(x) through this level by the semi-Markov walk {Sx(t)}t≥0

coincide in distribution with the first overshoot time τk(x) and the value of the

overshoot Tk(x) by the process {Dx(t)}t≥0. The first equality of (3.3.1) follows
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straightforwardly from the second formula of (3.2.11). In order to derive the

second formula of (3.3.1), we used the total probability formula, the Markov

property of η1(x)
.
= ηx and homogeneity of the process {Xt}t≥0 with respect

to the first component. N

Corollary 3.3.1. Let δ ∼ ge(λ), x ∈ R+, k ∈ Z+, m ∈ N, s > 0. Then

(i) the Laplace transform of the joint distribution of {τk(x), Tk(x)} satisfies

the following equality:

fk(x,m, s) = f̃x(s − k(c(s))) c(s)k (1 − λ)λm−1, (3.3.2)

where c(s) ∈ (λ, 1) is the unique solution of the equation (3.2.14) inside

the circle |θ| < 1, f̃x(s) = E e−sηx , f̃(s) = E e−sη = f̃0(s);

(ii) if ρ > 1, then P[τk(x) < ∞] = f̃x(−k(c)) ck < 1, and τk(x) is a defective

random variable for all k ∈ Z+, x ≥ 0; if ρ ≤ 1, then P[τk(x) < ∞] = 1,

and τk(x) is a proper variable for all k ∈ Z+, x ≥ 0.

Proof. It is not difficult to assure that

P[π(t) − δ = i] = (1 − λ)E
[

λπ(t)−(i+1);π(t) > i
]

, i ∈ Z.

Substituting the expression for f̃i(0,m, s) from (3.2.16) into the second formula

of (3.3.1), after some calculations we obtain (3.3.2). N

A more difficult problem is determining the generating function of the joint

distribution of the upper-boundary functionals of the process {Dx(t)}t≥0. Let

X0 = {0, x}, x ∈ R+, k ∈ Z+. Denote by

τk(x) = inf{t : Dx(t) > k}, inf{∅} = ∞

the instant of the first overshoot of the upper level k by the process {Dx(t)}t≥0.

On the event Bk(x) = {τk(x) < ∞} define

lkx = η+
x (τk(x)), T k(x) = Dx(τk(x)) − k

the value of the linear component and the value of the overshoot at the instant

of the first overshoot of the upper level. On the event {τk(x) = ∞} we
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set per definition lkx = T k(x) = ∞. Introduce the following notation for the

mathematical expectations s > 0, k ∈ Z+, m ∈ N, x ∈ R+

fk(x, dl,m, s) = E
[

e−sτk(x); lkx ∈ dl, T k(x) = m,Bk(x)
]

,

and for the generating functions (|θ| < 1)

Φs
θ(x, dl,m) =

∑

k∈Z+

θkfk(x, dl,m, s), Φs
θ(x) =

∫ ∞

0

∑

m∈N

Φs
θ(x, dl,m).

Let k ∈ Z+ and

τ̂k = inf{t : π(t) > k}, T̂ k = π(τ̂k) − k

be the first crossing time through the upper level k by the compound Poisson

process {π(t)}t≥0 and the value of the overshoot at this instant. Denote by

ρk(t) = P[π(t) = k],
∑

k∈Z+

θkρk(t) = E θπ(t) = etk(θ), |θ| ≤ 1,

pm
k (dt) = P[τ̂k ∈ dt, T̂ k = m] = µ

k
∑

i=0

ρi(t)P[κ = k − i + m] dt, m ∈ N.

For the Laurent series L(θ) =
∞
∑

k=−∞
akθ

k, |θ| = 1 such that
∞
∑

k=−∞
|ak| < ∞ we

now introduce the projectors (Kemperman (1963)) in the following way:

P+
θ [L(θ)] =

∞
∑

k=0

akθ
k, |θ| ≤ 1, P−

θ [L(θ)] =
−1
∑

−∞
akθ

k, |θ| ≥ 1.

Theorem 3.3.1. Let {Dx(t)}t≥0 be the difference of the compound Poisson

process and the compound renewal process (3.2.3), S+
νs

= sup
t≤νs

S0(t), S−
νs

=

inf
t≤νs

S0(t) be the supremum and infimum (3.2.10) of the semi-Markov walk

{S0(t)}t≥0 on the time interval [0, νs]. Then the generating function of the

Laplace transform of the joint distribution of {τk(x), lkx, T k(x)} satisfies the

following formula on the event Bk(x)

Φs
θ(x, dl,m) = e−s(l−x) 1 − F (l)

1 − F (x)
I{l>x}Π

m
θ (d(l − x))+

+ e−sl[1 − F (l)]
f̃x(s, θ)

1 − f̃(s)
EθS+

νsP+
θ

[

Eθ−δ+S−
νsΠm

θ (dl)
]

, (3.3.3)
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where Πm
θ (dl) =

∑

k∈Z+

θkpm
k (dl) = µelk(θ)E [θκ−m; κ ≥ m] dl; and in particular,

Φs
θ(x) =

1 − Π̃s
θ

1 − θ
+

f̃x(s, θ)

1 − f̃(s)
EθS+

νs P+
θ

[

(

Eθ−δ − 1
)

EθS−
νs

1 − Π̃s
θ

1 − θ

]

,

where Π̃s
θ = Eθπ(νs) = s/(s − k(θ)).

Proof of the theorem can be found in Kadankov et al. (2009).

We now introduce a sequence which will play a crucial role in the sequel.

The idea to employ this sequence for semi-continuous random walks and semi-

continuous Lévy processes was due to Takács (1967). Since the function

f̃x(s−k(θ)) = E
[

e−sηxθπ(ηx)
]

=
∑

i∈Z+

θi

∫ ∞

0
e−stP[ηx ∈ dt, π(t) = i], |θ| ≤ 1,

is analytic inside the unit circle for all s, x ≥ 0, we have that the function

Qs
θ(x) =

(1 − λ)f̃x(s − k(θ))
(

(1 − λ)f̃(s − k(θ)) + λ − θ
) , s, x ≥ 0 (3.3.4)

is analytic on the open set |θ| < c(s). In this region it can be represented as a

power series

Qs
θ(x) =

∑

k∈Z+

θkQs
k(x), s, x ≥ 0.

The coefficients of this expansion can be calculated by means of the inversion

formula:

Qs
k(x) =

1

2πi

∮

|θ|=α

1

θk+1

(1 − λ)f̃x(s − k(θ))

(1 − λ)f̃(s − k(θ)) + λ − θ
dθ, α ∈ (0, c(s)).

(3.3.5)

We will call the sequence {Qs
k(x)}k∈Z+ , x ≥ 0, defined by the formula (3.3.5),

the resolvent sequence of the process {Dx(t)}t≥0. The following result expresses

the one-boundary characteristics of the process in terms of the resolvent se-

quence.

Corollary 3.3.2 (Kadankov and Kadankova (2008c)). Let δ ∼ ge(λ), {Dx(t)}t≥0

be the difference of the compound Poisson process and the compound renewal

process (3.2.3) whose jumps are geometrically distributed, x ∈ R+, k ∈ Z+.

Then
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(i) the Laplace transforms of the joint distribution of {τk(x), lkx, T k(x)} sat-

isfy the following equality:

fk(x, dl,m, s) = e−s(l−x) 1 − F (l)

1 − F (x)
I{l > x}pm

k (d(l − x))

+ Φs
λ(0, dl,m)Qs

k(x) − e−sl [1 − F (l)]

k
∑

i=0

Qs
i (x) pm

k−i(dl), (3.3.6)

where Φs
λ(0, dl,m) = e−sl[1 − F (l)]

∑

k∈Z+

c(s)kpm
k (dl);

(ii) for the Laplace transform of the first crossing time through the upper

level k by the process {Dx(t)}t≥0 for all k ∈ Z+, s, x ∈ R+ the following

formula holds:

Ee−sτk(x) = 1 − s

s − k(c(s))

Qs
k(x)

1 − λ
+

k
∑

i=0

ρ̃i(s)

[

Qs
k−i(x)

1 − λ
− 1

]

, (3.3.7)

where ρ̃k(s) = s
∫∞
0 e−stρk(t) dt;

(iii) for E[κ], E[η] < ∞ and ρ < 1, τk(x) is a defective random variable and

P[τk(x) < ∞] = 1 − (1 − ρ)(1 − λ)−1Qk(x) < 1,

where {Qk(x)}k∈Z+ is the resolvent sequence of the process {Dx(t)}t≥0,

given by (3.3.9) for s = 0 :

Qk(x) =
1

2πi

∮

|θ|=α

dθ

θk+1

(1 − λ)f̃x(−k(θ))

(1 − λ)f̃(−k(θ)) + λ − θ
, α ∈ (0, c(0));

(3.3.8)

if ρ ≥ 1, then for all k ∈ Z+, x ∈ R+ τk(x) is a proper random variable.

Proof. In case of δ ∼ ge(λ) formulae (3.2.13), (3.2.15) imply that

P+
θ

[

Eθ−δ+S−
νs Πm

θ (dl)
]

= P+
θ

[

1 − c(s)

θ − c(s)
Πm

θ (dl)

]

=
1 − c(s)

θ − c(s)

(

Πm
θ (dl) − Πm

c(s)(dl)
)

.

Substituting this projector and EθS+
νs (3.2.15) into (3.3.3) yields

Φs
θ(x, dl,m) = e−s(l−x) 1 − F (l)

1 − F (x)
I{l≥x}Π

m
θ (d(l − x))−

− e−sl[1 − F (l)]
(1 − λ)f̃x(s, θ)

(1 − λ)f̃(s, θ) + λ − θ

(

Πm
θ (dl) − Πm

c(s)(dl)
)

. (3.3.9)
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Employing the definition of the resolvent sequence (3.3.5) and comparing the

coefficients of θk, k ∈ Z+ in both sides of this equality, we get formula (3.3.6)

of Corollary 3.3.2. Analogously we calculate

P+
θ

[

(

Eθδ − 1
)

EθS−
νs

1 − Eθπ(νs)

1 − θ

]

=
1 − c(s)

1 − λ

E
[

c(s)π(νs) − θπ(νs)
]

θ − c(s)
,

Φs
θ(x) =

1 − Eθπ(νs)

1 − θ
− f̃x(s, θ)

(1 − λ)f̃(s, θ) + λ − θ
E
[

c(s)π(νs) − θπ(νs)
]

. (3.3.10)

Taking into account the definition of the resolvent sequence (3.3.5), we com-

pare the coefficients of θk, k ∈ Z+ in both sides of this equality, which yields

the formula (3.3.7). Note that the formulae of the corollary were obtained by

other methods in Kadankov and Kadankova (2008c). N

Remark 3.3.1. Along with expression (3.3.8) there exists another way to

calculate Qk(x), which is more applicable from practical point of view. We

will now derive the recurrent formula for Qk(x). It follows from (3.3.4) for

s, θ = 0 that

Q0(x) = (1 − λ)(λ + (1 − λ)f0)
−1f0(x),

where for all k ∈ Z+

fk(x) = P [π(ηx) = k] =

∫ ∞

0
P[ηx ∈ dt, π(t) = k], fk = fk(0).

Again, it follows from (3.3.4) for s = 0 that

(1 − λ)f̃x(−k(θ)) = (1 − λ)f̃(−k(θ))Qθ(x) + (λ − θ)Qθ(x).

Comparing the coefficients of θk, k ∈ N in both sides implies that

(1 − λ)fk(x) = (1 − λ)

k
∑

i=0

Qi(x)fk−i + λQk(x) − Qk−1(x).

Combining like terms yields

(λ + (1 − λ)f0) Qk(x) = (1 − λ)fk(x) + Qk−1(x) − (1 − λ)
k−1
∑

i=0

Qi(x)fk−i.
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The latter formula is a recurrent relation which allows to calculate successively

the terms Qk(x) given the previous terms Q0(x), . . . , Qk−1(x). For instance,

given the expression for Q0(x) one finds that

Q1(x) =
1 − λ

λ + (1 − λ)f0

[

f1(x) +
1 − (1 − λ)f0

λ + (1 − λ)f0
f0(x)

]

.

We state another lemma which is essential in our derivations. For all x ≥ 0,

k ∈ Z+ denote by

ikx = inf{t > τk(x) : Dx(t) < k − B}, Ik
x = k − B − Dx(ikx) ∈ N

the first time of the downward intersection of the interval [k − B, k] by the

process {Dx(t)}t≥0 after the first passage time of the upper boundary k, and

the value of the overshoot through the lower boundary k − B at this instant.

As mentioned before, we use the convention that inf{∅} def
= ∞ and Ik

x = ∞ on

the event {ikx = ∞}. It is obvious that η+
x (ikx) = 0.

Lemma 3.3.2. Let δ ∼ ge(λ), {Dx(t)}t≥0 be the difference of the compound

Poisson process and the compound renewal process (3.2.3), {Qs
k(x)}k∈Z+ , {Qk(x)}k∈Z+ ,

x ≥ 0 be the resolvent sequences of the process given by (3.3.5), (3.3.8). Then

(i) the Laplace transforms of the joint distribution of {ikx, Ik
x}

ϕk
x(m, s) = E

[

e−sikx ; Ik
x = m, ikx < ∞

]

satisfy the following equality for all k ∈ Z+, x ≥ 0

ϕk
x(m, s) =

[

cx(s)c(s)B−k − c(s)B+1r(s)
Qs

k(x)

1 − λ

]

(1 − λ)λm−1, (3.3.11)

where cx(s) = f̃x(s − k(c(s))), r(s) = 1 + (1 − λ)k′(c(s))f̃ ′(s − k(c(s)));

(ii) if ρ < 1, then ikx is a defective random variable, and

P
[

ikx < ∞
]

= 1 − (1 − ρ)(1 − λ)−1Qk(x);

if ρ > 1, then ikx is a defective random variable and

P
[

ikx < ∞
]

= f̃x(−k(c))cB−k−cB+1
[

(1 − λ)−1 + k′(c)f̃ ′(−k(c)
]

Qk(x);

if ρ = 1, then ikx a proper random variable.
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Proof. Observe, that the following equality holds:

ϕk
x(m, s) =

∑

i∈N

∫ ∞

0
fk(x, dl, i, s)fi+B(l,m, s).

To obtain this formula, it is necessary to use the total probability law, space

homogeneity of the process {Dx(t)}t≥0 and the Markov property of the stop-

ping time τk(x). Employing formula (3.3.2), it follows from the latter equality

that

ϕ̃θ
x(m, s) =

∑

k∈Z+

θkϕk
x(m, s)

=

∫ ∞

0
Φ̃s

θ(x, dl, c(s))f̃l(s − k(c(s)))c(s)B(1 − λ)λm−1, (3.3.12)

where |θ| < 1,

Φ̃s
θ(x, dl, z) =

∑

m∈N

zmΦs
θ(x, dl,m), |z| ≤ 1

is the generating function of the Laplace transform fk(x, dl,m, s) of the joint

distribution of {τk(x), ηk(x), T k(x)}. From (3.3.6) we have

Φ̃s
θ(x, dl, z) = e−s(l−x) 1 − F (l)

1 − F (x)
I{l > x}Π̃z

θ(d(l − x))

+ e−sl[1 − F (l)]Qs
θ(x)

(

Π̃z
c(s)(dl) − Π̃z

θ(dl)
)

, |θ| < 1, (3.3.13)

where

Π̃z
θ(dl) =

∑

m∈N

zmΠm
θ (dl) = elk(θ) k(z) − k(θ)

1 − θ/z
dl, |z| ≤ 1.

Substituting the expression for the function Φ̃s
θ(x, dl, z) for z = c(s) into

(3.3.12), and integrating it with respect to l ≥ 0, we find

ϕ̃θ
x(m, s) =

[

f̃x(s − k(c(s)))

1 − θ/c(s)
c(s)B − c(s)B+1 r(s)(1 − λ)−1Qs

θ(x)

]

(1−λ)λm−1,

where |θ| < 1, r(s) = 1 + (1− λ)k′(c(s))f̃ ′(s − k(c(s))). Comparing the coeffi-

cients of θk, k ∈ Z+ in both sides of this equality, we get for all s, x ≥ 0

ϕk
x(m, s) = [cx(s)c(s)B−k − c(s)B+1r(s)(1 − λ)−1Qs

k(x)](1 − λ)λm−1,
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which is (3.3.11). Letting s → 0 and taking into account Lemma 3.3.1, we

obtain the statements of the second part of Lemma 3.3.2. N

Denote by D+
t (x) = sup

u≤t
Dx(u), t ≥ 0 the running supremum of the process.

Denote by

Ũ θ
s,z(x, p) =

∑

k∈Z+

θkE
[

zDx(νs)e−pη+
x (νs);D+

νs
(x) ≤ k

]

, |θ| < 1, |z| ≥ 1

the generating function of the joint distribution of the value of the process, its

linear component and its running supremum.

Theorem 3.3.2. Let {Dx(t)}t≥0 be the difference of the compound Poisson

process and the compound renewal process (3.2.3), S+
νs

= sup
t≤νs

S0(t), S−
νs

=

inf
t≤νs

S0(t) be the supremum and infimum (3.2.10) of the semi-Markov walk,

{S0(t)}t≥0 on the time interval [0, νs], νs ∼ exp(s) be an exponential random

variable independent of these processes. Then the generating function of the

Laplace transform of the joint distribution of {Dx(νs), η
+
x (νs),D

+
νs

(x)} satisfies

the following formula:

Ũ θ
s,z(x, p) =

F s
zθ(x, p)

1 − θ
+

f̃x(s, zθ)

1 − f̃(s)
E(zθ)S

+
νs P+

θ

[

F s
zθ(0, p)

1 − θ
E(zθ)S

−
νs−δ

]

,

(3.3.14)

where

F s
θ (x, p) = s

1 − f̃x(s + p − k(θ))

s + p − k(θ)
e−xp.

In particular, for p = 0 the generating function Ũ θ
s,z(x) = Ũ θ

s,z(x, 0) of the

joint distribution of {Dx(νs),D
+
νs

(x)} is such that

Ũ θ
s,z(x) =

Π̃s
zθ

1 − θ
+

f̃x(s, zθ)

1 − f̃(s)
E(zθ)S

+
νs P+

θ

[

Π̃s
zθ

1 − θ

(

E(zθ)−δ − 1
)

E(zθ)S
−
νs

]

,

(3.3.15)

where Π̃s
θ = Eθπ(νs) = s/(s − k(θ)).

Corollary 3.3.3. Let δ ∼ ge(λ), {Dx(t)}t≥0 be the difference of the compound

Poisson process and the compound renewal process (3.2.3) whose jumps are

geometrically distributed, x ∈ R+, k ∈ Z+. Then
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(i) the generating function of the joint distribution of {Dx(νs),D
+
νs

(x)} is

such that

Ũ θ
s,z(x) =

Π̃s
zθ

1 − θ
− Π̃s

zθ

1 − λ

1 − zθ

1 − θ
Qs

zθ(x) +
Π̃s

c(s)

1 − λ

1 − c(s)

1 − c(s)/z
Qs

zθ(x),

(3.3.16)

where Qs
θ(x) is the generating function of the resolvent sequence (3.3.4);

(ii) the generating function

Uk
s,z(x) =

∑

i≤k

zkP
[

Dx(νs) = i,D+
νs

(x) ≤ k
]

, |z| ≥ 1

of the joint distribution {Dx(νs),D
+
νs

(x)} satisfies the following equality

for k ∈ Z+

Uk
s,z(x) =

k
∑

i=0

zi[As
i−1(x) − As

i (x)] +
Π̃s

c(s)

1 − λ

1 − c(s)

1 − c(s)/z
zkQs

k(x), (3.3.17)

where As
k(x) = 0 for k < 0 and

As
k(x) =

k
∑

i=0

ρ̃i(s)

[

Qs
k−i(x)

1 − λ
− 1

]

, k ∈ Z+;

(iii) the distribution uk
i (x, s) = P

[

Dx(νs) = i,D+
νs

(x) ≤ k
]

is such that for

k ∈ Z+, i ≤ k

uk
i (x, s) = As

i−1(x) − As
i (x) +

1 − c(s)

1 − λ
c(s)k−iQs

k(x)Π̃s
c(s). (3.3.18)

Proof The function Uk
s,z(x, p) obeys the following equation for all x ≥ 0,

k ∈ Z+, |z| ≥ 1, p ≥ 0

Uk
s,z(x, p) = s

∫ ∞

0
e−ste−p(x+t)P [ηx > t]

k
∑

i=0

ziρi(t) dt+

+

k
∑

i=0

E
[

e−sηx ;π(ηx) = i
]

zi
∑

j∈N

P[δ = j]z−jUk−i+j
s,z (0, p),
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where ρi(t) = P[π(t) = i]. Multiplying the latter equation by θk, |θ| < 1 and

then summing over k ∈ Z+, we get an equation

Ũ θ
s,z(x, p) =

F s
zθ(x, p)

1 − θ
+ f̃x(s − k(zθ))P+

θ

[

Ũ θ
s,z(0, p)E(zθ)−δ

]

. (3.3.19)

To solve this equation, we will proceed as follows. Setting in (3.3.19) x = 0 and

multiplying by E(zθ)−δ, we get for the auxiliary function I+
θ = P+

θ

[

Ũ θ
s,z(0, p)E(zθ)−δ

]

the following equation:

I+
θ

(

1 − f̃(s, zθ)E(zθ)−δ
)

=
F s

zθ(x, p)

1 − θ
E(zθ)−δ − I−θ , |θ| = 1,

where I−θ = P−
θ

[

Ũ θ
s,z(0, p)E(zθ)−δ

]

. Employing the factorization identity

(3.2.9), we rewrite this equation in the following form:

I+
θ

(

E(zθ)S
+
νs

)−1
− 1

1 − f̃(s)
P+

θ

[

F s
zθ(0, p)

1 − θ
E(zθ)S

−
νs−δ

]

=

=
1

1 − f̃(s)
P−

θ

[

F s
zθ(0, p)

1 − θ
E(zθ)S

−
νs−δ

]

− I−θ
1 − f̃(s)

E(zθ)S
−
νs , |θ| = 1.

In view of the factorization reasoning we find that

I+
θ =

1

1 − f̃(s)
E(zθ)S

+
νs P+

θ

[

F s
zθ(0, p)

1 − θ
E(zθ)S

−
νs−δ

]

.

Substituting the expression for the projector I+
θ into (3.3.19), we obtain (3.3.14)

of Theorem 3.3.2. The equality (3.3.15) follows from the previous one.

To verify the statements of the corollary, we have to calculate the projector

which enters the right-hand side of (3.3.15). To do this, we need the following

lemmas.

Lemma 3.3.3. Let a ∈ C, |a| ≤ 1, A(θ) be an analytic function for |θ| < 1 and

continuous on |θ| = 1. Then the following decomposition is valid for |θ| ∈ [a, 1],

θ 6= a

A(θ)

1 − a/θ
=

aA(a)

θ − a
+

θA(θ) − aA(a)

θ − a



112

where [θA(θ) − aA(a)](θ − a)−1 is a bounded analytic function for |θ| ≤ 1,

aA(a)(θ − a)−1 is a bounded analytic function for |θ| > a. Moreover, the

following equalities hold:

P+
θ

[

A(θ)

1 − a/θ

]

=
θA(θ) − aA(a)

θ − a
, P−

θ

[

A(θ)

1 − a/θ

]

=
aA(a)

θ − a
. (3.3.20)

Lemma 3.3.4. Let a ∈ C, |a| ≤ 1, A(θ) be an analytic function for |θ| > 1

and continuous for |θ| = 1. Then the following decomposition is valid for

|θ| ∈ [1, 1/a], θ 6= 1/a

A(θ)

1 − aθ
=

A(1/a)

1 − aθ
+

A(θ) − A(1/a)

1 − aθ

where A(1/a)(1 − aθ)−1 is a bounded analytic function for |θ| < 1/a, [A(θ) −
A(1/a)](1 − aθ)−1 is a bounded analytic function for |θ| ≥ 1. In particular,

P+
θ

[

A(θ)

1 − aθ

]

=
A(1/a)

1 − aθ
, P−

θ

[

A(θ)

1 − aθ

]

=
A(θ) − A(1/a)

1 − aθ
. (3.3.21)

It follows from (3.2.13), (3.2.15) that

(

E(zθ)−δ − 1
)

E(zθ)S
−
νs =

1 − c(s)

1 − λ

1 − zθ

zθ − c(s)

Employing (3.3.20), (3.3.21), we evaluate

P+
θ

[

Π̃s
zθ

1 − θ

1 − zθ

zθ − c(s)

]

=
1

zθ − c(s)

[

1 − zθ

1 − θ
Π̃s

zθ −
1 − c(s)

1 − c(s)/z
Π̃s

c(s)

]

Inserting the expression for the projector, the expression (3.2.15) for the func-

tion E(zθ)S
+
νs into (3.3.15), we derive

Ũ θ
s,z(x) =

Π̃s
zθ

1 − θ
− Π̃s

zθ

1 − λ

1 − zθ

1 − θ
Qs

zθ(x) +
Π̃s

c(s)

1 − λ

1 − c(s)

1 − c(s)/z
Qs

zθ(x)

where Qs
θ(x) is the generating function of the resolvent sequence (3.3.4). Com-

paring the coefficients of θk, k ∈ Z+, in both sides, we get (3.3.17). Comparing

the coefficients of zi, i ≤ k in (3.3.17), we derive (3.3.18). N
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3.4 Exit from the interval

Knowledge of the one-boundary characteristics of the process enables us to

solve the two-sided exit problem, which is considered below.

Let B ∈ Z+ be fixed, k ∈ {0, . . . , B}, r = B − k, X0 = {0, x}, x ≥ 0, and

introduce the random variable

χk
r (x) = inf{t : Dx(t) /∈ [−r, k]} def

= χ

the first exit time from the interval [−r, k] by the process {Dx(t)}t≥0. This

random variable takes values from a countable set, and it is a Markov time

of the process {Xt}t≥0. Exit from the interval can occur either through the

upper boundary k, or through the lower boundary −r. In view of this remark

we introduce the events

Ak = {Dx(χ) > k} i.e. the process {Dx(t)}t≥0 exits the interval [−r, k]

through the upper boundary k;

Ar = {Dx(χ) < −r} i.e. the process {Dx(t)}t≥0 exits the interval [−r, k]

through the lower boundary −r. Denote by

T = (Dx(χ)−k)IAk+(−Dx(χ)−r)IAr , L = η +
x (χ)IAk+0·IAr , P[Ak+Ar] = 1

the value of the overshoot through the boundaries of the interval [−r, k] by

the process {Dx(t)}t≥0 and the value of the age process. Here IA = IA(ω) is

the indicator function of the event A. For all k ∈ Z+, m ∈ N, x ≥ 0 denote

F k(x, dl,m, s) = fk(x, dl,m, s) −
∑

i∈N

fr(x, i, s)f i+B(0, dl,m, s),

Fr(x,m, s) = fr(x,m, s) −
∑

i∈N

∫ ∞

0
fk(x, dl, i, s)fi+B(l,m, s).

Theorem 3.4.1 (Kadankov and Kadankova (2008c)). Let {Dx(t)}t≥0 be the

difference of the compound Poisson process and the compound renewal process

(3.2.3) and B ∈ Z+, k ∈ {0, . . . , B}, r = B − k, X0 = {0, x}, x ≥ 0. Then the

Laplace transforms

V k(x, dl,m, s) = E
[

e−sχ;L ∈ dl, T = m,Ak
]

, Vr(x,m, s) = E
[

e−sχ;T = m,Ar

]
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of the joint distribution of {χ,L, T} satisfy the following formulae for s > 0,

m ∈ N

V k(x, dl,m, s) = F k(x, dl,m, s) +
∑

i∈N

∫ ∞

0
F k(x, dν, i, s)K+

ν,i(dl,m, s),

Vr(x,m, s) = Fr(x,m, s) +
∑

i∈N

Fr(x, i, s)K−
i (m, s), (3.4.1)

where

K+
ν,i(dl,m, s) =

∑

n∈N

K+
ν,i(dl,m, s)∗(n), K−

i (m, s) =
∑

n∈N

K−
i (m, s)∗(n) (3.4.2)

are the uniformly convergent series of the iterations, and

K+
ν,i(dl,m, s)∗(1)

def
= K+

ν,i(dl,m, s), K−
i (m, s)∗(1)

def
= K−

i (m, s),

K+
ν,i(dl,m, s)∗(n+1) =

∑

j∈N

∫ ∞

0
K+

ν,i(du, j, s)K+
u,j(dl,m, s)∗(n), n ∈ N

K−
i (m, s)∗(n+1) =

∑

j∈N

K−
i (j, s)K−

j (m, s)∗(n), n ∈ N (3.4.3)

are the successive iterations of the kernels K+
ν,i(dl,m, s), K−

i (m, s), which are

given by the following defining formulae:

K+
ν,i(dl,m, s) =

∑

j∈N

fi+B(ν, j, s) f j+B(0, dl,m, s),

K−
i (m, s) =

∑

j∈N

∫ ∞

0
f i+B(0, du, j, s) fj+B(u,m, s). (3.4.4)

Proof.

Following Kadankov and Kadankova (2005b), we derive a system of equations

with respect to the functions V k(x, dl,m, s), Vr(x,m, s), s > 0, m ∈ N

fk(x, dl,m, s) = V k(x, dl,m, s) +
∑

i∈N

Vr(x, i, s) f i+B(0, dl,m, s),

fr(x,m, s) = Vr(x,m, s) +
∑

i∈N

∫ ∞

0
V k(x, dν, i, s) fi+B(ν,m, s). (3.4.5)

In order to write this system, we have used the law of total probability, homo-

geneity of the process {Xt}t≥0 with respect to the first component, Markov
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property of the random variables τk(x), τk(x), χ and the following reasoning.

The first equation of the system (3.4.5) stresses the fact that the first overshoot

of the upper level k by the process {Dx(t)}t≥0 (expression on the left-hand side

of the equation) can be realized either on sample paths which do not intersect

the lower level −r (the first term on the right-hand side of the equation) or on

the sample paths which do intersect the level −r and then later on intersect

the level k (the second term on the right-hand side of the equation). The

second equation of the system is written analogously. This system is similar

to a system of linear equations with two unknown variables. Substituting the

expression for the function V k(x, dl,m, s) from the first equation of system

(3.4.5) into the second one, we get

Vr(x,m, s) = fr(x,m, s) −
∑

i∈N

∫ ∞

0
fk(x, dν, i, s) fi+B(ν,m, s)+

+
∑

j∈N

∫ ∞

0

∑

i∈N

Vr(x, i, s) f i+B(0, du, j, s) fj+B(u,m, s).

Changing the order of summation in the third term on the right-hand of the

latter equation, we obtain a discrete analog of the Fredholm integral equation

of the second kind for the function Vr(x,m, s)

Vr(x,m, s) = Fr(x,m, s) +
∑

i∈N

Vr(x, i, s)K−
i (m, s), (3.4.6)

where the function

K−
i (m, s) =

∑

j∈N

∫ ∞

0
f i+B(0, du, j, s) fj+B(u,m, s)

is the kernel of this equation. As mentioned above, τk(x) ∈ {η∗n, n ∈ N},
τk(x) ∈ {ηn(x), n ∈ N}, where η∗n is the instant of the n-th jump of the

compound Poisson process. It follows from the properties of the compound

Poisson process that for all k ∈ Z+, x, s ≥ 0 the following inequalities hold:

Ee−sτk(x) ≤ µ

s + µ
, Ee−sτk(x) ≤ Ee−sηx .
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Therefore, the kernel of the equation (3.4.6) enjoys the following property for

all i,m ∈ N, s > 0

K−
i (m, s) ≤

∑

j∈N

∫ ∞

0
f i+B(0, du, j, s)Ee−sηu

≤
∑

j∈N

∫ ∞

0
f i+B(0, du, j, s) ≤ µ

s + µ
< 1.

Using the method of mathematical induction and the latter bound for the

kernel, one can show that for all i,m ∈ N, K−
i (m, s)∗(n) ≤ µn(s+µ)−n, n ∈ N.

Hence, the series

K−
i (m, s) =

∑

n∈N

K−
i (m, s)∗(n) ≤ µ

s
< ∞, s > 0

converges uniformly for all i,m ∈ N. Utilizing the method of successive it-

erations (Petrovskii (1965)) to solve (3.4.6), we get the second equality of

Theorem 3.4.1. Substituting the expression for the function Vr(x,m, s) from

the second equation into the first one, we find

V k(x, dl,m, s) = fk(x, dl,m, s) −
∑

i∈N

fr(x, i, s) f i+B(0, dl,m, s)+

+
∑

j∈N

∑

i∈N

∫ ∞

0
V k(x, dν, i, s) fi+B(ν, j, s) f j+B(0, dl,m, s).

Changing the order of summation in the third term in the right-hand side of

this equation, we obtain for the function V k(x, dl,m, s)

V k(x, dl,m, s) = F k(x, dl,m, s) +
∑

i∈N

∫ ∞

0
V k(x, dν, i, s)K+

ν,i(dl,m, s),

(3.4.7)

i.e. a discrete analog of a linear integral equation. The kernel of this equation

is given by

K+
ν,i(dl,m, s) =

∑

j∈N

fi+B(ν, j, s) f j+B(0, dl,m, s),

and for all ν, l > 0 i,m ∈ N, s > 0 it satisfies the following inequality

K+
ν,i(dl,m, s) ≤ µ

s + µ

∑

j∈N

fi+B(ν, j, s) ≤ µ

s + µ
Ee−sτi+B(ν) ≤ µ

s + µ
< 1.



117

Hence, the series of the successive iterations

K+
ν,i(dl,m, s) =

∑

n∈N

K+
ν,i(dl,m, s)∗(n) ≤ µ

s
< ∞

converges uniformly for all ν, l > 0 i,m ∈ N. Employing the method of succes-

sive iterations (Petrovskii (1965)) for the equation (3.4.7), we derive the first

equality of Theorem 3.4.1. N

Corollary 3.4.1 (Kadankov and Kadankova (2008c)). Let {Dx(t)}t≥0 be the

difference of the compound Poisson process and the renewal process (3.2.3),

δ ∼ ge(λ), {Qs
k(x)}k∈Z+ , x ≥ 0 be the resolvent sequence of the process given

by (3.3.5), Qs
k

def
= Qs

k(0). Then

(i) the Laplace transforms of the joint distribution of {χ,L, T} satisfy the

following equalities for all x, s ≥ 0, m ∈ N

Vr(x,m, s) =
Qs

k(x)

EQs
δ+B

(1 − λ)λm−1,

V k(x, dl,m, s) = fk(x, dl,m, s) − Qs
k(x)

EQs
δ+B

Ef δ+B(0, dl,m, s), (3.4.8)

where the function fk(x, dl,m, s) is given by (3.3.6),

EQs
δ+B =

∑

k∈N

(1 − λ)λk−1Qs
k+B,

Ef δ+B(0, dl,m, s) =
∑

k∈N

(1 − λ)λk−1fk+B(0, dl,m, s);

(ii) for the Laplace transforms of the first exit time χ the following formulae

hold:

E
[

e−sχ;Ar

]

=
Qs

k(x)

EQs
δ+B

,

E
[

e−sχ;Ak
]

= 1 − Qs
k(x)

EQs
δ+B

+ As
k(x) − Qs

k(x)

EQs
δ+B

EAs
δ+B(0), (3.4.9)

where

As
k(x) =

k
∑

i=0

ρ̃i(s)

[

Qs
k−i(x)

1 − λ
− 1

]

, ρ̃i(s) = s

∫ ∞

0
e−stP[π(t) = i] dt;
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(iii) the probabilities of the exit from the interval through the upper and the

lower boundary by the process {Dx(t)}t≥0 are such that

P[Ar] =
Qk(x)

EQδ+B
, P[Ak] = 1 − Qk(x)

EQδ+B
,

where the resolvent sequence of the process {Qk(x)}k∈Z+ , x ≥ 0, Qk
def
=

Qk(0) is defined by (3.3.8).

Proof. Proof of Corollary 3.4.1 follows straightforwardly from Theorem 3.4.1.

We clarify the formulae of Corollary 3.4.1 by employing equalities (3.4.1) of

Theorem 3.4.1 which take a simple form for the case the renewal process has

geometrically distributed jumps. To apply (3.4.1), we have to calculate the

kernels (3.4.4), the successive iterations (3.4.3) and the series of the successive

iterations (3.4.2) for the process {Dx(t)}t≥0 in case when δ ∼ ge(λ). Let us

verify the first formula of (3.4.8). Employing Lemma 3.3.2 and (3.4.2)-(3.4.4),

for all i,m, n ∈ N, one can derive

K−
i (m, s) = ϕi+B

0 (m, s),

K−
i (m, s)∗(n) = ϕi+B

0 (m, s)
(

Eϕδ+B
0 (s)

)n−1
,

K−
i (m, s) = ϕi+B

0 (m, s)
(

1 − Eϕδ+B
0 (s)

)−1
,

Fr(x,m, s) = cx(s)c(s)r(1 − λ)λm−1 − ϕk
x(m, s), (3.4.10)

where cx(s) = f̃x(s − k(c(s))), and the mathematical expectations {ϕk
x(m, s),

k ∈ Z+}, x ≥ 0 are given by (3.3.11),

ϕk
x(s) = E

[

e−sikx ; ikx < ∞
]

=
∑

m∈N

ϕk
x(m, s).

Substituting the expressions (3.4.10) into the second equality of (3.4.1), we

obtain the first formula (3.4.8) of Corollary 3.4.1.

Let us verify the second formula of (3.4.8). Employing the statements of (3.3.2)
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and (3.4.2)-(3.4.4), we can calculate for all s, ν, x ≥ 0, i,m, n ∈ N that

K+
ν,i(dl,m, s) = cν(s)c(s)

i+BE f δ+B(0, dl,m, s),

K+
ν,i(dl,m, s)∗(n) = cν(s)c(s)

i+B
(

Eϕδ+B
0 (s)

)n−1
E f δ+B(0, dl,m, s),

K+
ν,i(dl,m, s) = cν(s)c(s)i+B

(

1 −Eϕδ+B
0 (s)

)−1
E f δ+B(0, dl,m, s),

F k(x, dl,m, s) = fk(x, dl,m, s) − cx(s)c(s)rE f δ+B(0, dl,m, s), (3.4.11)

where the mathematical expectations fk(x, dl,m, s), k ∈ Z+, x ≥ 0 are given

by (3.3.6). Substituting the expressions (3.4.11) into the first equality of

(3.4.1), we obtain the second formula of (3.4.8) of Corollary 3.4.1.

Summing both sides of the first equality of (3.4.8) with respect to m ∈ N, and

summing the second equality of (3.4.8) over m ∈ N, and then integrating it

with respect to l ≥ 0, we get the formulae (3.4.9). Letting s → 0 in both sides

of these equalities, we derive the probabilities of the exit from the interval by

the process {Dx(t)}t≥0. N

Let us stress the following fact. If we set parameter λ = 0 in the geometrical

distribution P[δ = n] = (1 − λ)λn−1, n ∈ N, λ ∈ [0, 1), then P[δ = 1] = 1.

In other words it means that the process {Dx(t)}t≥0 has unit negative jumps

at the instants {ηn(x)}n∈N, and δNx(t) = Nx(t). Then, it follows from (3.2.3)

that

Dx(t) = π(t) − Nx(t) ∈ Z, t ≥ 0. (3.4.12)

We will call this process a difference of the compound Poisson process and

a simple renewal process. Setting the parameter λ = 0 in the statements of

Lemma 3.2.3 leads to the following result.

Lemma 3.4.1. For s > 0 the equation θ = f̃(s − k(θ)) has a unique solu-

tion c(s) inside the circle |θ| < 1. This solution is positive, c(s) ∈ (0, 1). If

E[κ],E[η] < ∞, ρ = µE[κ]E[η], then for ρ > 1, lim
s→0

c(s) = c ∈ (0, 1); and for

ρ ≤ 1, lim
s→0

c(s) = 1.

Statements of Corollaries 3.3.1, 3.3.1, 3.3.2 and 3.3.3 can be reformulated in

a similar way. Letting λ = 0 in the defining formula (3.3.5) for all s, x ≥ 0 we
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get

Qs
k(x) =

1

2πi

∮

|θ|=α

1

θk+1

f̃x(s − k(θ))

f̃(s − k(θ)) − θ
dθ, α ∈ (0, c(s)) (3.4.13)

a resolvent sequence of the process {Dx(t)}t≥0, which is given by (3.4.12). This

resolvent sequence has been introduced in Kadankov (1985). Setting λ = 0 in

(3.3.6), (3.3.7), we obtain

fk(x, dl,m, s) = e−s(l−x) 1 − F (l)

1 − F (x)
I{l > x}pm

k (d(l − x))

+ Φs
0(dl,m)Qs

k(x) − e−sl [1 − F (l)]

k
∑

i=0

Qs
i (x) pm

k−i(dl),

Ee−sτk(x) = 1 − s

s − k(c(s))
Qs

k(x) +

k
∑

i=0

ρ̃i(s)
[

Qs
k−i(x) − 1

]

(3.4.14)

the Laplace transforms of the upper one-boundary functionals of the process

{Dx(t)}t≥0 (3.4.12), where

Φs
0(dl,m) = e−sl[1−F (l)]

∑

k∈Z+

c(s)kpm
k (dl), ρ̃i(s) = s

∫ ∞

0
e−stP[π(t) = i] dt.

We have introduced the auxiliary functions and the resolvent sequence of the

process (3.4.12), therefore we can state the following result.

Corollary 3.4.2. Let {Dx(t)}t≥0 be the difference of the compound Poisson

process and the renewal process (3.4.12), {Qs
k(x)}k∈Z+ , x ≥ 0 be the resolvent

sequence of the process given by (3.4.13), Qs
k

def
= Qs

k(0). Then

(i) the Laplace transforms Vr(x,m, s), V k(x, dl,m, s) of the joint distribu-

tion of {χ,L, T} satisfy the following equalities for all x, s ≥ 0, m ∈ N

Vr(x,m, s) =
Qs

k(x)

Qs
B+1

δm1,

V k(x, dl,m, s) = fk(x, dl,m, s) − Qs
k(x)

Qs
B+1

fB+1(0, dl,m, s),

where δij is the Kronecker symbol and the function fk(x, dl,m, s) is given

by (3.4.14);
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(ii) for the Laplace transforms of the first exit time χ from the interval by

the process {Dx(t)}t≥0 the formulae hold:

E
[

e−sχ;Ar

]

=
Qs

k(x)

Qs
B+1

, E
[

e−sχ;Ak
]

= 1−

− Qs
k(x)

Qs
B+1

+
k
∑

i=0

ρ̃i(s)[Q
s
k−i(x) − 1] − Qs

k(x)

Qs
B+1

B
∑

i=0

ρ̃i(s)[Q
s
B+1−i − 1];

(iii) the exit probabilities from the interval by the process {Dx(t)}t≥0 are such

that

P[Ar] =
Qk(x)

QB+1
, P[Ak] = 1 − Qk(x)

QB+1
,

where the resolvent sequence of the process {Qk(x)}k∈Z+ , x ≥ 0, Qk
def
=

Qk(0) is given by (3.4.13) for s = 0.

To prove the corollary, one has to put λ = 0 in the statements of Corollary

3.4.1.
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3.5 Infimum, supremum and the value of the pro-

cess

Let D+
x (t) = sup

[0,t]
Dx(·), D−

x (t) = inf
[0,t]

Dx(·) be the running supremum and infi-

mum of the process. In this section we will determine the generating function

q̃s
x(−r, z, k) = E

[

−r ≤ D−
x (νs), z

Dx(νs),D+
x (νs) ≤ k

]

= E
[

zDx(νs);χk
r (x) > νs

]

=

k
∑

i=−r

ziP
[

−r ≤ D−
x (νs), Dx(νs) = i, D+

x (νs) ≤ k
]

, k, r ∈ Z+

of the joint distribution of the infimum, supremum and the value of the process.

In order to do this, we will follow the approach proposed for Lévy processes

in Kadankov and Kadankova (2005b).

Theorem 3.5.1. Let {Dx(t)}t≥0 be the difference of the compound Poisson

process and the compound renewal process (3.2.3), νs ∼ exp(s), s > 0 be the

exponential random variable independent of the process, k, r ∈ Z+, B = r + k.

Then the generating function of the joint distribution of {D−
x (νs),Dx(νs),D

+
x (νs)}

is such that

q̃s
x(−r, z, k) = E+

k (x, z, s) − z−r
∑

i∈N

z−iE
[

e−sχ;T = i,Ar

]

E+
i+B(0, z, s),

q̃s
x(−r, z, k) = E−

r (x, z, s) − zk
∑

i∈N

∫ ∞

0
ziE

[

e−sχ;L ∈ dl, T = i,Ak
]

E−
i+B(l, z, s),

(3.5.1)

where

E+
k (x, z, s) = E

[

zDx(νs);D+
x (νs) ≤ k

]

, E−
r (x, z, s) = E

[

zDx(νs);D−
x (νs) ≥ −r

]

.

In particular, the following relation is true:

P[χ > νs] = P[D+
x (νs) ≤ k] −

∫ ∞

0
E[e−sχ;T = i,Ar]P[D+

νs
(0) ≤ i + B] =

(3.5.2)

= P[D−
x (νs) ≥ −r] −

∑

i∈N

∫ ∞

0
E[e−sχ;L ∈ dl, T = i,Ak]P[D−

νs
(l) ≥ −i − B].
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Proof. According to the total probability law, the Markov property of χ,

homogeneity of the process {Xt}t≥0 with respect to the first component and

the properties of νs, we write

E
[

zDx(νs);D+
x (νs) ≤ k

]

= E
[

zDx(νs);D−
x (νs) ≥ −r,D+

x (νs) ≤ k
]

+ z−r
∑

i∈N

z−iE
[

e−sχ;T = i,Ar

]

E
[

zD0(νs);D+
0 (νs) ≤ i + B

]

.

This equation shows that the increments of the process {Dx(t)}t≥0 on the

time interval [0, νs] given that no intersection of the upper level k ∈ Z+ occurs

(the left-hand side of the equation) are realized either on the samples paths

which do not intersect the lower level −r ≤ 0, (the first term on the right-hand

side) or on the sample paths which do intersect the lower level −r and further

do not cross the upper level k (the second term on the right-hand side). A

more detailed derivation of this equation for Lévy processes and random walks

is given in Kadankov and Kadankova (2005b). One can note, that the first

formula of (3.5.1) follows immediately from the latter equation. The second

formula of (3.5.1) follows from the equation

E
[

zDx(νs);D−
x (νs) ≥ −r

]

= E
[

zDx(νs);D−
x (νs) ≥ −r,D+

x (νs) ≤ k
]

+ zk
∑

i∈N

∫ ∞

0
ziE

[

e−sχ;L ∈ dl, T = i,Ak
]

E
[

zDl(νs);D−
l (νs) ≥ −i − B

]

.

The identity (3.5.2) of Theorem 3.5.1 can be obtained from (3.5.1) by letting

z = 1. This remark completes the proof. N

We now assume that δ ∼ ge(λ). In this case, we first determine the joint

distributions of {Dx(νs),D
+
x (νs)} and of {D−

x (νs),Dx(νs),D
+
x (νs)} in terms of

the resolvent sequence. Secondly, we will consider the asymptotic behavior of

these functionals. Finally, we study the joint distribution of {Dx(νs),D
−
x (νs)}.

Lemma 3.5.1. Let k ∈ Z+ and E+
k (x, z, s) = E

[

zDx(νs);D+
x (νs) ≤ k

]

, |z| ≥ 1

be the generating function of the joint distribution of {Dx(νs),D
+
x (νs)}. Then
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(i) the generating function E+
k (x, z, s) is such that

E+
k (x, z, s) = zkAk

x(s) + (1 − z)

k−1
∑

i=0

ziAi
x(s) + zkQs

k(x)Es
λ/z(0, z),

(3.5.3)

where

Es
λ/z(0, z) =

s(1 − λ)−1

s − k(c(s))

1 − c(s)

1 − c(s)/z
;

(ii) the joint distribution E+
k (x, u, s) = P [Dx(νs) ≤ u,D+

x (νs) ≤ k] ,

u ∈] −∞, k] satisfies the following equality:

E+
k (x, u, s) = Au

x(s) +
s(1 − λ)−1

s − k(c(s))
c(s)k−uQs

k(x), Au
x(s) = 0, u < 0;

(3.5.4)

(iii) under the condition (A)

(A) ρ = (1 − λ)µEηEκ = 1, σ2 = µ
[

Eκ(κ − 1) + EκEη2

(1−λ)(Eη)2

]

< ∞,

the following limiting equality holds as B → ∞, k > 0

P[Dx(tB2) ≤ [uB],D+
x (tB2) ≤ [kB]] → 1

σ
√

2πt

∫ 2k−u

−u
e−v2/2σ2tdv,

where [a] is the integer part of the number a, u ≤ k.

Proof. In view of the total probability law, homogeneity of the process Xt

with respect to the first component, Markov property of η1(x) we can write

for the function E+
k (x, z, s), k ∈ Z+, x ≥ 0 the following equation:

E+
k (x, z, s) = s

∫ ∞

0
e−stP [ηx > t]E

[

zπ(t);π(t) ≤ k
]

dt+

+

∫ ∞

0
e−su

k
∑

v=0

P [ηx ∈ du, π(u) = v] zv
∞
∑

r=1

(1 − λ)λr−1z−rE+
k−v+r(0, z, s).

Introduce the generating function Es
θ(x, z) =

∑

k∈Z+

θkE+
k (x, z, s), |θ| < 1. Mul-

tiplying the latter equation by θk and summing over k ∈ Z+, we derive the
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following equation for the function Es
θ(x, z)

Es
θ(x, z) =

s

1 − θ

1 − f̃x(s − k(zθ))

s − k(zθ)
+ (3.5.5)

+ f̃x(s − k(zθ))
(1 − λ)

λ − zθ

[

Es
λ/z(0, z) − Es

θ(0, z)
]

, |θ| < 1, |z| ≥ 1.

Letting x = 0 in 3.5.5 yields

Es
θ(0, z) =

zθ − λ

(1 − λ)f̃(s − k(zθ)) + λ − zθ
×

×
[

f̃(s − k(zθ))
1 − λ

zθ − λ
Es

λ/z(0, z) − s

1 − θ

1 − f̃(s − k(zθ))

s − k(zθ)

]

.

The function which enters the left-hand side of this equation, is analytic in

|θ| < 1. In view of Lemma 3.2.14 the denominator on the right-hand side has

a simple zero in θ = c(s)/z. Hence, the nominator on right-hand side should

also have the simple zero. Letting θ = c(s)/z in the nominator, we find the

function Es
λ/z(0, z)

Es
λ/z(0, z) =

s(1 − λ)−1

s − k(c(s))

1 − c(s)

1 − c(s)/z
, |z| ≥ 1.

Employing the definition of the resolvent (3.3.4) and substituting the expres-

sion for Es
θ(0, z) into (3.5.5), we get

Es
θ(x, z) = Azθ

x (s) + θ
1 − z

1 − θ
Azθ

x (s) + Qs
zθ(x)Es

λ/z(0, z), (3.5.6)

where

Azθ
x (s) =

∞
∑

k=0

(zθ)kAk
x(s) =

s

s − k(zθ)

(

1

1 − zθ
− 1

1 − λ
Qs

zθ(x)

)

.

Using the definition of the resolvent (3.3.5) and comparing the coefficients of

θk, k ∈ Z+ in both sides of (3.5.6) implies that

E+
k (x, z, s) = zkAk

x(s) + (1 − z)
k−1
∑

i=0

ziAi
x(s) + zkQs

k(x)Es
λ/z(0, z),
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i.e. the equality (3.5.3) of the lemma. Comparing the coefficients of zi, i ≤ k

in both sides of the latter equality, we find

P[Dx(νs) = i, D+
x (νs) ≤ k] =

= Ai
x(s) − Ai−1

x (s) +
s

s − k(c(s))

1 − c(s)

1 − λ
c(s)k−iQs

k(x), i ≤ k,

where Ai
x(s) = 0, for i < 0. The latter formula implies (3.5.4). We now verify

the third statement of the lemma. Denote

ẽt
k(x, u,B) = P

[

Dx(tB2) ≤ [uB],D+
x (tB2) ≤ [kB]

]

. It is clear that

lim
B→∞

∫ ∞

0
e−stẽt

k(x, u,B) dt =
1

s
lim

B→∞
E

s/B2

[kB] (x, [uB]).

To proceed further, we need the following limiting equalities (see Kadankov

et al. (2009))

c(s/B2) = 1 − B−1
√

2s/σ + o(B−1),

lim
B→∞

B−1Q
s/B2

[kB] (x) =
2 sinh

(

k
√

2s/σ
)

σ
√

2sEη
= lim

B→∞
B−1EQ

s/B2

δ+[kB],

lim
B→∞

A[kB]
x (s/B2) = 1 − cosh

(

k
√

2s/σ
)

= lim
B→∞

A
δ+[kB]
0 (s/B2). (3.5.7)

In view of these equalities and of the formula (3.5.4) we derive

lim
B→∞

∫ ∞

0
e−stẽt

k(x, u,B) dt = s−1I{u<0}
(

eu
√

2s/σ/2 − e−(2k−u)
√

2s/σ/2
)

+ s−1I{u∈[0,k]}
(

1 − e−u
√

2s/σ/2 − e−(2k−u)
√

2s/σ/2
)

, u ≤ k.

Denote by {wt; : t ≥ 0} the symmetric Wiener process with the dispersion σ

and by τa = inf{t : wt ≥ a} the first passage time of the level a ∈ R+. The

Lévy formula P [τ ≤ t] = 2P [wt ≥ a] implies for the Laplace transforms that

1

s
e−a

√
2s/σ = 2

∫ ∞

0
e−stP [wt ≥ a] dt.

Employing the latter formula to invert the Laplace transforms in the previous

equality, we derive the second limiting formula of the lemma. N
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Let k, r ∈ Z+, u ∈ [−r, k] and denote by

ẽt
r,k(x, u) = P

[

−r ≤ D−
x (t), D−

x (t) ≤ u, D+
x (t) ≤ k

]

= P
[

Dx(t) ≤ u, χB
x (r) > t

]

,

Es
r,k(x, u) = ẽνs

r,k(x, u) = s

∫ ∞

0
e−stẽt

r,k(x, u) dt

the joint distribution of {D−
x (t),Dx(t),D+

x (t)} and its Laplace transform.

Theorem 3.5.2. Let νs ∼ exp(s) be an exponential random variable indepen-

dent of the process Dx(t), B = r + k. Then

(i) the joint distribution of {D−
x (νs),Dx(νs),D

+
x (νs)} is such that

Es
r,k(x, u) = Au

x(s) − Qs
k(x)

EQs
δ+B

EAδ+r+u
x (s), u ∈ [−r, k] (3.5.8)

where EAδ+r+u
x (s) = (1 − λ)

∞
∑

i=1
λi−1Ai+r+u

x (s);

(ii) under the condition (A) and r ∈ (0, 1), k = 1 − r the joint distribution

ẽtB2

[rB],[kB](x, [uB]) weakly converges as B → ∞ to the joint distribution

P

[

−r ≤ inf
v≤t

wv, wt ≤ u, sup
v≤t

wv ≤ k

]

, u ∈ [−r, k]

of the infimum, the supremum and the value of the symmetric Wiener

process with the dispersion σ. In addition, the following limiting equality

holds

lim
B→∞

ẽtB2

[rB],[kB](x, [uB]) =
4

π

∑

n∈N

e−
t
2
(πnσ)2

n
sin(rπn) sin2

(

r + u

2
nπ

)

.

(3.5.9)

Proof. The total probability law, homogeneity of the process Xt with respect

to the first component, Markov property of χB
r (x) for all k, r ∈ Z+, x ≥ 0

imply the following equation for |z| ≥ 1

E
[

zDx(νs);D+
x (νs) ≤ k

]

= E
[

zDx(νs);χB
r (x) > νs

]

+

+
∞
∑

i=1

E
[

e−sχB
r (x);T = i,Ar

]

z−(r+i)E
[

zDx(νs);D+
x (νs) ≤ i + B

]

, (3.5.10)
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where B = k + r. Let us briefly explain this equation. The increments of

the process Dx(t) on the interval [0, νs] without intersection of the level k

(the left-hand side) can be realized either on the sample paths of the process

which do not cross the negative level −r (the first term of the right-hand

side) or on the sample paths which do cross the level −r and then the further

evolution of the process is nothing but its probabilistic copy on [0, νs] (the

second term). In view of (3.5.10) and (3.4.8), (3.5.3) we find for the function

Es
r,k(x, z) = E

[

zDx(νs);χB
r (x) > νs

]

that

Es
r,k(x, z) = E+

k (x, z, s) − Qs
k(x)

EQs
δ+B

(1 − λ)
∑

i∈N

λi−1z−(r+i)E+
i+B(0, z, s) =

= zkAk
x(s) + (1 − z)

k−1
∑

i=0

ziAi
x(s)+

+ zk Qs
k(x)

Q̂s
B(λ)

(1 − λ)ǍB
0 (s, λ) − (1 − z)(λ/z)B+1ǍB

0 (s, z)

1 − λ/z
, (3.5.11)

where ǍB
0 (s, z) =

B
∑

i=0
ziAi

0(s), Q̂s
B(λ) =

∞
∑

i=B+1
λiQs

i (0). The formula (3.4.9)

yields

P
[

χB
r (x) > νs

]

= Ak
x(s) +

Qs
k(x)

Q̂s
B(λ)

ǍB
x (s, λ).

It is not difficult to derive the following equality

k
∑

u=−r

zuEs
r,k(x, u) =

1

1 − z

(

Es
r,k(x, z) − zk+1P

[

χB
r (x) > νs

]

)

.

The right-hand side of (3.5.11) implies that

k
∑

u=−r

zuEs
r,k(x, u) =

k
∑

u=0

zuAu
x(s) + zk Qs

k(x)

Q̂s
B(λ)

B
∑

i=0

(λ/z)i
B−i
∑

j=0

λjAj
0(s).

Comparing the coefficients of zu, u ∈ [−r, k], we find

Es
r,k(x, u) = Au

x(s) +
Qs

k(x)

Q̂s
B(λ)

λk−u
r+u
∑

i=0

λiAi
0(s).

Since

EQs
δ+B = (1 − λ)λ−B−1Q̂s

B(λ),

∞
∑

i=0

λiAi
0(s) = 0,
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one can see that the previous equality is the formula (3.5.8). Let us verify

(3.5.9). It is clear that

s

∫ ∞

0
e−stẽtB2

[rB],[kB](x, [uB]) dt = E
s/B2

[rB],[kB](x, [uB]), k ∈ (0, 1) r = 1 − k,

where the function Es
r,k(x, u) is determined by (3.5.8). Thus,

lim
B→∞

∫ ∞

0
e−stẽtB2

[rB],[kB](x, [uB]) dt =
1

s
lim

B→∞
E

s/B2

[rB],[kB](x, [uB])
def
= e∗(s) =

=
1

s

[

1 − cosh

(

u+

σ

√
2s

)]

+
1

s

sinh k
√

2s/σ

sinh
√

2s/σ

[

cosh

(

r + u

σ

√
2s

)

− 1

]

,

(3.5.12)

where u+ = max(0, u). In order to compute this limit, we used the formulae

(3.5.7). Note, that the inversion of the Laplace transform in the right-hand

side of (3.5.12) this equality was found in Kadankova (2004) and resulted into

the following formula (α > 0)

P

[

−r ≤ inf
v≤t

wv, wt ≤ u, sup
v≤t

wv ≤ k

]

=
1

2πi

∫ α+i∞

α−i∞
este∗(s) ds =

=
4

π

∑

n∈N

e−
t
2
(πnσ)2

n
sin(rπn) sin2

(

r + u

2
nπ

)

, u ∈ [−r, k].

Therefore, we established the weak convergence of the joint distribution ẽt
x(u,B)

as B → ∞ to the corresponding distribution of the Wiener process and also

verified the formula (3.5.9). N

Now we consider the joint distribution of the position of the process and its

infimum {D−
x (·),Dx(·)}.

Theorem 3.5.3. Denote by E−
r (x, z, s) = E

[

zDx(νs);D−
x (νs) ≥ −r

]

, r ∈
Z+,|z| ≤ 1 the generating function of the joint distribution of {D−

x (·),Dx(·)}.
Then

(i) The function E−
r (x, z, s) is such that

E−
r (x, z, s) = (1 − z)Az

x(s) + (1 − z)fr(x, s)
1 − λ

λ − z
Az

0(s)z
−r, (3.5.13)
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where fr(x, s) = E
[

e−sτr(x);Br(x)
]

= cx(s)c(s)r, cx(s) = f̃x(s− k(c(s)),

Az
x(s) =

∑

k∈Z+

zkAk
x(s) =

s

s − k(z)

(

1

1 − z
− 1

1 − λ
Qs

z(x)

)

;

(ii) the joint distribution E−
r (x, u, s) = P [Dx(νs) ≥ u,D−

x (νs) ≥ −r] , u ∈
[−r,∞[ satisfies the following equality:

E−
r (x, u, s) = 1 − Au−1

x (s) − fr(x, s)
(

1 − EAu+r+δ−1
0 (s)

)

, (3.5.14)

where EAk+δ
x (s) = (1 − λ)

∑

i∈N

λi−1Ak+i
x (s), Au

x(s) = 0 for u < 0;

(iii) under the condition (A),

(A) ρ = (1 − λ)µEηEκ = 1, σ2 = µ
[

Eκ(κ − 1) + EκEη2

(1−λ)(Eη)2

]

< ∞

the following limiting equality holds as B → ∞, r > 0

P[Dx(tB2) ≥ [uB],D−
x (tB2) ≥ [−rB]] → 1

σ
√

2πt

∫ u+2r

u
e−v2/2σ2tdv,

where [a] is integer part of the number a, u ∈ [−r,∞).

Proof. In accordance with the total probability law and the Markov property

of τr(x) for all r ∈ Z+ we can write the following equation

EzDx(νs) = E
[

zDx(νs);D−
x (νs) ≥ −r

]

+ fr(x, s)
1 − λ

z − λ
z−rEzD0(νs), |z| = 1.

To write this equation, we used the path decomposition principle. It means

that the increments of the process Dx(νs) on the interval [0, νs] are realized

either on the sample paths which do not cross the lower level −r, or on the

sample paths which do intersect the level −r, and further evolution of the

process is its probabilistic replica on [0, νs]. From the latter equation we find

that

E−
r (x, z, s) = Ds

x(z) − fr(x, s)
1 − λ

z − λ
z−rDs

0(z).
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Observe, that the function which enters the left-hand side of the equation is

analytic in |z| ≤ 1. Therefore, the right-hand side is also an analytic function

for all |z| ≤ 1. Employing (3.2.8) and the definition of resolvent (3.3.4), we get

E−
r (x, z, s) = (1 − z)Az

x(s) + (1 − z)fr(x, s)
1 − λ

λ − z
Az

0(s)z
−r, |z| ≤ 1.

It is not difficult to establish the following equality

∞
∑

u=−r

zuE−
r (x, u, s) =

1 − fr(x, s)

1 − z
z−r − z

1 − z
E−

r (x, z, s), |z| ≤ 1.

It follows from this and the previous equality that

∞
∑

u=−r

zuE−
r (x, u, s) =

1 − fr(x, s)

1 − z
z−r − zAz

x(s) − fr(x, s)
1 − λ

λ − z
Az

0(s)z
−r+1.

Comparing the coefficients of zu, u ∈ [−r,∞[ and taking into account that

Aλ
x(s) = 0, we obtain (3.5.14).

Denote ẽt
r(x, u,B) = P

[

Dx(tB2) ≥ [uB],D−
x (tB2) ≥ [−rB]

]

, r > 0, u ≥ −r.

It is clear that

lim
B→∞

∫ ∞

0
e−stẽt

k(x, u,B) dt =
1

s
lim

B→∞
E

s/B2

[kB] (x, [uB]).

Employing the limiting equalities (3.5.7) and also (3.5.14), we find that

lim
B→∞

∫ ∞

0
e−stẽt

k(x, u,B) dt = s−1I{u>0}
(

e−u
√

2s/σ/2 − e−(2r+u)
√

2s/σ/2
)

+

+ s−1I{u∈[−r,0]}
(

1 − eu
√

2s/σ/2 − e−(2r+u)
√

2s/σ/2
)

, u ≥ −r.

Denote by {wt; t ≥ 0} the symmetric Wiener process with dispersion σ and

by τa = inf{t : wt ≥ a} the first passage time of the level a ∈ R+. The Lévy

identity P [τ ≤ t] = 2P [wt ≥ a] implies the following relation for the Laplace

transforms:
1

s
e−a

√
2s/σ = 2

∫ ∞

0
e−stP [wt ≥ a] dt.

Using this formula to invert the Laplace transforms in the previous equality,

we obtain the limiting equality of the theorem. N
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3.6 Asymptotic results

In this section we will prove weak convergence of the distribution of the first

exit time for the difference of the compound Poisson process and the compound

renewal process to the corresponding distribution of the Wiener process under

certain conditions. Here and in the sequel we will assume that δ ∼ ge(λ), and

that the following conditions are satisfied:

(A) ρ = (1 − λ)µEηEκ = 1, σ2 = µ
[

Eκ(κ − 1) + EκEη2

(1−λ)(Eη)2

]

< ∞.

We first state some auxiliary results and then formulate and prove the theorem.

In the sequel we will require the following expansions:

f̃x(s) = 1 − sEηx +
1

2
s2Eη2

x + o(s2), x ∈ R+,

Ee−pκ = 1 − pEκ +
1

2
p2Eκ2 + o(p2), (3.6.1)

which are valid for small s, p.

Lemma 3.6.1. Let x, k ∈ R+, s > 0. The following limiting equalities hold:

lim
B→∞

Ee−sτ[kB](x)/B2
= lim

B→∞
Ee−sτ [kB](x)/B2

= e−k
√

2s/σ, (3.6.2)

where [a] stands for the integer part of the number a;

lim
B→∞

1

B
Q

s/B2

[kB] (x) = lim
B→∞

1

B
EQ

s/B2

[kB]+δ(x) =
1

Eη

2

σ
√

2s
sinh(k

√
2s/σ). (3.6.3)

Proof. It follows from (3.6.1) and (3.2.14) that the following representation

is valid for c(s/B2) as B → ∞

c(s/B2) = 1 − 1

B

√
2s/σ + o

(

1

B

)

. (3.6.4)

Formula (3.3.2) and this asymptotic equality imply the first part of (3.6.2). We

now focus on the asymptotic properties of the resolvent sequence {Qs
k(x)}k∈Z+ .

It follows from the definition (3.3.4) for θ = e−p, p > −ln c(s) that

Qs
θ(x) =

∑

k∈Z+

θkQs
k(x)

∣

∣

∣

θ=e−p
=

∫ ∞

0
e−p[k]Qs

[k](x) dk

=

∫ ∞

0
e{k}pe−pkQs

[k](x) dk = Qs
e−p(x), p > −ln c(s),
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where {a} = a − [a] is the fractional part of the number a. It is clear that

Qs
p(x) ≤ Qs

e−p(x) ≤ epQs
p(x), (3.6.5)

where Qs
p(x) =

∫∞
0 e−pkQs

[k](x) dk, p > −ln c(s) is the Laplace transform

of the function Qs
[k](x), k ∈ R+. The definition (3.3.5) and (3.6.1) imply for

p >
√

2s/σ that

lim
B→∞

1

B2
Q

s/B2

e−p/B(x) = lim
B→∞

1

B2

(1 − λ)f̃x(s/B2 − k(e−p/B))

(1 − λ)f̃(s/B2 − k(e−p/B)) + λ − e−p/B

=
1

Eη

1
1
2p2σ2 − s

, p >
√

2s/σ.

It follows from the chain (3.6.5) that

lim
B→∞

1

B2
Q

s/B2

p/B (x) = lim
B→∞

1

B2
Q

s/B2

e−p/B(x) =
1

Eη

1
1
2p2σ2 − s

, p >
√

2s/σ.

Inverting the Laplace transforms in both sides, we obtain

lim
B→∞

1

B
Q

s/B2

[kB] (x) =
1

Eη

2

σ
√

2s
sinh(k

√
2s/σ),

i.e. the first part of (3.6.3). It is not difficult to derive the following represen-

tation:

Q̃s
θ =

∑

k∈Z+

θkEQs
k+δ =

1 − λ

(1 − λ)f̃(s − k(c(s))) + λ − θ
, θ ∈ (0, c(s)).

The latter equality and (3.6.1) imply that for p >
√

2s/σ

lim
B→∞

1

B2
Q̃

s/B2

e−p/B = lim
B→∞

1

B2

∫ ∞

0
e−p[k]/BEQ

s/B2

[k]+δ dk =
1

Eη

1
1
2p2σ2 − s

.

This asymptotic equality implies the second part of (3.6.3). We now establish

the second part of (3.6.2). Taking into account formulae (3.3.10), (3.6.1), we

derive

lim
B→∞

1

B
Φ

s/B2

e−p/B(x) = lim
B→∞

1

B

∫ ∞

0
e−p[k]/BEe−sτ [k](x)/B2

dk =
1

p +
√

2s/σ
.
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It is obvious that Φ̃s
p(x) ≤ Φs

e−p(x) ≤ epΦ̃s
p(x), where

Φ̃s
p(x) =

∫ ∞

0
e−pkEe−sτ [k](x) dk p > −ln c(s)

is the Laplace transform of the function Ee−sτ [k](x), k ∈ R+. Hence,

lim
B→∞

1

B
Φ̃

s/B2

p/B (x) = lim
B→∞

1

B
Φ

s/B2

e−p/B (x)

and

lim
B→∞

1

B

∞
∫

0

e
−pk
B Ee−sτ [k](x)/B2

dk = lim
B→∞

∞
∫

0

e−pkEe−sτ [kB](x)/B2
dk =

1

p +
√

2s/σ
.

The latter equality implies the second part of (3.6.2). N

Denote by {wt; t ≥ 0} a standard Wiener process, E[w1] = 0, Var[w1] = σ2 >

0, and let

χ∗ = inf{t : wt /∈ (−r, k)}, k ∈ (0, 1), r = 1 − k,

denote the first exit time from the interval (−r, k) by the process wt. It is well-

known (see for instance Ito and McKean (1965)) that the Laplace transforms

of χ∗ are such that

E
[

e−sχ∗

;Ak
]

=
sinh

(

r
√

2s/σ
)

sinh
(√

2s/σ
) , E

[

e−sχ∗

;Ar

]

=
sinh

(

k
√

2s/σ
)

sinh
(√

2s/σ
) ,

where Ak = {wχ∗ = k}, Ar = {wχ∗ = −r} are the events denoting the exit

from the interval (−r, k) through the upper boundary k and through the lower

boundary −r.

Theorem 3.6.1 (Kadankov et al. (2009)). Let {Dx(t)}t≥0 be the difference

of the compound Poisson process and the compound renewal process (3.2.3),

δ ∼ ge(λ). Assume that the conditions (A) are satisfied, and

χ(B) = inf{t : Dx(t) /∈ [−rB, kB]}, k ∈ (0, 1), r = 1 − k, B ∈ R+,
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Ak(B) = {Dx(χ(B)) > kB}, Ar(B) = {Dx(χ(B)) < −rB}. Then the follow-

ing limiting equalities hold for B → ∞

P

[

χ(B)

B2
∈ dt;Ak(B)

]

→ P
[

χ∗ ∈ dt;Ak
]

= πσ2
∑

n∈N

ne−
t
2
(σπn)2 sin(kπn) dt,

P

[

χ(B)

B2
∈ dt;Ar(B)

]

→ P [χ∗ ∈ dt;Ar] = πσ2
∑

n∈N

ne−
t
2
(σπν)2 sin(rπn) dt.

(3.6.6)

The limiting exit probabilities admit the following representations for B → ∞

P
[

Ak(B)
]

→ 2

π

∑

n∈N

sin(kπn)

n
= r, P [Ar(B)] → 2

π

∑

n∈N

sin(rπn)

n
= k.

Proof. The first formula of (3.4.8) and (3.6.3) imply that

lim
B→∞

E

[

e−s χ(B)

B2 ;Ar(B)

]

= lim
B→∞

Q
s/B2

[kB] (x)

EQ
s/B2

[B]+δ

=
sinh

(

k
√

2s/σ
)

sinh
(√

2s/σ
) = E

[

e−sχ∗

;Ar

]

.

Inverting the Laplace transform in the right-hand side of this equality, we

derive the first equality of (3.6.6). Taking into account the definition of the

function As
k(x) (3.4.9), we have

As
θ(x) =

∑

k∈Z+

θkAs
k(x) =

s

s − k(θ)

(

f̃x(s − k(θ))

(1 − λ)f̃(s − k(θ)) + λ − θ
− 1

1 − θ

)

,

where θ ∈ (0, c(s)). The latter equality and (3.6.1) imply for p >
√

2s/σ that

lim
B→∞

1

B
A

s/B2

e−p/B(x) = lim
B→∞

1

B

∫ ∞

0
e{k}p/Be−pk/BA

s/B2

[k] (x) dk =
1

p

s
1
2p2σ2 − s

.

It is clear that As
p(x) ≤ As

e−p(x) ≤ epAs
p(x), where As

p(x) =
∫∞
0 e−kpAs

[k](x) dk

is the Laplace transform of the function As
[k](x), k ∈ R+. Hence,

lim
B→∞

1
B A

s/B2

p/B (x) = lim
B→∞

1
B A

s/B2

e−p/B(x) and, thus,

lim
B→∞

1

B
A

s/B2

p/B (x) = lim
B→∞

∫ ∞

0
e−kpA

s/B2

[kB] (x) dk =
1

p

s
1
2p2σ2 − s

.
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Inverting the Laplace transforms in both sides, we get

lim
B→∞

A
s/B2

[kB] (x) = cosh
(

k
√

2s/σ
)

− 1, p >
√

2s/σ.

Analogously we derive that for all k ∈ R+

lim
B→∞

EA
s/B2

[kB]+δ(0) = cosh
(

k
√

2s/σ
)

− 1, p >
√

2s/σ,

where EAs
[u]+δ =

∑

i∈N

(1 − λ)λi−1As
[u]+i(0). It follows from the second formula

of (3.4.9) and from the two latter asymptotic equations that

lim
B→∞

E

[

e−s χ(B)

B2 ;Ak(B)

]

= cosh
(

k
√

2s/σ
)

− sinh
(

k
√

2s/σ
)

sinh
(√

2s/σ
) cosh

(√
2s/σ

)

=
sinh

(

r
√

2s/σ
)

sinh
(√

2s/σ
) = E

[

e−sχ∗

;Ak
]

.

Inverting the Laplace transforms in both sides, we obtain the second equality

of (3.6.6). It is worth noting that by means of (3.6.6) we established the weak

convergence of χ(B)/B2 to χ∗ as → ∞.

Remark 3.6.1. It is worth noting that all the characteristics considered in

this chapter were determined for another class of stochastic processes, namely

for a semi-Markov work with a linear drift. The approach and methodology

are similar to the present case, therefore we do not present these results in this

framework, but refer to the corresponding articles:

Kadankov, V.F., Kadankova, T. (2007). Two-boundary problems fora

semi-Markov walk with a linear drift. Random Oper. and Stoch. Equ.

15, 223-251.

Kadankov, V., Kadankova, T. (2008). Intersections of the interval and

reflections for a semi-Markov walk with linear drift. Random Oper. and

Stoch. Equ. (submitted).
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3.7 Reflections from the boundary generated by the

supremum

This and the next section are concerned with the processes reflected at the

boundaries. Our motivation to consider such processes comes from applica-

tions in inventory and queueing theory (see Chapter 4). We will determine

one-boundary characteristics of these processes and also the distribution of

their increments. We now move to the formal definition of reflections.

Denote by Dr
x(t) = r + Dx(t), t ≥ 0 the process starting from r ∈ Z when

η+
x (0) = x ≥ 0. Let B ∈ Z+ and for all t ≥ 0 we define a right-continuous

process reflected at the boundary B as follows:

D
B
r (x, t) = Dr

x(t) − max

{

0, sup
[0,t]

Dr
x(·) − B

}

∈] −∞, B], r ∈] −∞, B].

(3.7.1)

The first reflection from the upper boundary B of the process D
B
r (x, t) takes

place at time τB−r(x). Then the process stays at this boundary for some

random time ηl, where l = η+
x (τB−r(x)). At the instant t = τB−r(x) + ηl the

process is reflected to a random state B − δ. In the sequel the evolution of the

process D
B
r (x, t) is a probabilistic copy of its evolution on [0, τB−r(x) + ηl).

It is worth noting that reflections from the boundaries reflected by infimum

(supremum) were introduced by Lévy for a standard Wiener process. Applying

the symmetry principle and the mirror reflection principle, Lévy determined

the distributions of the boundary functionals of the reflected standard Wiener

process. We will show that these distributions are the limit distributions for

the reflected process after an appropriate scaling of time and space.

The reflected spectrally one-sided Lévy processes generated by the infimum

(supremum) of the process were considered in Avram et al. (2004), Nguyen-

Ngoc and Yor (2005). An interesting application in queueing theory for the

spectrally one-sided Lévy process reflected by its infimum was given in Bekker

et al. (2008). Note, that boundary functionals were studied in Lotov and

Khodzhibaev (1998b) for the reflected Lévy process generated by its infimum
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(supremum). It is worth noting that in this article the asymptotic expansions

for the distributions of the characteristics of the process were determined for

the reflected Lévy processes obeying the two-boundary Cramer’s conditions.

3.7.1 Passage of the lower boundary

We now define the boundary functionals for the process (3.7.1). For r ∈ [0, B]

denote

τB
r (x) = inf{t : D

B
r (x, t) < 0} def

= τ , T
B
r (x) = −D

B
r (τ )

def
= T , r ∈ [0, B]

the first crossing time of the lower level 0 by the process D
B
r (x, t) and the

value of the overshoot at this instant. The following statement is true.

Theorem 3.7.1. Let {DB
r (x, t)}t≥0 be the reflected processes defined by (3.7.1),

B ∈ Z+, r ∈ [0, B] and

V k(x, dl,m, s) = E
[

e−sχ;L ∈ dl, T = m,Ak
]

, Vr(x,m, s) = E
[

e−sχ;T = m,Ar

]

be the Laplace transforms of the joint distribution of {χB
r (x), L, T} of the pro-

cess {Dx(t)}t≥0 given by Theorem 3.4.1. Then

(i) if δ ∈ N (an arbitrarily distributed non-negative variable), then the

Laplace transform of the joint distribution of {τ , T } is such that (m ∈ N)

vs
r(x,m) = E

[

e−sτB
r (x);T = m

]

= Vr(x,m, s)

+
aB−r(x)

1 − A(0)

[

P[δ = m + B] +

B
∑

i=1

P[δ = i]VB−i(0,m, s)

]

, (3.7.2)

where V k(x, dl, s) =
∑∞

m=1 V k(x, dl,m, s),

ak(x) =

∫ ∞

0
V k(x, dl, s)f̃l(s), A(x) =

B
∑

k=1

P [δ = k] ak(x);

(ii) if δ ∼ ge(λ), then the following equalities hold:

vs
r(x,m) =

f̃x(s) + (1 − f̃(s))Ss
B−r−1(x)

f̃(s) + (1 − f̃(s))ESs
δ+B−1

(1 − λ)λm−1, r ∈ [0, B],

(3.7.3)
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where Ss
k(x) =

∑k
i=0 Qs

i (x), ESs
δ+B−1 = (1 − λ)

∑∞
i=1 λi−1Ss

i−1+B(0);

the random variable τB
r (x) is proper (P

[

τB
r (x) < ∞

]

= 1) and

EτB
r (x) = Eηx − Eη + Eη [ESδ+B−1 − SB−r−1(x)] < ∞, (3.7.4)

where Sk(x) = S0
k(x), ESδ+B = ES0

δ+B ;

(iii) under the conditions (A) the following equality is valid

lim
B→∞

Ee
−sτB

[rB]
(x)/B2

=
cosh

(

k
√

2s/σ
)

cosh
(√

2s/σ
) , r ∈ (0, 1), k = 1 − r.

Proof. Let us verify the formula (3.7.2). It follows from the definition of the

process D
B
r (x, t) (3.7.1), the total probability law and the Markov property of

χ, ηn(x) that the following system of linear integral equations holds:

vs
r(x,m) = Vr(x,m, s) +

∫ ∞

0
V k(x, dl, s)vs

B(l,m),

vs
B(x,m) = f̃x(s)P[δ = m + B] + f̃x(s)

B
∑

r=1

P[δ = r]vs
B−r(0,m).

This system is similar to a system of linear equations with two unknowns, and

it can be solved analogously. Substituting the expression for vs
B(x,m) from

the second equation into the first one, we find that

vs
r(x,m) = Vr(x,m, s) + ak(x)P[δ = m + B] + ak(x)

B
∑

r=1

P[δ = r]vs
B−r(0,m).

Letting x = 0 in the latter equation yields after calculations

B
∑

r=1

P[δ = r]vs
B−r(0,m) = −P[δ = m + B]

+

[

P[δ = m + B] +

B
∑

k=1

P[δ = k]VB−k(0, du, s)

]

(1 − A(0))−1.

Inserting the right-hand side of this quality in the previous one, we get (3.7.2).

In case when δ ∼ ge(λ), formula (3.7.2) takes a more simple form. The first

formula of (3.4.8) and (3.7.2) imply that T
B
r (x) ∼ ge(λ) for any r ∈ 0, B.
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Summing over m ∈ N in both sides of (3.7.2), we find for the function vs
r(x) =

Ee−sτB
r (x) that

vs
r(x) = Vr(x, s) +

aB−r(x)

1 − A(0)

[

λk + (1 − λ)

B
∑

i=1

λi−1VB−i(0, s)

]

. (3.7.5)

Now we calculate ak(x), A(0) in case when δ ∼ ge(λ). Employing formulae

(3.3.6), (3.4.8) and performing the necessary calculations, we find that

ak(x) = f̃x(s) + (1 − f̃(s))Ss
k−1(x) − Qs

k(x)

EQs
δ+B

[

f̃(s) + (1 − f̃(s))ESs
δ+B−1

]

,

1 − A(0) =
1 − λ

λEQs
δ+B

[1 − Qs
0(0)]

[

f̃(s) + (1 − f̃(s))ESs
δ+B−1

]

,

λk + (1 − λ)

B
∑

i=1

λi−1VB−i(0, s) =
1 − λ

λEQs
δ+B

[1 − Qs
0(0)] .

Substituting the right-hand sides of these equalities into (3.7.5) and taking into

account that T
B
r (x) ∼ ge(λ), we derive (3.7.3). The equality (3.7.4) follows

from the following relation EτB
r (x) = − d

dsv
s
r(x)

∣

∣

s=0
.

To verify the limiting formula of the theorem, we will employ equalities (3.5.7)

which were obtained in Kadankov et al. (2009). On can also derive that for

all k > 0

lim
B→∞

B−2 S
s/B2

[kB]
(x) =

1

sEη

(

cosh
(

k
√

2s/σ
)

− 1
)

= lim
B→∞

B−2 ES
s/B2

[kB]+δ
.

(3.7.6)

Letting B → ∞, we have f̃x(s/B
2) = 1 − Eηxs/B2 + o(s/B2), which implies

for r ∈ (0, 1) that

lim
B→∞

Ee
−sτB

[rB]
(x)/B2

=
1 + (cosh

(

k
√

2s/σ) − 1)
)

1 + (cosh
(√

2s/σ) − 1)
) =

cosh
(

k
√

2s/σ
)

cosh
(√

2s/σ
) , k = 1 − r.

N

3.7.2 Increments of the process reflected in its supremum

Define D
k
0(x, t) = Dx(t) − max

{

0, sup
[0,t]

Dx(·) − k

}

∈] − ∞, k], the process

reflected from the upper boundary k ∈ Z+ generated by its supremum.
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Theorem 3.7.2. Let {Dk
0(x, t)}t≥0 be the process reflected from the upper

boundary and ps
k(x, u) = P

[

D
k
0(x, νs) ≤ u

]

, u ∈] − ∞, k] be the distribution

of its increments on the exponential interval [0, νs]. Then

(i) for all k ∈ Z+ ps
k(x, k) = 1, and for u ∈]−∞, k− 1], x ≥ 0 the following

equality holds

ps
k(x, u) = Au

x(s) + c(s)k−u−1F (s)

(

f̃x(s)

1 − f̃(s)
+ Ss

k−1(x)

)

, (3.7.7)

where Au
x(s) = 0, for u < 0, F (s) = s(1 − c(s))/(1 − λ)(s − k(c(s)));

(ii) under the condition (A) for k > 0, u ≤ k the following relation is valid:

lim
B→∞

P
[

D
[kB]
0 (x, tB2) ≤ [uB]

]

= 1 − 1

σ
√

2πt

∫ 2k−u

u
e−v2/2σ2tdv;

(3.7.8)

(iii) if ρ > 1, then the ergodic distribution pk(u) = lim
t→∞

P
[

D
k
0(x, t) ≤ u

]

exists, and

pk(u) =
Eκ

ρ

1 − c

1 − Ecκ
ck−u−1, u ∈]−∞, k−1], c = lim

s→0
c(s) ∈ (λ, 1).

Proof. Define the generating function of the increments of the process

P
s
k(x, z) = EzD

k
0(x,νs) =

k
∑

−∞
ziP

[

D
k
0(x, νs) = i

]

, |z| ≥ 1, k ∈ Z+.

It is obvious that P
s
k(x, 1) = P

[

D
k
0(x, νs) ≤ k

]

= 1. In accordance with the

total probability law and the definition of the process D
k
0(x, t) we can write

P
s
k(x, z) = E+

k (x, z, s) + zk

∫ ∞

0
fk

x (dl)(1 − f̃l(s))

+ zk

∫ ∞

0
fk

x (dl)f̃l(s)(1 − λ)

∞
∑

i=1

λi−1z−iP
s
i (0, z), (3.7.9)

where the function E+
k (x, z, s) = E

[

e−zDx(νs); τk(x) > νs

]

is given by (3.5.3),

and the function fk
x (dl) = E

[

e−sτk(x); ηk(x) ∈ dl
]

is determined by (3.3.6).
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This equation means the following. The sample paths on which the increments

of the process Dx(t) occur can be decomposed into three parts: 1) the sample

paths which do not intersect the upper boundary k (the first term on the right-

hand side); 2) the sample paths which do intersect the upper boundary and

stay there (the second term); 3) the sample paths cross the upper boundary

and then they are reflected (the third term). After some calculations which

we skip, one can see that formula (3.3.6) implies that

∫ ∞

0
fk

x (dl)f̃l(s) = f̃x(s) + (1 − f̃(s))Ss
k(x) − 1 − f̃(s)

1 − c(s)
Qs

k(x).

Letting x = 0 in (3.7.9) and taking into account the latter equality, we derive

(1 − λ)
∞
∑

i=1

λi−1z−iP
s
i (0, z) =

F (s)

1 − f̃(s)

1/z − 1

1 − c(s)/z
, |z| ≥ 1.

Substituting the right-hand of this equality and the expression (3.5.3) for

E+
k (x, z, s) into (3.7.9), we find that (|z| ≥ 1)

P
s
k(x, z) = zk + (1 − z)

k−1
∑

i=0

ziAi
x(s) + zkF (s)

1/z − 1

1 − c(s)/z

(

f̃x(s)

1 − f̃(s)
+ Ss

k−1(x)

)

.

Comparing the coefficients of zi, i ∈ {k, k − 1, . . . }, we get

P
[

D
k
0(x, νs) = k

]

= 1 − Ak−1
x (s) − F (s)

(

f̃x(s)

1 − f̃(s)
+ Ss

k−1(x)

)

,

P
[

D
k
0(x, νs) = i

]

= Ai
x(s) − Ai−1

x (s)+

+ F (s)c(s)k−i−1(1 − c(s))

(

f̃x(s)

1 − f̃(s)
+ Ss

k−1(x)

)

, i < k.

One can assure that the second formula implies the equality (3.7.7) of the

theorem. Let us verify (3.7.8). It follows from the first formula of (3.5.7) that

F (s/B2) =
s

B2
Eη + o(B−2), lim

B→∞
c(s/B2)[B(k−u)]−1 = e−(k−u)

√
2s/σ.

Denote p̃t
k(x, u,B) = P

[

D
[kB]
0 (x, tB2) ≤ [uB]

]

, k > 0. Then in view of (3.5.7),
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(3.7.6) we have:

lim
B→∞

∫ ∞

0
e−stp̃t

k(x, u,B) dt =
1

s
lim

B→∞
p

s/B2

[kB] (x, [uB]) =

=
1

s

(

1 − cosh
(

u+
√

2s/σ
)

+ e−(k−u)
√

2s/σ cosh
(

k
√

2s/σ
))

=

=
1

s
I{u<0}

(

eu
√

2s/σ/2 + e−(2k−u)
√

2s/σ/2
)

+

+
1

s
I{u∈[0,k]}

(

1 − e−u
√

2s/σ/2 + e−(2k−u)
√

2s/σ/2
)

, u ≤ k,

where u+ = max{0, u}. Employing the formula 1
s e−a

√
2s/σ = 2

∫∞
0 e−stP [wt ≥ a] dt,

to invert the Laplace transform, we derive the limiting equality of the theorem.

For ρ > 1 the mathematical expectation of τk(x) is finite. It follows from

(3.3.7) that

Eτk(x) =
Qk(x)

(1 − λ)k(c)
+

k
∑

i=0

ρi

[

1 − Qk−i(x)

1 − λ

]

< ∞,

where ρi = lim
s→0

s−1ρ̃i(s) =
∫∞
0 P [π(t) = i] dt < ∞. Moreover, the process

D
k
0(x, t) is of regenerative type (Kuznetsov et al. (1983)). The instants of

the passages of the upper boundary are the regeneration times. Hence, there

exists the ergodic distribution of the process (Kuznetsov et al. (1983)) pk(u) =

lim
t→∞

P
[

D
k
0(x, t) ≤ u

]

. To determine this distribution, it suffices to apply to

(3.7.7) the Tauberian theorem: pk(u) = lim
s→0

ps
k(x, u). N

We will now determine the joint distribution of the increments of the process

and the first exit time from the interval [−r, k]. Let {Dk
0(x, t)}t≥0 be the process

reflected from the upper boundary. Define for r, k ∈ Z+

τ r,k(x) = inf{t : D
k
0(x, t) < −r} def

= τ , T r,k(x) = −D
k
0(x, τ ) − r

def
= T ,

the first exit time from the interval [−r, k] by the process D
k
0(x, t) and the

value of the overshoot through the lower boundary −r. Since Xt is homoge-

neous with respect to the first component, then {τ r,k(x), T r,k(x)} are identi-

cally distributed as {τB
r (x), T

B
r (x)}, B = k + r, and their joint distribution is

determined by (3.7.3).
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Theorem 3.7.3. Let {Dk
0(x, t)}t≥0 be the process reflected from the upper

boundary, ps
r,k(x, u) = P

[

D
k
0(x, νs) ≤ u; τ r,k(x) > νs

]

, u ∈ [−r, k] be the dis-

tribution of the increments of the process on the interval [0, νs] on the event

{τ r,k(x) > νs}.

(i) the distribution of the increments is such that for all r, k ∈ Z+

ps
r,k(x, k) = 1 − f̃x(s) + (1 − f̃(s))Ss

k−1(x)

f̃(s) + (1 − f̃(s))ESs
δ+B−1

, B = k + r, (3.7.10)

ps
r,k(x, u) = Au

x(s) − f̃x(s) + (1 − f̃(s))Ss
k−1(x)

f̃(s) + (1 − f̃(s))ESs
δ+B−1

EAδ+u+r
0 (s), u ∈ [−r, k − 1];

(ii) under the condition (A) the following limiting equality holds:

lim
B→∞

P
[

D
[kB]
0 (x, tB2) ≤ [uB]; τ [rB],[kB](x) > tB2

]

def
= p(t) = (3.7.11)

=
4

π

∑

n∈Z+

e−
t
2
(π(n+ 1

2
)σ)2

n + 1
2

sin

(

r

(

n +
1

2

)

π

)

sin2

(

r + u

2

(

n +
1

2

)

π

)

,

where r ∈ (0, 1), k = 1 − r, u ∈ [−r, k].

Proof. In accordance with the total probability law, homogeneity of the

process Xt with respect to the first component, Markov property of τ r,k(x)

and the properties of the exponential variable νs we can write

ps
k(x, u) = ps

r,k(x, u) + vs
r(x)(1 − λ)

∞
∑

i=1

λi−1ps
i+B(0, u + r + i), u ∈] −∞, k],

where the function ps
k(x, u) = P

[

D
k
0(x, νs) ≤ u

]

is determined in Theorem

3.7.2. This equation means that the increments of the process D
k
0(x, νs) are

realized either on the sample paths which do not exit the interval [−r, k], or on

the sample paths which do exit the interval and the further evaluation of the

process is its probabilistic replica on [0, νs]. Substituting the expression for the

function ps
k(x, u) into (3.7.7), after necessary calculations we derive (3.7.10).

For r ∈ (0, 1), k = 1 − r, u ∈ [−r, k] denote

pt
r,k(x, u,B) = P

[

D
[kB]
0 (x, tB2) ≤ [uB]; τ [rB],[kB](x) > tB2

]

.
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Employing the third formula of (3.5.7), the limiting equality of Theorem 3.7.1,

we find

1

s
lim

B→∞
p

s/B2

[kB] (x, [uB]) = lim
B→∞

∫ ∞

0
e−stpt

r,k(x, u,B) dt = (3.7.12)

=
1 − cosh(u+

√
2s/σ)

s
+

1

s

cosh(k
√

2s/σ)

cosh(
√

2s/σ)

(

cosh((u + r)
√

2s/σ) − 1
)

def
= p∗(s),

where u+ = max{0, u}. When u ∈ [−r, 0] we derive from this formula that

p∗(s) =
2

s

cosh(k
√

2s/σ)

cosh(
√

2s/σ)
sinh2

(

r + u

2

√
2s/σ

)

, u ∈ [−r, 0].

It is clear that s = 0 is not a singular point (pole or point of branching) of the

function p∗(s). In the semi-plane ℜ(s) < 0 this function has simple poles in

sn = −1

2
σ2π2

(

n +
1

2

)2

, n ∈ Z+,

and it is analytic in the whole plane apart from these points. Hence, for α > 0

p(t) =
1

2πi

∫ α+i∞

α−i∞
estp∗(s) ds =

∑

n∈Z+

Ress=snp∗(s).

Calculating the residues of the function p∗(s) in sn, we obtain the right-hand

side of the formula (3.7.11) for u ∈ [−r, 0]. On can see that the first term in

the right-hand side of (3.7.12) is analytic in the whole plane for u ∈ (0, k].

Applying the inversion formula, we find that the contour integral of this term

is equal to zero. The second term of (3.7.12) is the same also for u ∈ [−r, 0].

Thus, the formula (3.7.11) holds for u ∈ [−r, k]. N

3.8 Reflections from the boundary generated by the

infimum

Denote by Dr
x(t) = r + Dx(t), t ≥ 0 the process starting from r ∈ Z when

η+
x (0) = x ≥ 0. Let r ∈ Z+, and for all t ≥ 0 we define a right-continuous

process reflected at the boundary 0 as follows:

Dr
0(x, t) = Dr

x(t) − min

{

0, inf
[0,t]

Dr
x(·)
}

∈ Z+, D0
r(x, 0) = r. (3.8.1)
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The process Dr
x(t) is reflected from the lower boundary 0 by its infimum Ob-

serve, that the first hitting of the boundary 0 by the process Dr
0(x, t) occurs

at the instant τr(x). Subsequent time periods between the hitting times are

identically distributed as τ0(0).

3.8.1 Passage of the upper boundary

We will now determine boundary functionals for the process (3.8.1). For B ∈
Z+, r ∈ [0, B] denote

τB
r (x) = inf{t : Dr

0(x, t) > B} def
= τ , T k

r(x) = D0
r(τ ) − B, Lk

r (x) = η+
x (τ)

the first crossing time of the upper level B by the process Dr
0(x, t), the value

of the overshoot and the value of the linear component at this instant.

Theorem 3.8.1. Let Dr
0(x, t){t≥0} be the process reflected at its infimum

(3.8.1). Then

(i) the Laplace transform vr
x(dl,m, s) = E

[

e−sτB
r (x);L ∈ dl, T = m

]

of the

joint distribution of {τB
r (x), L, T} satisfies the following equality for s >

0

vr
x(dl,m, s) = V k(x, dl,m, s) +

Vr(x, s)

1 − V0(0, s)
V B(0, dl,m, s), (3.8.2)

where k = B−r, Vr(x, s) =
∞
∑

m∈N

Vr(x,m, s), and the functions V k(x, dl,m, s),

Vr(x,m, s) are determined by (3.4.8); in particular

vr
x(s) = Ee−sτB

r (x) = 1 − Ak
x(s) + Qs

k(x)
EAδ+B

0 (s) − AB
0 (s)

EQs
δ+B − Qs

B

; (3.8.3)

(ii) under the condition (A) the following equality is valid:

lim
B→∞

P
[

τB
rB(x)/B2 > t

]

=
4

π

∑

n∈Z+

e−
t
2
(π(n+ 1

2
)σ)2

2n + 1
sin (k (2n + 1) π/2) ,

where r ∈ (0, 1), k = 1 − r;
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(iii) the random variable τB
r (x) is proper (P

[

τB
r (x) < ∞

]

= 1), and

EτB
r (x) =Ak

x + Qk(x)
EAδ+B

0 − AB
0

EQδ+B − QB(0)
< ∞,

where Qk(x) = Q0
k(x), EQδ+B = EQ0

δ+B ,

Ak
x =

k
∑

i=0

ρ∗i
[

1 − (1 − λ)−1Qk−i(x)
]

, ρ∗i =

∫ ∞

0
P [π(t) = i] dt.

Let us verify formula (3.8.2). It follows from the definition of the process

Dr
0(x, t) (3.8.1), the total probability law and the Markov property of χ that

the following equation is valid:

vr
x(dl,m, s) = V k(x, dl,m, s) + Vr(x, s)v0

0(dl,m, s).

Letting x = r = 0 in this equation, we find that

v0
0(dl,m, s) = V B(0, dl,m, s) (1 − V0(0, s))

−1 .

Substituting the expression for the function v0
0(dl, du, s) into the previous equa-

tion, we get formula (3.8.2). Formula (3.8.3) follows from (3.8.2) and (3.4.9).

Lemma 3.8.1. Under the condition (A) and k > 0 the following limiting

equalities hold:

lim
B→∞

B−2S
s/B2

[kB] (x) =
1

sEη

(

cosh
(

k
√

2s/σ
)

− 1
)

= lim
B→∞

B−2ES
s/B2

δ+[kB],

lim
B→∞

[

EQ
s/B2

[δ+kB] − Q
s/B2

[kB]

]

=
2µEκ

σ2
cosh

(

k
√

2s/σ
)

, (3.8.4)

lim
B→∞

B
[

A
[kB]
0 (s/B2) − EA

[δ+kB]
0 (s/B2)

]

=

√
2s

(1 − λ)σ
sinh

(

k
√

2s/σ
)

.

Proof of the lemma can be found in Appendix. Formulae (3.8.3), (3.5.7) and

the latter equalities imply for B → ∞, k ∈ (0, 1), r = 1 − k, that

Ee−s τB
rB(x)/B2 → cosh

(

k
√

2s/σ
)

−

− 2 sinh
(

k
√

2s/σ
)

σ
√

2sEη

√
2s

(1 − λ)σ
sinh

(√
2s/σ

) σ2

2µκ
/ cosh

(√
2s/σ

)

=
cosh

(

r
√

2s/σ
)

cosh
(√

2s/σ
) .
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It is obvious that

∫ ∞

0
e−st lim

B→∞
P
[

τB
rB(x)/B2 > t

]

dt =
1

s
− 1

s

cosh
(

r
√

2s/σ
)

cosh
(√

2s/σ
) .

Inverting the Laplace transforms in both sides of the latter equality, we get

the limiting equality of the theorem.

3.8.2 Increments of the process reflected in its infimum

Let r ∈ Z+, and denote by D0
−r(x, t) = Dx(t) − min

{

0, inf
[0,t]

Dx(·) + r

}

∈
[−r,∞[, the process reflected from the lower boundary −r. We remind that

the reflections are generated by its infimum. Introduce

P s
r(x, z) = EzD0

−r(x,νs), |z| ≤ 1, ps
r
(x, u) = P

[

D0
−r(x, νs) ≥ u

]

, u ∈ [−r,∞[

the generating function of the increments of the process on the exponential

time interval [0, νs]. The following statement holds.

Theorem 3.8.2. Let {D0
−r(x, t)}t≥0 be the process reflected from the lower

boundary. Then

(i) the following equalities are valid for r ∈ Z+, x ≥ 0, u ∈ [−r,∞[

P s
r(x, z) = (1 − z)

[

Az
x(s) + z−rfr(x, s)

1 − λ

1 − c(s)

1 − z

λ − z
Az

0(s)

]

, (3.8.5)

ps
r
(x, u) = 1 − Au−1

x (s) − 1 − λ

1 − c(s)
fr(x, s)

[

Au+r−1
0 (s) − EAδ+u+r−1

0 (s)
]

,

where Au
x(s) = 0, for u < 0;

(ii) Under the condition (A), for r > 0, u ≥ −r

lim
B→∞

P
[

D0
[−rB](x, tB2) ≥ [uB]

]

= 1 − 1

σ
√

2πt

∫ u+2r

−u
e−v2/2σ2tdv;

(3.8.6)
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(iii) if ρ = (1 − λ)µEηEκ < 1, then the ergodic distribution exists p
r
(u) =

lim
t→∞

P
[

D0
−r(x, t) ≥ u

]

, and the limiting equality holds:

p
r
(u) = 1 − 1 − ρ

Eη

[

Au+r−1
0 − EAδ+u+r−1

0

]

,

where Ak
x =

k
∑

i=0
ρ∗i
[

1 − (1 − λ)−1Qk−i(x)
]

, ρ∗i =
∫∞
0 P [π(t) = i] dt.

Proof. In view of the total probability law, the Markov property of τr(x),

homogeneity property of the process with respect to the first component, we

can write for the function P s
r(x, z) the following equation:

P s
r(x, z) = E−

r (x, z, s) +
sfr(x, s)z−r

s + µ
+

µfr(x, s)z−r

1 − f̃(s + µ)

∫ ∞

0

∑

i∈N

ai(dl)P s
i (l, z)zi,

ai(dl) = e−l(s+µ)[1 − F (l)]P [κ = i] dl, (3.8.7)

where the generating function E−
r (x, z, s) = E

[

zDx(νs);D−
x (νs) ≥ −r

]

, |z| ≤ 1

is determined by (3.5.13).

This equation reflects the following fact. The increments of the process {D0
−r(x, t)}

can take place either on the sample paths which do not hit the lower boundary

−r, (the first term on the right-hand side) or on the sample paths which hit

the lower boundary −r and stay there (the second term) or, finally, on the

sample paths which hit the boundary −r, and then they are reflected from the

boundary (the third term). Denote

X(s, z) =
µ

1 − f̃(s + µ)

∫ ∞

0

∑

i∈N

ai(dl)P s
i (l, z)zi.

Setting x = 0 in (3.8.7) and performing necessary calculations, we get

X(s, z) =
1 − λ

1 − c(s)

[

µ

∫ ∞

0

∑

r∈N

ar(dx)E−
r (x, z, s)zr + s

1 − f̃(s + µ)

s + µ

]

− s

s + µ
.

Inserting this expression for the function X(s, z) into (3.8.7) yields

P s
r(x, z) = E−

r (x, z, s)+

+ fr(x, s)z−r 1 − λ

1 − c(s)

[

µ

∫ ∞

0

∑

r∈N

ar(dx)E−
r (x, z, s)zr + s

1 − f̃(s + µ)

s + µ

]

.
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Inserting the expression (3.5.13) for the function E−
r (x, z, s) into the latter

equality and performing necessary calculations, we find that

P s
r(x, z) = (1 − z)

[

Az
x(s) + z−rfr(x, s)

1 − λ

1 − c(s)

1 − z

λ − z
Az

0(s)

]

.

It is not difficult to derive the following relation:

p̂s
r(x, z) =

∞
∑

u=−r

zups
r
(x, u) =

z−r

1 − z
− z

1 − z
P s

r(x, z), |z| ≤ 1.

This relation and the previous equality imply that

p̂s
r(x, z) =

z−r

1 − z
− zAz

x(s) − z−r+1fr(x, s)
1 − λ

1 − c(s)

1 − z

λ − z
Az

0(s).

Comparing the coefficients of zu, u[−r,∞[, we get the second formula of (3.8.5).

We now verify (3.8.6). The first formula of (3.8.5) and (3.3.2) imply that

lim
B→∞

f[rB](x, s/B2) = e−r
√

2s/σ, r > 0.

Denote p̃t
r(x, u,B) = P

[

D0
[−rB](x, tB2) ≥ [uB]

]

, r > 0, u ≥ −r. It is obvious

that

lim
B→∞

∫ ∞

0
e−stp̃t

k(x, u,B) dt =
1

s
lim

B→∞
p

s/B2

[rB] (x, [uB]).

Employing (3.5.7) and Lemma 3.8.1, we obtain

lim
B→∞

∫ ∞

0
e−stp̃t

k(x, u,B) dt = s−1I{u>0}
(

e−u
√

2s/σ/2 + e−(2r+u)
√

2s/σ/2
)

+

+ s−1I{u∈[−r,0]}
(

1 − eu
√

2s/σ/2 + e−(2r+u)
√

2s/σ/2
)

, u ≥ −r.

In view of the relation s−1 e−a
√

2s/σ = 2
∫∞
0 e−stP [wt ≥ a] dt we invert the

Laplace transforms in the right-hand side of the latter equality, which yields

the limiting equality of the theorem. For ρ < 1 mathematical expectation of

τr(x) is finite. It follows from (3.3.2) that

Eτr(x) = [Eηx + r(1 − λ)Eη] (1 − ρ)−1 < ∞.

Moreover, the process D0
−r(x, t) is of regenerative type (Kuznetsov et al.

(1983)). The instants of the passages of the lower boundary are the regen-

eration times. Hence, there exists the ergodic distribution of the process
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(Kuznetsov et al. (1983)) pk(u) = lim
t→∞

P
[

Dk
0(x, t) ≤ u

]

. To determine this

distribution, it suffices to apply the Tauberian theorem to formula (3.8.5).

Here we denoted pk(u) = lim
s→0

ps
k
(x, u). N

Let {D0
−r(x, t)}t≥0 be the process reflected from the lower boundary −r. In-

troduce the following random variables

τ r,k(x) = inf{t : D0
−r(x, t) > k}=τ , T r,k(x) = D0

−r(x, τ ) − k, Lr,k(x) = η+
x (τ)

i.e. the first exit time from the interval [−r, k], by the process D0
−r(x, t),

the value of the overshoot through the upper boundary k and the value of

the linear component at this instant, r, k ∈ Z+.. Since the process Xt is

homogeneous with respect to the first component, then the random variables

{τ r,k(x), T r,k(x), Lr,k(x)} are identically distributed as {τB
r (x), T B

r (x), Lr(x)},
B = k + r and, hence, their joint distribution is given by (3.8.2).

Theorem 3.8.3. Let {D0
−r(x, t)}t≥0 be the process reflected from the lower

boundary −r. Denote by ps
r,k

(x, u) = P
[

D0
−r(x, νs) ≤ u; τ r,k(x) > νs

]

, u ∈
[−r, k] the distribution of the increments of the process on the exponential

interval [0, νs], s > 0 on the event {τ r,k(x) > νs}. Then

(i) the following equality is valid for r, k ∈ Z+, u ∈ [−r, k]

ps
r,k

(x, u) = Au
x(s) − Qs

k(x)
EAδ+u+r

0 (s) − Au+r
0 (s)

EQs
B+δ − Qs

B

; (3.8.8)

(ii) under the condition (A) the limiting equality holds:

lim
B→∞

P
[

D[kB]
x (tB2) ≤ [uB]; τ [rB],[kB](x) > tB2

]

def
= p(t) = (3.8.9)

=
4

π

∑

n∈Z+

e−
t
2
(π(n+ 1

2
)σ)2

2n + 1
sin

(

(r + u)

(

n +
1

2

)

π

)

cos

(

r

(

n +
1

2

)

π

)

,

where r ∈ (0, 1), k = 1 − r, u ∈ [−r, k].

Proof. Introduce the generating function

P s
r,k(x, z) = E

[

zD0
−r(x,νs); τ r,k(x) > νs

]

.
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According to the total probability law, the homogeneity property of the process

Xt with respect to the first component, Markov property of τ r,k(x), properties

of the exponential variable νs we can write the following equation:

P s
r(x, z) = P s

r,k(x, z) +

∫ ∞

0

∑

m∈N

vr
x(dl,m, s)P s

m+B(l, z)zm+k, |z| ≤ 1,

where vr
x(dl,m, s) = E

[

e−sτB
r (x);L ∈ dl, T = m

]

is determined by (3.8.2), and

P s
r(x, z) = E

[

zD0
−r(x,νs)

]

is found in Theorem 3.8.2 by (3.8.5). This equation is

written using the path decomposition principle. The increments of the process

D0
−r(x, νs) can be realized on one of the following self-excluding events: 1) the

sample paths do not cross the upper boundary k, 2) the sample paths do

intersect the upper boundary and then the evolution of the process is just a

probabilistic replica of the process on [0, νs]. Inserting the expression (3.8.5)

for the function P s
r(x, z) into the latter equation, we find that

1

1 − z
P s

r,k(x, z) = Az
x(s) − zk

∫ ∞

0
ṽr
x(dl, z, s)Az

l (s)+

+ z−rAz
0(s)

1 − λ

1 − c(s)

1 − z

λ − z

[

fr(x, s) −
∑

m∈N

∫ ∞

0
vr

x(dl,m, s)fm+B(l, s)

]

,

(3.8.10)

where ṽr
x(dl, z, s) = E

[

e−sτB
r (x)zT ;L ∈ dl

]

. Performing necessary calculations

and taking into account (3.3.2) and (3.8.2) yields

∑

m∈N

∫ ∞

0
vr

x(dl,m, s)fm+B(l, s) = fr(x, s) − 1 − c(s)

1 − λ

Qs
k(x)

EQs
B+δ − Qs

B

.

In view of this equality and (3.8.10), we find that

P s
r,k(x, z) − zk+1(1 − vr

x(s))

1 − z
= Az

x(s) − zk

∫ ∞

0
ṽr
x(dl, z, s)Az

l (s)−

− zk+1(1 − vr
x(s))

1 − z
+ z−rAz

0(s)
1 − z

λ − z

Qs
k(x)

EQs
B+δ − Qs

B

, |z| ≤ 1, (3.8.11)
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where ṽr
x(dl, z, s) = E

[

e−sτB
r (x)zT ;L ∈ dl,

]

. Then it is easily verified that

1

1 − z
P s

r,k(x, z) − zk+1

1 − z
(1 − vr

x(s)) =

k
∑

u=−r

zups
r,k

(x, u).

Comparing the coefficients of zu, u ∈ [−r, k] in both sides of (3.8.11), we obtain

(3.8.8). For r ∈ (0, 1), k = 1 − r, u ∈ [−r, k] denote

pt
r,k(x, u,B) = P

[

D[kB]
x (tB2) ≤ [uB]; τ [rB],[kB](x) > tB2

]

.

Employing formula (3.8.8) and the limiting equality of Lemma 3.8.1, we find

that

1

s
lim

B→∞
p

s/B2

[rB],[kB](x, [uB]) = lim
B→∞

∫ ∞

0
e−stpt

r,k(x, u,B) dt = (3.8.12)

=
1 − cosh(u+

√
2s/σ)

s
+

1

s

sinh(k
√

2s/σ)

cosh(
√

2s/σ)
sinh

(

(u + r)
√

2s/σ
)

def
= p∗(s),

where u+ = max{0, u}. When u ∈ [−r, 0] we derive from this formula that

p∗(s) =
1

s

sinh(k
√

2s/σ)

cosh(
√

2s/σ)
sinh

(

(u + r)
√

2s/σ
)

, u ∈ [−r, 0].

It is clear that s = 0 is not a singular point (pole or point of branching) of the

function p∗(s). In the semi-plane ℜ(s) < 0 this function has simple poles in

sn = −1

2
σ2π2

(

n +
1

2

)2

, n ∈ Z+,

and it is analytic in the whole plane apart from these points. Hence, for α > 0

p(t) =
1

2πi

∫ α+i∞

α−i∞
estp∗(s) ds =

∑

n∈Z+

Ress=snp∗(s).

Calculating the residues of the function p∗(s) in sn, we obtain the right-hand

side of the formula (3.8.9) for u ∈ [−r, 0]. On can see that the first term on

the right-hand side of (3.8.12) is analytic in the whole plane for u ∈ (0, k].

Applying the inversion formula, we find that the contour integral of this term

is equal to zero. The second term of (3.8.12) is the same also for u ∈ [−r, 0].

Thus, the formula (3.8.9) holds for u ∈ [−r, k]. N





Chapter 4

Applications for queueing

systems

4.1 Introduction

In this chapter we illustrate the applications of our results in queueing theory.

Namely, we will study the queueing system with batch arrivals and finite buffer.

In the Mκ|Gδ|1|B system, for instance, customers arrive in batches of random

size κ according to a Poisson process. Service time η has general distribution

and during the service cycle min{δ, r} customers are served, where r is an

initial number of the customers in the buffer. We consider partial rejection,

meaning that if an overflow of buffer occurs due to the arrival of a batch of

customers, the amount of work brought by this batch is only partially admitted

to the buffer, up to the limit of the free buffer space just before the arrival.

The rest is rejected and therefore, is lost.

In many telecommunication systems, it is frequently observed that the server

processes the packets in groups of random size. For example, in ATM (Asyn-

chronous Transfer Mode) networks with multiple input links where each link

may serve messages that consist of several packets. Besides applications in

telecommunication systems, batch service queues have a wide range of appli-

cations in several areas including transportation systems and automatic man-
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ufacturing systems. In order to mathematically investigate the packet loss

and delay properties of a telecommunication network or a component of such

a network, one needs to study the characteristics of an appropriate queueing

system which express such phenomena.

One of the crucial performance issues of the single-server queue with finite

buffer (waiting room) is losses, namely, customers (packets, cells, jobs) that

were not allowed to enter the system due to the buffer overflow. This issue

is especially important in the analysis of telecommunication networks. There-

fore, our target is to determine the most important performance measures of

the queueing systems with batch arrivals and finite buffer. More precisely,

we consider the Mκ|Gδ|1|B and Gδ|Mκ|1|B queueing systems (see a rigorous

description of such systems below) and their modifications. Such systems also

serve as adequate models to study loss sales, cash management, transmis-

sion of traffic, internet servers networks, telecommunications (packet losses,

packet delays), etc. A queueing model of a communication network, for in-

stance, typically includes one or more sources which send packets (customers)

into the network (service station); these packets are then transmitted (served)

over a network link if the link is free, or stored temporarily in a buffer memory

(queue) if the link is busy transmitting another packet. Given such a queueing

model, the question is how to evaluate performance measures of interest, such

as the buffer overflow (or packet loss) probability, number of lost customers,

etc.

The evolution of the number of customers in the aforementioned systems is

described by a process with two reflecting boundaries. In the general case

this process is a difference of two renewal processes. Reflections from the

upper boundary are generated by the supremum (infimum) of the process.

Reflections from the lower boundary govern the server’s behavior.

In general such processes are not Markovian, but by adding a complementary

linear component (in some literature called age process), we obtain a Markov

process, which describes the functioning of the queueing system. Studying the

main characteristics of the system results in investigating the two-boundary

functionals of the governing process. For the queueing systems of Mκ|Gδ |1|B,
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Gδ |Mκ|1|B type the governing process is the difference of the compound Pois-

son process and the compound renewal process complemented with the linear

component.

Before introducing the model, we give a brief review of related results. Analysis

of the single-server queues with finite waiting room goes back to the articles of

Truslove (1975), Ohsone (1981) and others. A huge amount of literature exists

on the study of the single-server queue with all its variants. It is worth men-

tioning that the MX |G|1 queue with finite waiting room was studied for both

the partially rejected model and the totally rejected model in Baba (1984).

The author found the asymptotic distribution of the number of customers at

an arbitrary moment and immediately after a departure. Finite dams with

Poisson arrivals and the M |G|1 queue with impatient customers were studied

in Lee et al. (2001).

First passage times of the level by Lévy processes in context of queues were

considered in Dube et al. (2004), where the explicit characterization of the

Laplace transform of the busy period distribution was found for a finite ca-

pacity M |G|1 queue, see also Perry et al. (2000). In regard to finding the buffer

overflow time, the closest results are presented in Asmussen et al. (2002). The

authors considered the system where arrivals are modeled by a Markov modu-

lated Poisson process (MMPP) and service time is exponential. Previous works

on the overflow period were concentrated on simple Poisson arrivals (De Boer

et al. (2001), Chydzinski (2004)), batch Poisson arrivals Chydzinski (2006),

or renewal arrivals (Fakinos (1982) Pacheco and Ribeiro (2008)). See also

Chaudhry and Zhao (1994) for a discrete Geom(n)|Geom(n)|1|N model. Re-

cently, Chydzinski (2007b) carried out the study on the distribution of the first

buffer overflow time in a queue with batch Markovian arrival process (BMAP),

general service distribution, and finite buffer of size b (BMAP |G|1|b). The

main result represents the explicit formula for the Laplace transform of the

distribution of the first buffer overflow time.

In recent years there has been a great interest in analyzing various queueing

models with MAP (Markov Arrival Process) as input process or MSP (Markov

service process). MAP is used to represent correlated traffic arising in modern
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telecommunication networks. In systems with Markov arrival or service pro-

cesses (MAP, BMAP, or BMSP) and their modifications, it is common to use

the supplementary variable methods and/or embedded Markov chains. For

the method of supplementary variable we refer, for instance, to Choi et al.

(1998), where the authors considered the MAP |G|1 queueing system with in-

finite capacity. They derived the double transform of the queue length and

the remaining service time of the customer in service in the steady state. See

also Gupta and Vijaya Laxmi (2001), where the distributions of the number

of customers in the MAP |Ga,b|1|N queue at arbitrary, post-departure and

pre-arrival epochs have been obtained using both the supplementary variable

and the embedded Markov chain techniques. Gupta and Banik (2006) de-

rived explicit analytic expressions for the steady-state length distribution of

the GI|MSP |1 queue with finite as well as infinite buffer. For the embedded

Markov chains techniques we refer to Dukhovny (1996), where the generating

function of the steady-state probabilities of the chain for the bulk systems of

GI|M |1 type was found. De Boer et al. (2001) studied the stationary distribu-

tion of the remaining service time upon reaching some target level in an M |G|1
system. The asymptotic analysis of the G|MSP |1|r queue has been carried

out by Bocharov et al. (2003). See also Chaplygin (2003) for the stationary

analysis of the GI|BMSP |1 queue and Kim and Kim (2007) for the asymp-

totic behavior of the loss probability as the buffer size tends to infinity. For

the MAP |G|1|b system Chydzinski (2007a) found distribution of the overflow

period in transient and stationary regimes and the distribution of the number

of cells lost during the overflow interval. Recently Banik et al. (2008) con-

sidered a finite-buffer single-server queue GI|BMSP |1|N. The steady-state

distribution of number of customers in the system at pre-arrival and arbitrary

epochs has been obtained.

As one can see, the majority of the recent literature is devoted mainly to

queue size and workload, most of the times in the steady state case. How-

ever, recently it was shown that steady-state parameters do not reflect the

reality. A detailed discussion of the drawbacks of steady-state parameters

when used as a quality of service criteria in telecommunication networks may
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be found in Schwefel et al. (2001). To our knowledge there are no results

employing two-boundary characteristics of the aforementioned governing pro-

cess to determine main performance measures. Thus, our contribution is that

we apply direct probability methods and supplementary variable approach

to determine several transient measure performances. More specific, we find

the Laplace transforms and the expectations of the busy period, the time of

the first loss of the customer, and the number of customers in the system in

transient and stationary regimes. To our knowledge, there are no results on

transient distributions for the models of Mκ|Gδ|1|B or Gδ|Mκ|1|B type.

The remainder of this chapter is structured as follows. Section 4.2 introduces

the Mκ|Gδ|1|B system. Then we study the main characteristics of the system

such as the busy period (Subsection 4.2.1), the time of the first loss of the

customer (Subsection 4.2.2) and the number of customers in the system at

arbitrary time (Subsection 4.2.3). In Subsection 4.2.4 we consider a special

case, when the governing process {Dx(t)}t≥0 has unit negative jumps at the

instants {ηn(x)}n∈N and δNx(t) = Nx(t). It means that the customers arrive

not in batches but one-by-one. In this case we obtain more tractable results.

Section 4.3 deals with the Gδ|Mκ|1|B system. We determine the busy period

(Subsection 4.3.1), the time of the first loss (Subsection 4.3.1), the distribution

of the number of customers in the system (Subsection 4.3.1) and the virtual

waiting time (Subsection 4.3.1). We also treat a partial case separately in

Subsection 4.3.5.

The results of this chapter appeared in the following articles:

Kadankov, V. and Kadankova,T. (2008) Exit problems for the differ-

ence of a compound Poisson process and a compound renewal process.

Queueing Systems, 59, 271-296.

Kadankov, V. and Kadankova,T. (2008) Busy period, virtual waiting

time and number of customers in Gδ|Mκ|1|B system. (submitted).

Kadankov, V. and Kadankova,T. (2008) Busy period, time of the first

loss of a customer and the number of customers in Mκ|Gδ|1|B system.

(submitted).



160

4.2 Description of Mκ|Gδ|1|B system

In this section we will introduce the governing process and describe how the

queueing system Mκ|Gδ|1|B functions. Customers arrive in batches of ran-

dom size κ according to a Poisson process, i.e. the inter arrival times are

exponential (with parameter µ). If upon arrival of a batch the server is busy,

then these customers join the waiting room (buffer) of size B + 1. If the

number of customers in the batch exceeds the number of the vacant places in

the buffer, then the amount of work brought by this batch is only partially

admitted to the buffer, up to the limit of the free buffer space. This means

that the customers are partially rejected. A service cycle lasts a random time

η (arbitrarily distributed). After the cycle is completed, the buffer is reduced

by min{r, δ} and the new service cycle starts. If the waiting room becomes

empty, then the server stays idle up to the arrival of a new batch.

It appears, that the reflected process (3.7.1) introduced in the previous chapter

serves to describe the number of the customers in the buffer, and the age

process (3.2.4) stands for the time elapsed since the start of the service cycle.

Let us give a formal definition of the governing process. In order to determine

main measure performances of this system, we will employ a two-component

Markov process, that is defined below. Let B ∈ Z+, r ∈ [0, B + 1], x ≥ 0.

Introduce

Yr,x(t)
def
= {dr,x(t), ηr,x(t)} ∈ [0, B + 1] × R+, Yr,x(0) = (r, x),

where dr,x(t) is the number of the customers in the waiting room at time t;

ηr,x(t) =







time elapsed since the start of the service cycle up to t, if dr,x(t) > 0,

ηr,x(t) = 0 with probability 1, if dr,x(t) = 0

by means of the following recurrent equations:

Yr,x(t) =







(

D
B+1
r (x, t), η+

x (t)
)

, 0 ≤ t < τ̃B+1
r (x),

Y0,0(t − τ̃B+1
r (x)), t ≥ τ̃B+1

r (x),
, r ∈ [1, B + 1],

(4.2.1)
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Y0,0(t) =



















(0, 0), 0 ≤ t < µ̃ ∼ exp(µ),

Yr,0(t − µ̃) with probabilty P[κ = r], r ∈ [1, B], t ≥ µ̃,

YB+1,0(t − µ̃) with probabilty P[κ ≥ B + 1], t ≥ µ̃,

(4.2.2)

where D
B+1
r (x, t) is the process reflected at the upper boundary (3.7.1),

τ̃B+1
r (x) = inf{t : D

B+1
r (x, t) < 1}, r ∈ [1, B + 1].

Remark 4.2.1. Since the process Xt (3.2.5) is homogeneous with respect to

the first component, then the random variable τ̃B+1
r (x) is identically distributed

as τB
r−1(x) (3.7.3) and, hence,

ṽs
r(x) = E

[

e−sτ̃B+1
r (x); τ̃B+1

r (x) < ∞
]

= vs
r−1(x), r ∈ [1, B + 1].

The process Yr,x(t){t≥0} serves as a stochastic model of the functioning of the

Mκ|Gδ|1|B, (δ ∼ ge(λ)) system, which has the following properties:

(i) The customers arrive in groups (batch arrivals) according to the Poisson

process with intensity µ > 0. The number of the customers in each group

is represented by the random variable κ ∈ N.

(ii) The system has a finite waiting room (buffer) whose size equals B +1 <

∞. Suppose that upon the arrival of a new group of customers of size

κ it finds r ∈ [0, B + 1] occupied space in the waiting room. Then

min{k, κ} joins the queue, and loss of size max{0, κ − k} occurs, where

k = B + 1 − r is the size of empty space in the waiting room (partial

rejection);

(iii) The duration of service completion is arbitrary distributed as η > 0.

Suppose, that at a time t the service cycle is accomplished. Then the

occupied space in the buffer is reduced by min{r, δ}, where r ∈ [1, B +1]

is the value of occupied spaces in the waiting room at a time t− 0. If at

the instant of the service completion r−min{r, δ} > 0, then a new service

cycle starts. If at the instant of the service completion r−min{r, δ} = 0,

then the new service cycle starts upon arrival of a new customer (after

exponential time with parameter µ > 0).
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For all t ≥ 0 the event {Yr,x(t) = (i, y)}, i ∈ [1, B + 1], y ≥ 0 means that at

time t there are i occupied places in the waiting room, and y stands for the

time elapsed since the beginning of the service cycle. Here (r, x) is an initial

state of the system.

The event {Yr,x(t) = (0, 0)} means that at a time t the waiting room is empty

and the server is idle. The system stays in the (0, 0) state for an exponential

period of time (with parameter µ.)

Therefore, dr,x(t) is the number of the customers in the waiting room at time t.

If dr,x(t) > 0, then ηr,x(t) is the time elapsed since the last start of the service

cycle up to time t. If dr,x(t) = 0, then P[ηr,x(t) = 0] = 1. For this system we

will study several important performance measures which is the topic of the

next sections.

4.2.1 Busy period of the system

Assume that at a time t0 = 0 system is in the state (r, x). Here r ∈ [1, B + 1]

is the number of customers in the waiting room, and x ≥ 0 is time elapsed

since the duration of the current service cycle. Introduce the random variable

br(x) = inf{t : dr,x(t) = 0}

i.e. the instant at which the system for the first time becomes empty. Clearly,

the interval [0, br(x)] is a busy period of (r, x) type. Thus, determining the

distribution of the busy period translates to the first passage time problem of

the governing process.

Theorem 4.2.1. Let bs
r(x) = E

[

e−sbr(x); br(x) < ∞
]

be the Laplace transform

of the busy period of (r, x) type. Then the following equalities are valid:

bs
r(x) =

f̃x(s) + (1 − f̃(s))Ss
B−r(x)

f̃(s) + (1 − f̃(s))ESs
δ+B−1

, x ≥ 0, r ∈ [1, B + 1], (4.2.3)

where

Ss
k(x) =

k
∑

i=0

Qs
i (x), ESs

δ+B−1 = (1 − λ)

∞
∑

i=1

λi−1Ss
i−1+B(0).



163

Observe, that the random variable br(x) is proper (P [br(x) < ∞] = 1), and

Ebr(x) = Eηx − Eη + Eη [ESδ+B−1 − SB−r(x)] < ∞, (4.2.4)

where Sk(x) = S0
k(x), ESδ+B = ES0

δ+B .

These formulae follow straightforwardly from Theorem 3.7.1 and Remark 4.2.1.

4.2.2 Time of the first loss of a customer

Suppose that the system starts functioning from the state (r, x) and denote

by lr(x) the time of the first loss of a customer (a group of customers).

Theorem 4.2.2. Let lsr(x) = E
[

e−slr(x); lr(x) < ∞
]

be the Laplace transform

of lr(x). Then the following relation is valid:

ls0(0) = 1 − EAδ+B
0 (s) + EQs

δ+B

EAδ+B
0 (s) − µ

s+µÃ(s) − s
s+µ

EQs
δ+B − µ

s+µ Q̃(s)
,

lsr(x) = 1 − Ak
x(s) + Qs

k(x)
EAδ+B

0 (s) − µ
s+µÃ(s) − s

s+µ

EQsδ + B − µ
s+µ Q̃(s)

, (4.2.5)

where r ∈ [1, B + 1], k = B + 1 − r,

Q̃(s) =
B+1
∑

i=1

P[κ = i]Qs
B+1−i, Ã(s) =

B+1
∑

i=1

P[κ = i]AB+1−i
0 (s).

Note, that the random variables l0(0), lr(x) are proper, and they have finite

mathematical expectations.

Proof. This functional can be found by employing the first exit problem for

the governing process. Let r ∈ [1, B + 1], x ≥ 0. Denote by χ̃B+1
r (x) = inf{t :

r + Dx(t) /∈ [1, B + 1]} the first exit time from the interval [1, B + 1] by the

process r + Dx(t). Since the process {Xt}t≥0 = {Dx(t), η +
x (t)}t≥0 (3.2.5) is

homogeneous with respect to the first component, then the random variable

χ̃B+1
r (x) is identically distributed as χB

r−1(x). Besides, its Laplace transform is

determined by the formula of Corollary 3.4.1. In accordance with the definition
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of the process Yr,x(t) we can write the following system of the equations for

the functions lsr(x), ls0(0) :

lsr(x) = V B+1−r(x, s) + Vr−1(x, s) ls0(0), r ∈ [1, B + 1], x ≥ 0,

ls0(0) =
µ

s + µ
âB+1 +

µ

s + µ

B+1
∑

i=1

ail
s
i (0), (4.2.6)

where ai = P[κ = i], âi = P[κ > i], and in view of (3.4.9)

Vr−1(x, s) =
Qs

B+1−r(x)

EQs
δ+B

, (4.2.7)

V B+1−r(x, s) = 1 − AB+1−r
x (s) − Qs

B+1−r(x)

EQs
δ+B

(

1 − EAδ+B
0 (s)

)

.

Substituting the right-hand side of the first equation of (4.2.6) for x = 0 into

the second one, we get

ls0(0) =
µ

s + µ
âB+1 +

µ

s + µ

B+1
∑

i=1

aiV
B+1−i(0, s) +

µ

s + µ

B+1
∑

i=1

aiVi−1(0, s)l
s
0(0).

The latter equation yields

ls0(0) =
µ

s + µ

(

âB+1 +
B+1
∑

i=1

aiV
B+1−i(0, s)

)(

1 − µ

s + µ

B+1
∑

i=1

aiVi−1(0, s)

)−1

.

Taking into account the first formula of (4.2.6) and (4.2.7), we derive the

equalities (4.2.5) of the theorem. N

4.2.3 Number of customers in the system

Let νs ∼ exp(s) be the exponential random variable with parameter s > 0.

Introduce the transient probabilities of the process dr,x(t){t≥0} :

qs
r,x(u) = P[dr,x(νs) ≤ u], qs

0,0(u) = P[d0,0(νs) ≤ u], r, u ∈ [1, B + 1],

qs
r,x(0) = P[dr,x(νs) = 0], qs

0,0(0) = P[d0,0(νs) = 0].

Denote b̃(s) = âB bs
B+1(0) +

∑B
i=1 ai bs

i (0).
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Theorem 4.2.3. The distribution of the number of customers at time νs is

such that

qs
0,0(u) = EAδ+u−1

0 (s) +
Cu(s, λ)

s + µ − µb̃(s)
, qs

0,0(B + 1) = 1 − s

s + µ − µb̃(s)
,

qs
r,x(u) = Au−r

x (s) + bs
r(x)

Cu(s, λ)

s + µ − µ b̃(s)
, qs

r,x(B + 1) = 1 − sbs
r(x)

s + µ − µb̃(s)
,

qs
0,0(0) =

s

s + µ − µb̃(s)
, qs

r,x(0) =
s bs

r(x)

s + µ − µ b̃(s)
,

where

Cu(s, λ) =
sQs

u

1 − λ
− s + λ(s + µ)

(

Au
0(s) − EAδ+u

0 (s)
)

.

Corollary 4.2.1. Let πi = lim
t→∞

P[d(·)(t) = i], i ∈ [0, B + 1] be the stationary

distribution of the number of customers in the Mκ|Gδ|1|B system. Then

π0 =

[

1 + µEη

(

λ

1 − λ
EQδ+B +

B
∑

i=0

âiQB−i

)]−1

,

πB+1 = 1 − π0(1 + CB(λ)), πi = π0 (Ci(λ) − Ci−1(λ)) , i ∈ [1, B],

where ρi = lim
s→0

s−1ρ̃i(s) =
∫∞
0 P [π(t) = i] dt < ∞, C0(λ) = 0,

Cu(λ) =
Qu

1 − λ
−1+λµ

(

Au
0 − EAδ+u

0

)

, Au
0 = lim

s→0

1

s
Au

0(s) =

u
∑

i=0

ρi

[

1 − Qu−i

1 − λ

]

.

Proof. By p̃s
r,x(u) = P [dr,x(νs) ≤ u; br(x) > νs] , r, u ∈ [1, B + 1] denote the

transient probability of the process dr,x(νs) on the event {br(x) > νs} (meaning

that the server is busy). Taking into account the homogeneity of the process

Xt (3.2.5) with respect to the first component, the definition of the process

dr,x(t) and the formulae (3.7.10) of Theorem 3.7.3, we derive

p̃s
r,x(B + 1) = 1 − bs

r(x), p̃s
r,x(u) = Au−r

x (s) − bs
r(x)EAδ+u−1

0 (s), u ∈ [1, B],

where the function bs
r(x) is determined by (4.2.3).
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In accordance with the definition of the process Yr,x(t) we can write the fol-

lowing equations for the functions qs
r,x(u), qs

0,0(u) for u ∈ [1, B]

qs
r,x(u) = p̃s

r,x(u) + bs
r(x)qs

0,0(u),

qs
0,0(u) =

µ

s + µ

[

âB qs
B+1,0(u) +

B
∑

i=1

ai qs
i,0(u)

]

. (4.2.8)

Substituting the right-hand side of the second equation into the first one, we

get

qs
r,x(u) = p̃s

r,x(u) + bs
r(x)

µ

s + µ
q̃(s, u),

where q̃(s, u) = âB qs
B+1,0(u) +

∑B
i=1 ai q

s
i,0(u). Letting x = 0 in the latter

equality implies that

âB qs
B+1,0(u) = âB p̃s

B+1,0(u) + âB bs
B+1(0)

µ

s + µ
q̃(s, u),

B
∑

i=1

ai q
s
i,0(u) =

B
∑

i=1

ai p̃
s
i,0(u) +

B
∑

i=1

ai b
s
i (0)

µ

s + µ
q̃(s, u).

Adding these equalities, we obtain the function q̃(s, u)

q̃(s, u) = p̃(s, u)

(

1 − µ

s + µ
b̃(s)

)−1

, u ∈ [1, B],

where b̃(s) = âB bs
B+1(0) +

∑B
i=1 ai bs

i (0),

p̃(s, u) = âB p̃s
B+1,0(u) +

B
∑

i=1

ai p̃
s
i,0(u) =

u
∑

i=1

ai A
u−i
0 (s) − b̃(s)EAδ+u−1

0 (s).

Substituting the expression for the function q̃(s, u) into (4.2.8), we find that

qs
0,0(u) = EAδ+u−1

0 (s) +
Cu(s, λ)

s + µ − µb̃(s)
,

qs
r,x(u) = Au−r

x (s) + bs
r(x)

Cu(s, λ)

s + µ − µ b̃(s)
, (4.2.9)

where

Cu(s, λ) =
sQs

u

1 − λ
− s + λ(s + µ)

(

Au
0(s) − EAδ+u

0 (s)
)

.
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To derive the latter equalities, we used the following relation

µ

u
∑

i=1

ai A
u−i
0 (s) − (s + µ)Au

0(s) =
s

1 − λ
Qs

u − s, u ∈ [1,∞],

which follows from the definition of the function Au
x(s). If u = B + 1, then

p̃s
r,x(B + 1) = 1− bs

r(x), p̃(s,B + 1) = 1− b̃(s), and the following formulae are

valid:

qs
0,0(B + 1) = 1 − s

s + µ − µb̃(s)
, qs

r,x(B + 1) = 1 − sbs
r(x)

s + µ − µb̃(s)
.

(4.2.10)

Taking into account the definition of the process Yr,x(t), we can write the

following equations for the functions qs
r,x(0), qs

0,0(0)

qs
r,x(0) = bs

r(x)qs
0,0(0),

qs
0,0(0) =

s

s + µ
+

µ

s + µ

[

âBqs
B+1,0(0) +

B
∑

i=1

aiq
s
i,0(0)

]

.

Solving this system yields

qs
0,0(0) =

s

s + µ − µb̃(s)
, qs

r,x(0) =
s bs

r(x)

s + µ − µ b̃(s)
. (4.2.11)

Observe that lim
s→0

Au
x(s) = lim

s→0
EAδ+u

0 (s) = 0, lim
s→0

bs
r(x) = 1. It follows from

(4.2.9)–(4.2.11) and properties of the Laplace transforms that

lim
s→0

qs
r,x(u) = lim

s→0
qs
0,0(u) = q(u) = lim

t→∞
P[d(·)(t) ≤ u], u ∈ [1, B + 1],

lim
s→0

qs
r,x(0) = lim

s→0
qs
0,0(0) = q(0) = lim

t→∞
P[d(·)(t) = 0].

The formulae (4.2.11) imply that

q(0) = lim
s→0

s

s + µ − µb̃(s)
=

[

1 + µEη

(

λ

1 − λ
EQδ+B +

B
∑

i=0

âiQB−i

)]−1

.

In view of (4.2.9), (4.2.10) we find

q(B + 1) = 1 − q(0), q(u) = q(0)Cu(λ), u ∈ [1, B],
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where ρi = lim
s→0

s−1ρ̃i(s) =
∫∞
0 P [π(t) = i] dt < ∞,

Cu(λ) =
Qu

1 − λ
−1+λµ

(

Au
0 − EAδ+u

0

)

, Au
0 = lim

s→0

1

s
Au

0(s) =
u
∑

i=0

ρi

[

1 − Qu−i

1 − λ

]

.

N

4.2.4 Special case: Mκ|G|1|B system

We will now consider a more simple and also more tractable queueing system,

where the customers are served one by one, and service time is distributed as η.

Then the governing process is the difference of the compound Poisson process

and the simple renewal process, i.e. the process {Dx(t)}t≥0 has unit negative

jumps at the times instants {ηn(x)}n∈N and δNx(t) = Nx(t). Obviously, we

can apply the results of previous sections to study the characteristics of the

Mκ|G|1|B system (P[δ = 1] = 1) with finite buffer. To illustrate this, we now

will determine the distribution of the busy period, the number of customers

in the system, time of the first loss of a customer. In this case we also find the

distribution of the number of lost customers at time of the first loss.

Corollary 4.2.2. Let P[δ = 1] = 1, bs
r(x) = E

[

e−sbr(x); br(x) < ∞
]

be the

Laplace transform of the busy period of (r, x) type of the Mκ|G|1|B system.

Then the following relation is valid:

bs
r(x) =

f̃x(s) + (1 − f̃(s))Ss
B−r(x)

f̃(s) + (1 − f̃(s))Ss
B

, x ≥ 0, r ∈ [1, B + 1],

where Ss
k(x) =

∑k
i=0 Qs

i (x), Ss
k(x) = 0, for k < 0. The random variable br(x)

is proper and

Ebr(x) = Eηx − Eη + Eη [SB − SB−r(x)] < ∞,

where Sk(x) = S0
k(x).

These formulae were derived in Kadankov (1985). To prove the corollary, it

suffices to set λ = 0 in the equalities of Theorem 4.2.1.
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Corollary 4.2.3. Let P[δ = 1] = 1, lr(x) be the time of the first loss of the

batch of customers in the system Mκ|G|1|B, and lsr(x) = E
[

e−slr(x); lr(x) < ∞
]

be the Laplace transform of lr(x). Then the following formula holds:

lsr(x) = 1 − Ak
x(s) − Qs

k(x)
s

s + µ

(

1 − µ

s + µ
Q̃(s)/Qs

B+1

)−1

,

where r ∈ [0, B + 1], k = B + 1 − r, Q̃(s) =
∑B+1

i=1 P[κ = i]Qs
B+1−i. The

random variable lr(x) is proper and has finite mathematical expectation.

The function lsr(x) was found in Kadankov (1985) in a different form. Note,

that Bratiychuk (2000) also studied this functional employing the potential

method. The author derived an analytic expression in terms of the triple

superposition of the series and operator functionals.

Corollary 4.2.4. The distribution of the number of customers in the system

Mκ|G|1|B at time νs is such that for r ∈ [0, B + 1], u ∈ [1, B + 1]

qs
r,x(u) = Au−r

x (s) + bs
r(x)

s(Qs
u − 1)

s + µ − µ b̃(s)
, qs

r,x(B + 1) = 1 − sbs
r(x)

s + µ − µb̃(s)
,

qs
r,x(0, 0) =

s bs
r(x)

s + µ − µ b̃(s)
, bs

0(x)
def
= 1.

Corollary 4.2.5. Let πi = lim
t→∞

P[d(·)(t) = i], i ∈ [0, B + 1] be the stationary

distribution of the number of customers in the system Mκ|G|1|B. Then

π0 =

(

1 + µEη
B
∑

i=0

âiQB−i

)−1

,

πB+1 = 1 − π0QB , πi = π0(Qi − Qi−1), i ∈ [1, B],

where the resolvent sequence of the process {Qk(x)}k∈Z+ , Qk
def
= Qk(0), Q0 = 1

is given by (3.4.13) for s = 0.

To prove Corollaries 4.2.3–4.2.5, it suffices to set λ = 0 in the equalities of

Corollaries 4.2.2, 4.2.1 and Theorem 4.2.3. Note, that the formulae of Corol-

lary 4.2.5 were obtained in Kadankov (1985).

Suppose that the system starts functioning from the state (r, x), r ∈ [0, B+1].

Denote by ir,x the number of the lost customers at the time of the first loss

lr(x).
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Corollary 4.2.6. The generating function Ls
r,x(z) = E

[

e−slr(x)zir,x
]

of the

joint distribution of {lr(x), ir,x} is such that

Ls
r,x(z) =

µ

s

k
∑

i=0

Ei(z)
[

Ak−i
x (s) − Ak−i−1

x (s)
]

+

+ µ
Qs

k(x)

Qs
B+1

B+1
∑

i=0
Ei(z)

[

Qs
B+1−i − Qs

B−i

]

s + µ − µ Q̃(s)/Qs
B+1

, k = B + 1 − r, (4.2.12)

E
[

e−slr(x); ir,x = n
]

=
µ

s

[

anAk
x(s) +

k
∑

i=1

(an+i − an+i−1)A
k−i
x (s)

]

+

+ µ
Qs

k(x)

Qs
B+1

anQs
B+1 +

B+1
∑

i=1
(an+i − an+i−1)Q

s
B+1−i

s + µ − µ Q̃(s)/Qs
B+1

, n ∈ N,

where Ei(z) = E
[

zκ−i; κ > i
]

, i ∈ Z+.

Proof. Conditioning on the first exit time, we can write the following system

of equations for Ls
r,x(z) :

Ls
r,x(z) = Ṽ k(x, z, s) + Vr−1(x, s)Ls

0,0(z), r ∈ [1, B + 1]

Ls
0,0(z) =

µ

s + µ
EB+1(z) +

µ

s + µ

B+1
∑

r=1

arL
s
r,0(z), (4.2.13)

where

Ṽ k(x, z, s) = E
[

e−sχB
r−1(x)zT ;Ak

]

= f̃k(x, z, s) − Qs
k(x)

Qs
B+1

f̃B+1(0, z, s).

(4.2.14)

The equality (3.3.6) implies for the function f̃k(x, z, s) = E
[

e−sτk(x)zT k(x);Bk(x)
]

that

f̃k(x, z, s) =
µ

s

k
∑

i=0

Ei(z)
[

Ak−i
x (s) − Ak−i−1

x (s)
]

+ Qs
k(x)F (c(s), z), (4.2.15)
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where F (c(s), z) = 1−c(s)
1−c(s)/z

k(z)−k(c(s)
s−k(c(s) . Solving the system (4.2.13) and taking

into account (4.2.14) for all r ∈ [0, B + 1], x ≥ 0, we get

Ls
r,x(z) = f̃k(x, z, s) + µ

Qs
k(x)

Qs
B+1

EB+1(z) +
B+1
∑

i=1
aif̃

B+1−i(0, z, s) − f̃B+1(0, z, s)

s + µ − µ Q̃(s)/Qs
B+1

.

The first formula of the corollary follows from the latter equality and from

(4.2.15). Comparing the coefficients of zn, n ∈ N in both sides of (4.2.12), we

derive the second formula of the corollary. N

4.3 Description of Gδ|Mκ|1|B system

In this section we will study the queueing system with batch arrivals of ran-

dom size δ. Time arrivals are the renewal instants of a compound renewal

process Nx(t){t≥0}. Service time is exponential, and during the service cycle

the amount κ is processed. Before considering the queueing system of interest,

we stress the following facts.

Remark 4.3.1. Let B ∈ Z+ be fixed, k ∈ [0, B], r = B − k. Introduce the

process

D
B+1
k+1 (x, t) = −D0

−r(x, t) + k + 1 ∈] −∞, B + 1], D
B+1
k+1 (x, 0) = k + 1.

(4.3.1)

This process is reflected at the upper boundary B+1, generated by the infimum

of the process Dx(t). Introduce the following random variable

τk+1(x) = inf{t : D
B+1
k+1 (x, t) < 1} = inf{t : D0

−r(x, t) > k} =

= inf{t : Dr
0(x, t) > B} = τB

r (x).

This defining chain of stochastic equalities implies that τk+1(x) is identically

distributed as τB
r (x), and, hence, in view of (3.8.3)

vk
x(s) = Ee−sτk(x) = 1 − Ak−1

x (s) + Qs
k−1(x)

EAδ+B
0 (s) − AB

0 (s)

EQs
δ+B − Qs

B

, k ∈ [1, B + 1].



172

Remark 4.3.2. Let u ∈ [1, B + 1]. Denote by

ps
k+1,x(u) = P

[

D
B+1
k+1 (x, νs) ≥ u; τk+1(x) > νs

]

the Laplace transform of the increments of the process D
B+1
k+1 (x, t) on the event

{τ k+1(x) > t}. Definition of the process and Remark 4.3.1 imply that

P
[

D
B+1
k+1 (x, νs) ≥ u; τk+1(x) > νs

]

= P
[

D0
−r(x, νs) ≤ k + 1 − u; τB

r (x) > νs

]

.

It follows from the latter equality and from (3.8.8) that for k, u ∈ [1, B + 1]

ps
k,x(u) = Ak−u

x (s) − Qs
k−1(x)

EAδ+B+1−u
0 (s) − AB+1−u

0 (s)

EQs
B+δ − Qs

B

. (4.3.2)

We now introduce the governing process of the system. Let B ∈ Z+, k ∈
[0, B + 1], x ≥ 0. Define the two-component Markov process

Yk,x(t) = {dk,x(t), η+
x (t)} ∈ [0, B + 1] × R+, Yk,x(0) = (k, x)

by means of the following stochastic recurrent equalities:

Yk,x(t) =







(

D
B+1
k (x, t), η+

x (t)
)

, 0 ≤ t < τk(x),

Y0,η+
x (τk(x))(t − τk(x)), t ≥ τk(x),

, k ∈ [1, B + 1],

Y0,x(t) =



















(0, η+
x (t)), 0 ≤ t < ηx,

Yk,0(t − ηx) : (1 − λ)λk−1, k ∈ [1, B], t ≥ ηx,

YB+1,0(t − ηx) : λB , t ≥ ηx.

The process Yk,x(t){t≥0} serves as a mathematical model of the functioning

of the Gδ|Mκ|1|B system with (δ ∼ ge(λ)). Let us describe how this system

works.

(i) Customers arrive into the system in batches according to the renewal

process Nx(t){t≥0}. The number of customers in every batch is a random

variable distributed as δ ∼ ge(λ) ∈ N.



173

(ii) The system has a finite buffer whose size equals B + 1 < ∞. Suppose

that upon the arrival of a new customer of size δ, it finds k ∈ [0, B + 1]

occupied spaces in the waiting room. Then min{r, δ} joins the queue,

and a loss of size max{0, δ − r} occurs, where r = B + 1 − k is the size

of empty space in the waiting room (partial rejection);

(iii) The duration of service completion is exponentially distributed with pa-

rameter µ > 0. Suppose, that at a time t the service cycle is accom-

plished. Then the occupied space in the buffer is reduced by min{k, κ},
where k ∈ [1, B+1] is the value of occupied space in the waiting room at

a time t−0. If at the instant of the service completion k−min{k, κ} > 0,

then a new service cycle starts. If at the instant of the service completion

k − min{k, κ} = 0, then the new service cycle starts upon arrival of a

new customer.

For all t ≥ 0 the event {Yk,x(t) = (i, y)}, i ∈ [1, B + 1], y ≥ 0 means that

at the time t there are i customers in the waiting room, and that time y has

elapsed since the last arrival up to time t. We assume that (k, x) is an initial

state of the system.

The event {Yk,x(t) = (0, y)} means that at time t the waiting room is empty

and the system is idle, and y time has elapsed since the last customers arrival

(up to time t). Hence, ηy is duration of the idle period (state (0, y)).

Thus, dk,x(t) is the number of customers in the buffer at time t, η+
x (t) is the

time elapsed since the last arrival of the batch up to time t. The definition of

the process Yk,x(t) (homogeneity of the process Xt (3.2.5) with respect to the

first component) implies that the linear component η+
x (t) does not depend on

k.

4.3.1 Busy period of the system

Suppose that the system starts functioning at time t0 = 0 from the state (k, x),

where k ∈ [1, B + 1] is the number of customers in the waiting room, x ≥ 0 is
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time elapsed since the last arrival up to time t0 = 0 Denote by

bk(x) = inf{t : dk,x(t) = 0}, η(x) = η+
x (bk(x))

the instant at which the system becomes empty for the first time and the value

of the linear component at time bk(x). Hence, the interval [0, bk(x)] is a busy

period of (k, x) type.

Theorem 4.3.1. Let bs
k(x) = E

[

e−sbk(x); bk(x) < ∞
]

be the Laplace transform

of the busy period of (k, x) type. Then

(i) the following equality holds:

bs
k(x) = 1 − Ak−1

x (s) + Qs
k−1(x)

EAδ+B
0 (s) − AB

0 (s)

EQs
δ+B − Qs

B

, k ∈ [1, B + 1],

(4.3.3)

the random variable bk(x) is proper (P [bk(x) < ∞] = 1), and its math-

ematical expectation is given by

Ebk(x) = Ak−1
x − Qk−1(x)

EAδ+B
0 − AB

0

EQδ+B − QB
< ∞, (4.3.4)

(ii) the Laplace transform bs
k(x, dy) = E

[

e−sbk(x); η(x) ∈ dy
]

of the joint

distribution of {bk(x), η(x)} is such that k ∈ [1, B + 1]

bs
k(x, dy) = fk−1(x, dy, s) − Qs

k−1(x)
Ef δ+B(0, dy, s) − fB(0, dy, s)

EQs
δ+B − Qs

B

,

(4.3.5)

where the function fk(x, dy, s) = E
[

e−sτk(x); T k(x) ∈ dy,Bk(x)
]

, k ∈
Z+ is determined by (3.8.8).

Proof. The formula (4.3.3) follows straightforwardly from (3.8.3) and Remark

4.3.1. The equalities (3.8.2), (3.4.8) imply (4.3.5). N
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4.3.2 Time of the first loss of a customer

Suppose that the initial state of the system is (k, x), k ∈ [0, B + 1], x ≥ 0.

Introduce the following variables: lk(x) the time of the first loss of a customer

(group of customers); ik,x(t) the number of lost customers on the time interval

[0, t]; and ik,x = ik,x(lk(x)) the number of lost customers at time lk(x).

Theorem 4.3.2. Let lsk(x) = E
[

e−slk(x); lk(x) < ∞
]

be the Laplace transform

of lk(x). Then the following relations hold:

lsk(x) =
f̃x(s) + (1 − f̃(s))Ss

k−1(x)

f̃(s) + (1 − f̃(s))ESs
δ+B

, k ∈ [0, B + 1],

lsk(x,m) = E
[

e−slk(x); ik,x = m
]

= lsk(x)(1 − λ)λm−1, m ∈ N, (4.3.6)

where Ss
k(x) =

∑k
i=0 Qs

i (x), Ss
k(x) = 0 for k < 0. The random variable lk(x)

is proper with finite mathematical expectation:

Elk(x) = Eηx − Eη + Eη [ESδ+B − Sk−1(x)] < ∞,

where Sk(x) = S0
k(x), ESδ+B = ES0

δ+B .

Proof. The functions lsk(x), k ∈ [1, B + 1], ls0(y) obey the following system of

equations:

lsk(x) = VB+1−k(x, s) +

∫ ∞

0
V k−1(x, dy, s)ls0(y),

ls0(y) = f̃y(s)λ
B+1 + f̃y(s)

B+1
∑

k=1

(1 − λ)λk−1lsk(0), (4.3.7)

where the functions Vr(x, s), V k(x, dy, s) are given by (3.4.8), (3.4.9). Substi-

tuting the expression for the function ls0(y) from the second equation into the

first one, we get:

lsk(x) = VB+1−k(x, s) + λB+1

∫ ∞

0
V k−1(x, dy, s)f̃y(s)+

+

∫ ∞

0
V k−1(x, dy, s)f̃y(s)

B+1
∑

k=1

(1 − λ)λk−1lsk(0).
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Letting x = 0 in the latter equation, we find for the function

X(s) =
∑B+1

k=1 (1 − λ)λk−1lsk(0) that

X(s) + λB+1 =
λB+1 + V̌B(λ, s)

1 −
∫∞
0 V̌ B(λ, dy, s)f̃y(s)

, (4.3.8)

where V̌B(λ, s) = (1 − λ)
∑B+1

k=1 λk−1VB+1−k(0, s),

V̌ B(λ, dy, s) = (1 − λ)

B+1
∑

k=1

λk−1V k−1(0, dy, s).

Employing the formulae (3.3.6), (3.4.8), (3.4.9) and performing necessary cal-

culations, we obtain:

λB+1 + V̌B(λ, s) = (1 − λ)
(

EQs
δ+B

)−1
,

1 −
∫ ∞

0
V̌ B(λ, dy, s)f̃y(s) = (1 − λ)SB(λ, s)

(

EQs
δ+B

)−1
,

where SB(λ, s) = f̃(s) + (1 − f̃(s))ESs
δ+B . These equalities, formula (4.3.8)

and the second equality of (4.3.7) imply that

ls0(y) = f̃y(s)SB(λ, s)−1.

Inserting the right-hand side of this equality into the second equality of (4.3.7),

we get

lsk(x) =
Qs

k−1(x)

EQs
δ+B

+ SB(λ, s)−1

∫ ∞

0
V k−1(x, dy, s)f̃y(s), k ∈ [1, B + 1].

In view of (3.3.6), (3.4.8), (3.4.9) we find that
∫ ∞

0
V k−1(x, dy, s)f̃y(s) = f̃x(s) + (1 − f̃(s))Ss

k−1(x) − Qs
k−1(x)

EQs
δ+B

SB(λ, s).

The latter and the previous equality imply the first equality of (4.3.6). We now

verify the second equality. Observe, that ik,x ∼ ge(λ). This can be formally

derived from the first formula of (3.4.8) and from the following system of

equations:

lsk(x,m) = VB+1−k(x, s)(1 − λ)λm−1 +

∫ ∞

0
V k−1(x, dy, s)ls0(y,m),

ls0(y,m) = f̃y(s)(1 − λ)λB+m + f̃y(s)
B+1
∑

k=1

(1 − λ)λk−1lsk(0,m).



177

To solve this system, one can apply a similar reasoning as for the the system

(4.3.7). N

Theorem 4.3.3. Let νs ∼ exp(s) be an exponential variable with parameter

s > 0, independent from the process Yk,x(t). Denote by Is
k,x(n) = P [ik,x(νs) = n] ,

n ∈ Z+ the distribution of the number of lost customers in the time interval

[0, νs]. For all k ∈ [1, B + 1], x ≥ 0 the following equalities are valid:

Is
k,x(0) = 1 − lsk(x),

Is
k,x(n) = lsk(x)(1 − λ)(1 − lsB+1(0))(λ + (1 − λ)lsB+1(0))

n−1, n ∈ N.

(4.3.9)

Proof. Let Ĩs
k,x(z) = E

[

zik,x(νs)
]

, |z| ≤ 1 be the generating function of the

distribution of the number of lost customers. Then it obeys to the following

equation:

Ĩs
k,x(z) = 1 − lsk(x) + L̃s

k,x(z)Ĩs
B+1,0(z), (4.3.10)

where (4.3.6)

L̃s
k,x(z) = E

[

e−slk(x)zik,x

]

= lsk(x)z
1 − λ

1 − zλ
.

Letting k = B + 1, x = 0 in (4.3.10), we find that

Ĩs
B+1,0(z) =

(

1 − lsB+1(0)
)

(

1 − L̃s
B+1,0(z)

)−1
.

Inserting the right-hand side of this equality into (4.3.10) implies

Ĩs
k,x(z) = 1 − lsk(x)

1 − z

1 − zλ − z(1 − λ)lsB+1(0)
.

Comparing the coefficients of zn, n ∈ Z+, we obtain (4.3.9) of the theorem. N

4.3.3 Number of customers in the system

Let νs ∼ exp(s) be an exponential r.v. with parameter s > 0. Introduce the

transient probabilities of the process dk,x(t){t≥0}, k ∈ [0, B + 1], x ≥ 0

qs
k,x(0) = P [dk,x(νs) = 0] , qs

k,x(u) = P [dk,x(νs) ≥ u] , u ∈ [1, B + 1].
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Theorem 4.3.4. The distribution of the number of customers in the system

at time νs is such that

qs
k,x(0) = 1 − Ak−1

x (s) −
(

AB
0 (s) − EAδ+B

0 (s)
) 1 − λ

EQs
δ+B

Cs
k−1(x),

qs
k,x(u) = Ak−u

x (s) +
(

AB+1−u
0 (s) − EAδ+B+1−u

0 (s)
) 1 − λ

EQs
δ+B

Cs
k−1(x),

(4.3.11)

where Ak
x(s) = Ss

k(x) = 0 for k < 0,

Cs
k(x) = f̃x(s)(1 − f̃(s))−1 + Ss

k(x).

We will now explore the asymptotic behavior of the number of customers in

the system. In the sequel we will assume that the condition (A) is satisfied:

ρ = (1 − λ)µEηEκ = 1, σ2 = µ

[

Eκ(κ − 1) +
EκEη2

(1 − λ)(Eη)2

]

< ∞

Then the following limiting equality holds:

lim
B→∞

P
[

d[kB],x(tB
2) ≥ [uB]

] def
= q(t) =

=1 − u − 2

π

∑

n∈N

e−
t
2
(πσn)2

n
sin (kπn) sin (uπn) , k, u ∈ (0, 1). (4.3.12)

Corollary 4.3.1. Let q0 = lim
t→∞

P[d(·)(t) = 0], qu = lim
t→∞

P[d(·)(t) ≥ u], u ∈
[1, B + 1] be the stationary distribution of the number of customers in the

Gδ |Mκ|1|B system. Then

q0 = 1 − 1 − λ

Eη

(

AB
0 − EAδ+B

0

)

(EQδ+B)−1 ,

qu =
1 − λ

Eη

(

AB+1−u
0 − EAδ+B+1−u

0

)

(EQδ+B)−1 ,

where ρi = lim
s→0

s−1ρ̃i(s) =
∫∞
0 P [π(t) = i] dt < ∞, Qk = Q0

k,

Au
0 = lim

s→0

1

s
Au

0(s) =
u
∑

i=0

ρi

[

1 − Qu−i

1 − λ

]

.
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Proof. In view of the definition of the process Yk,x(t), Remark 4.3.2, we can

write the following equations for the functions qs
k,x(u), qs

0,x(u) for u ∈ [1, B+1]

qs
k,x(u) = ps

k,x(u) +

∫ ∞

0
bs
k(x, dy)qs

0,y(u), k ∈ 1, B + 1,

qs
0,y(u) = f̃y(s)

[

λBqs
B+1,0(u) + (1 − λ)

B
∑

k=1

λk−1qs
k,0(u)

]

, (4.3.13)

where the function bs
k(x, dy) = E

[

e−sbk(x); η(x) ∈ dy
]

is given by (4.3.5). In-

serting the right-hand side of the second equation into the first one, we get

qs
k,x(u) = ps

k,x(u) +

∫ ∞

0
bs
k(x, dy)f̃y(s)q

s
B(λ, u),

where qs
B(λ, u) = λBqs

B+1,0(u) + (1− λ)
∑B

k=1 λk−1qs
k,0(u). After some manip-

ulations, we get

qs
B(λ, u) = ps

B(λ, u)(1 − b̃(s, λ))−1,

where ps
B(λ, u) = λBps

B+1,0(u) + (1 − λ)
∑B

k=1 λk−1ps
k,0(u),

b̃(s, λ) = λB

∫ ∞

0
bs
B+1(0, dy)f̃y(s) + (1 − λ)

B
∑

k=1

λk−1

∫ ∞

0
bs
k(0, dy)f̃y(s).

Employing (3.3.6), (4.3.2), (4.3.5) and performing necessary calculations, we

obtain

∫ ∞

0
bs
k(x, dy)f̃y(s) = (1 − f̃(s))

(

Cs
k−1(x) − Qs

k−1(x)

1 − λ

EQs
δ+B

EQs
δ+B − Qs

B

)

,

1 − b̃(s, λ) = (1 − f̃(s))
EQδ+B

EQs
δ+B − Qs

B

,

ps
B(λ, u) = (1 − λ)

AB+1−u
0 (s) − EAδ+B+1−u

0 (s)

EQs
δ+B − Qs

B

,

qs
B(λ, u) =

1 − λ

1 − f̃(s)

(

AB+1−u
0 (s) − EAδ+B+1−u

0 (s)
)

(EQs
δ+B)−1.

In view of these equalities and the equations of the system (4.3.13) we de-

rive the second formula of (4.3.11). Taking into account the definition of the



180

process Yk,x(t), Remark 4.3.2, we find for the functions qs
k,x(0), qs

0,x(0) that

qs
k,x(0) =

∫ ∞

0
bs
k(x, dy)qs

0,y(0),

qs
0,y(0) = 1 − f̃y(s) + f̃y(s)

[

λBqs
B+1,0(0) + (1 − λ)

B
∑

k=1

λk−1qs
k,0(0)

]

. (4.3.14)

Inserting the right-hand side of the second equation into the first one, we get

qs
k,x(0) =

∫ ∞

0
bs
k(x, dy)(1 − f̃y(s)) +

∫ ∞

0
bs
k(x, dy)f̃y(s)q

s
B(λ), (4.3.15)

where qs
B(λ) = λBqs

B+1,0(0) + (1 − λ)
∑B

k=1 λk−1qs
k,0(0). After some transfor-

mations of the latter equation, we obtain

qs
B(λ) = 1 − (1 − b(s, λ))(1 − b̃(s, λ))−1,

where

b(s, λ) = λBbs
B+1(0) + (1 − λ)

B
∑

k=1

λk−1bs
k(0) = 1− (1 − λ)

AB
0 (s) − EAB+δ

0 (s)

EQs
δ+B − Qs

B

.

The latter and the previous equality imply that

qs
B(λ) = 1 − 1 − λ

1 − f̃(s)

(

AB+
0 (s) −EAδ+B

0 (s)
)

(EQs
δ+B)−1.

Inserting the right-hand side of this equality into (4.3.15) yields the first equal-

ity of (4.3.11).

For k, u ∈ (0, 1) denote qt
k(x, u,B) = P

[

d[kB],x(tB
2) ≥ [uB]

]

. Employing the

second formula of (4.3.11), the limiting equality (3.5.7), (3.8.4), we find that

1

s
lim

B→∞
q
s/B2

[kB],x([uB]) = lim
B→∞

∫ ∞

0
e−stqt

k(x, u,B) dt = (4.3.16)

=
1 − cosh((k − u)+

√
2s/σ)

s
+

1

s

cosh(k
√

2s/σ)

sinh(
√

2s/σ)
sinh((1 − u)

√
2s/σ)

def
= q∗(s),

where u+ = max{0, u}. When u ∈ [k, 1) we derive from this formula that

q∗(s) =
1

s

cosh(k
√

2s/σ)

sinh(
√

2s/σ)
sinh((1 − u)

√
2s/σ), u ∈ [k, 1).
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It is clear that s0 = 0 is a simple pole of the function q∗(s). In the semi-plane

ℜ(s) < 0 this function has simple poles in sn = −1
2 (σπn)2, n ∈ N, and it is

analytic in the whole plane apart from these points. Hence, for α > 0

q(t) =
1

2πi

∫ α+i∞

α−i∞
estq∗(s) ds =

∑

n∈Z+

Ress=snq∗(s).

Calculating the residues of the function q∗(s) in sn, we obtain the right-hand

side of the formula (4.3.12) for u ∈ [k, 1). On can see that the first term in

the right-hand side of (4.3.16) is analytic in the whole plane for u ∈ (0, k].

Applying the inversion formula, we find that the contour integral of this term

is equal to zero. The second term of (4.3.16) is the same also for u ∈ [k, 1).

Thus, the formula (4.3.12) holds for u ∈ (0, 1).

Observe, that lim
s→0

Au
x(s) = lim

s→0
EAδ+u

0 (s) = 0, lim
s→0

bs
k(x) = 1. It follows from

(4.3.11) and the properties of Laplace transforms that

lim
s→0

qs
k,x(u) = lim

s→0
qs
0,x(u) = qu = lim

t→∞
P[d(·)(t) ≥ u], u ∈ [1, B + 1],

lim
s→0

qs
k,x(0) = lim

s→0
qs
0,x(0) = q0 = lim

t→∞
P[d(·)(t) = 0].

Calculating the limits in the right-hand sides of (4.3.11) as s → 0 yields the

equalities of Corollary 4.3.1. N

4.3.4 Virtual waiting time

Suppose that at time t0 = 0 the system is at the state (k, x), k ∈ [0, B + 1],

x ≥ 0. Denote by Wk,x(t) the time required to serve the customers present in

the system at time t. Formally, this random variable can be determined in the

following way. Let τ̃(k) = inf{t : π(t) ≥ k}, k ∈ Z+. Then

Wk,x(t) = τ̃(dk,x(t)), Ee−pWk,x(t) =
B+1
∑

i=0

P [dk,x(t) = i]Ee−pτ̃(i), p > 0.

Corollary 4.3.2. Let k ∈ [0, B+1], x ≥ 0, νs ∼ exp(s). The following equality
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holds for all v ≥ 0

P [Wk,x(νs) ≤ v] = 1 −
B
∑

i=0

P [π(v) = i] qs
k,x(i + 1),

lim
t→∞

P [Wk,x(t) ≤ v] = 1 −
B
∑

i=0

P [π(v) = i] qi+1,

where the distributions qs
k,x(u), qu, u ∈ [0, B+1] are given by (4.3.11), (4.3.12).

Proof. It is clear that P[τ̃ (k) > t] = P[π(t) < k], and, hence,

Ee−pτ̃(k) = 1 − P[π(νp) < k] = 1 −
k−1
∑

i=0

ρ̃i(p),

where ρ̃i(p) = p
∫∞
0 e−pvP [π(v) = i] dv. Then

Ee−pWk,x(νs) = 1 −
B+1
∑

i=0

P [dk,x(νs) = i]

i−1
∑

j=0

ρ̃j(p) = 1 −
B
∑

i=0

ρ̃i(p)qs
k,x(i + 1).

The right-hand side of this equality implies the formulae of Corollary 4.3.2. N

4.3.5 Special case: G|Mκ|1|B system

The process {Dx(t)}t≥0 governing the G|Mκ|1|B system has unit negative

jumps at the times instants {ηn(x)}n∈N and δNx(t) = Nx(t). It means that the

customers arrive one by one at the renewal times of the process Nx(t). We

will now determine the distributions of the busy period, time of the first loss

of a customer, number of the lost customers at time of the first loss, virtual

waiting time.

Corollary 4.3.3. Let P[δ = 1] = 1, bs
k(x) = E

[

e−sbr(x); br(x) < ∞
]

be the

Laplace transform of the duration of the busy period of (k, x) type of the

G|Mκ|1|B system. Then

(i) the following equality holds:

bs
k(x) = 1 − Ak−1

x (s) + Qs
k−1(x)

AB+1
0 (s) − AB

0 (s)

Qs
B+1 − Qs

B

, k ∈ [1, B + 1],
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the random variable bk(x) is proper (P [bk(x) < ∞] = 1) with finite math-

ematical expectation

Ebk(x) = Ak−1
x − Qk−1(x)

AB+1
0 − AB

0

QB+1 − QB
< ∞;

(ii) the Laplace transform bs
k(x, dy) = E

[

e−sbk(x); η(x) ∈ dy
]

of the joint

distribution of {bk(x), η(x)} is such that for k ∈ [1, B + 1]

bs
k(x, dy) = fk−1(x, dy, s) − Qs

k−1(x)
fB+1(0, dy, s) − fB(0, dy, s)

Qs
B+1 − Qs

B

,

where the function fk(x, dy, s) = E
[

e−sτk(x); T k(x) ∈ dy,Bk(x)
]

, k ∈
Z+ is determined by (3.3.7).

Corollary 4.3.4. Let P[δ = 1] = 1, and let lk(x) be the time of the first loss of

a customer in the G|Mκ|1|B system, ik,x(νs) be the number of lost customers

in the time interval [0, νs]. Then

(i) the Laplace transform lsk(x) = E
[

e−slk(x); lk(x) < ∞
]

of lk(x) is such

that

lsk(x) =
f̃x(s) + (1 − f̃(s))Ss

k−1(x)

f̃(s) + (1 − f̃(s))Ss
B+1

, k ∈ [0, B + 1],

where Ss
k(x) =

∑k
i=0 Qs

i (x), Ss
k(x) = 0 for k < 0. The random variable

lk(x) is proper with finite mathematical expectation

Elk(x) = Eηx − Eη + Eη [SB+1 − Sk−1(x)] < ∞;

(ii) the distribution Is
k,x(n) = P [ik,x(νs) = n] , n ∈ Z+ of the number of lost

customers on the time interval [0, νs] obeys the equality:

Is
k,x(n) = I{n=0}(1 − lsk(x)) + I{n∈N}l

s
k(x)(1 − lsB+1(0))(l

s
B+1(0))

n−1.

Corollary 4.3.5. The distribution of the number of customers in the system

G|Mκ|1|B at time νs is such that

qs
k,x(0) = 1 − Ak−1

x (s) −
(

AB
0 (s) − AB+1

0 (s)
)

Cs
k−1(x)/Qs

B+1,

qs
k,x(u) = Ak−u

x (s) +
(

AB+1−u
0 (s) − AB+2−u

0 (s)
)

Cs
k−1(x)/Qs

B+1,
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where Ak
x(s) = Ss

k(x) = 0 for k < 0, Cs
k(x) = f̃x(s)(1 − f̃(s))−1 + Ss

k(x).

Let q0 = lim
t→∞

P[d(·)(t) = 0], qu = lim
t→∞

P[d(·)(t) ≥ u], u ∈ [1, B + 1] be the

stationary distribution of the number of customers in the G|Mκ|1|B system.

Then

q0 = 1 − 1

Eη

(

AB
0 − AB+1

0

)

/QB+1,

qu =
1

Eη

(

AB+1−u
0 − AB+2−u

0

)

/QB+1,

lim
t→∞

P [Wk,x(t) ≤ v] = 1 − 1

Eη

B
∑

i=0

P [π(v) = i]
(

AB−i
0 − AB+1−i

0

)

/QB+1,

where ρi = lim
s→0

s−1ρ̃i(s) =
∫∞
0 P [π(t) = i] dt < ∞, Qk = Q0

k,

Au
0 = lim

s→0

1

s
Au

0(s) =

u
∑

i=0

ρi [1 − Qu−i] .

In order to prove Corollaries 4.3.3–4.3.5, it suffices to set λ = 0 in the formulae

of Theorem 4.3.4 and of Corollaries 4.3.1–4.3.3.



Chapter 5

Concluding remarks and

further research

Both in applied sciences and in the academic world Lévy processes are con-

sidered as a valuable object. For this reason, studying this class of stochastic

processes and problems of their modeling receive much attention. Despite the

numerous works, there still remain a lot of open problems. Some of these

issues have been addressed in this thesis.

One part of this dissertation is concerned with so called one- and two-sided

exit problems for Lévy processes. This is a problem of determining the law

of the first passage of a level (the first exit time from a fixed interval) by the

process. Next, we studied other important characteristics such as position

of the process at the first exit time, the value of the overshoot through the

level, the sojourn time spent inside the interval, the number of intersections

of the interval, etc. We proposed a general approach for deriving the Laplace

transforms of the mentioned characteristics for the general Lévy processes.

Additionally, asymptotic analysis of these characteristics was performed. As a

result, we established the weak convergence of these functionals to the corre-

sponding functionals of the Wiener process (whose two-boundary functionals

are well known). In Chapter 2 we extended the existing solutions for partic-
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ular classes of Lévy processes to the most general case. The methodology is

mainly based on a probabilistic approach, use of the one-boundary functionals

of the process and the theory of Fredholm equations of the second kind. It is

worth mentioning that an essential part of the results is given in closed form,

in terms of the scale functions of the process.

From a computational point of view, the scale function approach can rely on a

large number of works on Laplace transform methods (Lee (2004), Duffie et al.

(2000)) and integro-differential equations (Kythe and Puri (2002)). Rogers

(2000) and Surya (2008), for instance, provided robust methods for numerically

computing scale functions. In recent literature scale functions proved to play

a substantial role in optimal barrier strategies, (see: Zhou (2005), Renaud

and Zhou (2007), Kyprianou and Palmowski (2007), Albrecher et al. (2008),

Kyprianou and Loeffen (2008) and Kyprianou et al. (2008b)).

From a practical point of view, the results obtained can be applied for mod-

eling options prices, probability of ruin of an insurance company, number of

customers in the queue, overflow of a dam, number of lost packages. Other

applications are in physics (Kramer’s problem) and biology (neuron threshold

models see Van Kampen (1992)).

The aforementioned methodology proved to be efficient for more complicated

classes of stochastic processes, such as a semi-Markov walk and a difference of

compound renewal processes. In Chapter 3 we studied several two-boundary

characteristics for the difference of a compound Poisson process and a com-

pound renewal process. Additionally, we considered processes reflected at their

infimum (supremum) which serve as governing processes in various applica-

tions.

The final part of this thesis deals with applications of the results obtained

in queueing theory. It is concerned with determining important performance

measures of single server queueing systems with batch arrivals and finite buffer.

One of the crucial performance issues of the single-server queue with finite

buffer is losses, namely, customers (packets, cells, jobs) that were not allowed

to enter the system due to the buffer overflow. This issue is especially im-

portant in the analysis of telecommunication networks. The overflow interval
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plays an important role in the design of forward error correction (FEC) al-

gorithms in packet networks. Therefore, knowledge of the distribution of the

time of the first loss, as well as the number of lost customers, the busy period

play a solid role. We obtained the Laplace transforms of these characteristics

in terms of the resolvent sequences and their modifications.

This research has risen a number of open problems. Despite the universal

nature, our approach leads to cumbersome expressions for the quantities of in-

terest. This is the price to pay for generality. Although we have presented the

exact formulae for the double Laplace transforms of the major two-boundary

functionals, still the question arises how to invert the Laplace transforms ob-

tained. Recently a lot of articles on the inversions techniques have appeared.

See for instance, Abate et al. (1996), Whitt (1999) Den Iseger (2006), Abate

et al. (1998). This brings us to continuation of the research in numerical

direction.

From a practical point of view, the estimation of the parameters of the afore-

mentioned queueing models is needed. Another direction of future work is to

study governing processes for the oscillating queueing systems. Motivation to

consider oscillating queueing systems stems from the following. In the basic

model of a single server queue it is desired to have the average service time

shorter than the average inter-arrival time, so that the queue length tends to

be smaller. In many situations we do not have this convenience. For instance,

it might be too expensive to consistently use a high performing server. Hence,

problem of a long queue could be resolved by designing an oscillating queueing

system. To our knowledge, there are few works related to this topic. We men-

tion Bekker et al. (2008), for instance, who considered oscillating spectrally

one-sided Lévy processes and Chydzinski (2002) who studied the M |GG|1 os-

cillating queueing system. The author used the potential method to determine

the steady-state distribution of the length of the queue. Bekker et al. (2009)

studied Lévy processes with adaptable exponent. Examples of such models are

queueing models in which the service speed or customer arrival rate changes

depending on the workload level, and dam models in which the release rate

depends on the buffer content.
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Let us verify the equalities (3.8.4) of Lemma 3.8.1. Suppose that the condition

(A) (given in Section (3.5) of Chapter 3) is satisfied. Then for s, p → 0 the

following expansions hold

f̃x(s) = 1 − sEηx +
1

2
s2Eη2

x + o(s2), x ≥ 0,

Ee−pκ = 1 − pEκ +
1

2
p2Eκ2 + o(p2). (5.0.1)

We now derive the asymptotic expansions for the function S
s/B2

[kB] (x) as B → ∞.

The generating function

Ss
θ(x) =

∑

k∈Z+

θk
k
∑

i=0

Qs
i (x) =

1

1 − θ

(1 − λ)f̃x(s − k(θ))

(1 − λ)f̃(s − k(θ)) + λ − θ
θ ∈ (0, c(s)).

is such that for θ = e−p, p > −ln c(s)

Ss
θ(x) =

∑

k∈Z+

θkSs
k(x)

∣

∣

∣

θ=e−p
=

∫ ∞

0
e−p[k]Ss

[k](x) dk =

=

∫ ∞

0
e{k}pe−pkSs

[k](x) dk = Ss
e−p(x), p > −ln c(s),

where {a} is the fractional part of the number a. By Ss
p(x) =

∫∞
0 e−pkSs

[k](x) dk,

p > −ln c(s) denote the Laplace transform of the function Ss
[k](x). It is clear

that

Ss
p(x) ≤ Ss

e−p(x) ≤ epSs
p(x). (5.0.2)

Employing the limiting equalities (5.0.1) and the definition of the function

Ss
θ(x), we obtain

lim
B→∞

S
s/B2

e−p/B(x)B−3 = lim
B→∞

B−3

1 − e−p/B

(1 − λ)f̃x(s/B2 − k(e−p/B))

(1 − λ)f̃(s/B2 − k(e−p/B)) + λ − e−p/B
=

=
1

spEη

1
1
2p2σ2 − s

, p >
√

2s/σ.

It follows from the chain (5.0.2) that

lim
B→∞

1

B3
S

s/B2

p/B (x) = lim
B→∞

1

B3
S

s/B2

e−p/B(x) =
1

spEη

1
1
2p2σ2 − s

. (5.0.3)
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Inverting the Laplace transforms (with respect to p) in both sides, we obtain

lim
B→∞

1

B2
S

s/B2

[kB] (x) =
1

sEη

(

cosh(k
√

2s/σ − 1
)

.

In order to invert the Laplace transforms, we have calculated the residues in

the right-hand side of (5.0.3) in the simple poles p = 0,±
√

2s/σ. The second

part of the first equality (3.8.4) can be verified analogously:

lim
B→∞

B−2ES
s/B2

δ+[kB] =
1

sEη

(

cosh(k
√

2s/σ − 1
)

.

We will now verify the second formula of (3.8.4). Denote qs
k = EQs

δ+k − Qs
k,

k ∈ Z+. Employing (3.3.4), (3.3.5), we determine the generating function of

this sequence

q̃s
θ =

∑

k∈Z+

θkqs
k =

(1 − λ)(1 − f̃(s − k(θ)))

(1 − λ)f̃(s − k(θ)) + λ − θ
, θ ∈ (0, c(s)).

This generating function is such that for θ = e−p, p > −ln c(s)

q̃s
e−p =

∫ ∞

0
e−p[k]qs

[k] dk =

∫ ∞

0
e{k}pe−pkqs

[k] dk.

By qs
p =

∫∞
0 e−pkqs

[k] dk, p > −ln c(s) denote the Laplace transform of the

function qs
[k]. It is clear that

qs
p ≤ q̃s

e−p ≤ epqs
p. (5.0.4)

In view of the limiting equalities (5.0.1) and the definition of the function q̃s
θ,

we find

lim
B→∞

q̃
s/B2

e−p/BB−1 = lim
B→∞

(1 − λ)(1 − f̃(s/B2 − k(e−p/B)))B−1

(1 − λ)f̃(s/B2 − k(e−p/B)) + λ − e−p/B
=

p µEκ
1
2p2σ2 − s

.

It follows from the chain (5.0.4) that

lim
B→∞

1

B
q
s/B2

p/B = lim
B→∞

1

B
q̃
s/B2

e−p/B =
p µEκ

1
2p2σ2 − s

.

Inverting the Laplace transforms (with respect to p) in both sides, we obtain

lim
B→∞

q
s/B2

[kB] = lim
B→∞

[

EQ
s/B2

[δ+kB] − Q
s/B2

[kB]

]

=
µEκ

σ2
cosh

(

k
√

2s/σ
)

.

The third formula of (3.8.4) can be verified analogously.
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dividend problem for a general Lévy insurance risk process. J. Appl. Probab.,

44(2), 428–443.



Bibliography 201

Kyprianou, A., Pardo, J. C. and Rivero, V. (2008a) Exact and asymptotic

n-tuple laws at first and last passage. Tech. rep.

Kyprianou, A. and Rivero, V. (2008) Special, conjugate and complete scale
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dend payments in a Lévy risk model. J. Appl. Probab., 44(2), 420–427.

Rogers, L. (2000) Evaluating first-passage probabilities for spectrally one-
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In dit proefschrift bestuderen we de zogenaamde tweezijdige overschrijdingspro-

blemen voor verschillende klassen van stochastische processen. Deze stochasti-

sche processen dienen als mathematische modellen voor verschillende fenome-

nen. Meer specifiek houden we ons bezig met Lévy processen en met ver-

schillen van samengestelde vernieuwingsprocessen. Een Lévy proces is een

stochastisch proces dat onafhankelijke, gelijk verdeelde toenamen heeft en

waarvan de paden rechtscontinu zijn en linker limieten hebben. De klasse

van Lévy processen heeft een zeer rijke structuur, wat onder andere blijkt uit

het feit dat de klasse in één op één verhouding staat met de klasse van oneindig

deelbare verdelingen.

De rijke structuur van deze processen en hun eigenschappen laten allerlei

toepassingen toe in verschillende gebieden zoals risicotheorie, financiële wiskun-

de, wachtlijntheorie, biologische wetenschappen en zo voort. In het bijzon-

der, zijn Lévy processen uitstekend geschikt voor het modelleren van de prijs-

bepaling van bijvoorbeeld opties in financiële wiskunde.

Deze thesis kan onderverdeeld worden in drie delen. Na een inleiding beschou-

wen we (in Hoofdstuk 2) een aantal karakteristieken voor algemene Lévy pro-

cessen en hun speciale deelklassen. We bestuderen het zogenaamde het eerste

passage probleem: wat is de kansverdeling van het eerste tijdstip waarop het

Lévy proces een bepaald niveau overschrijdt of een interval verlaat en zijn

positie op dat ogenblik? Dezelfde vraag beantwoorden we voor bepaalde deelk-

lassen zoals Lévy processen met sprongen in één richting en het samengesteld

Poisson proces met sprongen in beide richtingen.

De gevonden resultaten stellen ons in staat andere karakteristieken van het

proces te bepalen. Aldus vinden wij de Laplace getransformeerde van de geza-

menlijke verdeling van infimum, supremum en positie van het proces op een

willekeurige tijdstip, het aantal kruisingen van het interval, de totale verblijfs-

duur binnen het interval, het aantal binnenkomsten in het interval. Ook geven

wij de beschrijving van het ergodisch gedrag van deze karakteristieken. We

geven een wiskundig bewijs voor de zwakke convergentie van deze verdelingen

naar de corresponderende verdelingen van het Wiener proces. Daarbij bepalen

we bijvoorbeeld hoe groot bij benadering de kans is dat zo’n Lévy proces pas
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na zeer lange tijd een eindig interval verlaat.

Vanuit praktisch oogpunt zijn de verkregen uitdrukkingen bruikbaar voor het

bestuderen van andere klassen van stochastische processen en toepassingen er-

van: modelleren van het prijsgedrag van opties, het aantal verloren pakketten,

het aantal wachtende klanten in de wachtlijn, de kans op overstroming van een

dijk, de kans op rüıne van een verzekeringsmaatschappij en zo voort.

In de loop van het werk aan de bovengenoemde hoofdproblemen hebben wij de

volgende probabilistische aanpak gevolgd. Voor de Laplace getransformeerde

van de gezamenlijke verdeling van het eerste uitgangstijd van het interval en

de waarde van overschrijding stellen wij een stelsel voor van lineaire inte-

graalvergelijkingen. De oplossing ervan wordt gevonden met behulp van de

theorie van Fredholm vergelijkingen van de tweede soort en de methode van

opeenvolgende iteraties. Het belangrijkste aspect hiervan is het gebruik van de

Laplace getransformeerde van de eenvoudige karakteristieken van het proces

(gezamenlijke verdeling van de eerste passagetijd en de waarde van de over-

schrijding van een bepaald niveau). Deze zijn te bepalen via de Wiener-Hopf

factoren. In de meest algemene situatie is het niet evident om oplossingen

te vinden in gesloten vorm, maar voor bepaalde subklassen krijgen we de

uitdrukkingen in termen van zogenaamde schaalfuncties. Aan de hand van

deze oplossing kunnen we andere belangrijke karakteristieken van het proces

bepalen.

Vertrekkend van deze methodologie, hebben we onze bevindingen uitgebreid

naar het verschil van samengestelde vernieuwingsprocessen en semi-Markov

wandelingen. In Hoofdstuk 3 wordt de bestaande methode uitgebreid voor het

verschil van samengestelde vernieuwingsprocessen. Zulke processen kunnen

gebruikt worden als mathematische modellen van de wachtlijnsystemen.

Hoofdstuk 4 handelt over toepassingen van de gevonden resultaten in de

wachtlijntheorie. We illustreren dit door het bepalen van de bezige periode

van het systeem, het aantal klanten en het tijdstip waarop we het eerste ver-

lies van klanten ervaren voor Mκ|Gδ |1|B en Gδ|Mκ|1|B wachtlijnsystemen

(zie Hoofdstuk 4 voor de formele beschrijving). Bij de inrichting van compu-

tersystemen, communicatienetwerken en productiesystemen kent de wachtlijn-
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theorie een belangrijke toepassing. In de telecommunicatie treden wachtrijen

op bij telefoonoproepen die op een vrije lijn in de centrale wachten, digitale

berichten die op een vrij communicatiekanaal wachten, en zo voort.

We bestuderen wachtlijnmodellen met bulk aankomsten, één verwerkingseen-

heid en een eindige buffer. (Bulk aankomst betekent dat op elk aankomsttijd-

stip klanten als groep het systeem binnenkomen). Het aankomstproces wordt

dan door zowel de verdeling van de tussenaankomsttijden, als de verdeling van

de grootte van de bulk bepaald. De capaciteit van de bufferruimte geeft aan

hoeveel klanten tegelijk in het systeem kunnen aanwezig zijn. Bij een eindige

capaciteit kan overflow optreden en bijgevolg verlies van klanten, pakketten,

e-mails en zo voort. Tijdstip van overflow is dus een essentiële performantie

karakteristiek van het systeem. Gemotiveerd door dit feit hebben wij on-

der ander de verdeling van het tijdstip van het eerste verlies van de klanten

verkregen. In dit kader bewijzen we dat bepalen van deze karakteristieken

zich vertaalt in het oplossen van een tweezijdige overschrijdingsprobleem voor

het proces dat het gedrag van het wachtlijn regeert. Dit proces is een modifi-

catie van een twee componenten Markov proces dat in Hoofdstuk 3 beschouwd

wordt.

Tenslotte, in Hooofdstuk 5, bespreken we verdere uitbreidingen en voortzetting

van ons onderzoek. De volgende stap is de implementatie van concrete wachtli-

jnmodellen en de schatting van de parameters van het model. Voor de nu-

merieke toepassingen is verder onderzoek noodzakelijk.




