
Knowledge Discovery Techniques for Understanding Customer
Behavior with Incomplete Data





Knowledge Discovery Techniques for Understanding
Customer Behavior with Incomplete Data

by
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Samenvatting

Geen enkele onderneming die actief is in een competitieve en klantgerichte markt zal
het belang van klantentevredenheid onderschatten zonder hiervoor een prijs te moeten
betalen. Wetenschappelijk onderzoek heeft al meermaals de positieve invloed van
klantentevredenheid op verschillende aspecten van een bedrijf aangetoond. Tevreden
klanten zorgen voor minder klachten en minder kosten die hiermee gepaard gaan.
Ze genereren positieve en onbetaalbare mondreclame, zijn bereid meer te betalen
voor eenzelfde product en vertonen een grotere mate van loyaliteit wat zich uit in
het heraankopen van het product. Daarom hoeft het ook geen betoog dat bedrijven
een competitief voordeel kunnen uitbouwen als ze erin slagen hun klanten beter te
begrijpen en meer tevreden kunnen maken dan hun directe concurrenten. Menig
bedrijf maakt dan ook geld en tijd vrij om de informatie over hun klanten te analyseren
en zo te achterhalen ‘wat’ hun klanten tevreden stelt. Er ontstaat echter een probleem
wanneer de analysetechnieken worden toegepast op onvolledige data wat kan leiden
tot onvolledige of zelfs foute conclusies betreffende klantentevredenheid.

Onvolledige data tijdens het analyseren van klantentevredenheid komt vaker
voor dan men op het eerste zicht verwacht. Vaak beschikken bedrijven slechts
over twee soorten informatie als het op klantentevredenheid aankomt, i.e. ‘hoe
tevreden is de klant met het product’ en ‘hoe goed presteerde het product volgens
de klant’. Zulke data veronderstelt dat klantentevredenheid enkel gestuurd wordt
door het performantieniveau van het product, wat tegengesproken wordt door de
huidige ideeën en theoriën omtrent het klantentevredenheidsproces. Volgens het
‘Expectancy-Disconfirmation’ (ED) paradigma, dat één van de meest dominante
theorieën is in de onderzoeksliteratuur, heeft de productperformantie slechts een
indirect effect op klantentevredenheid. Volgens deze theorie wordt binnen het
klantentevredenheidsproces de performantie vergeleken met een referentieniveau wat
in de meeste gevallen leidt tot een disconfirmatie van deze referentie. Volgens het ED
paradigma is het dit disconfirmatie- en referentieniveau die samen het tevredenheids-
of ontevredenheidsgevoel veroorzaken. Hoe positiever de disconfirmatie is, des
te groter de klant zijn tevredenheid zal zijn, ceteris paribus. Hoe hoger het
referentieniveau is, des te hoger de klantentevredenheid zal zijn, ceteris paribus. Als
een onderneming enkel performantie- en tevredenheidsdata ter beschikking heeft voor
het analyseren van klantentevredenheid, ontbreekt er dus belangrijke informatie die
een rol heeft gespeeld in het tevreden stellen van de klant.

Maar zelfs als een onderneming tijdens het ondervragen van de klanten gepeild
heeft naar het referentieniveau van de klant, kan de onderzoeker of marketeer nog
steeds met onvolledige data achterblijven. Want hoewel de onderzoeksliteratuur
de laatste twintig tot dertig jaar het ED paradigma uitgebreid heeft getest en

xxi



Samenvatting

een algemene consensus bestaat over de validiteit van deze theorie, blijkt uit het
literatuuronderzoek in deze thesis dat de onderzoekswereld het nooit eens is geraakt
over wat een klant als referentieniveau hanteert. Terwijl de oorspronkelijke invulling
gebeurde door middel van de verwachte productperformantie heeft later onderzoek
aangetoond dat onder andere het prestatieniveau van andere producten ook als
referentieniveau kunnen gebruikt worden. Dus zelfs als de onderzoeker bijvoorbeeld
de verwachtingen van de klant ter beschikking heeft, dan bestaat nog steeds de
mogelijkheid dat dit niet de juiste referentie is in het tevredenheidsproces van die
klant. Net als in het vorige scenario blijft de onderzoeker achter met onvolledige
data.

In het eerste deel van deze thesis werd een nieuwe analysetechniek ontworpen
die toelaat om het klantentevredenheidsproces te modelleren met onvolledige
data in overeenstemming met de richtlijnen van het ED paradigma. Deze
techniek laat bedrijven toe om met enkel performantie- en tevredenheidsdata de
klantentevredenheid te analyseren op een manier die overeenstemt met de theorie,
i.e. het ED paradigma. Hiervoor werd het klantentevredenheidsproces eerst in drie
stappen ontleed:

• de evaluatie op productattribuutniveau van de productperformantie ten
opzichte van een referentieniveau wat leidt tot disconfirmatie op attribuut-
niveau,

• de aggregatie van de disconfirmaties op productattribuutniveau naar een
algemene disconfirmatie,

• de interactie tussen de algemene disconfirmatie en de initiële klantentevreden-
heid die samen leiden tot een algemeen tevredenheidsgevoel.

In plaats van iedere stap te vertalen naar één specifieke wiskundige functie
werd ten gunste van de modelleringsflexibiliteit per stap een set van wiskundige
eigenschappen gedefinieerd waaraan een wiskundige functie moet voldoen om de
desbetreffende stap op een correcte wijze te modelleren. Dit leidt tot een
modelleringsraamwerk dat het LIED-raamwerk wordt genoemd en heeft als voordeel
dat gebruikers zelf kunnen beslissen welke aspecten van de theorie omtrent
klantentevredenheid zij willen integreren in het wiskundig model. Verder werd in
deze thesis ook aangetoond dat onder zwakke voorwaarden elke aggregatiefunctie
behorende tot de familie van gegenereerde functies een geldige implementatie oplevert
van het LIED-raamwerk. Door dit gegeven heeft de onderzoeker toegang tot een
uitgebreide set van functies die reeds uitvoerig zijn bestudeerd vanuit een wiskundig
perspectief binnen het onderzoeksdomein van aggregatiefuncties en die rechtstreeks
kunnen toegepast worden om klantentevredenheid te modelleren met onvolledige data
volgens de principes van het ED paradigma. De kracht van het LIED-raamwerk ligt
in het feit dat het een duidelijke en verstaanbare vertaling aanbiedt aan marketeers
tussen de verschillende aspecten van de theorieën omtrent klantentevredenheid
enerzijds en de wiskundige eigenschappen van de modelleringsfuncties anderzijds.

Naast de uitwerking van dit modelleringsraamwerk werd in het eerste deel van
deze thesis ook een specifieke implementatie aangeboden en bestudeerd. Deze
implementatie is gebaseerd op de evaluatieoperator van Dombi, een gegenereerde
functie, en wordt de D-LIED implementatie genoemd. Deze implementatie heeft
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slechts één parameter waardoor het mogelijk wordt om voor iedere klant een
apart model te schatten waardoor de onderzoeker in staat is het individueel
verwachtingsniveau per klant te achterhalen. Het nadeel van deze implementatie is dat
er slechts één verwachtingsniveau wordt gemodelleerd dat voor alle productattributen
geldt. Dit nadeel werd in deze thesis omzeild door de hiërarchische structuur van de
beschikbare data uit te buiten waardoor het mogelijk werd een verwachtingsniveau op
productdimensieniveau te modelleren. Verder werden er verschillende experimenten
uitgevoerd om de empirische validiteit van de schatter van het verwachtingsniveau
te verifiëren. Al deze experimenten bevestigden dat de resultaten van de D-LIED
implementie betrouwbaar zijn.

Vervolgens werd aan de hand van twee gevalstudies de meerwaarde van informatie
over de verwachtingen van een klant, afkomstig uit het model, aangetoond. Zo bleek
dat sommige productdimensies die op basis van de performantiedata als significant
slecht gëıdentificeerd waren, minder problematisch te zijn dan de performantiedata
deed uitschijnen. Na analyse van de verwachtingen omtrent deze ‘slecht presterende’
dimensies bleek immers dat klanten niet veel verwachtten van deze dimensies en dat
ze dus amper impact hadden op de klantentevredenheid. Anderzijds bleken sommige
dimensies die op het eerste zicht zeer goed presteerde amper de verwachtingen te
overtreffen.

De D-LIED implementatie werd in deze thesis ook gebruikt om een nieuw
type van ‘Importance-Performance Analysis’ (IPA) uit te werken. Traditionele
vormen van IPA gebruiken een enquête of regressieanalyse om de belangrijkheid
van een productattribuut te meten. Recent onderzoek heeft echter aangetoond
dat zulke aanpak gebreken heeft. Het voornaamste probleem is dat de
productattribuutbelangrijkheid vaak wordt voorgesteld aan de hand van een
puntschatter terwijl empirisch onderzoek suggereert dat de belangrijkheid van
een productattribuut in het klantentevredenheidsproces verandert naarmate het
performantieniveau van dat attribuut verandert. De D-LIED implementatie, die een
wiskundige voorstelling is van het klantentevredenheidsproces, laat toe de impact van
een verandering in het performantieniveau te simuleren. Hierdoor konden er twee
nieuwe IPA types gemaakt worden. Het eerste IPA type evalueert en visualiseert het
aandeel van een productattribuut in de algemene tevredenheidsscore. Het tweede IPA
type visualiseert de impact op tevredenheid bij een stijging of daling van het huidige
prestatieniveau van ieder productattribuut.

Tenslotte werd in deze thesis de schatting van het verwachtingsniveau, afgeleid
met behulp van de D-LIED implementatie, gebruikt om de compatibiliteit tussen
de verwachting van de klant en de performantie van het product te bepalen.
De compatibiliteit betreft het absolute verschil tussen de verwachting en de
performantie. Op basis van de ‘reinforcement learning’ theorie werden de hypotheses
geformuleerd dat zowel het aanbevelen van een product door klanten bij derden
als de neiging om het product opnieuw aan te kopen positief gerelateerd zijn
met de compatibiliteit tussen performantie en verwachting. In deze thesis werden
twee verschillende compatibiliteitsmaten gedefinieerd en empirisch onderzoek toonde
aan dat beide positief gerelateerd zijn met klantenaanbeveling en klantenloyaliteit.
Finaal werd aan de hand van een gevalstudie ook gëıllustreerd hoe een bedrijf deze
compatibiliteitsmaat kan gebruiken om de gevolgen van klantentevredenheid, zoals
aanbeveling bij derden en klantenloyaliteit, beter te begrijpen.

Uit de verschillende experimenten en empirische resultaten in het eerste deel
van deze thesis bleek dat het LIED-raamwerk en de D-LIED implementatie
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zeer krachtige technieken zijn om nieuwe kennis te extraheren uit ‘onvolledige’
klantentevredenheidsdata, i.e. wanneer het bedrijf enkel over performantie- en
tevredenheidsdata beschikt. Het tweede deel van deze thesis verlaat het pad van
klantentevredenheid en focust op een totaal andere vorm van onvolledige data in
de analyse van klantengedrag. Dit deel van de thesis bestudeert het probleem van
klantensegmentatie wanneer belangrijke en noodzakelijke observaties of variabelen
ontbreken om de ware onderliggende klantensegmenten te detecteren. Een nieuwe
fuzzy clustertechniek, PSO-CFC, werd ontwikkeld, dewelke de beperkingen van
de data tracht te overstijgen door samen te werken met andere datasites zonder
hierbij privacygevoelige data uit te wisselen. Deze clustertechniek is gebaseerd op
‘collaborative fuzzy clustering’ en gebruikt ‘particle swarm optimization’ om de mate
van samenwerking tussen de verschillende datasites te bepalen. Ook werd aangetoond
dat deze nieuwe PSO-CFC clustertechniek verschillende kenmerken deelt met andere
gedistribueerde clustertechnieken en gepositioneerd kan worden binnen het domein
van ‘ubiquitous knowledge discovery’. Experimenten voor zowel situaties waar
observaties ontbreken als voor situaties waar belangrijke variabelen ontbreken werden
uitgevoerd en de empirische resultaten toonden aan dat PSO-CFC de klassieke lokale
clustering overtrof in verschillende experimenten. Wanneer belangrijke variabelen
ontbreken, kan PSO-CFC de clusters significant verbeteren wanneer deze elkaar
overlappen. Wanneer belangrijke observaties ontbreken, overtreft PSO-CFC lokale
clustertechnieken zolang de data willekeurig getrokken is uit iedere cluster. In het
bijzonder als de clusters niet in gelijke mate vertegenwoordigd zijn in de data zal
PSO-CFC betere clusterresultaten opleveren.
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1 Introduction

Understanding customers is becoming increasingly important for companies operating
in a consumer-oriented market. A thorough understanding of what customers expect
from a product, why they are satisfied with one offering but not with another, and
why some customers are not coming back for repurchase, is crucial to any company
for being successful. The importance of understanding customers has been recognized
by academic researchers in the marketing domain a long time ago. The past decades,
several psychological theories have been proposed to explain consumer behavior,
and as with any true science, the development of these theories has been verified
empirically. A typical approach for developing a consumer behavior theory starts
with the formulation of hypotheses which are suggested by the author’s own beliefs
and existing psychological theories. Once the author has formulated the hypotheses
and decided which tests are necessary to verify them, the author knows which data
are necessary and starts collecting them. Finally, the data are analyzed and the
hypotheses are accepted or rejected.

While academic researchers focus on hypotheses and theory building, companies
and their marketing manager are faced with more practical questions concerning
consumer behavior such as: “Which aspects of our product have a large influence on
the satisfaction of our customers and make them coming back for more?”. To answer
such questions, companies need to collect data, similar to academics, but their data
collection is potentially of a lower quality due to any of the following reasons:

• A company suddenly decides it needs more insights into their customer’s
behavior and decides to set up a survey for collecting customer data. However,
the survey is built and conducted without much thought given to which specific
questions the company actually wants to see answered, to which analyses are
needed to answer these questions and to which specific data is required for
performing such analyses. As a result, the company ends up with general data
about their customers which might not be perfectly suited for providing answers
to their questions.

• Sometimes a company follows a more structured approach for setting up a
survey and starts by analyzing the questions it wants to see answered. However,
in such situations it is still possible that their marketing department lacks
the necessary expertise and ignores existing consumer behavior theories when
building the survey. This results in more specific data but might be insufficient
to answer the predefined questions correctly.
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• Finally, marketing practitioners are often forced to perform their analyses on
secondary data, i.e. data collected in the past for other purposes. Because
collecting data costs time and money, marketing practitioners will always try
to answer the consumer-related questions by means of the data at hand. Only
when these data fail to provide any acceptable answer, a new stage of data
collection is considered.

In all three situations, a marketer is faced with incomplete data, i.e. the data
that might not be specific enough, lack theoretical validity or might be missing some
necessary variables. If the knowledge discovery (KD) techniques, used to extract
new information from these data, ignore or are unaware of the data incompleteness,
the marketer runs the risk of drawing incomplete, unreliable and possibly biased
conclusions.

In this thesis, new KD techniques for understanding customers with incomplete
data are presented. Each technique tackles a different type of incomplete data and
focuses on a different aspect of customer understanding.

Knowledge Discovery techniques can be roughly divided into two groups, i.e.
statistical modeling techniques and data mining techniques. Statistical techniques
often start from a mathematical representation of a theoretical model which is believed
to have generated the data. Next, the data is used to learn the parameters of the
model and inferences are drawn from the model based on assumptions about the
data. Obviously, incomplete data can make parameter estimation difficult, biased or
impossible.

In contrast to statistical techniques, data mining techniques seldomly start from a
mathematical representation of a domain-specific theory, nor do they make many to
any assumptions. Data mining techniques typically extract knowledge directly from
the data by means of computational power and heuristics. Over the last decades, the
domain of data mining and machine learning has made a lot of progress generating
a myriad of techniques ranging from Naive Bayes Classifier, Decision Trees, K-mean
Clustering to more advanced techniques such as Random Forests, Neural Networks
and Fuzzy Clustering to name a few. Most of these techniques have been developed
under the umbrella of data mining and outside any particular application field. Since
data mining techniques learn directly from data, they can only learn what is inside
the data and incomplete data will most likely lead to incomplete conclusions.

Without making a further distinction between statistical modeling and data
mining, it has become obvious that marketers could benefit from KD techniques
which take data incompleteness into account. In contrast to many existing data
mining techniques, such KD techniques will need to be application specific since
each type of incompleteness requires a different approach. This thesis considers two
scenarios of data incompleteness within the domain of customer behavior.

The first part of this thesis focuses on incomplete data in customer satisfaction.
According to the Expectancy-Disconfirmation (ED) Paradigm, i.e. one of the more
dominant theories in customer satisfaction, two constructs are directly responsible for
customer satisfaction, i.e. the customer’s expectation and the customer’s perceived
disconfirmation between the product’s performance and the customer’s expectation.
Particularly with secondary data, marketers only have data about the customer’s
satisfaction and the product’s performance. The fact that customer’s expectation and
disconfirmation are missing, makes the data incomplete and hinders direct application
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of the ED Paradigm. It is also said that in such situations, marketers are working
with limited information, i.e. they only know how the customer perceives the product’s
performance but lack information about the customer’s expectation and experienced
disconfirmation. In this part of the thesis, the terms “incomplete data” and “limited
information” are used interchangeably. The KD techniques in this part of the thesis
study how the ED Paradigm can still be applied with incomplete data. This approach
is called a theory driven KD technique since it starts from a theoretical model, i.e.
the ED Paradigm, which is believed to have generated the data.

Chapter 2 provides a detailed discussion of the ED Paradigm. In this chapter,
the author goes back to the days before the ED Paradigm and illustrates how the ED
Paradigm came to be. To help the reader understand the dominant role of this theory,
the existing literature on this topic is reviewed and various adaptations of the original
model are discussed. The purpose of this chapter is to help the reader understand
the theory on which the KD techniques in this part of the thesis are based.

Next, in Chapter 3, a general framework is created to model customer satisfaction
according to the ED Paradigm when only performance and satisfaction data are
available. This framework separates the customer satisfaction process into three steps
and each step is represented by a mathematical function. Instead of already defining
the functional form of these functions, the framework defines a set of properties which
must be held by these functions. These properties are defined such that any function
having them, implements aspects of typical customer behavior defined by the ED
Paradigm. Therefore, the framework, which is called the LIED framework, does not
allow a marketer to model customer satisfaction directly, but offers him the flexibility
to use functions of any functional form. As long as these functions have the necessary
properties, the ED Paradigm is modeled correctly from a theoretical point of view.
This chapter clearly exposes the relationship between the properties and the aspects
of customer satisfaction behavior, which allows the researcher or marketer to identify
the implications of missing properties.

In Chapter 4, the data sets which are used throughout this thesis are discussed.
These data sets are real-life data sets and had to be cleaned and preprocessed. The
entire process of preparing the data for the analysis in this thesis can be found in this
chapter.

In Chapter 5, an implementation of the LIED framework is presented. This
implementation corresponds to a mathematical function which is known as Dombi’s
uninorm, an aggregation function belonging to the family of generated functions.
This implementation has the advantage that a model can be estimated for each
customer separately. This chapter concludes with two case studies illustrating how
this implementation, which is termed the D-LIED implementation, can be applied to
incomplete data providing new and useful information to marketers.

Chapter 6 contains a first application of the D-LIED implementation.
This chapter focuses on the marketing tool of Importance-Performance Analysis
(IPA) which provides companies insights on which product aspects need further
improvement. However, as discussed in this chapter, the current IPA approach faces a
couple of difficulties to determine the importance of the different product attributes.
A new alternative IPA approach is presented which uses the D-LIED implementation.
Finally, a case study shows the potential of this new approach.

In Chapter 7, the final chapter of the first part of this thesis, the author shows
how the D-LIED implementation can be used to create a new construct, i.e. the
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performance-expectation compatibility. It is shown that this new construct can help
companies to get a better understanding of their customer’s intentions, such as the
intention to repurchase and the intention of recommending the company to others.

The second part of this thesis focuses on customer segmentation. When marketers
try to find homogenous clusters within their customer base, they can face two different
types of data incompleteness. Firstly, it could be that the data set is missing
important observations, e.g. if the data set only contains information about the
current customers, it becomes difficult to identify groups of potential customers which
are no customers yet. Secondly, the data can be missing important variables, e.g. if
two different types of customers differ on a variable missing in the data, no cluster
algorithm will be able to separate the two customer types. In this part of the thesis, a
new clustering approach is suggested which overcomes these problems. Since the KD
technique in this part does not assume any underlying theoretical marketing model
but uses the information in the data to extract new knowledge, it is considered to be
a information driven KD technique.

In Chapter 8, a fuzzy clustering algorithm is discussed which tries to overcome
the limitations of incomplete data by collaborating with data sites from other
companies. Typically, such approach is not viable because companies are not willing
or might be prohibited by privacy laws to exchange their data. The clustering
algorithm in this chapter tries to overcome this limitation by exchanging only a part
of the local cluster solutions instead of raw data or the complete local cluster solutions
such that data privacy is preserved.

Finally as the ED Paradigm dictates, in order to satisfy the reader of this thesis,
it is important to set the expectations right. Therefore, the author would like
to end this introduction by positioning the thesis within the field of knowledge
discovery and customer satisfaction research. The main focus of this thesis lies
on the development of knowledge discovery techniques for marketers studying their
customers with incomplete data. The thesis should be positioned on the intersection of
knowledge discovery and marketing theory. It has a strong emphasis on the modeling
aspects of customer satisfaction, but differs from other KD research in a sense that the
techniques developed in this thesis are not general but tailored to specific marketing
problems. Some of these techniques might be used in different contexts, but this
could require some modifications.

On the other hand, this thesis draws from existing customer satisfaction theories
from the marketing domain, but does not have the intention to extend or develop new
customer satisfaction theories, safe for chapter 7 which might provide new ideas for
future marketing research. The role of marketing theory in thesis is mainly limited
to provide a solid and theoretically valid foundation for new knowledge discovery
techniques. The main contribution of this thesis is the introduction of new KD
techniques aimed at marketers who want to understand their customers but are faced
with incomplete data.
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Theory Driven Knowledge Discovery
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2 Explaining customer satisfaction: the

expectancy disconfirmation paradigm

2.1 Introduction

“Customer satisfaction has come to represent an important cornerstone for customer-
oriented business practices across a multitude of companies operating in diverse
industries [122]”. Customers who are dissatisfied have a tendency to complain [11]
or even worse to produce negative word of mouth. These customers will less likely
repurchase your products or services. On the other hand, making your customers
satisfied could lead to repatronage, acceptance of other products in the same product
line and favorable word-of-mouth publicity [22]. Furthermore, researchers have
provided evidence that customer satisfaction is related to firm performance [5],
willingness of consumers to pay more [63], consumer retention [89, 3], shareholder
value [5] and can be considered a prerequisite for customer loyalty [36].

Given the great importance of customer satisfaction, the vast amount of academic
literature spent on this topic does not come as a big surprise. When studying customer
satisfaction, one can investigate two main questions, i.e. what makes customers
satisfied and how or why do customers become satisfied. The first question, which is
of importance to business people and marketers, asks which product dimensions,
attributes or aspects contribute to customer satisfaction. Knowing this, allows
companies to invest in important product dimensions and not waste money on less
important product attributes.

Marketing researchers on the other hand are often less interested in the specific
attributes which make a customer satisfied which is often product-dependent. Their
main goal is to understand the customer satisfaction/dissatisfaction (CS/D) process
with all its antecedents and consequents. Ultimately, understanding how and why a
customer becomes satisfied will help the identification of important product attributes
and their impact on satisfaction. During the last five decades, many researchers have
studied various antecedents and consequents of customer satisfaction, together with
various relations which were explained by a variety of different consumer theories.
Recently, Szymanski and Henard [122] provided a meta-analysis of the empirical
evidence gathered in the domain of customer satisfaction. Their article studies the
findings of 50 empirical studies, which resulted in a collection of more than 500
correlations between satisfaction and satisfaction antecedents.

In their article, Szymanski and Henard investigated the relationship between
satisfaction and five specific antecedents, i.e. expectation, disconfirmation,
performance, affect and equity. The role of expectation can be twofold. Firstly,
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it creates a level of anticipation and is assumed to have a direct positive influence on
the customer’s satisfaction. Secondly, expectation can also act as a reference against
which performance is compared, resulting into a positive or negative expectancy
disconfirmation which is the second antecedent. It is assumed that positive
disconfirmation has a positive influence on satisfaction, while negative disconfirmation
has a detrimental influence on satisfaction. Since disconfirmation is the resultant of
expectation and performance, some studies assumed that the effect of performance
(and expectation) is subsumed by the disconfirmation effect. However, other
researchers (e.g. [26]) have found that performance also has a direct positive influence
on satisfaction, aside from its indirect effect through disconfirmation. Therefore,
performance is considered as a separate antecedent by Szymanski and Henard. The
fourth antecedent, i.e. affect, adds an affective component to the satisfaction process.
It is assumed that emotions, elicited throughout the product consumption process,
leave affective traces in the consumer’s memory which are integrated during the
satisfaction assessment. This suggests a positive relationship between affect and
satisfaction. Finally, equity is a fairness judgement that consumers make in reference
to what others receive. Equity theory suggests that consumers become satisfied as
they perceive their equity ratio as proportionately greater than the ratio achieved
by the referent person or group. Table 2.1 shows the five antecedents and their
hypothesized relationship with customer satisfaction.

Table 2.1: Hypothesized relationships between customer satisfaction and its
antecedents

Antecedent Hypothesized relation with satisfaction

Expectation Positively related

Disconfirmation Positively related

Performance Positively related

Affect Positively related

Equity (ratio) Positively related

Calculating the mean correlation for each of these antecedents with satisfaction,
Szymanski and Henard found that all five antecedents showed a positive and
statistically significant correlation with satisfaction. Among the five antecedents,
disconfirmation and equity had the strongest relationship with satisfaction. In the
remainder of this dissertation, only expectation, disconfirmation and performance are
considered, which are the three antecedents of Oliver’s Expectancy Disconfirmation
(ED) paradigm [96]. Oliver’s later customer satisfaction model [97], introduced in
1996, can be regarded as his original ED paradigm extended with concepts such as
equity and affect. The choice to focus on the original ED model, ignoring affect
and equity as possible antecedents, does not reject the potential influence of these
antecedents on satisfaction. However, the goal of this part of the dissertation is to
develop data mining tools for customer satisfaction research which are based on solid
and well established marketing theories and which can be used directly by companies
and marketers. Therefore it needs to be taken into account that most companies
neither collect nor have the necessary data available to integrate equity or affect theory
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into the data mining models. Building such models would not only complicate the
modeling and learning stage, but would render the final tool of less practical value. By
focussing solely on the expectancy disconfirmation paradigm, some explanatory power
is sacrificed, by putting affect and equity aside, for some computational parsimony
and an increased practical applicability. Nonetheless, this approach still integrates
three of the five antecedents found significant by Szymanski and Henard [122] and this
model starts from the ED paradigm, one of the most dominant consumer satisfaction
models over the last three decades.

In this chapter, the reader is introduced to the CS/D literature. Firstly,
the research findings concerning satisfaction prior to the introduction of the ED
paradigm [96] are examined, followed by an elaborated discussion on the ED paradigm
and all related literature. Finally, a summary of all relevant CS/D research findings
is provided as the starting point for the remainder of the first part of this thesis.

2.2 Before the expectancy disconfirmation paradigm

When Oliver [96] introduced the ED paradigm in 1980, the ideas it encompassed
were not something researchers in the consumer psychology field were unfamiliar
with. The impact of expectation and disconfirmation on customer’s post-purchase
behavior had already been studied by several authors. Oliver’s main merit comes
from the fact that he succeeded to combine the existing research results with theories
from psychology into a solid framework linking various satisfaction antecedents and
consequents together. Therefore, it is important that some of the influential research
results preceding Oliver’s article are reviewed. Note that in the early days of CS/D
research, not all authors used the concept of satisfaction as the dependent variable.
Often researchers used other concepts such as product evaluation or perceived product
quality instead. Although these concepts are not necessarily the same as satisfaction,
as was pointed out by LaTour and Peat [80], it is likely that they are highly correlated
with satisfaction. Therefore, the empirical results of these studies can still provide
interesting insights, but they should be interpreted with the necessary precaution.

One of the first articles trying to explain customer satisfaction, which is often
cited by various authors, is the article by Cardozo [22]. In his work, he studied the
effect of customer effort and negative disconfirmation, i.e. when customers receive
less than they expected, on satisfaction. One can summarize Cardozo’s hypothesized
theory as follows:

Customers who put only little effort in choosing and buying a product will not feel
strongly committed to their choice or the product itself. Therefore, if they experience
that the product performs less than they expected, they will evaluate the product less
favorably than customers who had expected this lower performance. While both type
of customers would receive the same product, the first type will evaluate the product
less because of the negative disconfirmation the customer experienced. However, if
the customers, who experienced negative disconfirmation, did put a lot of effort in
the buying process, the effect of negative disconfirmation will disappear because they
become more committed to their choice.

Cardozo uses two different psychological models to predict the customer’s product
evaluation, depending on the amount of effort the customer has spent. The first
theory is the contrast theory, for which Cardozo referred to Helson’s article [61],
which according to Cardozo holds for low-effort customers. This psychological theory
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assumes that customers magnify the negative discrepancy between the perceived
product performance and their expectation, resulting in a less favorable evaluation.
This theory proposes disconfirmation as the main influence of the customer’s
satisfaction outcome, i.e. the greater the negative disconfirmation, the less favorable
the product evaluation.

The second theory is Festinger’s theory of cognitive dissonance [47] which
according to Cardozo holds for high-effort customers. This theory states that if
customers have spent a great deal of effort in buying a product, the customers will
feel committed to their choice and when facing an error of judgement, they will most
likely experience mental dissonance. The customers will relieve this mental distress
by raising the evaluation of the product towards their expectations. According
to this psychological theory, expectation dominates the satisfaction process as the
satisfaction outcome is drawn towards the expected performance level.

The results of a laboratory experiment largely confirmed Cardozo’s theory.
However, three remarks should be made. Firstly, Cardozo only studied the
effect of negative disconfirmation and therefore the question remained if contrast
theory also holds for positive disconfirmation. Secondly, Cardozo created negative
disconfirmation by increasing the expected product performance. This implies that
when he compares customers with no disconfirmation against customers with negative
disconfirmation, he is also comparing customers with low and high expectation levels.
This experimentally induced correlation between disconfirmation and expectation
makes it difficult to isolate the effect of disconfirmation on the final product
evaluation. Finally, several authors (e.g. [7, 100, 101]) argued that Cardozo made
a methodological error in his experiment such that he cannot compare the product
evaluations of the customers with negative disconfirmation against the product
evaluations of the customers with no disconfirmation.

Five years later, in 1970, Cohen and Goldberg [28] published an article in which
they continued the study of dissonance theory in post-purchase product evaluation.
They argued that growing contradictory evidence existed with dissonance theory
which led to disaffection with the theory. One of the main criticisms towards
dissonance theory is that it assumes that customers do not learn from their mistakes.
If customers keep raising the product evaluations towards their expectations to remove
mental dissonance, they never come to realize that they are buying a low quality
product. However, Cohen and Goldberg also mention that dissonance theory should
not be completely ignored in consumer satisfaction research since there is a vast
amount of evidence which confirms that people try to avoid and reduce cognitive
dissonance. In their introduction they argue that dissonance theory can not act
as a general theory which explains every satisfaction process, but does “offer a
parsimonious explanation for many otherwise disconnected observation ([28], p.315)”.

In their study, they investigated two different ways of post-purchase cognitive
reevaluation. On the one hand, consumers might try to justify their decision, no
matter the outcome, which comes down to the dissonance theory. On the other hand,
customers might learn from the outcome of their purchase and accept the mistake of
their decision if thee experience it as such. This is referred to as the outcome learning
theory. Cohen and Goldberg set up an elaborated experiment with instant-coffee,
both from several known national brands and an unknown test brand. The experiment
contained four distinct stages, i.e. a decision stage, an immediate post-decision stage,
a non-consumption stage and a post-consumption stage. The non-consumption stage
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refers to an inspection test where the customer can judge several product dimensions
without actually consuming the product, i.e. the non-taste attributes such as the
aroma and the appearance.

From their results, they could draw some interesting conclusions. Firstly, it
appeared that dissonance theory played a role when evaluating the product on the
non-taste aspect, i.e. during the non-consumption stage, but only for the national
brand. They explained this by the fact that customers who chose one of the
national brands have prior beliefs about the product, which makes those customers
less susceptible to new information about the product’s performance. However,
during the post-consumption stage, the expectation effect disappeared in favor of
a confirmation/disconfirmation effect, supporting the outcome learning theory.

Finally, it is worth mentioning that similar to Cardozo [22], Cohen and Goldberg
only studied the effect of negative disconfirmation during the consumption stage.
However, in contrast with Cardozo [22], Cohen and Goldberg did not change the
customer’s expectation in their experiment, but the product’s performance by altering
the taste of the test brand in a negative way. This avoided any experimentally induced
correlation between disconfirmation and expectation.

Next in 1972, Olshavsky and Miller [100] wrote an article in which they questioned
Cardozo’s conclusion [22] which suggested that overstatement of the product’s
performance, causing a negative disconfirmation, leads to an unfavorable evaluation
of the product. They believed that, in contrast with some of the results of both
Cardozo [22] and Cohen and Goldberg [28], dissonance theory, which focuses on
expectation rather than disconfirmation, is the proper theory to explain customer
satisfaction. To test their theory, Olshavsky and Miller created an 2x2 factorial
design experiment in which they varied the product’s performance and the product’s
expectation from low to high, which resulted in 4 conditions: high expectation
with high performance (HE-HP), high expectation with low performance (HE-LP),
low expectation with high performance (LE-HP) and low expectation with high
performance (LE-HP). For each condition, they measured the customer’s overall
product evaluation on a scale from 0 to 7. Table 2.2 shows the average ratings
from their experiment.

Table 2.2: Average ratings on overall performance [Olshavsky and Miller [100], p.20]

High expectation Low expectation

High performance 5.5(σ = 0.96) 4.5(σ = 1.18)

Low performance 3.7(σ = 1.60) 3.1(σ = 1.20)

Based on the dissonance theory, Olshavsky and Miller formulated 2 hypotheses
which were empirically verified. The first hypothesis stated that in case of negative
disconfirmation, the product evaluation will be drawn towards the expectation,
which is higher than the perceived performance, causing a more favorable product
evaluation. To test this hypothesis, they compared the average product evaluation
in the LP-LE case with the LP-HE case. The second hypothesis stated that in
case of positive disconfirmation, the product evaluation will be drawn towards the
expectation, which is lower than the perceived performance, causing a less favorable
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product evaluation. To test this hypothesis, they compared the average product
evaluation in the HP-HE case with the HP-LE case. The results from Table 2.2,
which is adopted from Olshavsky and Miller [100], confirm both hypotheses and
consequently support the dissonance theory. They explained the contradicting results
found by Cardozo [22] due to a methodological flaw: “[Cardozo’s] results were
based on product evaluations anchored in expectations produced by high- and low-
expectation catalogs [100]”.

Although their work provided evidence for the dissonance theory, which posits
expectation as a main contributor to customer satisfaction, the results also
seem to provide evidence for contrast theory, which focuses on disconfirmation.
If one compares the situations HP-LE and LP-LE, one can see the effect
of positive disconfirmation on customer satisfaction given a constant level of
expectation. Table 2.2 shows that in this comparison, positive disconfirmation
has a strong positive effect on satisfaction. This positive effect caused by positive
disconfirmation contradicts assimilation theory and supports contrast theory. The
same argumentation holds for the negative effect on customer satisfaction caused by
negative disconfirmation, which is revealed when comparing the situations HP-HE
and LP-HE. However, Olshavsky and Miller only focussed on dissonance theory and
the effect attributable to expectation.

Until Anderson’s article [7] in 1973, researchers always used either dissonance or
contrast theory to explain customer satisfaction. Dissonance theory or assimilation
theory assumes that disconfirmation causes a psychological discomfort which is
resolved by assimilating perceived performance towards expected performance.
Contrast theory is somehow the opposite and assumes that any disconfirmation is
magnified during product evaluation.

In his work, Anderson added two more plausible psychological theories to explain
customer satisfaction. The first is called the generalized negativity theory which
assumes that any discrepancy between expectation and performance has a negative
influence on the product evaluation or satisfaction. This theory is based on previous
work by Carlsmith and Aronson [23]. The second additional theory is the assimilation-
contrast theory which combines both dissonance and contrast theories. It assumes
that customers have a zone of acceptance, wherein assimilation theory holds: i.e.
if the expectancy disconfirmation is small enough, such that it falls in the zone of
acceptance, customers will ignore the discrepancy and evaluate the product as if they
received what they expected. Outside the zone of acceptance lies the zone of rejection
in which the contrast theory holds: i.e. if the disconfirmation becomes too large, the
customer will exaggerate the perceived discrepancy, both in a positive and a negative
way. Figure 2.1 illustrates this theory.

In his article, Anderson discussed the results of an experiment in which he
kept the objective performance of the product constant and changed the customer’s
expectation. He used this changing expectation as the independent variable and the
product evaluation as his dependent variable. His results suggested that neither
assimilation, neither contrast nor generalized negativity theory were supported.
Only, the assimilation-contrast theory could not be rejected, from which Anderson
concluded that this was the underlying theory in the satisfaction process. However,
he did point out that his research concerned simple and easy to understand products,
i.e. ballpoint pens, and argued that assimilation-contrast theory might not hold for
more complex products since assimilation theory had been supported by previous
work. This argument remained untested in his article.
12



2.2. Before the expectancy disconfirmation paradigm

Performance

Matching 

Expectations

Low

Performance

High

Performance

Expectation

Level

Zone of 

Acceptence

D
is

co
n

fi
rm

a
ti

o
n

Z
e

ro
P

o
si

ti
ve

N
e

g
a

ti
ve

Real

Disconfirmation

Disconfirmation

under

Assimilation-Contrast

Theory

Figure 2.1: The zone of acceptance and its influence on disconfirmation.

Next, in 1976, an article by Olson and Dover [101] was published which
introduced a precise definition of expectation. In their work, they claimed that
previous research on consumer expectations contained some major theoretical and
methodological problems. They argued that previous research implicitly assumed
that customers’ expectations could be manipulated through exposure of subjects
to specific product related information. Only Anderson [7] actually performed a
manipulation check to verify this assumption. Olson and Dover argued that previous
research failed to identify alternative external sources for customers’ expectations,
such as advertisement, word-of-mouth, product observation and usage experience.
Furthermore, none of the previous research recognized the possible longitudinal
dimension of expectation, i.e. expectations are formed over time through several
exposures to the product. Finally, they claimed that the expectancy manipulation
was transparent to the subjects in some experiments and that none of the previous
research specified the type of expectation they were measuring and manipulating.

According to Olson and Dover, the origin of all these problems is the absence
of a precise and theoretical rich conceptual definition of expectation in previous
research. In their work, they provided such definition and positioned expectation
within the literature of cognitive structures and attitude formation and creation.
They defined expectations as an individual belief element in a consumer’s cognitive
structure regarding the product. In other words, “an expectation is the perceived
likelihood that a product possesses a certain characteristic or attribute, or will lead
to a particular event or outcome ([101], p. 169)”. In contrast with previous work,
Olson and Dover did not consider expectation at the overall product level (e.g. a car),
but at a product dimension levels (e.g. a car’s fuel consumption). A customer can have
different belief-expectation elements for a single product, i.e. one for each dimension.
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They argued that these belief-expectation elements can explain the acquisition of a
consumer’s overall product attitude, which could be considered as a proxy for an
overall product expectation construct.

In their work, Olson and Dover, performed an experiment with ground coffee
in which they manipulated the customer’s expectation of the dimension ‘coffee
bitterness’, over a period of 12 days, both through ad-like communication and product
usage. Their results showed that both assimilation-contrast theory and dissonance
theory could explain the measured effects of disconfirmation. They pointed out that
both theories predict the same pattern of results except for when expectations are
very strongly disconfirmed.

Olson and Dover, concluded that product usage has a much stronger
impact on belief-expectancy elements than information exposure, which has
important implications for experiments trying to manipulate consumer expectations.
Furthermore, they warned for possible spill-overs from manipulated expectation
elements on non-manipulated expectation elements, which should be accounted for
in future experiments. Finally, they also suggested two other theories which they
considered useful for studying the CS/D process, i.e. Helson’s [61] adaptation level
theory and comparison level theory [124].

While Helson’s adaptation level theory would later be used as the basis for
Oliver’s ED paradigm, the comparison level theory was picked up by LaTour and
Peat [80]. Being unsatisfied with the existing theories explaining CS/D, LaTour
and Peat provided an alternative conceptualization which was based on Thibaut
and Kelley’s [124] comparison level theory. In a purely theoretical article [80], they
developed a model which considers the consumer’s satisfaction to be determined by
the discrepancy between the outcome and a standard of comparison known as the
Comparison Level (CL). They argued that positive discrepancies would be satisfying,
while negative discrepancies would be dissatisfying.

The discrepancy between the product performance and the comparison level
should not be confused with the expectancy disconfirmation used by other authors
in those days. Previous theories always used the customer’s product expectation
as the comparative referent which was often considered at a product level. Within
LaTour and Peat’s model, the comparative referent is more than just the expected
performance. They defined the CL as a “function of experiences with similar products
or services in the past, to a lesser extent the experiences of similar consumers, and to
a still lesser extent outcomes promised by the manufacturer, retailer, and/or service
provider [80]”. Furthermore, LaTour and Peat also suggested that such CL existed
for each product attribute and that the overall satisfaction would be an “additive
function” of the discrepancies from the CL for each salient attribute.

It should be noted that within LaTour and Peat’s comparison level adaptation,
the CL has no direct effect on customer satisfaction, which stands in contrast with
Oliver’s ED paradigm. Also, LaTour and Peat’s original article [80] did not contain
any empirical evidence for their theory. They did however publish an article a year
later [81], in which they empirically studied the three elements of the comparison
level, i.e. the consumer’s prior experiences, the situationally-produced expectations
and the experiences of other consumers. From the empirical results they found that
only prior experience had an effect on the overall satisfaction.

Meanwhile, in 1977, Oliver [95] published an article in which one can already
recognize the foundations of his expectancy disconfirmation paradigm. He reviewed
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various articles which had been published on the topic of CS/D and concludes that
only five studies in the late 1960’s and 1970’s were published in this domain. One set
of studies focussed on the effect of disconfirmation, while the other studies considered
the size of disconfirmation less important and focussed on the effect of the expectation
level. However, all these studies only focussed on one of both effects.

Oliver argued that both constructs, i.e. expectation and disconfirmation, might
simultaneously influence post-exposure product evaluation. For this idea, he referred
to an analogue theory within the domain studying people’s attitudes. He stated that
expectation and disconfirmation can explain post-exposure evaluation “in much the
same way that any revised attitude can be explained in terms of initial position plus
degree and direction of change [95]”. However, he also noted that if one wants to study
disconfirmation and expectation simultaneously, one can get caught in a conceptual
overdetermination. The three concepts of expectation, disconfirmation and product
performance are all related and one can only manipulate two of them independently.
In previous research, performance and expectation were always manipulated and
disconfirmation was measured indirectly as the difference between expectation and
performance. This implied an axiomatic negative correlation between expectation
and disconfirmation, e.g. if one increased expectation to a higher level while keeping
performance at a constant level, disconfirmation became negative. Obviously, such
negative correlation between expectation and disconfirmation, makes it very difficult,
if not impossible to measure the isolated effect of any of these constructs on customer
satisfaction.

Furthermore, Oliver argues that the constructs expectation and disconfirmation
do not have to be (negatively) correlated in real-life situations. He supports this
argument by stating that expectation formation and disconfirmation experience occur
in different moments in time. He even posits that disconfirmation experience is closer
in time to the post exposure evaluation than expectation formation and consequently
disconfirmation will have the greater effect on satisfaction.

Because of the danger of conceptual overdetermination in an experiment,
Oliver investigated the relationships between disconfirmation, expectation and post-
exposure evaluation in a field study. In his research, he measured both disconfirmation
and expectation at an attribute level and aggregated level and post-exposure
evaluation is measured by ‘overall affect’ and ‘intention to buy’. The data revealed
that expectation and disconfirmation are indeed uncorrelated. Only aggregated
expectation and aggregated disconfirmation revealed a negative correlation, but this
can be explained by a methodological flaw. The data also revealed that both
expectation and disconfirmation have a positive relation with the post-exposure
evaluation measures. For the measure ‘overall affect’, disconfirmation indeed had
the greatest effect, while for ‘intention to buy’ the effects of disconfirmation and
expectation were equal. Most likely, it were the results of this study which led
to Oliver’s next article in which he introduced the Expectation Disconfirmation
Paradigm.

2.3 Oliver’s expectancy disconfirmation paradigm

The expectancy disconfirmation paradigm

The discussion in the previous section gives a good picture of the kind of research
results which were at hand in the late 1970’s. One thing which strikes the attentive
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reader is probably the fragmented and sometimes contradicting nature of all these
results. As for possible antecedents of satisfaction, one can detect two different lines
of research. On the one hand there are researchers which focus on expectation, while
others focus on disconfirmation. Closely related to this dichotomy are the different
psychological theories which were proposed to explain the customer satisfaction
process. While some researchers considered dissonance theory, others advocated
contrast theory, while some combined both theories.

Based on all these results, the impression arises that both expectation and
disconfirmation play a role in the satisfaction process and that both dissonance
and contrast theory must explain a part of the relationships between antecedents,
satisfaction and consequents. However, a coherent framework which connects these
concepts and theories was still missing. Such a framework was introduced in 1980 by
Oliver and is often referred to as the Expectancy Disconfirmation (ED) paradigm [96].
To date, this is still one of the most dominant customer satisfaction paradigms.

One of Oliver’s main contributions is the idea that expectation and disconfirmation
have an additive and simultaneous effect on satisfaction, whereas previous theories
always focussed on only one of both constructs. Contrast theory for example
contributed the effect on satisfaction fully to the magnitude and direction of
the disconfirmation, while assimilation or dissonance theory hypothesized that
satisfaction was positively related to expectation. Even in the assimilation-contrast
theory, which combines both theories, it is assumed that, depending on the size of
disconfirmation, either contrast (disconfirmation) or assimilation (expectation) theory
is in play, but never both at the same time.

The use of such an additive interpretation is modeled well by Helson’s [61]
adaptation level theory, which was already being considered by researchers in the
field of job satisfaction [68, 116] and suggested by Olson and Dover [101]. “[Helson’s
theory] posits that one perceives stimuli only in relation to an adapted standard.
The standard is a function of perceptions of the stimulus itself, the context, and
psychological and physiological characteristics of the organism. Once created, the
‘adaptation level’ serves to sustain subsequent evaluations in that positive and
negative deviations will remain in the general vicinity of one’s original position.
Only large impacts on the adaptation level will change the final tone of the subject’s
evaluation. [96]”

Translated to the field of customer satisfaction, Oliver defined the following
relationships between expectation, disconfirmation and satisfaction. Firstly,
expectation acts as the adaptation level. It sets some kind of standard against which
performance is evaluated and provides an initial level of satisfaction. Customers
with high expectations will have a high initial level of satisfaction and vice versa.
Next, after some period of consumption, the perceived performance will probably
deviate from the adaptation level, which refers to the disconfirmation. According to
Helson’s adaptation level theory, the effect of this disconfirmation will be nullified if
the performance remains in the general vicinity of the expected performance. Only
if disconfirmation is large enough, it will have an effect on satisfaction. A positive
disconfirmation will have a positive effect, while a negative disconfirmation will have
a negative effect. Obviously, the disconfirmation effect in this theory is related to
the concept of ‘zone of acceptance’. Oliver mathematically expressed the relationship
between expectation, disconfirmation and satisfaction as follows:

satisfaction = f(expectations,disconfirmation).
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However, an additive interpretation of the expectation effect and the
disconfirmation effect on satisfaction requires that both concepts, i.e. expectation
and disconfirmation, are uncorrelated. This hypothesized absence of relation between
expectation and disconfirmation has been tested and verified by Oliver in [95] and [96]
and has also been confirmed by Szymanski and Henard’s [122] meta-analysis.

The relationship between satisfaction, expectation and disconfirmation is only the
first part of Oliver’s ED paradigm and is illustrated in Figure 2.2 within the dashed
box. Oliver continued his framework by integrating some satisfaction consequents
into it. The first consequent he considers is the customer’s attitude towards the
product. The relationship between attitude and satisfaction is based on existing work
by Howard and Sheth [67], Fishbein [48] and Helson’s [61] adaptation theory again.
Firstly, the pre-purchase attitude serves as the foundation for the post-purchase
attitude. Subsequently, it also acts as an adaptation level for satisfaction. Oliver
extends his framework even further and includes the customer’s purchase intentions.
Based on the work of Howard [66], Fishbein and Ajzen [49], Oliver hypothesizes
that both satisfaction and post-purchase attitude influences post-purchase intentions,
while pre-purchase intentions act as an adaptation level. Since this dissertation
mainly focuses on satisfaction and its antecedents, we will limit our further discussion
and review of Oliver’s ED paradigm to the first part, i.e. the relationships between
expectation, disconfirmation and satisfaction. From now on, when the ED paradigm
is mentioned, it implicitly refers to the first part of it.

Expectation

Attitude

Intention

Satisfaction

Disconfirmation

Attitude

Intention

Disconfirmation

Period

Pre-consumption

Period

Post-consumption

Period

Figure 2.2: Oliver’s expectancy disconfirmation paradigm [adapted from Oliver [96],
p. 462].

From the results of the experiment in Oliver’s [96] original article on the ED
paradigm, three important conclusions can be drawn. Firstly, disconfirmation
appeared to be uncorrelated to expectations which is crucial for considering
satisfaction as an “additive function” of expectation and disconfirmation. Secondly,
disconfirmation had the largest effect on satisfaction and was significant in all four
experiments. Thirdly, the idea of an adaptation level influencing the satisfaction
outcome was supported in three out of four experiments. Expectation acted as
adaptation level in one experiment, while in two other experiments this role was
fulfilled by pre-purchase attitude. Over the years various authors have provided
support for the relationships between expectation, disconfirmation and satisfaction
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as hypothesized by the ED paradigm. Some of them are LaBarbera and Mazurski [79],
Swan and Trawick [121], Bearden and Teel [11], Churchill and Surprenant [26] with
their non-durable products experiment and Oliver and Desarbo [99]. As for which
antecedent, expectation or disconfirmation, has the largest impact on satisfaction,
the current amount of research suggests that in most cases the disconfirmation effect
will be dominating the CS/D process. Szymanski and Henard [122]’s meta-analysis
showed that the average sample-size adjusted correlation between satisfaction and
disconfirmation is 0.37 and only 0.19 between satisfaction and expectation.

Over the years, many researchers tried to advance the ED paradigm by integrating
new concepts such as complaint behavior [11], adding new antecedents such as
performance [26, 127, 99] or redefining the interpretation of an antecedent such as
expectation [134, 19, 127]. Over the years, the basic idea of the ED paradigm remained
intact, albeit with some extensions and redefinitions of the antecedents. Next each
antecedent and its role within the ED paradigm will be discussed separately.

Expectation

The role of expectation in the ED paradigm is dual. Firstly, it has a direct effect
on satisfaction by setting the adaptation level and secondly it acts as a comparison
referent for perceived product performance. The first role of expectation as a direct
effect on satisfaction has been studied by various researchers with mixed results.
Sometimes empirical evidence was found for a significant and positive effect (e.g.
Anderson, Fornell and Lehmann [4]; Cadotte, Woodruff and Jenkins [19]; Churchill
and Surprenant [26]; Oliver [96]; Tse and Wilton [127]) while other experiments found
no significant effect (e.g. Oliver [96]; Churchill and Surprenant [26]; Anderson and
Sullivan [6]). Some authors argued that the direct effect of expectation on satisfaction
was influenced by other aspects. Churchill and Surprenant [26] did find a direct effect
for their experiment with a house plant but not for their experiment with a video
disc player. They argued that perhaps the ED paradigm only holds for non-durable
products. As far as the author knows, this assumption has never been tested. Voss,
Parasuraman and Grewal [133] explained the absence of a direct expectation effect
on satisfaction by inconsistency between price and performance. If the price is fair
in comparison to the delivered performance, i.e. low price for low performance and
high price for high performance, satisfaction is directly influenced by the customer’s
expectation. However, Voss et al. argued that if companies ask an unfair price, i.e. a
low price for a high performance or a high price for a low performance, expectation
would not play a role in the CS/D process. They performed an elaborated experiment
with hotel services and found empirical evidence for their hypothesis.

Although the overall picture of the direct expectation effect on satisfaction remains
fuzzy, Szymanski’s and Henard meta-analysis [122] supported a direct and positive
effect as postulated by the ED paradigm. They found 8 studies investigating the
expectation-satisfaction relationship which accounted for 17 measured correlations
between expectation and satisfaction. Thirteen of these correlation were found
significantly positive, while 1 correlation was positive but insignificant, 1 was
significantly negative and 2 were negative but insignificant. Furthermore, the sample
size adjusted average correlation between expectation and satisfaction was 0.19 and
statistically significant.

Aside from its role as adaptation level, expectation also has an indirect effect
on satisfaction by acting as a reference against which performance is compared,
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2.3. Oliver’s expectancy disconfirmation paradigm

which results in disconfirmation. However, the definition or interpretation of the
‘expectation as referent’ concept has been much debated over the years. The first
authors to formulate a precise definition for expectation were Olson and Dover [101].
They defined expectation as a belief concept or as “the perceived likelihood that a
product possesses a certain characteristic or attribute, or will lead to a particular event
or outcome”. For example, a customer’s expectation about a coffee’s bitterness could
be expressed as ‘Customer X beliefs coffee Y is not bitter at all’. Note that Olson and
Dover’s definition of expectation positions expectation at the attribute/dimension
level, rather than at the overall product level. Olson and Dover’s definition of
expectation was not only conceptually rich and precise, but also very appealing since
it positioned consumer expectations squarely into the theoretically-rich literature
dealing with cognitive structure and attitude formation and change.

Oliver [96] extended this definition by relating the concept of belief to an
evaluation outcome. In his definition, expectation is the product between the belief
of a specific outcome and the evaluation how good or bad this outcome is for the
customer. This allows high expectations to be defined in two ways, i.e. the belief
that desirable events will occur and belief that undesirable events will not occur. The
rationale behind low expectations is analogue. This extended definition of expectation
interprets the concept at the product attribute or dimension level. In order to end
up with an overall product-level expectation, Oliver sums the various expectations
with regard to different dimensions of the product. In short, Oliver defines the overall
expectation as the sum of belief-evaluation products, which can be mathematically
expressed as in Eq. 2.1. It should be noted that Olson and Dover [101] suggested that
product attitude may be considered as a global expectation about the product which
would explain why both expectation, in the form of sum of belief-evaluation products,
and pre-purchase attitudes appeared as adaptation levels in Oliver’s experiments.

Overall Expectation =
dimensions∑

(Dimension evaluation× Belief of occurence) (2.1)

However, some authors have suggested that other types of expectations do exist
and might be used as a comparative referent for product performance. For example,
Miller [87] defined four types of expectations varying by level of desire. Expectation
as it was originally interpreted by Olson and Dover and Oliver corresponds to Miller’s
expected performance level, which is also called the predicted level. The three other
levels of performance identified by Miller were the ideal level, the deserved level
and the minimum tolerable level. Miller denoted all four levels as expectation, but
Woodruff et al. [134] pointed out that the ideal, deserved and minimum tolerable level
are rather norms than expectations. These three definitions express what customer
think they should receive rather than what a customers expect to receive.

Oliver [97] from his part, continued to use the terminology of Miller and called all
four constructs expectation. He extended those four levels of expectation with work
from Zeithaml et al. [103, 102] which resulted in 8 different levels of ‘expectation’
which are depicted in Figure 2.3. Oliver also identified two different zones of
performance, i.e. the zone of indifference and the tolerance zone, which are depicted
in the same figure. The former corresponds to the zone of acceptance which refers to
a range of performance in which all performance levels are treated more or less equal
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Figure 2.3: Expectations according to the level of desirability [adapted from
Oliver [97], p.72].

to the expected performance level. The tolerance zone is a much broader range which
represents all the performance levels which are tolerable to the consumer.

Cadotte, Woodruff and Jenkins [134, 19] suggested two other norms as a
comparison referent in the ED paradigm. In contrast with expectation, their referents
are based on knowledge of and experience with similar but other products from
different brands. They called their type of referents ‘experience based norms’ and
distinguished between product-based norms and best-brand norms. If for a specific
product, the performance of a specific brand stands out from the rest on all product
dimensions, they argue that customers use this performance level as a norm against
which performance of other products is compared during the CS/D process. They
also pointed out that if the focal product is from the superior brand, the norm used
for comparison is equal to Oliver’s concept of expectation.

If there is not a single brand which performs better than all the other brands
for each product dimension, Cadotte et al. suggest that customers might average the
performance of a group of similar brands, resulting in a product-based norm. From
their empirical results, they found that the concepts expectation, brand-based norm
and product-based norm are moderately correlated, revealing some overlap. On the
other hand, they differ enough to consider them as three different concepts. They
also tested all three potential comparative referents and found that the models with a
product-based norm fitted the data best in two experiments and the model with the
brand-based norm fitted the data best in the third experiment. Cadotte, Woodruff
and Jenkins [19] concluded that expectation could not be ruled out as comparative
referent, but empirical data suggested that other constructs such as experience-based
norms are also viable candidates as comparative referent in the ED paradigm.

The idea of using ‘experience-based norms’ was not a new idea when it was
suggested by Cadotte, Woodruff and Jenkins. As a matter of fact, LaTour and
Peat [80] also introduced a comparative referent which was partially based on prior
experiences. In contrast with the ‘experience-based norms’ of Cadotte et al., LaTour
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and Peat’s comparative referent is a combination of three components. The first and
most important component is the consumer’s prior experiences with similar products,
the second component is the customer’s expectation about the product and the third
and final component are the experiences of other consumers with the product. One
could consider the comparison level of LaTour and Peat as a combination of customer’s
expectation and ‘experience-based norms’.

While other authors debated on which referent was the right one, Spreng et
al. [117] proposed a model with two referents, i.e. expectation and desires. The results
of their experiment supported the hypothesis that customers compare the product
performance against both an expected performance level and a desired performance
level. Spreng et al. argued that it is possible that one referent might dominate
the CS/D process. For example, desire as referent might dominate if it concerns
a new product for which the customer has no expectations yet. On the other hand,
expectation could be the dominating referent if it concerns a product which the
customer has already bought many times before.

Disconfirmation

The second antecedent of customer satisfaction in the ED paradigm is disconfirmation,
which is the discrepancy between the perceived performance and the customer’s
expectation. Within the literature, there are two alternative conceptualizations of
the disconfirmation construct. The first, which is called subtractive disconfirmation
or objective disconfirmation is modeled as the result of the difference between product
performance and expectation [80]. Such type of disconfirmation can be easily applied
to product attributes such as gas mileage of a car for which both expectation and
performance can be measured objectively. As Oliver pointed out [97], subtractive
disconfirmation can become more troublesome for attributes, such as driving comfort
of a car, for which performance and related expectation cannot be measured with
exact precision. In such cases, subtractive disconfirmation, being the difference
between two imprecisely measured constructs, is imprecise too. Another problem with
subtractive disconfirmation is that customers might evaluate the same discrepancy
between expectation and performance differently. For example, one customer might
consider a gas mileage disconfirmation of 1 liter per 100 kilometers as small, while
another customer might find it unacceptable.

Some authors prefer subjective disconfirmation, which is measured directly on
a bipolar ‘better than expected / worse than expected’ scale. Such bipolar scale
gives rise to three different states, i.e. negative, zero and positive disconfirmation.
Oliver [97] combined these three different states with the outcome of the three different
components of disconfirmation, i.e. the event, its probability of occurrence, and its
(un)desirability, to provide a precise definition of disconfirmation. Table 2.3 illustrates
how the state of disconfirmation is related to these three components.

In general, subjective disconfirmation is preferred above subtractive disconfirma-
tion for the reasons mentioned above. Also, Tse and Wilton [127] performed an
experiment in which they compared the effect of both subtractive and subjective
disconfirmation on satisfaction. Their results showed that subjective disconfirmation
is superior to subtractive disconfirmation as conceptualization within the ED
paradigm.

In the original version of Oliver’s ED paradigm, disconfirmation is assumed to have
a positive effect on satisfaction. Positive disconfirmation will increase satisfaction,
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2. The expectancy disconfirmation paradigm

Table 2.3: Categories of disconfirmation and states of nature [Oliver [97], p.104]

State of Disconfirmation Consumer’s Experience

Positive Low-probability desirable events oc-
cur, and/or high-probability undesirable
events do not occur

Zero Low- and high-probability events do or do
not occur as expected.

Negative High-probability desirable events do not
occur, and/or low-probability undesirable
events occur.

while negative disconfirmation will decrease satisfaction. In general this positive
relation between disconfirmation and satisfaction seems to be valid. Szymanski and
Henard found 137 measured correlations between disconfirmation and satisfaction
among which 121 were significantly positive.

Anderson and Sullivan [6] suggested that the experienced level of disconfirmation
is influenced by the level of difficulty to distinguish between high and low performance.
Their experimental results supported the hypothesis that “when buyers find it easier
to distinguish between high and low quality, they are more likely to experience
disconfirmation [6]”. Oliver [97] recognized the possible difference between the true
disconfirmation and the experienced disconfirmation. He argued that the size of the
disconfirmation effect on satisfaction depends on whether the perceived performance
falls within the zone of acceptance. If disconfirmation is small such that the perceived
performance falls inside the zone of acceptance, customers will ignore or not recognize
the disconfirmation between expectation and performance and consequently, the effect
of disconfirmation will be practically non existent. This situation can be explained
by the assimilation theory and has been advocated by various other authors (e.g.
Cardozo [22], Olshavsky and Miller [100] and Anderson [7] among others).

On the other hand, if disconfirmation is large enough such that the perceived
performance falls outside the zone of acceptance, disconfirmation will have a positively
related effect on satisfaction: more specifically, a negative disconfirmation will lower
the satisfaction level, while a positive disconfirmation will increase the satisfaction.
This corresponds well with the contrast theory. However, even if disconfirmation
is large enough to have a contrasting effect, expectation still has an influence on
satisfaction because it sets the adaptation level. Therefore, in contrast with previous
research which advocated an assimilation-contrast theory, the ED paradigm assumes
that both expectation and disconfirmation have an additive and simultaneous effect
on satisfaction.

The zone of acceptance has already been illustrated in Figure 2.1 from the
perspective of a subtractive disconfirmation, i.e. the X-axis measures the difference
between expectation and performance. We now reconsider this illustration from the
perspective of subjective disconfirmation in Figure 2.4. It becomes clear that the
effect of disconfirmation on satisfaction is assumed to be positive but also non-linear.

In addition to this type of non-linearity, Mittal, Ross and Baldasare [90] studied
an asymmetric effect of disconfirmation on satisfaction. They found that negative
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Figure 2.4: The effect of subjective disconfirmation on satisfaction.

disconfirmation had a stronger impact on satisfaction than positive disconfirmation.
This was also found in an experiment by Anderson and Sullivan [6]. In general,
these types of non-linearity are almost never considered in CS/D research. Most
researchers focus on the correlation between disconfirmation and satisfaction, which
implicitly assumes a linear relationship.

Performance

In the original ED paradigm, performance has an indirect effect on satisfaction.
When compared against expectation it generates a level of disconfirmation which
has a direct influence on satisfaction. In general, most authors never considered a
direct effect of performance on satisfaction. Maybe this is caused by the fact that a
direct effect of performance on satisfaction is of less interest to marketers because the
level of performance is not under their control in contrast to customer’s expectation
and disconfirmation [26]. However, some authors did actually study a direct effect
of performance on satisfaction additional to the direct effects of expectation and
disconfirmation and found confirming results.

The first authors to study a direct effect of performance on satisfaction were
Churchill and Surprenant [26]. Their original research question was whether it was
necessary to include disconfirmation as an intervening variable affecting satisfaction
or whether the effect of disconfirmation is adequately captured by expectation and
perceived product performance. Their results were mixed. They performed their
study on two product types, a durable good and a non-durable good. For the non-
durable good, they found that disconfirmation not only had a significant impact
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on satisfaction, but it also had the largest impact on satisfaction. For the durable
good, it showed that only performance had a significant impact on satisfaction,
contradicting Oliver’s ED paradigm. Although Churchill and Surprenant’s results
were not unanimously about the need for disconfirmation in a conceptualization of
the CS/D process, it did provide the insight that performance could have a direct
effect on satisfaction.

This remarkable result did not go unnoticed and was investigated in subsequent
studies. Tse and Wilton [127], Oliver and Desarbo [99] and Anderson and Sullivan [6]
also investigated the direct effect of perceived performance on satisfaction. They
found significant positive direct relationships between performance and satisfaction.
As Yi [145] pointed out, the accumulation of these results suggested a reexamination
and extension of the original ED paradigm. This extension was formally introduced by
Oliver in [97] and is illustrated in Figure 2.5. Besides the direct effect of performance,
this model also integrates the difference between calculated (subtractive) and
subjective performance. The model also indicates a possible relationship between
expectation and performance, but does not specify the actual correlation between
these two variables as they cannot be specified beyond the assumption that
the relationship exists. According to Oliver [97], this expectation-performance
relationship is idiosyncratic to the product or service being investigated.

Expectations

Performance

Outcomes

Calculated

Disconfirmation

Subjective

Disconfirmation

Satisfaction/

Dissatisfaction

Figure 2.5: The complete expectancy disconfirmation paradigm with performance
model. [Oliver [97], p.120]

Despite these findings supporting performance as a direct antecedent of CS/D,
it should be noted that Spreng et al. [117] explicitly tested for a direct effect of
performance on satisfaction but could not reject the null hypothesis that such direct
effect was not present. They concluded that the direct effect of performance on
satisfaction was completely mediated by the other model constructs. Spreng et al.
also mentioned that “not all satisfaction researchers agree that an examination of
the direct effect of performance is likely to be a fruitful theoretical approach [117]”.
Spreng et al. cite Oliver [98] who argued: “It says little, however, about the specific
thought processes triggered by the product features. In particular, it fails to identify
the mechanism by which performance is converted into a psychological reaction by
the consumer.”

As a conclusion, one could state that the opinions whether performance should
be integrated as a direct effect in the CS/D process are rather mixed.
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2.4 Summary

From the middle of the previous century on, CS/D received attention from
researchers within the marketing and consumer psychology domain. From the early
beginning two distinct antecedents of satisfaction were recognized, i.e. expectation and
disconfirmation. One line of research focussed on expectation and explained the CS/D
process by means of the assimilation theory, while another line of research suggested
that disconfirmation caused (dis)satisfaction according to the rules of contrast theory.

In the beginning of the 1980’s, Oliver reconciled both theories into the expectation
disconfirmation paradigm. While previous research focussed on either expectation
or disconfirmation, Oliver argued that both had a positive and additive effect on
the customer’s satisfaction experience. Firstly, expectation has a direct effect on
satisfaction by setting the adaptation level. Secondly, the perceived performance
is compared against expectation as a referent which causes disconfirmation. If
disconfirmation is substantial, it will influence the final satisfaction outcome.

Over the years, the ED paradigm was tested and extended by various researchers.
This caused expectation to lose its role as sole comparison referent in the CS/D
process. Some authors found proof for customers using norms as referents, while
some researchers have successfully operationalized the comparison referent by means
of multiple referents. The direct effect of expectation on satisfaction, as assumed in
the original ED paradigm, was also questioned. Although various researchers could
not find the direct effect of expectation in their data, other empirical evidence showed
that a direct effect exists in specific cases.

Disconfirmation and its role in the CS/D process has been less debated and
almost all empirical evidence reveal disconfirmation as an important antecedent
of satisfaction with a strong effect compared to the other antecedents. Various
researchers argued that the disconfirmation process occurs at the attribute level [80,
97] and that the relationships between the antecedents and satisfaction are not
necessarily linear and symmetric [90] as the amount of correlations in consumer
satisfaction studies might suggest.

In general, the ED paradigm evolved from its original version in 1980 to an
important, mature and valid CS/D model. Although other antecedents and models
have been proposed, such as the ED model with performance or the equity model, the
ED paradigm still remains an interesting framework to investigate the CS/D process.
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3 A generic framework for modeling the ED

paradigm with limited information

3.1 Introduction

The literature review in the previous chapter illustrated that over the past three
decades, the ED Paradigm has become a theoretically and empirically strong model
to analyze the CS/D process and to explain why and how customers become satisfied.
If a company wants to analyze its customers according to the ED paradigm, it should
measure constructs such as expectation, satisfaction and disconfirmation. However,
many customer satisfaction surveys, carried out by marketing departments, only
measure the product’s performance and neither the disconfirmation experienced by
the customers nor the customer’s expectations.

As Oliver describes under the section titled ‘Traditional Satisfaction Analysis’
in [97], an all-too-familiar research scenario consists of asking consumers in a fairly
direct manner to rate the importance and performance of various product attributes,
together with an overall product evaluation. Next, marketers use these data to
do descriptive analyses or to perform a linear regression analysis with the product
attributes’ performances as independent variables and the product satisfaction as
dependent variable. The coefficients of such a regression are interpreted as the
influence of a product attribute’s performance on the overall satisfaction level.
Consequently, in situations of such limited customer satisfaction data, the ED
paradigm is ignored when analyzing the customer’s satisfaction. This approach, which
is e.g. used to derive the importance of an attribute in an Importance-Performance
Analysis [83], completely ignores the expectancy disconfirmation paradigm and also
lacks statistical reliability because it assumes a linear effect of performance on
satisfaction, which is often not the case [33, 110].

Figure 3.1 illustrates the discrepancy between the theoretical model based on
the ‘Complete ED Paradigm with Performance’ [97] and the frequently used ‘Linear
Regression’ model when customer satisfaction data is limited to satisfaction and
product performance. Obviously, the pragmatic approach does not correspond well
with the existing theories.

Several reasons can be found why companies use this approach to learn about
their customers’ CS/D process. One could say that companies do not bother to look
further than the intuitively obvious link between product performance and customer
satisfaction. Furthermore, one could also argue that constructing a survey measuring
performance and satisfaction is considerably easier, and consequently less expensive,
than constructing a survey measuring satisfaction, performance, disconfirmation and
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Figure 3.1: Comparison of the theoretical ED paradigm and the performance-based
linear regression model.

expectation. The second approach implies measuring more constructs which makes
the survey longer and possibly more tedious and expensive. Measuring perceived
performance, expectation and disconfirmation at the same time can also be tricky
since these three constructs are closely related. Furthermore, which type of referent
is used by customers in their disconfirmation generating process is not always clear.
Even if the construct which is used as a referent in the ED paradigm is known, it is not
always possible to measure this prior to the customer’s purchase. Many companies do
not know their customers prior to the product purchase. Unfortunately, pre-purchase
expectation can differ from post-purchase expectation since the latter is influenced
by the consumption experience and therefore one should always try to measure pre-
purchase expectation [97].

Despite the tendency of companies to use standard performance-satisfaction
surveys instead of well constructed surveys which measure the various constructs
of the ED paradigm, the author believes that the latter type of surveys are to be
preferred. Measuring constructs such as expectation, disconfirmation, performance
and satisfaction allows companies to model CS/D in correspondence with the
theoretically valid ED paradigm. This will certainly increase the company’s
understanding of why their customers are satisfied or dissatisfied. However, the reality
remains that many companies do not possess the right and complete data to fully
model the ED paradigm, which introduces the goal of this part of the thesis:

How can companies with very limited information, i.e. only performance and
satisfaction ratings, model their customer’s satisfaction/dissatisfaction process in
correspondence with the expectancy disconfirmation paradigm?

Although the limitation of the data can make it impossible to fully model the
ED paradigm, it should not imply that the theoretical model has to be abandoned
completely. Therefore, the goal of this section is to develop a framework which allows
companies to model the CS/D process according to the principles of the ED paradigm
and other established theoretical principles for customer satisfaction data which are
limited to satisfaction measures and product performance measures.
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Furthermore, the framework should be able to cope with performance data at
a product attribute level, which is how it is typically measured. Oliver, who
originally [96] examined the expectancy disconfirmation paradigm at the overall
product level, already mentioned that the product evaluation ultimately takes place
at the attribute level [97]. Also, Mittal et al. [90] supported this idea and stated
that “studying satisfaction at the attribute level can help extend both conceptual
and empirical understanding of the phenomenon”.

Therefore, the framework to model the CS/D process with limited information,
will need to aggregate various performance ratings, which only exist as external
stimuli to the customer, into a single satisfaction rating. The aggregation
itself represents the customer’s interpretation of these stimuli which leads to
(dis)satisfaction. Consequently, the framework will model the CS/D process by means
of aggregation functions which are mathematical objects extensively studied over the
past five decades within the lap of fuzzy set theory. Prior to the construction of a
framework to model the CS/D process with limited information, the reader will be
introduced to the domain of aggregation functions.

3.2 Aggregation functions

The origin of the aggregation functions research domain

The theory of aggregation functions (AF) as a separate research domain can be traced
back to the origin of fuzzy set theory. Ever since, the mathematical study of AF has
been systematically carried out under the joint umbrella of fuzzy set theory and
non-classical decision theory [39]. Fuzzy set theory is a mathematical theory which
originates from 1965 when it was introduced by Zadeh [146] and can be considered
as an extension of the classical (crisp) set theory in mathematics.

Classical (crisp) sets are mathematical constructs which can be defined as
“a collection of elements or objects xi ∈ X which can be finite, countable, or
overcountable [147]”. An object or element xi either belongs to a set X or it does
not. An object can not belong more or less to a set. If a crisp set does not contain too
many elements, one can describe the set by enumerating its elements. For example,
the crisp set A of ‘natural numbers less than 4’, can be written down as follows:

A = {0, 1, 2, 3}.
Fuzzy sets extend the notion of crisp sets by allowing elements to belong partially

to a set. With which degree an element belongs to a fuzzy sets is called the
membership degree and is expressed as a value within the interval [0, 1]. A fuzzy
set is the extension of a crisp set in such a way that a crisp set can be regarded as
a fuzzy set where each element belonging to the crisp set has a membership grade
of 1 and all other elements have a membership grade of 0. Thus, the crisp set A of
‘natural numbers less than 4’ can be written down as a fuzzy set Ã as follows:

Ã = {. . . , (−1; 0), (0; 1), (1; 1), (2; 1), (3; 1), (4; 0), (5; 0), . . .}.
The mathematical expression above represents a fuzzy set as a collection of tuples

where the first part of each tuple is the element belonging to the fuzzy set and the
second part of each tuple is the corresponding membership degree. Traditionally,
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elements of fuzzy sets with a membership grade equal to 0 are not explicitly written
down. Of course, fuzzy set Ã is a rather artificial fuzzy set which does not illustrate
the power of fuzzy sets. A better example would be the fuzzy set of ‘natural numbers
much smaller than 5’. Obviously, the definition of this set is rather vague because
‘much smaller than’ is not uniquely defined. A possible fuzzy set B̃, representing this
vague concept, could be:

B̃ = {(0; 1), (1; 0.9), (2; 0.5), (3; 0.4), (4; 0.1)}.
Similar to classical crisp sets, fuzzy sets are accompanied with operations one

can perform on the fuzzy sets. Zadeh [146] extended the well known intersection
and union operations from classical set theory to fuzzy set theory. With fuzzy
sets, the operations on sets are actually performed on the membership grades of
the elements. For example, Zadeh defined the intersection of two sets as taking the
minimum membership grade of each element and the union of two sets as taking the
maximum membership grade of each element. The following example illustrates the
union and intersection of two fuzzy sets according to Zadeh’s original article [146].

B̃ = {(0; 1), (1; 0.9), (2; 0.5), (3; 0.4), (4; 0.1)}
C̃ = {(0; 0.7), (1; 1), (2; 0.7), (3; 0.3)}

B̃ ∪ C̃ = {(0; 1), (1; 1), (2; 0.7), (3; 0.4), (4; 0.1)}
B̃ ∩ C̃ = {(0; 0.7), (1; 0.9), (2; 0.5), (3; 0.3)}

Using the minimum and maximum operator has the benefit that when applied
to crisp sets, the same outcome is retrieved as when one applies the traditional
intersection and union operator respectively. However, the minimum and maximum
are not the only possible way to extend the crisp operators intersection and union to
fuzzy set theory. Many other extensions have been proposed over the years and even
new operators for fuzzy sets, which do not have an equivalent in crisp set theory,
have been suggested (cf [44, 75, 147, 139]). All these operators have one thing in
common: they combine the membership grades of an element in different fuzzy sets
into a new membership grade. In other words, they aggregate the membership grades
and are therefore called aggregation functions. The fact that the origin of aggregation
functions is related to operators of fuzzy sets, combining membership grades, explains
why aggregation functions are traditionally defined for the domain [0, 1]n and maps to
the codomain [0, 1]. A proper definition of aggregation functions is the following [14]
where x ≤ y implies that xi ≤ yi for all i ∈ {1, . . . , n}:
Definition 1 (Aggregation function). An aggregation function is a function of
n > 1 arguments that maps the (n-dimensional) unit cube onto the unit interval
fn : [0, 1]n → [0, 1], with the properties

(i) fn(0, 0, . . . , 0︸ ︷︷ ︸
n-times

) = 0 and fn(1, 1, . . . , 1︸ ︷︷ ︸
n-times

) = 1,

(ii) x ≤ y implies fn(x) ≤ fn(y) for all x,y ∈ [0, 1]n.
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Over the years, many families of aggregation functions have been developed and
their mathematical properties have been studied. An introduction to the field of
aggregation functions will be provided which focuses on the aggregation functions
and the mathematical properties that are of interest to this thesis. A full review of
aggregation function falls beyond the scope of this thesis and the interested reader is
referred to several papers and specialized monographs [20, 77, 143, 14] for a thorough
discussion. Note that in this thesis the superscript notation of an aggregation function
refers to the arity of the aggregation function.

Important mathematical properties

The research on aggregation functions has always been heavily dominated by the
study of mathematical properties. Although a thorough knowledge and understanding
of the mathematical properties of aggregation functions is necessary for selecting the
correct family of aggregation functions for a specific problem, a translation of these
mathematical properties into understandable and meaningful interpretations of the
aggregation behavior is equally important. As Beliakov mentions in [12], it is this
clear and intuitive interpretation of aggregation functions which is sometimes lacking,
in spite of the elaborated underlying mathematical theory. Therefore, the discussion
of four mathematical properties, which are important for the further discussion in
this thesis, will not solely focus on the mathematical definition, but will also try to
describe the implications for the actual aggregation behavior.

The first mathematical property which is of importance for this work is
associativity, which is defined as follows [20]:

Definition 2 (Associativity). An aggregation operator fn+m : [0, 1]n+m → [0, 1]
is associative if

∀n,m ∈ N, ∀x1, . . . , xn, y1, . . . , ym ∈ [0, 1] :

fn+m(x1, . . . , xn, y1, . . . , ym) = f2 (fn(x1, . . . , xn), fm(y1, . . . , ym)) .

Associativity can be a very powerful property because with this property it suffices
to define the aggregation functions for two elements, i.e. the binary aggregation
function. If more than two elements need to be aggregated, this can be easily done in
an incremental way, i.e. each time a new element is aggregated with the preliminary
aggregation result. Associativity is a very important property when modeling an
aggregation process where input information arrives in steps and where the number
of input elements can become astronomically large. On the other hand, associativity
is a very strong and rather restrictive property [20] and recently some authors have
argued that lack of associativity should not necessarily be considered a problem [108].

A second important mathematical property is symmetry or commutativity, which
is defined as follows [14]:

Definition 3 (Symmetry). An aggregation function fn is called symmetric, if its
value does not depend on the permutation of the arguments, i.e.,

fn(x1, x2, . . . , xn) = fn(xP (1), xP (2), . . . , xP (n)),

for every x = (x1, x2, . . . , xn) and every permutation P = (P (1), P (2), . . . , P (n)) of
(1,2,. . . ,n).
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3. The LIED framework

Symmetry can be interpreted as anonymity or equality of the input elements of
the aggregation. This property is essential for explicitly modeling the irrelevance of
the order of the input information in an aggregation process, such as the aggregation
of anonymous votes into a final decision outcome. However, if the input elements
have different semantical backgrounds such that reordering the input elements does
not make sense, one should not strive for this property. As Rudas and Fodor [108]
mentioned, this only results in an unnecessarily restrictive condition.

The third mathematical property, which is probably the most important in this
thesis, is the neutral element, which is defined as follows [14]:

Definition 4 (Neutral element1). An aggregation function fn has a neutral
element e ∈ [0, 1], if for every x = (x1, x2, . . . , xn) with xi = e, for some 1 ≤ i ≤ n,
and n ≥ 2,

fn(x1, . . . , xi−1, e, xi+1, . . . , xn) = fn−1(x1, . . . , xi−1, xi+1, . . . , xn).

The neutral element of an aggregation function can be regarded as a specific value
which has no impact on the aggregation outcome, i.e. adding more input elements
with this value does not change the outcome of the aggregation. Originally, as
defined above, a neutral value needs to represents a value which has no impact on the
aggregation no matter which position it takes in the order of input elements. However,
this is often a too restrictive condition in situations where each input element has a
different semantical meaning and changing the order of the input elements does not
make sense. Recently, the concept of neutral elements has been extended to neutral
tuples which do take the position of input elements into account [13].

To properly define the concept of neutral tuples, first some notation needs to be
introduced which comes directly from [13]. The vector with input elements is denoted
as x ∈ [0, 1]n. If I = {I1, . . . , Im} ⊂ {1, . . . , n} is an index set with cardinality
|I| = m > 0, then xI = (xI1 , . . . , xIm) will be used to denote the vector obtained
from x by selecting the components whose indices are in I in the order I1 < . . . < Im.
In addition, if I = {I1, . . . , In−m}, with convention I1 < . . . < In−m, denotes
the complement of I in {1, . . . , n}, then xI will denote the tuple (xI1

, . . . , xIn−m
).

For example, if n = 5, I = {2, 4, 5} then xI = (x2, x4, x5) and I = {1, 3} and
xI = (x1, x3). With this notation, it is possible to define a neutral tuple as follows [13]:

Definition 5 (Neutral tuple). Let fn be an aggregation function and let I ⊂
{1, . . . , n}, n > 1, be an index set such that 0 < |I| = m. Then:

• A tuple ε ∈ [0, 1]m is neutral for fn with respect to I when

fn(x) = fn−m(xI)

holds for all x ∈ [0, 1]n such that xI = ε

1In their work [14], Beliakov et al distinguish between a neutral element and a strong neutral
element. We will not make this distinction and use the definition for a strong neutral element, which
is the strongest version of both.
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3.2. Aggregation functions

• The set made of all the tuples ε ∈ [0, 1]m which are neutral for fn with respect
to I will be denoted by εm(fn, I) and will be called the neutral set of fn with
respect to I.

The definition of a neutral tuple allows a further refinement of the neutrality
concept by focussing only on neutral tuples with a cardinality equal to 1. Such
neutral tuples will be denoted as neutral singletons and are defined as follows:

Definition 6 (Neutral singleton). Let fn be an aggregation function and let i ∈
{1, . . . , n} be an index. Then:

• A singleton λi ∈ [0, 1] is neutral for fn with respect to index i when

fn(x1, . . . , xi−1, λ
i, xi+1, . . . , xn)

= fn−1(x1, . . . , xi−1, xi+1, . . . , xn)

holds for all x ∈ [0, 1]n

• The set made of all the singletons λi ∈ [0, 1] which are neutral for fn with
respect to index i will be denoted by Λi(fn) and will be called the neutral set
of fn with respect to index i.

If the neutral value represents the value which does not have an impact on the
aggregation for any possible input position, then a neutral singleton λi represents
a value which does not have an impact on the aggregation for input position i and
Λi(fn) represents the set of values which do not have an impact on the aggregation
for input position i. This allows to extend the principle of neutrality more easily to
asymmetric functions.

Furthermore, the absorbing element or annihilator represents the opposite of the
neutral value. The absorbing element is a value which completely determines the
aggregation outcome regardless of the other input values. More specifically, if the
aggregation contains one input element equal to the absorbing element, the outcome
of the aggregation is equal to the absorbing element. One can interpret the absorbing
element as an input value which can not be changed no matter which information is
added to it. The proper definition of the absorbing element is as follows [14]:

Definition 7 (Absorbing element). An aggregation function fn has an absorbing
element a ∈ [0, 1] if

fn(x1, . . . , xi−1, a, xi+1, . . . , xn) = a,

for every x such that xi = a with a in any position.

Classes of aggregation functions

In general, one can identify four general classes of aggregation function families,
depending on how the outcome of the aggregation is positioned on the unit axis
in relation to the position of the input elements. This is illustrated graphically in
Figure 3.2 which shows the possible range of outcomes of the aggregation of two
elements identified by the two black spots.

A disjunctive aggregation of two elements always provides an outcome which is
at least as large as the largest input element. Therefore, a disjunctive aggregation
function can be defined as [14]
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Figure 3.2: The four different classes of aggregation functions.

Definition 8 (Disjunctive Aggregation Function). An aggregation function fn

has disjunctive behavior (or is disjunctive) if for every x it is bounded by

fn(x) ≥ max(x) = max(x1, x2, . . . , xn).

Disjunctive aggregation functions can be regarded as extensions of the crisp set
union operator. Obviously, the maximum operator belongs to the class of disjunctive
aggregation functions. Within the class of disjunctive aggregation functions, a large
family of associative, symmetric aggregation functions with neutral element 0 exists
which are called t-conorms. In general, disjunctive aggregation functions are used
when upward reinforcement needs to be modeled, i.e. the input elements reinforce
each other in a positive way such that the final outcome is greater than the largest
input value.

On the other side of the spectrum, when negative reinforcement needs to be
modeled, conjunctive aggregation functions are used. Negative reinforcement occurs
when all the input elements are considered as “bad” and they have negative impact
on each other causing the outcome to be less than the smallest input element. A
conjunctive aggregation function can be defined as [14]

Definition 9 (Conjunctive Aggregation Function). An aggregation function fn

has conjunctive behavior (or is conjunctive) if for every x it is bounded by

fn(x) ≤ min(x) = min(x1, x2, . . . , xn).

Conjunctive aggregation functions can be regarded as extensions of the crisp
set intersection operator. Obviously, the minimum operator belongs to the class
of conjunctive aggregation functions. Within the class of conjunctive aggregation
functions, a large family of associative, symmetric aggregation functions with neutral
element 1 exists which are called t-norms.

Next, there are some aggregation functions which result in a neither disjunctive,
nor conjunctive outcome. These aggregation functions are called averaging
aggregation functions and have no direct counterpart in classical crisp set theory.
The definition of an averaging aggregation function is as follows [14]
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3.2. Aggregation functions

Definition 10 (Averaging Aggregation Function). An aggregation function f
is averaging if for every x it is bounded by

min(x) ≤ fn(x) ≤ max(x).

Averaging is possibly one of the most common ways to combine inputs. This type
of aggregation function is mainly used to model compensatory behavior or to produce
a value which can be considered representative for a set of input values. The most
widely known averaging aggregation function and possibly most widely used one too
is the arithmetic mean. Other well-known aggregation functions such as the weighted
arithmetic mean, with weights wi ∈ [0, 1] and

∑
wi = 1, or the geometric mean

(fn(x) = n
√

x1x2 . . . xn) also belong to the class of averaging aggregation functions.
Besides these classical means, other types of averaging aggregation functions have
been developed, such as the ordered weighted average (OWA) [137, 138], the Choquet
integral [24, 55] and the Sugeno integral [120, 55].

Finally, the fourth class of aggregation functions, called mixed aggregation
functions combines the aggregation behavior of all three other classes. This class
of aggregation functions is defined as follows [14]:

Definition 11 (Mixed Aggregation Function). An aggregation function is mixed
if it is neither conjunctive, nor disjunctive or averaging, i.e., it exhibits different types
of behavior on different parts of the domain.

This class of aggregation functions is particularly useful when modeling
aggregation of values on a bipolar scale. Bipolar scales have a neutral point such that
all values below the neutral point can be considered negative, while all values above
the neutral point can be considered positive. Commonly, negative values reinforce
each other downwardly, positive values reinforce each other upwardly, and negative
and positive values average each other. Later it will be shown that this type of
aggregation behavior is useful when modeling the CS/D process at an attribute level.
Therefore, focus is put on a particular family of aggregation behavior belonging to the
class of mixed aggregation functions, i.e. uninorms [144, 38, 50, 141, 51]. Some other
families of aggregation functions belonging to the class of mixed AF are nullnorms,
T-S functions, symmetric sums and ST-OWA functions [14].

Uninorms, which are the result of the unification of the t-norm and the t-conorm,
were formally introduced by Yager and Rybalov [144]. They defined a uninorm as
follows:

Definition 12 (Uninorm). A uni-norm U is a function U : [0, 1] × [0, 1] → [0, 1]
having the following properties:

(i) U(x1, x2) = U(x2, x1) (Symmetry),

(ii) x1 ≥ x3 and x2 ≥ x4 ⇒ U(x1, x2) ≥ U(x3, x4) (Monotonicity),

(iii) U (x1, U(x2, x3)) = U (U(x1, x2), x3) (Associativity),

(iv) There exists some element e ∈ [0, 1] called the neutral element such that for all
a ∈ [0, 1], U(a, e) = a.
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3. The LIED framework

The fourth property of this definition reflects the unifying nature of this
aggregation function. T-norms, which are conjunctive aggregation functions, are,
similar to uninorms, defined as symmetric, associative and monotone aggregation
functions. However, contrary to uninorms, the neutral element of a t-norm is fixed
to 1. On the other hand, t-conorms are symmetric, associative and monotone
aggregation functions which have a neutral element equal to 0. Uninorms extend
and unify both aggregation functions by allowing the neutral element to take any
value within the [0,1] interval. At the same time, this results in a more complex
aggregation behavior which is illustrated in Figure 3.3. This figure illustrates the
important role of the neutral element e. Not only does it act as a null vote in the
aggregation, it also defines the aggregation behavior. If both the input elements are
smaller than e, the input elements will negatively reinforce each other during the
aggregation. On the other hand, if both the input elements are larger than e, the
input elements will positively reinforce each other. Finally, when the input elements
are on either side of e, they will average each other out. In relation to the use of
uninorms for values from a bipolar scale, this reveals that the neutral element can
be somehow considered as the central element which defines positive and negative
values. It should also be noted that the neutral element should not necessarily be
located in the center of the scale as Figure 3.3 might imply.

0

x
2

x
1

e

e

Conjunctive Aggregation

U(x
1
,x

2
) ≤ min(x

1
,x

2
)

Disjunctive Aggregation

U(x
1
,x

2
) ≥ max(x

1
,x

2
)

Averaging Aggregation

min(x
1
,x

2
) ≤ U(x

1
,x

2
) ≤ max(x

1
,x

2
)

Averaging Aggregation

min(x
1
,x

2
) ≤ U(x

1
,x

2
) ≤ max(x

1
,x

2
)

Figure 3.3: Aggregation behavior of a uninorm with neutral element e.

Among the family of uninorms, two types of uninorms can be discerned, i.e.
conjunctive uninorms and disjunctive uninorms. This dichotomy is caused by the
fact that for any uninorm U(0, 1) ∈ {0, 1}. If U(0, 1) = 0, the uninorm is called
conjunctive and has a = 0 as its absorbing element [14]. If U(0, 1) = 1, the uninorm is
called disjunctive and has a = 1 as its absorbing element [14]. Furthermore, uninorms
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3.2. Aggregation functions

are never continuous on the whole unit square [0, 1] × [0, 1] [14]. However, there are
uninorms which are continuous everywhere except at the corners (0, 1) and (1, 0).
These are called representable uninorms or generated uninorms. This particular class
of uninorms was introduced by Dombi [38] long before Yager and Rybalov coined the
term uninorm. A representable uninorm is built by means of univariate functions g,
called generator functions or generators [14]:

Definition 13 (Representable uninorms). Let g : [0, 1] →]−∞, +∞[ be a strictly
increasing bijection such that g(e) = 0 for some e ∈]0, 1[.

• The function given by

U(x1, x2) =

{
g−1(g(x1) + g(x2)) if (x1, x2) ∈ [0, 1]2\{(0, 1), (1, 0)},
0 otherwise

is a conjunctive uninorm with the neutral element e, known as a conjunctive
representable uninorm.

• The function given by

U(x1, x2) =

{
g−1(g(x1) + g(x2)) if (x1, x2) ∈ [0, 1]2\{(0, 1), (1, 0)},
1 otherwise

is a disjunctive uninorm with the neutral element e, known as a disjunctive
representable uninorm.

The function g is called an additive generator of the uninorm U . Note that since
generator functions are unary, the superscript notation of the function’s arity is not
used.

A remarkable property of representable uninorms, which does not automatically
hold for any uninorm, is that they are strictly increasing on ]0, 1[2. This is caused by
the fact that representable uninorms are built with strictly increasing generators.

Representable uninorms, which belong to the aggregation function family of
uninorms can also be assigned to the family of generated functions. This family
of aggregation functions, which encompasses aggregation functions of all classes, i.e.
disjunctive, conjunctive, averaging and mixed, are all built by means of generator
functions. Generated functions are defined as [14]:

Definition 14 (Generated function). Let g1, . . . , gn : [0, 1] →] − ∞,+∞[ be a
family of continuous non-decreasing functions and let h :

∑n
i=1 Ran(gi) → [0, 1] be a

continuous non-decreasing surjection. The function fn : [0, 1]n → [0, 1] given by

fn(x1, . . . , xn) = h (g1(x1) + . . . + gn(xn))

is called a generated function, and
({gi}i∈{1,...,n}, h

)
is called a generating system.

Generated functions are a very general family of aggregation functions. For
example, the generating system

(
{gi(x) = x}∀i∈{1,...,n}, h(x) =

x

n

)
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results in the well known arithmetic mean, which is an averaging aggregation
function. On the other hand, the generating system

(
{g1(x) = g2(x) = . . . = gn(x) = g(x)}, h(x) = g(−1)(x)

)

with a strictly increasing bijection g(x) : [0, 1] →]−∞,+∞[ results in the mixed
aggregation function known as a representable uninorm. A third and very interesting
type of generated function are the continuous generated functions with a neutral
element, which are generated by means of the generating system

(
{g1(x) = g2(x) = . . . = gn(x) = g(x)}, h(x) = g(−1)(x)

)

with a continuous non-decreasing function g : [0, 1] →]−∞,+∞[ such that g(e) =
0, g(−1) as its pseudo-inverse, and Ran(g) (]−∞, +∞[.

Pseudo-inverse functions are inverse functions which can also be defined for
discontinuous functions. The exact definition is as follows:

Definition 15 (Pseudo-inverse of a monotone function). Let g : [a, b] → [c, d]
be a monotone function, where [a, b], [c, d] are subintervals of the extended real line.
Then the pseudo-inverse of g, g(−1) : [c, d] → [a, b] is defined by

g(−1)(t) = sup{z ∈ [a, b]| (g(z)− t) (g(b)− g(a)) < 0}.

3.3 A generic framework for the ED paradigm with limited
information

Now that the basic concepts of aggregation functions have been introduced, the
problems of modeling the CS/D process according to the ED paradigm with
limited information can be reconsidered. As was mentioned in the introduction,
companies which want to evaluate their customers’ satisfaction with a specific product
X, often apply the following scenario. Firstly, the company identifies different
product attributes which are believed to have an influence on the overall satisfaction
experience. Next, by means of a survey, the companies ask several customers to
rate the performance of each product attribute and to give an overall satisfaction
score. With the collected data, which contains rather limited information about the
CS/D process, a linear regression of the performance ratings on the satisfaction score
is performed. The regression coefficients provide an indication of the impact of a
specific product attribute’s performance on the overall satisfaction.

However, this approach has several problems which have been discussed before and
the modeling mismatch between the linear regression approach and the ED paradigm
is shown in Figure 3.1.

The best solution to these problems is to enrich the data with information about
the customer’s expectations and disconfirmation such that CS/D process can be
modeled according to the ED paradigm. Most likely, this results in setting up a
new and more comprehensive survey to gather the necessary data. However, for some
companies this might not be a viable alternative because of cost constraints.

In such cases, a new framework is proposed as a second best alternative. This
framework allows companies to use their performance data and satisfaction scores
to model the CS/D framework according to the ED paradigm which consequently
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3.3. ED paradigm framework with limited information

results in theoretical more sound inferences from the gathered data. The framework
is called the LIED2 framework, which stands for Limited Information Expectancy
Disconfirmation framework.

Although, the data might seem too limited at first to model the ED paradigm,
the LIED framework succeeds in doing so by considering the customer’s expectation
as an unknown, latent construct. This is illustrated in Figure 3.4. Considering
expectation as a latent construct instead of measuring it directly has the benefit that
the researcher does not need to decide which type of expectation to choose from
to operationalize the customer’s referent. The LIED framework simply assumes a
latent construct which is used as comparative referent. Given this expectation, the
(calculated) disconfirmation can be derived as the difference between the measured
construct ‘Performance’ and the latent construct ‘Expectations’. This way, four out
of five constructs are recovered from the complete ED model. The only construct
the LIED framework can not recover from the data is the subjective disconfirmation.
Obviously, comparing Figure 3.4 with Figure 3.1 reveals that the LIED framework
provides a much closer match with the theory than the linear regression approach.

Expectations

Performance

Outcomes

Calculated

Disconfirmation

Satisfaction/

Dissatisfaction

Measured Constructs

Latent Constructs

Figure 3.4: Modeling the ED paradigm with limited information.

Objective and subjective disconfirmation

Considering the ED paradigm in Figure 3.1 and focussing on the relationship between
calculated disconfirmation and satisfaction, it can be seen that this effect is mediated
through subjective disconfirmation. One could say that objective disconfirmation
is first transformed into subjective disconfirmation according to a specific function
f , and that subjective disconfirmation has an effect on satisfaction according to a
specific function g. Following this notation, one can define the effect of objective
disconfirmation on satisfaction as the function h = g ◦ f . The fact that the LIED
framework does not incorporate subjective disconfirmation as a separate construct,
implies that the measured effect of objective disconfirmation on satisfaction must be
equal to h and the resulting limitation of this framework is that it is impossible to
disentangle the effects represented by f and g.

Oliver [97] argued that customers do not always evaluate performance at
the objective level, especially when the product attribute is difficult to measure

2pronounce as “light”
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objectively, such as for driving comfort. In such situations, our construct of
disconfirmation is rather theoretical, but the function h still provides useful insights
about the relationship between disconfirmation and satisfaction.

Finally, there is some critique in the existing literature against using calculated
disconfirmation because it does not contain information about the valence of the
disconfirmation: e.g. the fact that a car uses 1 liter of gas more than expected, gives
no information whether customers consider this as a large or small disconfirmation.
However, this critique is mainly directed at the measurement of disconfirmation and
is not a real issue within the LIED framework. Another point of critique against
objective disconfirmation is that for some product attributes it becomes nearly
impossible to objectively calculate the disconfirmation because expectation can not
be measured objectively with high precision. For example, while expected car mileage
can be expressed on a high precision scale, it is much harder for customers to express
their expected level of driving comfort with the same level of accuracy. However,
since the LIED framework does not need to measure expectation, but derives it from
the performance data, this critique is not a real problem either.

The LIED Framework

Based on the customer satisfaction theory discussed previously, expectation and
disconfirmation are considered as the two direct antecedents of customer satisfaction.
Note that although some research results suggested performance as a direct
antecedent of satisfaction, the LIED framework only considers the indirect effect
of performance, mediated through disconfirmation. This implies that the LIED
framework remains theoretically close to the original formulation of the ED paradigm
in [96], which is based on Helson’s [61] adaptation theory. Consequently, customer
satisfaction is represented as a function Φ1 of the experienced disconfirmation
d = {d1, . . . , di, . . . , dn} and the expectation level e = {e1, . . . , ei, . . . , en} for each
attribute i.

Satisfaction = Φ1(d, e) (3.1)

Because only performance data is available in the scenario of limited information,
satisfaction is often modeled as a function Φ2 of the perceived performance p =
{p1, . . . , pi, . . . , pn} for each attribute i.

Satisfaction = Φ2(p) (3.2)

Equations 3.1 and 3.2 illustrate how the performance based satisfaction modeling
Φ2 fails to correspond properly with the expectancy disconfirmation model Φ1.
To correct this mismatch, a specific fixed expectation level e is assumed which is
integrated into model Φ3 as a parameter. This allows the transformation of the
performance levels into disconfirmation levels. In the following notation, expectation
will always be explicitly mentioned in the function’s signature, separated from the
variables by a semicolon.
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Satisfaction = Φ3(p1, . . . , pn; e)
= Φ3(p1 − e1, . . . , pn − en; e)
= Φ3(d1, . . . , dn; e)
= Φ3(d; e) (3.3)

This approach offers a better match with the expectancy disconfirmation paradigm
(cf compare Eq. 3.1 and 3.3). The difference between the LIED modeling approach
Φ3 (Eq. 3.3) and the expectation disconfirmation model Φ1 (Eq. 3.1), is that in the
traditional ED modeling, the customer’s expectation is measured directly by means
of a survey and entered into the model as a separate variable. In the LIED approach,
the expectation is unknown and has to be learned from the data. In other words, in
the LIED model, expectation is integrated by means of parameters. However, if a
single model is learned for all the customers, the expectation level derived from the
model’s parameters also holds for all the customers. Consequently, if customers are
believed to have different expectation levels and the researcher wants to know the
individual expectation levels, a separate model needs to be built for each customer.

The LIED modeling approach can be separated into three consecutive steps. First,
the separate disconfirmation effect for each attribute is modeled. Next, all these effects
are aggregated into an overall disconfirmation effect. Thirdly, satisfaction is modeled
by means of this overall disconfirmation effect. Each step of the modeling framework
will be separately discussed in detail below.

Modeling the attribute’s disconfirmation effect on satisfaction

The first modeling step transforms the attribute’s performance pi into the attribute’s
disconfirmation effect δi on satisfaction, by means of a first-step function φ1

i (pi; ei)
which is defined as follows:

Definition 16 (First-step function). A first-step function φ1
i (pi; ei) is a function

with the following properties:

(i) ∀x, y ∈ Dom(φ1
i ) : x ≤ y ⇒ φ1

i (x) ≤ φ1
i (y),

(ii) ∃[a, b] ⊂ Dom(φ1
i ) : ∀pi ∈ [a, b] ⇔ φ1

i (pi; ei) = 0.

Note that the superscript notation of a step function refers to the current step in
the LIED framework. The first step function is always unary. Furthermore, the first-
step function has to be monotone to ensure that an increase in performance, which
also implies an increase in disconfirmation given the fixed expectation level, does not
result in a drop in satisfaction, ceteris paribus. The second part of the definition of
a first-step function refers to the existence of a non-tempty interval of root elements,
i.e. elements for which the function evaluates to zero. Note that because the first-step
function is monotone by definition, no two disjunctive intervals of root elements exist.

Definition 17 (Root element). Element a is a root element of a unary function f ,
if and only if f(a) = 0.
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The root elements of the first-step function fulfill a crucial role in the framework
because they represent the performance levels which do not result in a disconfirmation
effect. This is possible if the calculated disconfirmation, i.e. pi−ei, is zero or so small
that it does not have an effect on satisfaction. In other words, this set of root elements
contain performance levels which lead to disconfirmation levels to which customers
are indifferent. Therefore, the following property can be formulated:

Property 1 (Zone of indifference). The interval of root elements [a, b] of the
first-step function represents the zone of indifference.

Obviously, one of the performance levels within the zone of indifference has to
be the expected level of performance which results in a zero disconfirmation level.
Therefore, if the interval of root elements is limited to one specific value, it must
represent the customer’s expectation. This is formulated in the following property:

Property 2 (Expectation). If the interval of root elements of the first-step
function is limited to one single element, then this element is equal to the customer’s
expectation ei.

The first-step function is defined as general as possible. All functions which are
monotone and possess an interval of root elements are possible candidates for the
first-step function in the LIED framework. However, to guide researchers in choosing
a proper functional form for the first-step function, a few additional properties of the
first-step function will be discussed which can help to increase the match between the
framework and the existing CS/D theory.

Property 3 (Asymmetric disconfirmation effect). Disconfirmation has an
asymmetric effect on satisfaction iff ∃d such that (ei + d), (ei − d) ∈ Dom(φ1

i ) and
φ1

i (ei − d; ei) 6= −φ1
i (ei + d; ei).

Research by Mittal et al. [90] has provided evidence for an asymmetric effect of
disconfirmation on satisfaction. Researchers who want to model such asymmetric
disconfirmation effect can use property 3 to select an appropriate first-step function.
This property is illustrated in Figure 3.5 which shows an inverse S-shaped function as
the first-step function. This figure illustrates that attribute disconfirmation di1 and
di2 have the same magnitude, but the effect on disconfirmation caused by di1 is much
larger than the effect on disconfirmation caused by di2.

Modeling the overall disconfirmation effect

The second modeling step in the LIED framework aggregates all the individual
attribute disconfirmation effects δi into an overall disconfirmation effect δtotal, by
means of the second-step function φ2, who’s arity is defined by the number of product
attributes. Note again that the superscript notation does not refer to the function’s
arity but to the current step in the LIED framework. The second-step function φ2 is
defined as follows:

Definition 18 (Second-step function). A second-step function φ2 is a function
with Dom(φ2) ⊇ Ran(φ1

1)×. . .×Ran(φ1
i )×. . .×Ran(φ1

n) with the following property

∀x,y ∈ Dom(φ2) : x ≤ y ⇒ φ2(x) ≤ φ2(y).
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Figure 3.5: The asymmetric effect of disconfirmation on satisfaction.

The second step in the LIED framework actually models some kind of human
aggregation behavior. It has been acknowledged that customers most likely experience
disconfirmation at an product attribute or product dimension level, but to arrive at an
overall satisfaction level, these disconfirmation effects need to be aggregated somehow.
Therefore, the second step function is defined to be monotone. It would not make
sense that the overall disconfirmation effect decreases when not a single attribute
disconfirmation effect decreases.

The way people aggregate information has been extensively studied in domains
such as information processing, psychology and attitude formation and decision
making (cf [113, 43]). Within decision making, classic utility theory [132] offers an
idealized mathematical model how people aggregate the valuations of an object’s
component characteristics into the utility of the object. To some extent, the
first two steps of the LIED framework resemble the classic utility theory. Both
models aggregate evaluations made at a more detailed level, i.e. product attribute
disconfirmation or object component valuation, to arrive at a global level evaluation.

Within classic utility theory, mathematical tractability is obtained by assuming
that the utilities of objects are compensatory [43]. Translated to the LIED framework,
this would imply that a negatively valued disconfirmation is compensated by a
positively valued disconfirmation. This results in the following property:

Property 4 (Compensating behavior). A second step function has compensating
behavior if for some non-empty part of its domain the following holds

min(x) ≤ φ2(x) ≤ max(x).

Although people aggregate information in a compensating way in real life [113],
it has been criticized for being a too idealistic representation. Various researchers
have suggested that some people will exhibit non-compensatory aggregation behavior
in certain situations [113, 43, 54, 21]. Among the non-compensatory models, one
can distinguish two types of aggregation behavior, i.e. conjunctive aggregation and
disjunctive aggregation. This results in the following two properties:
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3. The LIED framework

Property 5 (Conjunctive behavior). A second step function has conjunctive or
downward reinforcement behavior if for some part of its domain the following holds

φ2(x) ≤ min(x).

Property 6 (Disjunctive behavior). A second step function has disjunctive or
upward reinforcement behavior if for some part of its domain the following holds

max(x) ≤ φ2(x).

Modeling customer satisfaction

The third modeling step transforms the overall disconfirmation effect on satisfaction
into a final satisfaction response, by means of a third-step function φ3 which is defined
as

Definition 19 (Third-step function). A third-step function φ3 is a function with
Dom(φ3) ⊇ Ran(φ2) with the following property

(i) ∀x, y ∈ Dom(φ3) : x ≤ y ⇒ φ3(x) ≤ φ3(y),

(ii) 0 ∈ Dom(φ3).

Note that φ3 is a unary function and the superscript refers to the third step in
the LIED framework. The first part of the definition of a third-step function sets
the monotonicity property of the third-step function. This ensures that satisfaction
cannot decrease if the overall disconfirmation effect increases or remains the same,
ceteris paribus. The second part defines that the element zero must be part of
the third-step function’s domain. This is crucial because the element zero has an
important interpretation, it represents the situation where the customer does not
experience any disconfirmation effect. Consequently, the satisfaction level when the
overall disconfirmation effect is zero represents the initial satisfaction level or the
adaptation level set by the customer’s expectation (cf Oliver’s ED Paradigm [96]).
Therefore, the following property can be formulated:

Property 7 (Adaptation Level). The value φ3(0) corresponds to the initial
satisfaction level or the adaptation level set by the customer’s expectation level.

It should be noted that the LIED framework does not mathematically impose
a positive relationship between the customer’s expectation e, which was modeled
as a parameter in the first-step function, and the adaptation level φ3(0). Such
mathematical restriction is not very practical because expectation is modeled as a
parameter and not as a variable. Therefore, once a model is learned from the data,
expectation is assumed to be fixed and equal for the entire population and the model
cannot reveal how expectation influences satisfaction.

The only modeling situation when a direct positive relationship between e and
φ3(0) is of practical importance, is when multiple models are learned for various
groups of customers. Such approach is necessary when the marketers expect
customers to have widely varying expectation levels. Across these multiple models,
the researcher might impose the restriction that the relationship between e, as
revealed by the first-step function, and the initial satisfaction level φ3(0), as revealed
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3.3. ED paradigm framework with limited information

by the third-step function, should be positive. Such restriction should however
be considered with some circumspection. Firstly, defining a positive relationship
between a vector e and a scalar φ3(0) is not univocal. Secondly, although research
results provided evidence for such a positive relationship between expectation and
satisfaction, such a relationship was not always discovered by other researchers
and the magnitude of the relationship is rather small compared to the effect of
disconfirmation [122].

Finally, the effect of the overall disconfirmation on satisfaction is not necessarily
linear. Mittal et al. [90] demonstrated that the overall satisfaction displays
diminishing sensitivity to changes in the magnitude of performance for a given
attribute. Therefore, it is not unlikely to assume that the satisfaction response also
exhibits a diminishing sensitivity to the overall disconfirmation effect. This results in
the following two properties:

Property 8 (Positive diminishing returns). The third-step function models
diminishing returns for positive disconfirmation effects if the following holds:

∃a ∈ Dom(φ3) : x > a ⇒ d2φ3(x)
dx2

< 0.

Property 9 (Negative diminishing returns). The third-step function models
diminishing returns for negative disconfirmation effects if the following holds:

∃a ∈ Dom(φ3) : x < a ⇒ d2φ3(x)
dx2

> 0.

The property of diminishing returns was separated in a positive and a negative
part because it could be that customers only show diminishing returns for positive or
negative disconfirmation.

The LIED framework continued

The framework models customer satisfaction in three consecutive steps, using
attribute performance data pi and assuming a specific expectation level e. Each
step consists of a specific type of function, which is defined in such a way that
the framework is in accordance with the expectancy disconfirmation paradigm.
Furthermore, for each step function, various properties were discussed which clarify
the relationship between the mathematical function and the theories surrounding
CS/D research. When the three step functions are combined, the entire framework
can be written mathematically as follows.

Satisfaction = Φ3(p1, . . . , pn; e) = φ3
(
φ2

(
φ1

1(p1; e1), . . . , φ1
n(pn; en)

))

Researchers or marketers who want to use this framework to model customer
satisfaction have to start by choosing a valid functional form for each step function.
Each function can then be studied mathematically to verify which properties hold
in order to fully understand the modeling characteristics. For example, by testing
the sign of the second derivative of the third step function, it is possible to verify if
diminishing returns are modeled or not (cf Properties 8 and 9).
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3. The LIED framework

The framework itself is very general and the restrictions imposed by definition on
the functional form of the step functions are rather weak. This results in a myriad
of possible functional forms for each step function and for the framework in general.
In the next section, the relationship between the framework and a specific family of
aggregation functions is discussed, which offers guidance to researchers and marketers
in selecting appropriate functional forms for the three step functions.

3.4 Generated Functions

The LIED framework aggregates a set of attribute performance values into a single
satisfaction value in three steps. Firstly, the input elements are transformed, then
these transformations are aggregated and finally the aggregated value is transformed
again. This aggregation procedure is almost exactly the same as the aggregation
behavior of generated functions, which is a specific family of aggregation functions.
Table 3.1 reveals the similarity between the framework and generated functions. It
also shows that generated functions impose more restrictions on the function used for
aggregation in the second step. Whereas the framework allows any monotone n-ary
function, the family of generated functions exclusively uses the mathematical sum as
aggregation function.

Table 3.1: Match between the modeling framework and generated functions

Transformation Aggregation Transformation

LIED Framework First-step
function φ1

i

Second-step
function φ2

Third-step
function φ3

Generated Function Continuous
non-decreasing

function

∑
Continuous

non-decreasing
surjection

Given the similarity between the framework and generated functions, the question
arises whether all generated function are valid implementations of the framework.
For this, all three steps need to be compared. The inner function gi(xi) of a
generated function fn(x) = h(

∑n
i=1 gi(xi)) is defined as a continuous monotone

function mapping [0, 1] →] − ∞, +∞[. In order to be a valid first-step function,
gi(xi) must be monotone and its image must contain the value 0. The condition of
monotonicity holds by definition. Given the continuous nature of gi(xi) it suffices
that the image of gi(xi) contains at least one positive value and one negative value,
in order for 0 to be an image element of gi(xi). Therefore, as long as the image of the
inner function gi(xi) contains the value 0, any valid inner function is a valid first-step
function.

The framework defines the second-step function as any non-decreasing function
with a domain which contains all possible vector elements produced in the first step
of the framework. This definition gives the researcher or marketer a lot of freedom
in choosing a valid second-step function. The definition of generated functions
does not provide this freedom in the second stage of the aggregation but limits
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3.4. Generated Functions

the implementation of the second stage to the mathematical sum. Considering
Definition 18, the mathematical sum is a valid second step function since it is strict
monotone increasing and its domain contains R.

The third-step function is defined as a monotone function containing the value 0 in
its domain. The outer function h(x) of a generated function fn(x) = h(

∑n
i=1 gi(xi)) is

monotone by definition and contains 0 in its domain if 0 ∈ ∑n
i=1 Ran(gi). Therefore,

any outer function h(x) where 0 ∈ Dom(h) is a valid third-step function. From this
follows:

Definition 20 (A valid generating system implementation). Any generated
function built with the generating system

({gi}i∈{1,...,n}, h
)

is a valid framework
implementation if the following holds:

(i) ∀i ∈ {1, . . . , n} : 0 ∈ Ran(gi),

(ii) 0 ∈ Dom(h).

The large family of generated functions is now identified as valid implementations
of the LIED framework under two specific conditions. Having a more restrictive
nature than the framework, using generated functions to implement the framework
also holds some implications. Firstly, generated functions limit the domain and the
codomain to the [0, 1] interval. This implies that satisfaction scores and attribute
performance scores need to be measured in the [0, 1] interval. Within the domain of
CS/D, the [0, 1] scale is not always used. Sometimes, researchers prefer the use of a
bipolar scale such as [−1, 1].

As mentioned by Beliakov et al. [14], the aggregation functions on two different
closed intervals are isomorphic, i.e. any aggregation function on the scale [a, b] can
be obtained by a simple linear transformation from an aggregation function on [0, 1].
Thus the choice of scale is a question of interpretability, not of aggregation type. In the
situation of modeling CS/D with the LIED framework, this implies that researchers
must linearly transform their scale to the [0,1] scale and thee can transform the result
back to the original scale for interpretation purposes.

Secondly, generated functions as implementations of the framework limit the
second-step function to the mathematical sum. This results in a second step function
with compensating, conjunctive and disjunctive behavior (cf Properties 4, 5 and 6).
More specifically, the LIED framework implemented with generated functions has the
following attractive property:

Property 10 (Mathematical sum as a compensatory, conjunctive and
disjunctive second-step function). If the mathematical sum is used as the second-
step function, i.e. φ2 =

∑
, the following aggregation behavior occurs:

(i) A positive and a negative disconfirmation effect will compensate each other,

(ii) Two positive disconfirmation effects will positively reinforce each other,

(iii) Two negative disconfirmation effects will negatively reinforce each other.

In this thesis, the implementations of the new CS/D modeling framework will be
limited to generated functions. As shown above, this provides a valid implementation
given the two conditions mentioned in Definition 20. Albeit a bit more restrictive in
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3. The LIED framework

its choice of the step functions than the original framework, generating functions still
provide a lot of modeling flexibility. At the same time, it offers a solid mathematical
structure based on extensive research in the field of aggregation functions which can
help to identify the right implementation of the framework. Some of the mathematical
properties of generated functions and their implications for the LIED framework are
discussed next.

Continuity

A first important mathematical property of generated functions is continuity. This
is a nice property to have because it makes the estimation of the model parameter
easier, since many optimization techniques are based on the (partial) derivative of a
function.

Generated functions such that Dom(h) 6=] − ∞, +∞[ are always continuous on
the whole unit cube. Generated functions for which Dom(h) =] −∞, +∞[ are also
continuous except for the case where there exist j, k ∈ {1, . . . , n}, j 6= k, such that
gj(0) = −∞ and gk(0) = +∞.

From the modeling framework perspective, discontinuity arises when one of the
first-step functions transforms an attribute performance pi into −∞ while another
first-step function transforms the attribute performance pj into +∞. Given the
fact that the mathematical sum is used as the second-step function, the overall
disconfirmation effect is modeled as a sum with one term equal to −∞ and another
term equal to +∞, which is mathematically undefined. In such cases the modeler
has to decide whether (−∞) + (+∞) results in −∞, which results in a conjunctive
generated function, or in +∞, which results in a disjunctive generated function. To
recognize any discontinuity in the modeling framework, it suffices to verify the image
values of the various first-step functions for the attribute performance values 0 and
1. If 0 is transformed into −∞ for some first-step functions and 1 is transformed
into +∞ for some other first-step functions, discontinuity is present in the modeling
framework and needs to be handled appropriately.

In general, the easiest way to achieve continuity in the whole domain [0, 1] is by
using first-step functions for which φ1

i (0) 6= −∞ and φ1
i (1) 6= +∞.

Symmetry

A generated function is symmetric if and only if it can be generated by a generating
system such that g1 = g2 = . . . = gn = g, where g : [0, 1] →] − ∞, +∞[ is
any continuous non-decreasing function [78]. Using a symmetric generated function
as the implementation of the framework implies that the attribute performances
(0.2, 0.4, 0.3) should result in the same satisfaction as the attribute performances
(0.4, 0.3, 0.2). In the CS/D modeling framework, this only makes sense if the
three attributes are equally evaluated into a disconfirmation effect by a customer.
If customers do not consider attributes equally important, it is possible that the
customers are less sensitive to disconfirmation for the less important attributes,
resulting in a smaller disconfirmation effect on satisfaction. Also, customers
might hold different expectations for different attributes. Consequently, equal
levels of performance will lead to different levels of disconfirmation and different
disconfirmation effects. In both situations, the modeler will prefer an asymmetric
generated function.
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In general, if modelers use the same first-step function for each attribute, they
should be aware that they are using a symmetric generated function and that they
are making the assumption that the customers have the same expectation level for
each attribute and that the disconfirmation process is the same for each attribute.

Neutrality

Some generated functions possess a neutral element, whereas others do not.
Komornikova [78] provided the following definition of the class of generated functions
possessing a neutral element:

Definition 21 (Generated functions with neutral element). A generated
aggregation function fn has a neutral element e ∈ [0, 1] if and only if for each n > 1,
fn can be expressed as

f.(x1, . . . , xn) = g(−1) (g(x1) + . . . + g(xn))

where g : [0, 1] →]−∞, +∞[ is a continuous non-decreasing function such that g(e) =
0 with the pseudo-inverse g(−1).

From Definition 21 follows that the neutral element of a generated function
corresponds to the root of the first-step function. According to Properties 1 and 2,
this corresponds to the customer’s expectation, if there is a single root element, or
the customer’s zone of indifference, if there is a set of root elements. Therefore, the
neutral element of the generated function plays a very important role in the modeling
framework, it reveals the referent(s) against which customers compare the perceived
attribute performance(s).

Definition 21 also reveals that generated functions with neutral elements are
always symmetric since they are constructed with the same first-step function for
each attribute. However, mostly researchers or marketers want asymmetric generated
functions to model CS/D unless they assume that the expectation for each attribute
is equal.

Although asymmetric generated functions do not have neutral elements, they do
have neutral singletons. The root element of a specific first-step function φ1

i which
models the transformation from attribute performance pi to disconfirmation effect δi

for attribute i results by definition in a disconfirmation effect δi = 0. Consequently,
this attribute’s performance has no influence on the outcome of the second step
function and therefore no influence either on the final outcome of the model. By
definition, the set of root elements of first-step function φ1

i is the neutral set Λi(f, n)
of the model f with n attributes with respect to attribute i.

Definition 22 (Neutral singletons of a generated function). Let fn be a
generated aggregation function with the generating system

({gi}i∈{1,...,n}, h
)
. Then

for each i ∈ {1, . . . , n}, each root element x0 of gi is a neutral singleton λi for fn with
respect to i.

In general, when the generated function is symmetric, the neutral element
represents the customer’s expectation, which is equal for each product attribute.
When the generated function is asymmetric, the neutral singletons for index i
represent the customer’s expectation for attribute i.
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3. The LIED framework

3.5 Implementing the LIED framework: an illustrative
example

In this chapter, a mathematical framework has been developed to model customer
satisfaction in conformity with the ED Paradigm. As mentioned before, this
framework imposes only a few restrictions on the functional form of its equations
and there are still many different ways to implement the framework. To provide
guidance for implementing the framework, the previous section investigated the close
relationship between the LIED framework and the well-known family of generated
functions. This provides a strong mathematical foundation for selecting appropriate
functions, but still leaves the researcher with a myriad of options. In the end,
researchers still have to make decisions about the functional form of the different
step functions. While making such decisions, it has to be taken into account that
the selected functional form of the model equations have implications on both the
model’s theoretical assumptions and the model’s estimability. This section illustrates
how to select appropriate step functions considering the theoretical assumptions one
wants to model. Assume the following situation:

“A company sells a very simple, low technological product which has to perform
a simple single task. It is assumed that only two product attributes have an influence
on the customers’ satisfaction, i.e. the price and the performance of the product.
There are many other competitors offering a similar product and it is assumed that
customers are not really sensitive to the product’s price as long as it is situated within
an acceptable range. However, real high prices will lower satisfaction and real low
prices have a positive effect on satisfaction. Since the product only performs a simple
task and many alternatives exist, customers are likely to be more sensitive to bad
performance than to good performance.”

To provide a proper implementation of the LIED framework for the above
situation, researchers must decide whether or not to exploit the relationship between
the LIED framework and generated functions. If they decide to implement the LIED
framework with a generated function, they must use continuous, monotone functions
φ1

i : [0, 1] →]−∞, +∞[ with 0 ∈ Ran(φi) as first step functions, the mathematical sum
as the second step function and a continuous monotone function φ3 :]−∞, +∞[→ [0, 1]
with 0 ∈ Dom(φ3) as the third step function. Additionally, researchers who do not
choose an implementation by means of a generated function need to define a proper
second step function.

By choosing a generated function as the implementation of the LIED framework,
three interesting properties of the model can be easily investigated, i.e. continuity,
symmetry and neutral element. Continuity of the model which can be important for
estimating the model can be easily achieved for a generated function by ensuring that
φ1

i (0) 6= −∞ and φ1
i (1) 6= +∞. Symmetry of the model implies that both product

attributes are evaluated against the same referent in the same manner, which is not
the case in the above example. Therefore, symmetry is not required and φ1

1 does
not have to be the same as φ1

2. If the generated function is no longer symmetric, it
will not possess a neutral element. Instead, researchers must focus on the neutral
singletons of the function as proxies for the customers expectation levels.

This first global analysis of the situation results in some basic guidelines for the
LIED implementation:
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• The first step functions φ1
i : [0, 1] →] −∞,+∞[ must be continuous monotone

with 0 ∈ Ran(φi) and may differ for each product attribute

• φ1
i (0) 6= −∞ and φ1

i (1) 6= +∞ for both first step functions

• The second step function is implemented as a mathematical sum of two terms

• The third step function φ3 :] −∞,+∞[→ [0, 1] must be continuous monotone
with 0 ∈ Dom(φ3)

Irrespective of further modeling decisions, any implementation following the
above will be continuous and the neutral singletons will represent the customers’
expectations for each product attribute.

Next, both first and third step functions need to be analyzed and defined in detail.
According to the above example, the first step function for the product performance
attribute needs to be asymmetric, i.e. customers will be less sensitive to positive
disconfirmation than to negative disconfirmation. A suitable functional form for this
first step function is

φ1
1(x1) =

{
a(x1 − e1) x1 ∈ [0, e1]
b(x1 − e1) x1 ∈]e1, 1],

(3.4)

with e1 ∈ [0, 1] and a > b > 0. Figure 3.6a is a plot of this first step functions with
a = 3, b = 1 and e1 = 0.4 and illustrates that this function is monotone continuous
with φ1

1(0) = −e1 6= −∞ and φ1
1(1) = 1 − e1 6= +∞. Furthermore Property 3 on

page 42 can be used to verify that φ1
1 is asymmetric since b < a.

As for the first step function of the product price attribute, the information in the
description of the example does not mention anything about asymmetry, but indicates
the existence of a zone of indifference. According to Property 1 on page 42 this
implies that the first step function needs to have an entire interval of root elements.
An appropriate first step function for the product price attribute is:

φ1
2(x2) =





c(x2 − e2a) x2 ∈ [0, e2a]
0 x2 ∈]e2a, e2b[
c(x2 − e2b) x2 ∈ [e2b, 1],

(3.5)

with e2a < e2b and c > 0. Figure 3.6b which shows a plot of this first step
function with parameter values c = 3, e2a = 0.4 and e2b = 0.7 clearly shows the zone
of indifference [e2a, e2b].

Finally, an appropriate third step function needs to be selected. The above
example gives no specific information on how customers transform disconfirmation
into satisfaction. Therefore, a linear transformation of disconfirmation into
satisfaction was selected such that 0 ∈ Dom(φ3):

φ3(x) = Max(Min(1, dx + f), 0) (3.6)

All three step functions are now clearly defined and the implementation of the full
model can be formulated as follows:
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(a) First step function φ1
1(x1) for product perfor-

mance attribute (Eq. 3.4)
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Figure 3.6: First step functions

Φ3(x1, x2) =





φ3(a(x1 − e1) + c(x2 − e2a)) x1 ∈ [0, e1], x2 ∈ [0, e2a]
φ3(a(x1 − e1)) x1 ∈ [0, e1], x2 ∈]e2a, e2b[
φ3(a(x1 − e1) + c(x2 − e2b)) x1 ∈ [0, e1], x2 ∈ [1, e2b]
φ3(b(x1 − e1) + c(x2 − e2a)) x1 ∈]e1, 1], x2 ∈ [0, e2a]
φ3(b(x1 − e1)) x1 ∈]e1, 1], x2 ∈]e2a, e2b[
φ3(b(x1 − e1) + c(x2 − e2b)) x1 ∈]e1, 1], x2 ∈ [1, e2b]

(3.7)

This elaborated example showed how the LIED framework and its connection
with generated functions can be used to translate a specific consumer satisfaction
setting into an appropriate model. However, the final model obviously does not excel
in parsimonity and can become troublesome to estimate. The development of an
appropriate estimation procedure for this specific models falls outside the scope of
this thesis. In one of the following chapters, an other LIED implementation based on
generated functions is introduced together with an appropriate estimation procedure.
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3.6 Summary

In this chapter, the LIED framework has been introduced, which allows companies
to model their customer’s (dis)satisfaction process in a theoretically sound manner
with only a limited amount of information needed. Many companies only gather
performance data and satisfaction data from their customers, which makes it
seemingly impossible to study the CS/D process according to the proven ED paradigm
because no information about the customer’s expectation is available. The LIED
framework overcomes this problem by modeling expectation as a latent construct
which must be learned from the data.

The LIED framework segments the CS/D process in three consecutive steps which
are all modeled by means of a different step function. Each step of the framework has
been studied from a mathematical point of view which allows a better understanding
between the mathematical properties and the existing customer satisfaction theories.

To aid researchers and marketers to apply the framework to their existing data,
the LIED framework was positioned within the theory of aggregation functions. It was
shown that a large family of aggregation functions, i.e. generated functions, are valid
implementations of the LIED framework given two additional imposed properties.
By focussing on the family of generated functions, it becomes possible to study the
implementation of the LIED framework in a structured manner. At the end of this
chapter, we already gave some interesting interpretations of properties which are
common for any implementation of the LIED framework by means of a generated
function.

With the LIED framework, marketers who only posses performance and
satisfaction data are offered a blueprint to model customer (dis)satisfaction in a
theoretically more sound way than by means of a linear regression.
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4 Data sets

4.1 Introduction

To test the value of a LIED framework implementation, it will need to be applied
on some real-life data sets which reflect the situation for which the framework has
been specifically designed as close as possible. To this end, three data sets have
been selected which only contain satisfaction data, performance data and some socio-
demographic information about the respondents. None of them really focussed on
customer expectations or measured disconfirmation at a detailed level. These data
sets represent typical situations where information is too limited to model the ED
paradigm directly but for which the LIED framework can offer a solution.

All three data sets relate to a product or service from three different sectors,
i.e. the energy market, the family amusement sector and the banking sector. Due
to confidentiality restrictions, the original data had to be made anonymous and the
data fields had to be rephrased. The extent to which the data can be discussed in
detail is limited but this does not prevent a discussion of the general data structure.

Each data set has a hierarchical structure which is depicted in Figure 4.1. At
the top level, customer satisfaction and satisfaction consequents, such as loyalty
and recommendation, are measured. Next, several product or service dimensions
were identified and customers were asked how well the product performs on each
dimension. These performance scores are considered as dimension performances.
Finally at the lowest level, various product attributes were distinguished for each
dimension and each respondent gave a performance score for these product attributes.
These scores will be denoted as the attribute performances. The LIED framework
will typically use the dimension performances to model customer satisfaction instead
of the attribute performances. Dimension performances are conceptually closer
to customer satisfaction than attribute performances and the number of attribute
performances easily exceeds 20 or more which can make proper estimation of all
the model parameters very difficult. However, the attribute performances are very
useful because it allows to verify the hierarchical structure. Also, it allows dimension
performance to be treated as a proxy for the customer’s satisfaction with the product
dimension and to model dimension satisfaction with the attribute performance by
means of the LIED framework.

4.2 Data cleaning

The implementation of the LIED framework to model the CS/D process should be
considered as a single step of the entire KDD process. Prior to the actual discovery
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Figure 4.1: The hierarchical structure of the data sets.

of new knowledge within the data, several data preprocessing steps should be taken
to prevent the discovery of meaningless and invalid patterns.

It is important to realize that from a methodological and academic point of view,
the data owned by companies about their customers is seldom of high quality. Both
the observational and secondary nature of the data can be identified as reasons for
this phenomenon. With observational data, the researcher has only little control
about the variance among the explanatory variables, as opposed to experimental
data. Secondary data on the other hand implies that the data was not collected
with the analysis in mind, as opposed to primary data. As a consequence, the data
might violate several data assumptions since they were not taken into account during
the data collection stage. In such situations, the necessary corrective actions must
be taken. Luckily, many data mining analyses do not impose many assumptions on
the data, in contrast to traditional statistical analysis. Also, due to the secondary
nature of the data, not all necessary variables might have been measured, which is
one of the reasons of existence of the LIED framework. This framework is particularly
useful if customer satisfaction data lacks information about customer’s expectations.
Variables which are irrelevant for our research should be removed from the data set.

The data also has to be scanned for impossible or incorrect data entries. If the
correct value for an erroneous data entry is obvious to retrieve, the correct value
is imputed, otherwise, the data entry is reported as missing. Next, the problem of
missing values in the data set should be tackled by means of an appropriate missing
value analysis technique.

After the missing data are imputed and a rectangular data set is acquired, a
factor analysis can be performed to reduce the number of variables. As mentioned
above, the data sets contain a very large amount of attribute performances which
can make the estimation of the LIED framework problematic given its non-linear
nature. For this reason, it is more advisable to use product dimension performances
to model the CS/D process, which are less in number and make the LIED framework
more estimable. These dimension performances are conceptually closer to customer
satisfaction and can be considered as a summary score of all attribute performances
belonging to that dimension. However, dimension performances are measured by a
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single question which can be sensitive to measurement errors and there is no guarantee
that the dimensions surveyed are distinct nor that the attributes are assigned to the
correct dimension.

Both measurement errors and dimensionality of the data set can be reduced by
means of factor analysis whose “fundamental intent is to determine the number and
nature of latent variables or factors that account for the variation and covariation
among a set of observed measures, commonly referred to as indicators” [18]. Within
the data sets in this thesis, a factor analysis can look for structure among the attribute
performances (indicators) such that highly correlated attribute performances are
considered to measure the same dimension performance (construct). Firstly, this
allows the construction of new dimension scores which are the average of the matching
attribute performances, hereby reducing the risk of measurement errors. Secondly,
factor analysis will also reveal a structure of product dimensions and corresponding
product attributes which in the ideal case matches the original hierarchical structure
in the data set.

All these data cleaning steps, the missing value analysis and the factor analysis
were performed for each data set. Next, we will discuss the missing value analysis
and factor analysis more in detail.

Missing value analysis

The most intuitive cure for missing data is the deletion of all cases with missing values.
However, this rather common approach is far from ideal. Obviously, deleting cases
could reduce the data set to an impractical sample size. But even worse, deleting
cases with missing values could bias any conclusions about the population drawn
from the collected sample [59, 76]. To understand why deleting cases with missing
values should be avoided, the classification of missing values developed by Rubin [107]
should first be introduced. Three types of missing data can occur, i.e. data which are
not missing at random (NMAR), data which are missing at random (MAR) and data
which are missing completely at random (MCAR).

The difference between these three types of missing data can be easily explained
by means of an academic example. Assume a small data set with information about
the respondents gender and annual income. Some respondents refused to answer
the income question which leads to missing values. If there is no particular reason
why people refused to answer the income question, the data is said to be completely
missing at random (MCAR). In other words, there is no specific group of people
which is more reluctant to answer the income question. From a statistical point
of view, missing data is MCAR if the probability of missing values is independent
from any other variable, both observed and unobserved. Only when missing data is
MCAR, deletion of cases with missing entries does not result in biased conclusions.
However, deletion of cases with MCAR data still reduces the sample size which might
be problematic for further analysis.

When missing data is MAR, a specific group of people which are more reluctant
to answer the income question does exist. However, the available data allows the
researcher to detect this group of people. In the aforementioned example, the income
data would be MAR if for example male respondents are much less likely to answer
the income question than female respondents. Obviously, the probability of a missing
income entry is dependent on an observed variable, i.e. gender, which is the statistical
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interpretation of MAR. If missing data is MAR, deleting records with missing entries
not only reduces the sample size, but also results in biased conclusions. In the
example, deleting records with missing values would mainly result in deletion of
male respondents since their probability to answer the income question is lower.
Consequently, if this reduced data set is used to estimate the gender ratio of the
population, the amount of female individuals would clearly be overestimated.

Finally, missing data can also be NMAR which means that some specific group
of respondents is more likely to generate missing values but the observed variables
are not sufficient to determine this group. In the above example, missing income
data would be NMAR if people with a university degree are more reluctant to
answer the income question than people without a university degree. Assuming that
people with a university degree have a higher annual income than people without
a university degree, deletion of records with missing income data would provide an
average population income which will be underestimated since mainly high income
levels are missing. Also in case of NMAR, deletion of cases with missing values leads
to biased conclusions.

Therefore, it is better to use specific imputation methods to tackle missing values
than simply deleting cases with missing values. More specifically, multiple imputation
methods and model-based imputation methods are preferable. These methods have
the advantage of not lowering the sample size and being unbiased as long as the
data is MAR or MCAR [59, 76]. The multiple imputation methods produce multiple
imputed versions of the original data set. Each version contains different values for
the missing entries, which represents the uncertainty of the imputed values. Since
multiple imputation does not produce one single but multiple data sets, subsequent
statistical analysis need to be performed for each imputed data set. The different
results of each imputed data set needs to be combined into a single statistical result.
This approach can be very daunting and unattractive for marketers and practitioners.

Therefore, another imputation method which is unbiased under MAR and MCAR
is preferred, i.e. model-based imputation. This approach involves a maximum
likelihood estimation of the underlying process which generates the missing values.
To build this model, it uses all available data and every observed variable. In
this dissertation, the expectation-maximization (EM) approach available in SPSS 16
was used. For more information about the implementation of the EM model-based
imputation approach, the reader is referred to [69]. Model-based imputation has the
advantage over multiple imputation that it produces a single imputed data set which
is more attractive to work with, but has the disadvantage that it reduces the variance
in the data set [111]. However, as pointed out by Scheffer [111], single imputation
methods are acceptable if the level of missing data is less than 10%. Hair et al. even
suggest that variables with levels of missing data around 20% to 30% can be remedied
with EM imputation [59].

In this dissertation, the following approach to tackle missing data is suggested:
Firstly, the level of missing data per variable is calculated. According to a rule of
thumb [59], variables with more than 20% missing data are considered for deletion.
Finally, it is verified if the missing data are MAR or MCAR by means of Little’s
MCAR test. A insignificant result of this test indicates that data are MCAR. If
missing data are MAR and not MCAR, the researcher should keep in mind that
the single imputation method might reduce the variation of the data when drawing
conclusions from the sample. Irrespective of the type of missing data, the missing
values are imputed with SPSS EM model-based imputation technique.
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Exploratory factor analysis

After the missing value analysis, a factor analysis is performed. Within the field of
factor analysis, a distinction must be made between confirmatory factor analysis and
exploratory factor analysis. As the name suggests, the latter type of factor analysis
has an exploratory nature and is rather information driven than hypothesis driven.
With exploratory factor analysis, the researcher makes no a priori assumptions about
the number of factors or the pattern of relationships between the common factors
and the indicators. The main purpose of exploratory factor analysis is to determine
the number of latent factors within the data and to reveal which variables are good
indicators for the different factors. [18, 59]

Confirmatory factor analysis is often preceded by exploratory factor analysis and
has a much more hypothesis-driven nature. Its main purpose is to test the validity
of a hypothesized construct or the reliability of a measurement scale. In contrast to
exploratory factor analysis, the research must have a firm a priori sense, based on
past evidence and theory, of the number of factors that exist in the data, of which
indicators are related to which factors, and so forth when performing a confirmatory
factor analysis [18].

All three data sets have a hierarchical structure which already suggests a number of
factors (product dimensions) and their corresponding indicators (product attributes).
However, there is no theoretical evidence or underlying theory supporting the
specific structure in each data set which makes the factor analysis rather exploratory
and descriptive than confirmatory. Therefore, an exploratory factor analysis was
conducted.

The methodology used to factor analyze the data corresponds to the steps outlined
by Hair et al. [59]. The variables used as indicators in the factor analysis are the set of
all product attribute performances. Firstly, the sample size is evaluated. As indicated
by Hair et al. [59], the sample size should contain at least 100 cases and there should
be at least 10 respondents per variable. Ideally, this respondent-variable ratio should
be at least 20 : 1.

Next, some measures of intercorrelation are calculated to verify if enough
correlation exists among the indicators to justify a factor analysis. Firstly, the
partial correlations are studied, which measure the correlation between two variables
controlling for the effects of all the other variables. High partial correlations indicate a
low intercorrelation among the variables, i.e. only little of the correlation between two
variables is explained by the other variables. As a rule of thumb, partial correlations
would be considered high when they exceed 0.7. Besides verifying for the absence of
high partial correlations, the Bartlett test of sphericity is used. This test provides the
statistical significance that the correlation matrix has significant correlations among
at least some of the variables. Finally, the appropriateness of factor analysis is also
verified by means of the measure of sampling adequacy (MSA) which ranges from 0
to 1. The measure can be interpreted as follows: 0.80 or above, meritorious; 0.70 or
above, middling; 0.6 or above, mediocre; 0.50 or above, miserable; and below 0.50,
unacceptable [59]. Both the overall MSA and the MSA per variable are examined.

Once the sample size is decided to be sufficiently large and enough intercorrelation
exists among the indicators, a component analysis is performed. This is an
exploratory factor analysis which considers the total variance among the indicators
to derive latent factors. Three different criteria are used to determine the optimal
number of factors. Firstly, the number of product dimensions in the original data
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set gives an indication of the number of factors. Secondly, the latent root criterion,
which is the most commonly used technique to determine the number of factors, is
used. With this criterion, only factors with a latent root or eigenvalue greater than
1 are considered. A factor with an eigenvalue less than 1 accounts for less variance
in the data set than a single variable and should therefore be discarded. Thirdly, the
scree test criterion is used which is a graphical method to determine the number of
factors. A graph is created with the eigenvalue plotted for each factor in order of
decreasing eigenvalues. The scree test criterion defines the first point at which the
curve begins to straighten out as the number of factors to extract. It should be noted
that all three criteria can reach a different conclusion on the number of factors and
that each of them only give an indication. Ultimately, selecting the number of factors
is the researcher’s choice which should be based on the results of these three criteria,
but also on the interpretation of the final factor model.

To interpret the factor model, the factor loadings, which are the correlations
between each indicator and the factor, are studied. The initial factor solution typically
results in a general factor with high loadings on almost every variable which accounts
for the largest amount of variance in the data and several subsequent factors which
are based on the residual amount of variance. This initial factor solution is often
difficult to interpret and therefore a factor rotation is performed. A factor rotation
actually rotates the axes of the factors which results in the same factor solution
but with easier interpretations of the factors. Two types of factor rotations exist,
orthogonal and oblique rotations. An orthogonal rotation respects the orthogonality
of the reference axes of the factors and results in a factor solution where the factors
are independent of each other. An oblique rotation lets go of this restriction and can
result in factors which are correlated. Both the orthogonal rotation method Varimax
and the oblique rotation method Oblimin, as implemented in SPSS 16, will be applied.
Finally, the rotated solution which has the most meaningful interpretation is selected.

To interpret the rotated factor solution, the researcher must focus on the factor
loadings which are practically and statistically significant. Table 4.1 is taken from [59]
and gives guidelines about the level of factor loading necessary to be statistically
significant given a specific sample size. Factor loadings greater than ±0.50 are
considered practical significant [59]. Variables which have no significant loadings
for any factor are bad indicators and are considered for deletion. The same holds
for indicators which have crossloadings, i.e. factor loadings which are significant on
multiple factors. Prior to deletion of insignificant or crossloaded indicators, factor
models with different rotations or different number of factors should be tested to see
if these variables become significant or if the crossloadings disappear.

Finally, once a factor model is chosen and interpreted, each factor represents
a product dimension. As mentioned before, in an ideal situation, the dimensions
from the factor analysis should match the dimensions in the original structure. For
each factor a new variable is added to the data set which represents a dimension
performance. The scores on these new dimension performances are calculated by
taking the average of all the attribute performance scores which are indicators of the
specific factor. The dimension observed during the survey shall be denoted as the
hierarchical product dimensions and the dimensions derived from the factor analysis
as the factorized dimensions.

Each type of product dimensions serves a different goal. The hierarchical product
dimensions are determined when the survey is designed and are based on expert-
knowledge. The attributes related to a dimension are not a way of measuring the
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Table 4.1: Guidelines for identifying significant factor loadings based on sample size
[Hair et al. [59], p.128]

Factor Loading Sample Size Needed for
Significance1

.30 350

.35 250

.40 200

.45 150

.50 120

.55 100

.60 85

.65 70

.70 60

.75 50

1 Significance is based on a .05 significance level (α), a power level of 80
percent, and standard errors assumed to be twice those of conventional
correlation coefficients.

Source: Computations made with SOLO Power Analysis, BMDP
Statistical Software, Inc., 1993.

same thing as the product dimension neither are they necessarily a good indicator
of the product dimension score. The product attributes are assigned to a product
dimension because they intuitively belong to that dimension and because they might
explain that specific dimension performance. The focus of the hierarchical product
dimensions and corresponding product attributes is on the hierarchical nature of
the product. If one considers the dimension performance as a proxy for dimension
satisfaction which can be modeled by means of the product attribute performances,
the hierarchical dimensions are the preferable constructs to use.

On the other hand, the factorized product dimensions are constructed as multi-
item measures of product dimension performances. The advantage of multi-item
scales is that they allow measurement errors to cancel out against each other which
increases the scale’s reliability [106]. The factorized dimensions are not constructed
during the survey design, but are derived from the observed product attributes. Not
every observed product attribute necessarily relates to a factorized dimension. Those
attributes which do belong to a factorized dimension can be interpreted as a way
of (partially) measuring the product dimension performance. Factorized dimensions
should sufficiently differ conceptually against each other and each factorized product
dimension should be truly unidimensional. The goal of the factorized dimension
performances is to provide valid and reliable measures which can be used to explain
and predict customer satisfaction.

Therefore, once the factorized product dimensions are defined, some measures are
calculated to asses the reliability. Reliability can be defined as the degree to which
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measures are free from error and yield consistent results [106] and can be measured
by means of Cronbach’s coefficient alpha [25, 106, 94]. As suggested by Churchill [25],
coefficient alpha is used in conjunction with factor analysis. For each factor found
by the factor analysis, coefficient alpha is calculated to measure the reliability of
factorized dimension performance. As Nunnaly [94] mentioned, if α is very low, the
test is either too short or the items have very little in common. Therefore, it is
recommended to strive for α values greater than 0.7 which represent a modest level
of reliability. However, if α < 0.8 and there are more than 3 items, each item is
considered for deletion to test if deletion might increase α.

4.3 Energy data set

The first data set concerns a satisfaction survey among customers of two companies
active in the Belgian energy market. Table 4.2 shows the various variables of the data
set which were retained for subsequent analysis. Besides a field indicating to which
company a customer belongs, five other variables, i.e. ecology, choice commitment,
gender, age and marital state, provide information about the type of customer. At
the top level of the hierarchical structure, two other constructs were measured besides
overall customer satisfaction, i.e. recommendation and intention to switch. The data
set also contains information about the customers’ overall level of disconfirmation and
whether they received value for their money. In total the performance of 8 product
domains were measured. Table 4.3 shows how many product attributes were measured
for each product dimension. Note that for dimensions 7 and 8 no product attributes
were measured.

Table A.1 in Appendix A.1 gives some univariate statistics for all the variables
of the energy data set. The data set contains 1053 cases and except for the variable
‘Value for money’, all variables have less than 20% missing values. Since ‘Value for
money’ has such a high amount of missing values and because this variable is of
less importance for future analysis, it was decided to delete this variable. Little’s
MCAR test was significant at a 0.01 level and thus the missing data is MAR. This
implies that deleting cases with missing values would probably introduce a bias in
conclusions drawn from the cleaned data. Therefore, the SPSS EM model-based
imputation technique is used. Once the missing data is imputed, the minima and
maxima of each variable are verified. The imputation method might impute values
which do not fall in the range of the original scales. Values lower than the minimum
of the scale are recoded to the minimum and values higher than the maximum of
the scale are recoded to the maximum of the scale. Table A.1 in Appendix A.1 also
compares some univariate statistics, i.e. mean and standard deviations, between the
original data set and the imputed data set. These results show that the imputation
did not have a big impact on the overall univariate structure of the data.

Once the imputed data set is created, a factor analysis can be performed. The
imputed data set contains 1053 cases which is far above the minimum sample size
of 100 cases. With the 23 product attribute performances which will be used in the
factor analysis, the respondent-variable ratio is approximately 45:1 which is well above
the recommended value of 20 : 1. Therefore, the sample size is more than sufficient to
perform the factor analysis. Besides a sufficiently large sample, factor analysis also
requires a large amount of intercorrelations between the indicator variables. Table A.2
in Appendix A.1 shows the partial correlations between the variables. The diagonal
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Table 4.2: Variables of energy data set

Variable Values

Company [1 – 2]

Overall Satisfaction [1 – 10] [Unsatisfied – Satisfied]

Overall Disconfirmation [1 – 5] [Very negative – Very positive]

Value for money [1 – 5] [Very Low – Very High]

Recommendation [1 – 5] [Certainly not – Certainly yes]

Intention to switch [1 – 5] [Certainly not – Certainly yes]

Product Dimension 1: Availability [1 – 5] [Very bad – Very good]

Product Dimension 2: Employees [1 – 5] [Very bad – Very good]

Product Dimension 3: Problem Solving [1 – 5] [Very bad – Very good]

Product Dimension 4: Information [1 – 5] [Very bad – Very good]

Product Dimension 5: Service [1 – 5] [Very bad – Very good]

Product Dimension 6: Invoices [1 – 5] [Very bad – Very good]

Product Dimension 7: Price [1 – 5] [Very bad – Very good]

Product Dimension 8: Product Quality [1 – 5] [Very bad – Very good]

Ecology concerned customer [1 – 5] [Absolutely not – Certainly yes]

Customer commitment [1 –5 ] [Absolutely not – Very much]

Gender of customer [Male – Female]

Age of customer

Marital state of customer [1 – 3]

of this table contains the MSA values per variable. The highest partial correlation is
0.439 between product attributes D4d and D4e which both belong to the ‘Information’
dimension, which is still considered small (< 0.7). The lowest MSA value per variable
is 0.921 for the product attribute D6b of the ‘Invoice’ product dimension. This value
is significantly larger than the threshold 0.8 which is already a meritorious value
for a factor analysis. Also the Overall MSA measure with a value of 0.963 and the
Bartlett’s Test which is significant at 0.01 (cf Table 4.4) indicate a very high level of
intercorrelations which makes this set of attribute performance a perfect candidate
for factor analysis.

Next, the number of factors need to be determined. According to the hierarchical
structure, 6 dimensions should be present within the attribute performance data, i.e.
availability, employees, problem solving, information, service and invoices. Note that
product dimensions price and quality do not have corresponding product attributes
defined and are therefore not considered during the factor analysis. Table A.3 in
Appendix A.1 gives the eigenvalue of each possible factor. According to the latent
root criterion which states that any factor with an eigenvalue larger than 1 should
be kept, 4 factors should be extracted from the data. The fifth factor still has an
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Table 4.3: Product dimensions and product attributes of energy data set

Product Dimensions Number of product attributes

D1: Availability 3 [D1a – D1c]

D2: Employees 4 [D2a – D2d]

D3: Problem Solving 5 [D3a – D3e]

D4: Information 5 [D4a – D4e]

D5: Service 3 [D5a – D5c]

D6: Invoices 3 [D6a – D6c]

D7: Price 0

D8: Product Quality 0

Table 4.4: Overall MSA and Bartlett’s test of sphericity for energy data set

Kaiser-Meyer-Olkin Measure of Sampling Adequacy. .963

Bartlett’s Test of Sphericity Approx. Chi-Square 18297.820

df 253.000

Sig. .000

eigenvalue of 0.911 which is close to 1 such that a five factor model could also be
considered. Finally, the scree plot which is shown in Figure 4.2 shows two kinks in
the slope of the graph, the first at two factors and the second at six factors. However,
as can be read from Table A.3 in Appendix A.1, the two factor model only explains
around 59% of all the variance in the data which is considered rather low. Therefore,
only the six factor model is considered.

In summary, the four, five and six factor model are investigated. The four and
five factor model were suggested by the latent root criteria, while the six factor model
is supported by the scree plot and the hierarchical structure of the data. For each
factor model, both the orthogonal Varimax and the oblique Oblimin rotation were
performed. The tables with the factor loadings can be found in Appendix A.1. Factor
loadings larger than 0.5, which are both practically and statistically significant are
marked grey.

Both the Varimax and the Oblimin rotated version of the four factor model give
more or less the same picture. They both show that dimensions Availability (D1),
Information (D4) and Invoice (D6) are recognized as separate dimensions within
the data set, while the other three dimensions are all captured by one factor. The
third question (D4c) of the Information dimension appears to be a bad indicator for
the Information dimension. The attributes of the hierarchical dimension Employees
appear to be very closely related with the attributes of the hierarchical dimensions
Availability (D1) and Problem Solving (D3).

The five factor models show a very similar picture of the structure, but suggest
that at least two attributes of the Employees dimension should be considered as
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Figure 4.2: Screeplot energy data set.

a separate dimensions, i.e. D2b and D2c. The Varimax rotation illustrates that
two other attributes D2a and D2d are more or less crossloaded on both the first
and the third factor, although the loadings on the third factor are not practically
significant (< 0.5). The only two hierarchical dimensions which are still not separated
by the factor model are the Problem Solving and the Service Dimensions. Adding
another factor to the model does not separate these two dimensions. The six factor
model isolates a single Availability attribute from the other Availability attributes
and suggests it as a separate factor.

Because a factor with only a single significant indicator is not desirable, the
five factor model is preferred over the six factor model. Furthermore, because the
five factor model explains more variance than the four factor model (73.18% versus
69.22%) and the five factor model has a structure which corresponds better with
the original hierarchical data structure, the five factor model is also preferred over
the four factor model. Furthermore, the Varimax rotated version of the five factor
model was chosen because it only contains one variable without significant loadings
compared to two insignificant variables in the Oblimin rotated factor model. The
variable D4c will not be used in the calculation of the summated scores because it is
not practically significant and crossloaded over two factors.

Based on the results of this five factor model, five new product dimensions are
created. The score of a factorized dimension is calculated by averaging the scores
of the attribute variables which loaded significantly on that dimension. Table 4.5
provides an overview of each factorized dimension and the variables used to calculate
the summated score. Each factorized dimension was given a name based on the
product attributes belonging to that specific dimension. Since all Cronbach’s alphas
were larger than 0.70, the summated scores can be considered as reliable scores for
the factorized dimensions.

4.4 Family entertainment data set

The second data set comes from a large scale customer satisfaction survey which was
performed across seven companies from the family entertainment sector. The original
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Table 4.5: Factorized dimensions of energy data set

Factorized Product
Dimension

Product Attributes Cronbach’s Alpha

Availability D1a, D1b, D1c 0.78

Employees D2b, D2c 0.74

Service D2a, D2d, D3a, D3b, D3c,
D3d, D3e, D5a, D5b, D5c

0.96

Information D4a, D4b, D4d, D4e 0.87

Invoices D6a, D6b, D6c 0.75

data set contains 70 fields and 4031 records. Each record represents a customer
buying a package of products from one specific companies. Per customer, a unique
identifier (ID) is retained along with information about the specific company from
which the customer bought the product. The survey was not taken at a single moment
in time but in six different waves, which allows companies to analyze evolutions in
customer satisfaction. In addition the customers’ value for money perception, their
intentions to buy again and recommend the company to other people, performance
on 9 different dimensions were also measured. Four of these dimensions represent the
four possible products in a product package, i.e. performance of products A, B, C and
D. The other dimensions are the overall experience with the company, the company’s
accommodations, the company’s personnel, the prices and company’s communications.
For each dimension, a set of corresponding attribute performances were measured in
addition to the dimension performances. Tables 4.6 and 4.7 provide an overview of all
the variables present in the family entertainment data set and the existing hierarchical
structure.

It stands out from analyzing the missing values in the data set that dimensions
product B, C and D contained a lot of missing values, both on the dimension score
as the corresponding attribute performance scores. A possible explanation is that
not all customers bought a package containing all four products. Customers who
reported missing values for the performance of a specific product because they did
not experience that product are clearly different from customers who did experience
the product but refused or forgot to answer. The satisfaction outcome of the first
type of customer will not be influenced by the performance of the missing product
dimension in contrast to the latter type of customer. Therefore, it was decided to
remove all customers with missing values for an entire product dimension (A, B,
C or D), i.e. where both dimension performance and the corresponding attribute
performances are missing. These customers most likely did not buy the full package
with all four products. This resulted in a reduction of the sample size from 4031
customer to 2122 customers, which is still a substantially large data set.

Table A.10 in Appendix A.2 shows that all variables have missing values levels
below 20% except for variables D4g, D8c and D9a. Given their high levels of missing
entries, it was decided to remove these variables from the data set. All three variables
measure attribute performance from different product dimensions. By removing
them, it is unlikely that the data set will lose crucial information since several other
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Table 4.6: Variables of family entertainment data set

Variable Values

ID

Company [1 – 7]

Wave [1 – 6]

Overall Satisfaction [1 – 10] [Low – High]

Value For Money [1 – 10] [Low – High]

Recommendation [1 – 10] [Very Unlikely – Very Likely]

Intentions to Repatronage [1 – 10] [Very Unlikely – Very Likely]

Product Dimension 1: Overall Experience [1 – 10] [Low – High]

Product Dimension 2: Product A Performance [1 – 10] [Low – High]

Product Dimension 3: Product B Performance [1 – 10] [Low – High]

Product Dimension 4: Accommodation Per-
formance

[1 – 10] [Low – High]

Product Dimension 5: Product C Performance [1 – 10] [Low – High]

Product Dimension 6: Product D Performance [1 – 10] [Low – High]

Product Dimension 7: Personnel Performance [1 – 10] [Low – High]

Product Dimension 8: Prices [1 – 10] [Very Bad – Very Good]

Product Dimension 9: Communication [1 – 10] [Very Bad – Very Good]

attribute measurements are available for each dimension. Little’s MCAR test was
significant at a 0.01 level implying that the data is not missing completely at random
(MCAR). After the missing data were imputed by means of the SPSS EM model-
based imputation technique, the minima and maxima of each variable were verified
to see if they fell within the limits of the original scale. Values less than the minimum
of the scale were recoded into the scale’s minimum and values greater than the scale’s
maximum were recoded into the scale’s maximum. The last two columns in Table A.10
in Appendix A.2 show the mean and standard deviations of the different variables
for the imputed data. Inspection reveals that they are very similar to the means and
standard deviations of the original data. The imputation did not have a significant
effect on the univariate data structure.

After the missing value analysis, a data set with 67 variables and 2122 variables
was retained. The imputed data set contains 51 product attributes across 9 product
dimensions, which results in a 41 : 1 cases to variable ratio. Both the overall sample
size as the cases to variable ratio are sufficient for a factor analysis. Next, both
Bartlett’s Test of Sphericity was performed and the MSA was estimated. The
results are presented in Table 4.8 which indicate an extremely adequate level of
intercorrelation between the variables for a factor analysis, i.e. the overall MSA is
larger than 0.8 and Bartlett’s Test is highly significant. In Table A.11 one can find
the partial correlations between any pair of variables and the MSA for each variable
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Table 4.7: Product dimensions and product attributes of family entertainment data
set

Product Dimensions Number of product attributes

D1: Overall Experience 9 [D1a – D1i]

D2: Product A Performance 7 [D2a – D2g]

D3: Product B Performance 4 [D3a – D3d]

D4: Accommodation Performance 8 [D4a – D4h]

D5: Product C Performance 6 [D5a – D5f]

D6: Product D Performance 3 [D6a – D6c]

D7: Personnel Performance 5 [D7a – D7e]

D8: Prices 7 [D8a – D8g]

D9: Communication 5 [D9a – D9e]

(cf the diagonal of Table A.11). The partial correlations are smaller than 0.45 and
the variables MSA’s are larger than 0.94 which supports the idea that there is enough
intercorrelation in the data for a factor analysis to make sense.

Table 4.8: Overall MSA and Bartlett’s test of sphericity for family entertainment
data set

Kaiser-Meyer-Olkin Measure of Sampling Adequacy. .966

Bartlett’s Test of Sphericity Approx. Chi-Square 64000.688

df 1275

Sig. .000

The original hierarchical structure of the data with nine product dimensions,
i.e. overall experience, product A, product B, accommodation, product C, product D,
personnel, prices and communications, suggests a nine component factor analysis. A
factor analysis with nine dimensions is also supported by the latent root criterion.
Table A.12 shows that the first nine components have an initial eigenvalue larger than
1. It also reveals that a nine factor model only captures around 64% of the variance
within the data, which is still substantial. The third test to determine the number
of components, i.e. the graphical scree plot test, is shown in Figure 4.3. The graph
shows that the line of the eigenvalues starts to flatten out at ten components. Based
on all three tests, both nine and ten factor models were considered. For each factor
model, a Varimax rotated and an Oblimin rotated version were estimated.

In Tables A.13, A.14, A.15 and A.16, the factor loadings for each factor model
can be found. All factor loadings which are considered practically and statistically
significant, i.e. factor loadings greater than 0.5, are marked with a grey background.
None of the models contain crossloadings. The two nine factor models correspond
almost perfectly with the hierarchical structure of the data. The Varimax rotated
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Figure 4.3: Screeplot family entertainment data set.

nine factor model only lacks a significant loading for product attribute D1h. Of all
four factor models, this model gives the best results. The ten factor models actually
identify attribute D1h as a separate factor, but still respect the original hierarchical
structure. Such a factor with a single variable is an indication that D1h is not
measuring the same dimension as the other variables of dimension D1. Therefore, the
Varimax rotated nine factor model was selected and variable D1h was removed from
the set of product attributes for the construction of a summated scale.

Based on the results of this nine factor model, nine factorized dimensions are
created. The score of each factorized dimension is calculated by taking the average
of the scores on the attribute variables which loaded significantly on the dimension.
Table 4.9 provides an overview of each factorized dimension and the variables used
to calculated the summated score. The factorized dimensions corresponded perfectly
with the hierarchical dimensions and were given the same name. Since all Cronbach’s
alphas were significantly larger than 0.70, the summated scores can be considered as
reliable scores for the factorized dimensions.

4.5 Banking product data set

The third data set contains satisfaction data gathered among 1101 customers of a
company which sells products and services in the banking sector. Each customer
has bought a durable product of the company together with a service contract.
Each customer completed a survey of 82 questions. No socio-demographic data were
collected about the customers. Table 4.10 and 4.11 provide an overview of all the
variables in the data set.

Firstly, all cases with missing values for variables ‘Satisfaction’ and ‘Recommen-
dation’ were removed because they will most likely appear as dependent variables
in subsequent analyses. This reduced the sample size from 1101 to 1038. Several
variables were removed because they had very high levels of missing values. Table A.17
in Appendix A.3 shows the levels of missingness for each variable. All variables with
more than 20% missing entries were removed from the analysis. This caused the
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Table 4.9: Factorized dimensions of family entertainment data set

Factorized Product
Dimension

Product Attributes Cronbach’s Alpha

Overall Experience D1a, D1b, D1c,
D1d, D1e, D1f, D1g,

D1i

0.90

Product A D2a, D2b, D2c,
D2d, D2e, D2f, D2g

0.82

Product B D3a, D3b, D3c, D3d 0.85

Accommodation D4a, D4b, D4c,
D4d, D4e, D4f, D4h

0.82

Product C D5a, D5b, D5c,
D5d, D5e, D5f

0.91

Product D D6a, D6b, D6c 0.88

Personnel D7a, D7b, D7c,
D7d, D7e

0.89

Prices D8a, D8b, D8d,
D8e, D8f, D8g

0.90

Communication D9b, D9c, D9d, D9e 0.86

removal of dimensions ‘Sales Service’, ‘Maintenance’ and ‘Administration’ and their
corresponding product attributes. Note that these variables were not deleted because
they have no importance in the CS/D process, but because the available data is too
limited to take them into account in subsequent analyses. Furthermore, two attribute
performances of the dimension ‘Invoices’ and three product attribute performances
of the dimension ‘Communication’ were also deleted. The latter two dimensions still
contain respectively four and five attributes which is substantial enough to keep these
dimensions in the data set. All these preprocessing steps reduced the data set to 1038
records and 46 variables, covering 6 product dimensions, i.e. Image, Price, Quality,
Product Performance, Invoices and Communications, which have respectively 10, 6,
0, 9, 4 and 5 corresponding product attributes.

Little’s MCAR Test was significant at a 0.01 level which implies that the remaining
missing data is still not missing completely at random (MCAR). Therefore, the SPSS
EM model-based imputation technique was applied and the minima and maxima of
each variable were verified to see if they fell within the original scale’s limits. Values
outside the scale’s limit were corrected in the same way as for the other two data sets.
Table A.17 shows the mean and standard deviation of each variable after imputation.
Comparing these values with the means and standard deviations of the original data
shows that the univariate structure of the data remained intact after imputation.

With 1038 cases and 34 product attributes, the factor analysis has a large enough
sample and a good respondent-variable ratio of 30 : 1. Both the overall MSA measure
and Bartlett’s Test of Sphericity (cf Table 4.12) indicate that the level of overall
intercorrelation between the product attributes is high enough for a factor analysis.
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Table 4.10: Variables of banking product data set

Variable Values

ID

Satisfaction [1 – 10] [Very Low – Very High]

Disconfirmation [1 – 5] [Very Negative – Very Positive]

Recommendation [1 – 5] [Very Unlikely – Very Likely]

Usage [1 – 3] [Low – High]

Value For Money [1 – 5] [Very Low – Very High]

Dimension 1: Image [1 – 5] [Very Bad – Very Good]

Dimension 2: Price [1 – 5] [Very Bad – Very Good]

Dimension 3: Quality [1 – 5] [Very Bad – Very Good]

Dimension 4: Product Performance [1 – 5] [Very Bad – Very Good]

Dimension 5: Sales Service [1 – 5] [Very Bad – Very Good]

Dimension 6: Maintenance [1 – 5] [Very Bad – Very Good]

Dimension 7: Invoices [1 – 5] [Very Bad – Very Good]

Dimension 8: Administration [1 – 5] [Very Bad – Very Good]

Dimension 9: Communication [1 – 5] [Very Bad – Very Good]

Table A.18 in Appendix A.3, which contains the partial correlations between the
variables as well as the MSA measure for each variable on the diagonal, reveals a
similar conclusion. Except for two variables, i.e. D7e and D9g, all MSA measures are
at least mediocre with a value larger than 0.70. With MSA measures around 0.51
and 0.56, the results still comply with the rule of thumb in [59] which states that
MSA values must exceed 0.50 for both the overall test and each individual variable.
Furthermore, partial correlations are rather small with values less than 0.45 for all
but one variable.

According to the original hierarchical structure of the product attributes which
were entered in the factor analysis, five dimensions are expected to be found. The
latent root criterion, which selects all factors with an initial eigenvalue larger than 1,
suggests a 7 factor analysis (cf Table A.19 in Appendix A.3). The screeplot reveals
two points where the curve flattens out, which is at four components and at eight
components. Based on these three criteria, a four factor model, a five factor model
a seven factor model and an eight factor model were considered. For each model, a
Varimax and an Oblimin rotated version were built. The factor loadings for all these
models can be found in Appendix A.3.

After a first analysis of the eight models, both four factor models and the Oblimin
rotated five factor model were no longer considered as viable models because they
had too many variables without significant factor loadings, i.e. respectively 10, 11
and 9 non significant variables. This high amount of non significant variables are
an indication that the factor model does not fit the data. Also the eight factor
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Table 4.11: Product dimensions and product attributes of banking product data set

Product Dimensions Number of product attributes

D1: Image 10 [D1a – D1j]

D2: Price 6 [D2a – D2f]

D3: Quality 0

D4: Product Performance 9 [D4a – D4i]

D5: Sales Service 10 [D5a – D5j]

D6: Maintenance 15 [D6a – D6o]

D7: Invoices 6 [D7a – D7f]

D8: Administration 4 [D8a – D8d]

D9: Communication 8 [D9a – D9h]

Table 4.12: Overall MSA and Bartlett’s test of sphericity for banking product data
set

Kaiser-Meyer-Olkin Measure of Sampling Adequacy. .918

Bartlett’s Test of Sphericity Approx. Chi-Square 13317.636

df 561.000

Sig. .000

models were removed from further analysis. These models seemed unappropriate
because they contained various factors with only two or even one significant loading.
Preferably, factors have three or more significantly loading variables in order to have
a solid representation of a product dimension.

Of the three remaining models, the Varimax rotated 7 factor model appeared
to be the best. Compared with the two other models, it has less insignificant
variables and also the interpretation of the various factors made more sense for the
Varimax rotated 7 factor model. Remarkable is the fact that none of the three
models provided factors which perfectly matched the original hierarchical product
dimensions. Even the five factor model, which has the same number of factors as there
are hierarchical dimensions in the data, did not correspond perfectly. Apparently,
some product attributes of both Invoices and Communications form a first factor,
while the remaining attributes of both dimensions represent a second factor. Also in
the seven factor models, it becomes clear that the product attributes belonging to
the hierarchical dimensions Invoices and Communications do not result in two crisp
factors. After analyzing the survey questions belonging to these product attributes,
three new factorized dimensions can be found, i.e. ‘Communication’, ‘Invoices’ and
‘Administrative Overload’. At the same time, the seven factor model shows that
the hierarchical dimension ‘Product Performance’ actually consists of two separate
dimensions, which are ‘Product Performance’ and ‘Product Reliability’.

After deciding to continue with the Varimax rotated seven factor model, the non
significant variables were removed one by one, starting with the variable with the
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Figure 4.4: Screeplot banking product data set.

lowest highest loading, i.e. D4g whose highest loading was 0.405. Next, variable D2e
was removed whose highest loading changed to 0.451, after deletion of D4g. Next,
variable D1f was removed whose highest loading was still insignificant at a level of
0.487. Due to removal of these three variables, variable D4i also became insignificant
with a maximal factor loading of 0.491. Therefore, this variable was also removed
from the analysis. After this step, all variables had significant factor loadings on
exactly one factor. The factor loadings of the final Varimax rotated factor model is
shown in Table A.28 in Appendix A.3.

Based on this final seven factor model, seven factorized dimensions were created.
The score of each factorized dimension is calculated by taking the average of the scores
on the product attributes corresponding to the factorized dimension. Table 4.13
provides an overview of each dimension and the variables used to calculated the
summated score. The factorized dimensions which corresponded perfectly with
the hierarchical dimensions were given the same name. The other factorized
dimensions were given a name based on the corresponding product attributes. Most
Cronbach’s alphas were significantly large except for dimensions ‘Product Reliability’
and ‘Administrative Overload’.

The reliability of the dimension ‘Product Reliability’ could be increased by adding
product attribute D4i again to the dimension. This attribute was removed during
the factor analysis because it became insignificant after the removal of several other
insignificant variables. By adding this variable back to the factorized dimension,
the Cronbach’s alpha increases up to 0.60. As for the dimension ‘Administrative
Overload’, it was not possible to increase the measurement reliability. There were no
candidate attributes to be added to this dimension and removing attributes from this
dimension only decreased Cronbach’s alpha. Because its reliability is rather low, this
factorized dimension was removed. Furthermore, dimension ‘Product Performance’
with a mediocre Cronbach’s alpha of 0.75 and 5 items makes a good candidate for
improving the Cronbach’s alpha by deleting a item. However, dropping a single item
at a time did not improve alpha. The final set of factorized dimensions are given in
Table 4.14.
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Table 4.13: Factorized dimensions of banking product data set

Factorized Product
Dimension

Product Attributes Cronbach’s Alpha

Image D1a, D1b, D1c,
D1d, D1e, D1g,
D1h, D1i, D1j

0.86

Price D2a, D2b, D2c,
D2d, D2f

0.89

Product
Performance

D4a, D4c, D4d,
D4e, D4f

0.75

Product Reliability D4b, D4h, D9h 0.53

Invoices D7a, D7f 0.78

Communications D9a, D9e, D9f 0.75

Administrative
Overload

D7b, D7e, D9g 0.43

Table 4.14: Final set of factorized dimensions of banking product data set

Factorized Product
Dimension

Product Attributes Cronbach’s Alpha

Image D1a, D1b, D1c,
D1d, D1e, D1g,
D1h, D1i, D1j

0.86

Price D2a, D2b, D2c,
D2d, D2f

0.89

Product
Performance

D4a, D4c, D4d,
D4e, D4f

0.75

Product Reliability D4b, D4h, D4i, D9h 0.60

Invoices D7a, D7f 0.78

Communications D9a, D9e, D9f 0.75
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5 An implementation of the LIED framework:

The Dombi’s uninorm approach

5.1 Introduction

This chapter introduces a possible implementation of the LIED framework, which
uses Dombi’s aggregation operator as the underlying aggregation function. Dombi’s
aggregation function was introduced in 1982 [38] and belongs to the family of
generated uninorms. Other authors [129, 130] have already used Dombi’s aggregation
function to model the CS/D process in the past, but it has never been presented as
the implementation of a more general framework. Positioning this modeling approach
in the broader context of the LIED framework has several advantages.

Firstly, because the LIED framework models customer satisfaction by the
ED paradigm principles, it suffices to recognize Dombi’s uninorm as a valid
implementation of the LIED framework in order to know whether it is a valid
candidate for CS/D modeling. Secondly, the LIED framework offers a structured
three-step approach to identify and analyze assumptions Dombi’s uninorm imposes
on the modeling process. Finally, if some of these assumptions are unwanted, the
structured framework helps making the necessary modifications to the aggregation
function.

In the next section, Dombi’s uninorm will be discussed in detail and some of
its properties are introduced, while it is shown that Dombi’s uninorm offers a valid
implementation of the LIED framework. This implementation will be referred to as
the D-LIED implementation. It will be shown that the D-LIED implementation
imposes some additional assumptions which can be restrictive, but it also has
the benefit of modeling expectations at the individual customer level. In the
third section, the validity of the D-LIED implementation will be analyzed, both
theoretically and empirically. Finally, the potential of modeling CS/D with the D-
LIED implementation will be illustrated by some case studies in the final section.

5.2 Dombi’s evaluation operator

Dombi’s uninorm [38] belongs to the family of generated uninorms, but was published
long before Yager and Rybalov [144] introduced the term uninorm. In his original
work, Dombi started from the situation where an object is to be evaluated on all its
properties. The evaluation of each property is done against a specific expectation
level and the property evaluations have to be aggregated to form an overall object
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evaluation. Such situation shows strong analogies with multi-criteria decision
problems and with the CS/D evaluation, which explains why other authors [129, 130]
have previously used Dombi’s evaluation operator to model customer satisfaction.

Dombi’s binary evaluation operator started from an axiom system with five
axioms. The first four axioms are:

Definition 23 (Axiom system relating to Dombi’s evaluation operator). The
first four (out of five) axioms relating to Dombi’s binary evaluation operator are:

• The evaluation operator is continuous except for the points (0, 1) and (1, 0),

• The evaluation operator is strictly monotone increasing in the interval [0, 1],

• The evaluation operator is associative,

• For the evaluation operator σ holds that σ(0, 0) = 0 and σ(1, 1) = 1.

The fifth axiom actually comprised a set of three mutually exclusive axioms which
determined whether the evaluation operator was conjunctive, disjunctive or none of
both (which was called aggregative by Dombi). A conjunctive function has 0 as the
absorbing element, a disjunctive function has 1 as the absorbing element and the
aggregative evaluation operator has no absorbing element and is undefined for the
tuples (0, 1) and (1, 0). Later work on the family of representable uninorms, to which
Dombi’s evaluation operator belongs, makes only a distinction between conjunctive
and disjunctive. In this thesis, when the evaluation function is mathematically
undefined for (0, 1) or (1, 0), as was the case for Dombi’s aggregative evaluation
function, the correct behavior, i.e. conjunctive or disjunctive, is set by definition.

This axiom system led to a family of aggregation functions which are defined as
follows:

Definition 24 (Dombi’s evaluation operator [38]). Dombi’s evaluation operator
are all functions which can be written in the form

σ(x1, x2) = f
(
f−1(x1) + f−1(x2)

)

where f(x) is continuous and strictly increasing.

Comparing the definition of Dombi’s evaluation operator (cf. Definition 24) with
the definition of a representable (or generated) uninorm (cf Definition 13 on page 37)
shows that Dombi’s evaluation operator is a representable uninorm if one defines the
aggregation at the extreme points, i.e. (0, 1) and (1, 0). Because Dombi’s evaluation
operator is associative, the above definition can be easily extended to n-ary functions
as follows:

Definition 25 (Dombi’s n-ary evaluation operator). Dombi’s evaluation
operator are all functions which can be written in the form:

σ(x1, . . . , xn) = f

(
n∑

i=1

f−1(xi)

)

where f(x) is continuous and strictly increasing.
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5.2. Dombi’s evaluation operator

In [38] three different generator functions f(x) are presented, among which the
following is the most popular:

f(x) =
αex

1 + αex
, (5.1)

with the inverse function:

f−1(x) = ln

[
x

α− αx

]
. (5.2)

Constructing Dombi’s uninorm by means of Definition 25 and the generator
function in Eq. 5.1, results in the following aggregation function:

U(x1, x2, . . . , xn) =
∏n

i=1 xi∏n
i=1 xi + αn−1

∏n
i=1(1− xi)

. (5.3)

For α = 1, this results in another well known mixed aggregation function which
is often referred to as the 3−∏

function.
Dombi’s uninorm also belongs to the family of generated functions because

Dombi’s uninorm is a representable uninorm (cf Definition 25, Definition 13 and
Definition 14). Dombi’s uninorm is also a valid LIED implementation because it
is a generated function with f−1(x) = 0 for x = α

1+α and 0 ∈ Dom (f(x)) (cf
Definition 20). This allows using the properties of the LIED framework to analyze
Dombi’s uninorm as a modeling function for the CS/D process.

First, the general properties of the LIED framework when it is implemented
by means of a generated function are considered. According to Property 10 it
follows that Dombi’s uninorm will show compensatory, conjunctive and disjunctive
behavior. Dombi’s uninorm will compensate a positive disconfirmation (i.e. more
than the expected value) and a negative disconfirmation (i.e. less than the expected
value), while two positive (negative) disconfirmations will be positively (negatively)
reinforced. Furthermore, Dombi showed in his original work that his evaluation
operator is symmetric. As has been mentioned in chapter 3 on page 48, this has
some important implications for the model. Firstly, a LIED framework implemented
by a symmetric generating function assumes that the expectation for each product
attribute is equal and the attribute performance transformation into the attribute’s
disconfirmation effect is also the same for every attribute. This is a very restrictive
assumption which might not always model the reality correctly, especially when the
product attributes have different levels of importance in the CS/D process. However,
using Dombi’s uninorm to model the CS/D process also holds a big advantage over
other generating functions which makes it worth considering. The strength of Dombi’s
uninorm lies in the fact that it only contains 1 parameter which needs to be estimated,
i.e. α. This makes it possible to estimate the CS/D process for each customer
separately, since only one record is needed to fit a model with a single parameter.
Using only one case to estimate a single parameter model is of course more subject
to noise and measurement errors than learning a model from multiple case. On the
other hand, by using the factorized dimensions, measurement errors were already for
a large part taken care of.

Learning a separate model for each customer allows the researcher to extract the
individual expectation level for each customer. Given Definition 21, it follows that
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5. The D-LIED implementation

Dombi’s uninorm has a neutral element, which had also been proven by Dombi in his
original article [38]. The neutral element e of Dombi’s uninorm can be expressed as:

e =
α

1 + α
. (5.4)

According to Property 2 on page 42, the neutral value e of Dombi’s uninorm
corresponds to the customer’s expectation. If one builds a separate model for each
customer, the customer’s expectation can be derived by means of Eq. 5.4 if parameter
α is known. Let S represent the customer’s satisfaction score and xi the product
attribute performance scores, then the following equation can be used to find α and
subsequently e:

α =
[ ∏n

i=1 xi∏n
i=1(1− xi)

1− S

S

] 1
n−1

(5.5)

Not only can the LIED framework be used to study general modeling properties
of Dombi’s uninorm, it also allows to divide Dombi’s uninorm into three parts, each
corresponding to a specific step function. Each step function can also possess specific
properties which allows researchers to increase their understanding of the CS/D
modeling process. The first-step function of the D-LIED implementation is Eq. 5.2.
The first two properties (cf Properties 1 and 2) of the first-step function relate to
the customer’s expectation level or zone of indifference, which have already been
discussed above. The third property (cf Property 3) defines the symmetry of the
disconfirmation effect on satisfaction. According to this property, Dombi’s uninorm
only models a symmetric disconfirmation effect when parameter α = 1, which can be
illustrated graphically.

Figure 5.1 shows three subfigures. Subfigure 5.1a shows the first-step function
for a Dombi uninorm with α = 1. This particular uninorm has a neutral element
e = 0.5 (cf Eq. 5.4) around which it is perfectly symmetric. Subfigure 5.1a shows
that a positive disconfirmation +d has an effect on satisfaction equal in size as the
effect caused by an equally large but negative disconfirmation −d. When α 6= 1,
this is no longer true as is being illustrated by Figures 5.1b and 5.1c. Changing
the only parameter of the Dombi uninorm causes the first-step function to move
vertically, which results in the loss of the disconfirmation effect’s symmetry. More in
particular, if α < 1 then the neutral element e will be less than 0.5 and a negative
disconfirmation has a larger effect on satisfaction than the effect of an equally large
but positive disconfirmation. This can be explained as follows: a customer who is
already having low expectations will be more sensitive to negative disconfirmation
because negative disconfirmations are considered less likely to occur than positive
disconfirmations given the low expectations.

When α > 1, the neutral element e will be larger than 0.5 and a
positive disconfirmation will have a larger impact on satisfaction than a negative
disconfirmation. This can be explained as follows: a customer with high expectations
(e > 0.5) will be much more surprised if these expectations are exceeded than when
the product fails to meet them. Therefore, the effect of exceeding expectations will
be larger. However, one should not forget that when expectations are already high,
it becomes increasingly more difficult for companies to exceed them.

The properties of the second step function, which is a mathematical sum in case
of Dombi’s uninorm, relate to the compensating, conjunctive or disjunctive behavior
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(a) Symmetric disconfirmation effect when
α = 1
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(b) Asymmetric disconfirmation effect when
α < 1
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(c) Asymmetric disconfirmation effect when
α > 1
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Figure 5.1: Asymmetric and symmetric disconfirmation effects modeled by Dombi’s
uninorm

of the model which have already been discussed previously when Property 10 was
studied.

The third step function of the LIED framework has three more properties which
might or might not hold for the D-LIED implementation. Firstly, Property 7 allows us
to determine the customer’s initial satisfaction level, also referred to as the adaptation
level. In case of Dombi’s uninorm, the adaptation level a is:

a =
α

1 + α
, (5.6)

which is exactly equal to the customer’s expectation e.
Figure 5.2 illustrates the third step function for three different values of its

parameter α. As alpha increases, the function is translated to the left and the initial
satisfaction level, which is the intersection with the Y-axis, increases. Therefore,
the customer’s expectation and the customer’s initial satisfaction level are positively
correlated in the D-LIED implementation because a = e. Figure 5.2 also shows
that Properties 8 and 9, implying diminishing returns of positive and negative
disconfirmation effects, hold for Dombi’s uninorm. These properties hold for any
value of α since it is the only parameter in the model and it only influences the
horizontal translation of the third step function. Therefore the shape of the third-
step function, which incorporates diminishing return effects, remains intact. The fact
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Figure 5.2: The third step function of Dombi’s uninorm.

that Dombi’s uninorm models diminishing return effects on satisfaction implies that
as the overall disconfirmation effect grows larger (smaller), the additional final effect
on satisfaction grows smaller.

This section illustrated the power of the LIED framework. Once it was proven that
Dombi’s uninorm is a valid LIED framework implementation, the framework served
to analyze the modeling properties of Dombi’s uninorm. It is now known that the
D-LIED implementation takes the following into account when it models the CS/D
process:

• It is assumed that each attribute’s performance is compared against a specific
reference level, which is captured by Dombi’s uninorm neutral element and
which is called expectation level because of historical reasons. Dombi’s uninorm
assumes that this reference level is global and equal for each attribute. On the
other hand, it can be estimated for each customer separately and thus the model
does not assume that all customers share the same expectation level. Dombi’s
uninorm trades unique expectation levels per attribute for unique expectation
levels per customer.

• The D-LIED implementation assumes that the comparison between expectation
and performance leads to disconfirmation which has an effect on satisfaction.
When expectations are low, negative discrepancies between expectation and
performance causes larger effects on satisfaction than equally sized positive
discrepancies. When expectations are high, positive discrepancies have larger
effects than equally sized negative discrepancies.

• Furthermore, two positive disconfirmation effects reinforce each other positively,
two negative disconfirmation effects reinforce each other negatively and a
positive and negative disconfirmation effect compensate each other.

• Finally, the final satisfaction outcome is the resultant of an initial satisfaction
level which is equal to the expectation level. Therefore, when expectations are

80



5.3. Validity

low, i.e. less than 0.5 on a [0, 1] scale, the initial satisfaction level will also be low,
i.e. less than 0.5 on a [0, 1] scale and vice versa. Also, the final satisfaction score
is diminishingly sensitive to increasing disconfirmation effects, both positively
and negatively.

5.3 Validity

One of the key strengths of the D-LIED implementation is that it becomes possible to
learn the global expectation level for each customer separately. However, analogous
with what Peter [106] mentions in his article on reliability of marketing measures, an
estimate which has not been demonstrated to have a high degree of validity cannot
be considered a scientific estimate. Therefore, it is essential that the validity of the
neutral element from the D-LIED implementation as an estimate of the customer’s
expectation level is verified. Following the ideas of Churchill [25] on validity of
marketing constructs, two types of validity can be distinguished.

Firstly, the construct should “look right”, which means that the way the construct
is measured or the estimate is derived should make sense and give an impression of
validity. This kind of validity is also referred to as face or content validity. Secondly,
the estimate or measure should possess construct validity, which lies at the very heart
of the scientific process and which means that the estimate is in fact measuring the
underlying concept which the researcher wants to measure. Both validity concepts
will be studied separately.

Theoretical validity

Face validity means that the estimate “looks right”. For the D-LIED implementation,
this implies that the expectation level “looks right”, i.e. it corresponds to the existing
CS/D theories. This type of validity has already been demonstrated throughout
the previous sections of this thesis. Dombi’s uninorm is proven to be a valid
implementation of the LIED framework, which has been built based upon existing
and dominating CS/D theories. Especially the ED paradigm has been used as the
foundation for the LIED framework and consequently it can be said that Dombi’s
uninorm implements this paradigm. Furthermore, the analysis of the CS/D modeling
properties of Dombi’s uninorm in section 5.2 showed that the D-LIED implementation
incorporates aspects as diminishing sensitivity of satisfaction to disconfirmation,
asymmetric effects of disconfirmation on satisfaction and a non-linear relationship
between performance and satisfaction. All these ideas have been suggested by other
authors [90]. As a conclusion, the D-LIED implementation “looks right” according
to the existing theories and therefore its estimate of the customer’s expectation is
theoretically valid.

Empirical validity

The construct validity of a measure can be determined in two ways [25]. Firstly,
existing measures of the same construct can be used to verify to which degree they
correlate with the new measure. Secondly, it can be verified if the new measure
behaves as expected in relation to other constructs. In contrast with theoretical
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validity, conclusions about the construct validity are drawn from empirical results.
Therefore, construct validity will also be referred to as empirical validity.

The option of measuring the correlation between the model-derived expectation
level and some other direct measurements of the expectation level might be more
difficult than appears at first sight. A symantical error is the cause of the
misconception that such verification can be easily done. The expectation level derived
from the D-LIED implementation represents the referent against which performance
is compared, which is not necessarily the customer’s expectation level. As have been
mentioned in chapter 2, the original ED paradigm assumed that customers compared
the perceived performance against their expectations. However, many authors have
questioned expectation as the comparative referent and other referents have been
suggested, such as e.g. experience-based norms [19]. To make it even more difficult,
various authors have argued that expectation is not uniquely defined and various
levels of expectations can be measured, e.g. the deserved expectation level or ideal
expectation level. Some authors even proposed that customers use a combination of
referents, which could be both expectations and norms. Finally, it was questioned
whether all customers use the same type of referent. Maybe some customers use
some kind of expectation level as their comparative referent, while others use a norm
or a combination of both. Therefore, even if one succeeds in constructing a scale
which produces reliable and valid measurements of the type of referent one wants to
measure, one can still be measuring the wrong construct. Chapter 2 also mentioned
that measuring expectations prior to product purchase can be difficult since it assumes
possible identification of future customers while post-exposure expectation measures
are possibly influenced by the product experience. Therefore, verifying the empirical
validity of the D-LIED’s estimate of customer expectation by comparing it with other
measurements of the customer’s comparative referent becomes near impossible and
the second approach has to be used to prove empirical validity.

The second approach investigates if the construct or estimate behaves as it should
in relation to other constructs. This approach studies if the D-LIED estimate
of the customer’s expectation level is related to concepts such as satisfaction,
disconfirmation, performance in theoretically and empirically predictable ways. To
this end, the empirical results of articles using Dombi’s uninorm to model customer
satisfaction shall be reviewed and new experiments on three different data sets were
conducted.

Empirical evidence from previous research

In a first article by Vanhoof et al. [129], Dombi’s uninorm was used to model customer
satisfaction and the neutral value was assumed to be the customer’s adequate
expectation level, i.e. the expected performance level based on previous performances.
This article contains two experiments which indicate that Dombi’s neutral value
has the expected behavior of a comparative referent. The first experiment studied
the evolution of the expectation level for different levels of price/quality ratio. The
authors argue that:

“Equity theory suggests that satisfaction with specific types of purchase
transactions is determined by a consumer’s comparison of the inputs and outcomes
of companies on a quid pro quo basis. Customers expect service basics delivered at
a level [commensurate] with the price they pay. A higher price results in a higher
expectation level.” [129]
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They calculated the mean expectation level for different price/quality levels for
two different data sets. The results of these analysis can be found in Tables 5.1
and 5.2. These tables show that Dombi’s neutral element behaves as expectation, i.e.
it increases as price/quality goes up.

Table 5.1: Dombi expectation level versus price/quality ratio [Vanhoof et al. [129],
p.119]

Price/quality ratio very low low equal high very high

Mean Dombi exp. 4.6 5.5 6.14 6.85 6.91

Number of cases 159 323 423 190 14

Table 5.2: Dombi expectation level versus price/quality ratio [Vanhoof et al. [129],
p.119]

Price/quality ratio very low low equal high very high

Mean Dombi exp. 4.77 5.73 6.38 7.39 8.07

Number of cases 18 58 165 138 43

In the same article, the authors also provided additional evidence that Dombi’s
neutral element behaves as a proxy for the expectation. They calculated the
mean expectation for 9 different dimensions of the service provided by a particular
company. They found that the dimensions maintenance and products had the highest
expectation scores. This matches with the conclusions of Parasuraman’s study [102]
of sixteen focus group interviews with customers in six service sectors. Parasuraman
stated that customers expect service companies to do what they are supposed to do.
For the company in the study of Vanhoof et al. [129], the fundamental aspects were
delivering a good product and providing high quality maintenance, which were also
the aspects with the highest expectations.

In a second article by Vanhoof et al. [130], the authors used Dombi’s uninorm to
model customer satisfaction and derive the customer’s expectation level. This allowed
them to generate impact curves for the different product attributes. An impact curve
of a specific attribute measures the contribution of each attribute performance level
to the overall satisfaction score. These impact curves allow marketers to categorize
attributes as excitement factors, performance factors or basic factors, which is a
classification going back to Kano’s three-factor theory [73].

A basic factor does not generate satisfaction when expectations are met or
exceeded, they merely avoid dissatisfaction. Excitement factors on the other hand do
not cause dissatisfaction when expectations are not met, but can surprise customers
when expectations are met or exceeded and generated “delight”. The performance
factors are attributes which lead to satisfaction if performance exceeds expectations
and to dissatisfaction when performance fails to meet expectations [83].

Vanhoof et al. applied their technique to a data set from a real company and
confronted experts from the company with their results. The experts confirmed that
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the results were in congruence with previous findings. Although this only provided
validity of the final results, i.e. the impact curves, this indirectly implies that the
expectation values estimated from the Dombi uninorm model, which play a key role
in generating the impact curves, must also have some level of validity.

These two articles already provide evidence which suggest that Dombi’s neutral
element is a valid estimate of the customer’s expectation level. Before this body
of evidence will be extended by various experiments on the three data sets used in
this thesis, the application of the D-LIED implementation to model CS/D has to be
discussed in detail.

Applying the D-LIED implementation

The D-LIED implementation is always applied at the individual customer level, which
means that a new model is build for each customer. There are two levels at which
the D-LIED implementation can be applied, i.e. the general level and the dimensional
level.

At the general level, the model is built by learning the model’s parameter α
(Eq. 5.5) with the overall satisfaction score (S) and the dimension performances
(xi). Once α is learned for each customer, Eq. 5.4 can be used to learn the neutral
element which represents the customer’s general expectation level e. By subtracting
the general expectation level e from the performance pi of dimension i, the dimension
disconfirmation Di is found.

At the dimensional level, a D-LIED model is built separately for each dimension.
For a specific dimension i, the model’s parameter α is learned through Eq. 5.5 with
the performance pi for dimension i as the satisfaction level S and the performance
pij of all attributes j belonging to dimension i as xi. This approach uses the
dimension performance pi as a proxy for the dimension’s satisfaction. Once α is
learned for each customer and every dimension, Eq. 5.4 can be used to learn the
neutral element which represents the customer’s expectation level ei for a specific
dimension i. By subtracting the dimension expectation level ei from the dimension
performance pi, the dimension disconfirmation di is found. Note that this dimension
disconfirmation is calculated with dimension dependent expectations ei, while the
dimension disconfirmations from the general approach uses the general expectation
level e. To stress this difference, the dimension disconfirmations at the general level
is denoted by a capital letter Di. If dimension disconfirmations are needed and the
hierarchical data is available, the dimensional approach is preferred.

Table 5.3 provides an overview of the new constructs created with the D-LIED
implementation. While the general approach can be applied to the original dimensions
as well as the factorized dimensions, it makes little sense to apply the dimensional
approach to the factorized dimensions because the factorized dimensions are not
measured directly but are the average of the corresponding attribute performances.
To distinguish the general approach applied to the factorized dimensions from its
application to the original dimensions, the superscript F is used, i.e. pF

i represents
the performance on factorized dimension i, eF represents the general expectation level
learned with pF

i and DF
i represents the factorized dimension disconfirmation.

The D-LIED implementation uses Eq. 5.2 as a first step function which has [0, 1]
as its domain. Therefore, the data has to be transformed to the [0, 1] interval. As
mentioned in chapter 3, no matter which scale is originally used to measure the
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Table 5.3: New constructs created with Dombi’s uninorm implementation of the LIED
framework

Level New Constructs Formula Input

General general expectation e Eq. 5.4 and 5.5 dimension perf. pi

general sat. S

dimension disc. Di Di = pi − e dimension perf. pi

general exp. e

Dimensional dimension expectation ei Eq. 5.4 and 5.5 dimension perf. pi

attribute perf. pij

dimension disc. di di = pi − ei dimension perf. pi

dimension exp. ei

variables, they can always be linearly transformed to the [0, 1] scale without affecting
the results. However, one has to be careful with selecting a proper transformation to
the [0, 1] domain. Dombi’s uninorm considers the elements 0 and 1 as the absolute
extreme values on the [0, 1] scale. No value larger than 1 or smaller than 0 exists. The
value 0 is so small, that no matter which other values (different from 1) are aggregated
with 0, the outcome is always 0. At the same time, the value 1 is so large, that no
matter which other values (different from 0) are aggregated with 1, the outcome is
always 1. These values act as absorbent values. An aggregation with both 0 and 1
values has 0 or 1 as outcome, depending on whether Dombi’s uninorm is respectively
conjunctive or disjunctive. The values 0 and 1 can be compared with the values −∞
and +∞. On the other hand, the maximum value which can be given on a survey
for an attribute performance is most likely not interpreted by the customer as the
absolute maximal performance level possible. It most likely just represents a very high
performance level. Therefore, this survey score should not be transformed to the value
1. The same holds for the lowest value a respondent can give for the performance of
a product attribute. This score most likely represents an extremely low performance
level, but not necessarily the lowest performance level possible. Therefore, the lowest
score possible on the survey should not be transformed to the value 0.

To determine to which values the maximum and minimum scores on a survey
should be mapped is not a trivial task. The problem is that the data does not
contain information to help finding the correct transformation. Within this thesis,
the following rule of thumb was used which appeared to produce good results: If the
question on the survey was e.g. measured on a scale from [1−5], the scale was divided
by 6, which is the maximum scale value plus 1.
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New evidence: analysis 1

To validate if the new constructs learned by the D-LIED implementation behave
appropriately, information is needed on how they relate to each other and to other
satisfaction related constructs in reality. Szymanski and Henard [122] performed an
extensive meta-analysis of the satisfaction-related correlations found in satisfaction
research from the last three decades. Table 5.4 repeats the results found by Szymanski
and Henard and compares them with the results gathered from the three different
data sets. A distinction is made between the results from the general approach and
the results of the dimensional approach.

Table 5.4: Satisfaction-related correlations: Szymanski and Henard’s meta
analysis [122]

Positive Negative Nonsignificant

Correlationsa Correlationsa Correlations

Perf.-sat. 136 17 6

Perf.-disc. 22 0 1

Exp.-sat. 13 1 3

Exp.-perf. 22 1 2

Exp.-disc. 6 6 11

Disc.-sat. 121 1 15

a Statistically significant at alpha ≤ 0.05

Table 5.5: Satisfaction-related correlations: general approach

Positive Negative Nonsignificant

Correlationsa Correlationsa Correlations

Perf.-sat. 20 0 0

Perf.-disc. 20 0 0

Exp.-sat. 3 0 0

Exp.-perf. 20 0 0

Exp.-disc. 10 7 3

Disc.-sat. 15 0 5

a Statistically significant at alpha ≤ 0.05

Table 5.4 contains the correlations found by Szymanski and Henard between the
constructs performance, satisfaction, disconfirmation and expectation. The same
correlations were calculated for all three data sets following the general approach
based on factorized dimension scores, i.e. using satisfaction, general expectation
eF , factorized dimension performances pF

i and factorized dimension disconfirmation
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Table 5.6: Satisfaction-related correlations: dimensional approach

Positive Negative Nonsignificant

Correlationsa Correlationsa Correlations

Perf.-sat. 20 0 0

Perf.-disc. 20 0 0

Exp.-sat. 20 0 0

Exp.-perf. 19 0 1

Exp.-disc. 0 20 0

Disc.-sat. 8 0 12

a Statistically significant at alpha ≤ 0.05

scores DF
i . Table 5.5 provides an overview of the signs of the correlation. Table 5.6

contains the correlations derived from the dimensional approach, i.e. using dimension
performance pi as satisfaction, dimension expectations ei, attribute performances pij

and dimension disconfirmation scores di.
These tables show that for both approaches, all dimension performances were

significantly correlated with satisfaction in a positive way. This corresponds with
the results of Szymanski and Henard who found that the majority of performance-
satisfaction correlations were positively statistically significant. Note that neither
satisfaction nor dimension performance are constructs derived from the D-LIED
implementation. They are directly measured or constructed by means of a factor
analysis. Therefore, the fact that the Performance-Satisfaction correlations match
the results found by Szymanski and Henard merely prove that the three data sets
have a similar structure as the ones used in the meta analysis, in terms of satisfaction
and performance. This finding is important for the validity and interpretation of the
other correlations.

The performance-disconfirmation correlation is exclusively positive in a
statistically significant way for both the general approach and the dimensional
approach. Almost the exact same pattern was found by Szymanski and Henard.
Thus, the factorized disconfirmation and the regular disconfirmation scores, which
are both derived with the D-LIED model, relate to product performance in the same
way as disconfirmation measures from other studies.

The correlation between expectation and satisfaction is predominantly positive
and statistically significant within the literature review done by Szymanski and
Henard. Almost the exact same pattern was found between the expectations derived
from the D-LIED implementation and the measured satisfaction level, both for the
general approach and the dimensional approach. These results provide evidence that
general expectations derived from the factorized dimensions as well as dimension
expectations derived from attribute performances behave in the same way as directly
measured expectations.

The same holds for the relationship between the D-LIED derived expectations
and the directly measured dimension performance scores. These correlations are
predominantly positive and statistically significant in Szymanski and Henard’s meta-
analysis as well as in the dimensional and general analysis of the three data sets in this
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thesis. This further strengthens the validation of the way that expectation behaves
in relation to other satisfaction-related constructs.

The only correlation which does not exactly match with the results found in
the meta-analysis, is the correlation between the two model-derived constructs, i.e.
expectation and disconfirmation. In the meta-analysis, most of these correlations
are non significant and if they are significant, they can be both positive or negative.
The dimensional approach only produces statistically significant correlations which
are negative. This is a direct result of the way disconfirmation is calculated in the
dimensional approach, i.e. di = pi − ei. For the general approach, the results have a
better match with the meta-analysis. Although these factorized disconfirmations are
also calculated as the difference between performance and expectation, they produce
both positive and negative correlations which are statistically significant.

The correlation between disconfirmation and satisfaction is the last correlation
from the meta-analysis to compare with. In the meta-analysis, disconfirmation and
satisfaction are predominantly positive and statistically significant. The same holds
for the correlations between factorized disconfirmation and general satisfaction in
the general approach. The dimensional approach has trouble producing significant
correlations between disconfirmation and satisfaction, but those which are statistically
significant are also exclusively positive.

The constructs derived from the D-LIED implementation correlate with other
satisfaction-related constructs in a valid and realistic way, which adds to the empirical
validation of Dombi’s neutral value as a proxy for the customer’s expectation.
The only relation which should be treated with some precaution is the one
between expectation and disconfirmation in case of the dimensional approach. The
researcher should keep in mind that this correlation is merely a reflection of the way
disconfirmation is calculated. It should be noted that although the LIED framework
operates under the assumption that the ED paradigm is a valid theory for explaining
customer satisfaction, the correlations found in this study suggest that the D-LIED
implementation produces valid results in general since Szymanski and Henard’s meta-
analysis concerns customer satisfaction theory in general and not the ED paradigm
in particular.

New evidence: analysis 2

The next experiment is inspired by results from Oliver [95], which are also published
in [97]. Oliver argued that both expectation and disconfirmation have separate but
additional effects on customer satisfaction and he uses Table 5.7 to illustrate this
idea. This table shows that as one keeps expectation constant, overall satisfaction
will increase as disconfirmation moves from negative disconfirmation to positive
disconfirmation. It also shows that if the disconfirmation level is kept constant,
the satisfaction increases as the expectation level increases. These results correspond
with the basic idea behind the ED paradigm and similar results are expected from
empirically valid estimates of expectation and disconfirmation.

Therefore, similar tables were created by means of the D-LIED implementation for
all three data sets. The general approach was used to derive the general expectation
level eF for each customer and the disconfirmation score DF

i for each dimension.
These disconfirmation scores and expectation scores are continuous and have to be
transformed into categorical attributes to reproduce Table 5.7. As for the expectation
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Table 5.7: Tabular results from Oliver (1977)1

Respondent Negative Positive

Expectation Level Disconfirmation Confirmation Disconfirmation

Low 2.97 3.88 5.06

High 3.87 5.06 5.93

1 A 1-to-7 scale; cell means are not equal; total n = 243.

variable, all values below the median are transformed into low expectation and
all values above the median into high expectation. The disconfirmation variables
were transformed such that all values within the interval [−σ

2 , +σ
2 ] are coded as

confirmation, all values less than −σ
2 are coded as negative disconfirmation and all

values more than σ
2 are coded as positive disconfirmation, with σ representing the

standard deviation.
Tables B.1, B.2 and B.3 in appendix B reproduce Table 5.7, showing the mean

satisfaction score for customers with a specific expectation level (high or low) and
a specific disconfirmation level (negative, none, positive). Each product dimension
has its own disconfirmation scores which results in a table per product dimension.
Additionally, for each data set the average disconfirmation 1 was calculated which was
categorized in the same way as the other dimension disconfirmations. The average
disconfirmation score can be considered as a proxy for the disconfirmation at product
level, which is the level at which Oliver measured disconfirmation for construction
of Table 5.7. The mean satisfaction scores for customers with a specific expectation
level and a specific product disconfirmation level are shown in Table 5.8.

To verify the statistical significance of the differences in mean satisfaction between
different cells, a two-way ANOVA analysis was performed. For full details of this
statistical approach, the reader is referred to statistical books which deal with ANOVA
analysis such as [93]. A two-way ANOVA analysis has two important assumptions,
i.e. normality of the error terms and constancy of the error variance, which were
violated for almost every dimension.

Various transformations were tried to eliminate the violations of these two
assumptions, such as the square root transformation, the logarithmic transformation
and the reciprocal transformation. Also the Box-Cox procedure was used in order
to find a suitable transformation. However, no transformation was found which
successfully transformed the error terms to normally distributed error terms with
constant variance. An alternative would be to use a non-parametric version of the two-
way ANOVA analysis, which can be established by running a normal two-way ANOVA
on ranked data [30]. However, Seaman et al. [112] warned that such transformations
might be inappropriate in certain situations.

Instead of working with a non-parametric two-way ANOVA technique, it was
preferred to transform the data such that a one-way ANOVA analysis becomes
possible. The transformation combines the expectation variable with two categories
and the disconfirmation variable with three categories into a single variable with six
categories, which are:

1The average was taken over all dimensions, not over all customers.
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Table 5.8: Mean satisfaction for different levels of expectation and product
disconfirmation.

(a) Energy data set

Disconfirmation

- 0 +

Expectation
Low 1.58 3.49{a} 4.36{a}

High 3.24{b} 4.42{a,b} 5.28{a,b}

a Stat. sign. different at 5% from the cell to the left

b Stat. sign. different at 5% from the cell above

Satisfaction is expressed on a 1-to-7 scale

(b) Family entertainment data set

Disconfirmation

- 0 +

Expectation
Low 6.49 7.81{a} 8.68{a}

High 8.09{b} 9.23{a,b} 9.74{a,b}

a Stat. sign. different at 5% from the cell to the left

b Stat. sign. different at 5% from the cell above

Satisfaction is expressed on a 1-to-7 scale

(c) Banking product data set

Disconfirmation

- 0 +

Expectation
Low 1.37 3.09{a} 4.26{a}

High 2.60{b} 4.09{a,b} 4.77{a,b}

a Stat. sign. different at 5% from the cell to the left

b Stat. sign. different at 5% from the cell above

Satisfaction is expressed on a 1-to-7 scale
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• low expectation with negative disconfirmation (LEN),

• low expectation with confirmation (LEC),

• low expectation with positive disconfirmation (LEP),

• high expectation with negative disconfirmation (HEN),

• high expectation with confirmation (HEC),

• high expectation with positive disconfirmation (HEP).

This approach allows the comparison of the different cell means with any of
the various non-parametric one-way ANOVA techniques which can be used if the
assumption are violated. The downside of this approach is that differences between
factor level means, e.g. mean satisfaction for low expectation vs mean satisfaction
for high expectation, and interaction effects can no longer be statistically tested.
However, the main purpose of this analysis is to compare the cell means rather than
the factor level means or interaction effects.

Before the one-way ANOVA analysis was performed, its assumptions were tested.
The normality of the residuals were tested by means of a one-sample Kolmogorov-
Smirnov Test, both asymptotically and with a Monte Carlo experiment based on
10000 tests. The constancy of the error variances was tested with Levene’s Test of
equality of error variances. If both assumptions were met, an F-test is performed to
test if the cell means differ in a statistically significant way and the Tuckey multiple
comparison procedure was used as a post-hoc test to verify the difference between
any combination of two cell means. If one of both assumptions were violated and
no transformation provided any help, the non-parametric Kruskal-Wallis test was
used instead of the F-test and the Games-Howell test was used for the post-hoc
analysis of all combinations of two cell means. The Games-Howell test is a non-
parametric alternative for the Tuckey procedure which was recommended above other
non-parametric tests by Toothaker [125] if the number of cases per cell are 6 or more.

If the F-test or the Kruskal-Wallis test indicated a significant difference between
the cell means, the following cell differences were tested with the Tuckey test or the
Games-Howell test.

• ∆1 = LEC − LEN

• ∆2 = LEP − LEC

• ∆3 = HEC −HEN

• ∆4 = HEP −HEC

• ∆5 = HEN − LEN

• ∆6 = HEC − LEC

• ∆7 = HEP − LEP
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The results of the one-way ANOVA analyses are integrated in Tables B.1, B.2
and B.3 in Appendix B and in Table 5.8. If the mean satisfaction of a cell
differs statistically significant from the mean satisfaction of the cell with the same
expectation level but a lower disconfirmation level, it receives superscript a. If the
mean satisfaction of a cell differs statistically significant from the mean satisfaction of
the cell with the same disconfirmation level but a lower expectation level, it receives
superscript b.

According to the ED paradigm and confirmed by the results found by Oliver [95],
the tested cell differences should be significantly greater than zero. In total, 156 of
the 161 comparisons have the correct sign, and according to the results of the various
ANOVA analysis, 106 of these comparisons were statistically significant (cf Tables B.1,
B.2, B.3 in Appendix B and 5.8). This implies that the D-LIED framework reproduces
Table 5.7 such that 97% of the cell comparisons have the correct sign and 66% of these
comparisons are statistically significant. The D-LIED framework models CS/D such
that both an increase in disconfirmation, ceteris paribus, or an increase in expectation,
ceteris paribus, results in a statistically significant increase in satisfaction, as can be
expected from the ED paradigm. The fact that the D-LIED framework produces
results which behave as expected with regard to other constructs such as satisfaction
provides additional empirical validity.

The results in Table 5.8 show that all comparisons with the average
disconfirmation were statistically significant. This strengthens the believe that the
average disconfirmation could be used as a proxy for product disconfirmation. Finally,
note that none of the 6 comparisons which had an incorrect sign were statistically
significant.

5.4 Case studies

The body of evidence suggesting that the D-LIED implementation produces valid
approximations for customer expectation and customer disconfirmation from limited
information is substantially large, both theoretically and empirically, justifying the
use of the D-LIED implementation on customer satisfaction data. However, it should
never be forgotten that the D-LIED implementation is an implementation of the
LIED framework which is based on the ED paradigm. Therefore, the D-LIED
implementation as well as any other LIED framework implementation implicitly
assumes that the underlying CS/D process is captured by the ED paradigm. If a
researchers or marketers are convinced that an other paradigm should be used to
explain the CS/D process of their customers or product, the LIED framework should
not be used.

In this section, two case studies will illustrate how new information can be
extracted from the data with the D-LIED framework and how a company can benefit
from it. Each case study assumes that the ED paradigm is the correct paradigm to
model CS/D.

Case study 1

The first case study illustrates how univariate analyses of customer expectations can
shed a new light on the performance of the company. This case study is applied on
the Banking Product Data Set and uses the original hierarchical dimensions instead
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of the factorized dimensions because dimension expectations need to be calculated.
Table 5.9 gives an overview of the limited information which is available before
applying the D-LIED framework.

Table 5.9: Limited information available in banking product data set

Variable Scale

Satisfaction [1-10]

Image Performance [1-5]

Price Performance [1-5]

Quality Performance [1-5]

Product Performance [1-5]

Invoices Performance [1-5]

Communications Performance [1-5]

With this information at hand, the company can perform a simple descriptive
and graphical analysis of their product’s performance by averaging the dimension
performances for all customers and plotting them as in Figure 5.3. Based on this plot
for the Banking Product Data Set, the company arrives at the following conclusions:

• The Price dimension has a low performance rating, i.e. less than 2.5 on a scale
from 1 to 5.

• Of all dimensions, Price performs much worse than the other dimensions and
should receive full attention in the future.

• Product Performance and Product Quality are the best performing dimensions.

• The dimensions Product’s Image, Invoices and Communication are performing
above average.

This is where a traditional descriptive analysis would stop, but by applying the
D-LIED implementation, the hierarchical structure of the data can be exploited and
the data can be enriched with the customer expectations for each dimension. For
each dimension, expectation ei was estimated by means of Eq. 5.4 and 5.5 with the
dimension performance pi as a proxy for the dimension satisfaction and the attribute
performances pij as input. This was possible for all dimensions except for Quality,
which did not have any corresponding product attributes pij . The best possible
estimate of the customer’s expectation for this dimension is the general expectation
level e which can be estimated with the D-LIED implementation by using the
general satisfaction score and the various dimension performances pi as input. Next,
disconfirmation di was calculated for each dimension by subtracting the dimension
expectation ei from the dimension performance pi. Table 5.10 shows the average
performance, disconfirmation and expectation for all customers. This information is
used to create Figure 5.4 which shows that some dimensions are performing much
better than expected, while others are creating negative disconfirmation.
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Figure 5.3: Banking product dimension performances.

The averages shown in Table 5.10 are sample means, which give only information
about the surveyed sample of customers. The results in Table 5.10 and Figure 5.4 tell
a manager for example that the customers they surveyed expected a better price on
average. Most often, companies are not extremely interested in the surveyed sample,
but much more in the entire population of customers. Although the sample mean
provides an unbiased estimate of the population mean, additional information about
the accuracy of the estimate is required to make inferences about the population. In
this case study, the sample mean accuracy is expressed by means of 95% confidence
intervals (CI).

According to [114], the single-sample t-test should be used to construct such
confidence intervals since the true population variance is unknown. The 1 − α
confidence interval can be constructed as follows:

CI1−α = X ± (t( α
2 ;n))(

s̃√
n

) (5.7)

where X represent the sample mean, s̃ =

√∑
(X−X)2

n−1 represents an unbiased
estimate of the population standard deviation, n represents the sample size and t( α

2 ;n)

94



5.4. Case studies

Table 5.10: Mean dimension performance, mean dimension expectation and mean
dimension disconfirmation for banking product data set

Dimension Performance Expectation Disconfirmation

Image 3.55 3.50 0.05

Price 2.43 2.52 -0.09

Quality 3.76 3.11 0.65

Product Performance 3.89 3.81 0.08

Invoices 3.39 2.78 0.61

Communications 3.27 3.34 -0.08

Performance and Disconfirmation are measured on a 1-to-5 scale

is the critical two-tailed value in the t distribution for df = n − 1, below which a
proportion equal to [1− (α

2 )] of the cases falls.
According to Sheskin [114], the t-test assumes that the underlying distribution of

X is normal which was tested for each dimension disconfirmation di with a one-sample
Kolmogorov-Smirnov Test, both asymptotically and with a Monte Carlo experiment
based on 10000 tests. None of the dimension disconfirmation scores appeared to
be normally distributed. Fortunately, for large samples the t-test is rescued by the
central limit theorem which states that if the sample size n goes to infinity, the mean
sampling distribution becomes normally distributed [88]. According to Cohen [29],
any sample size larger than 30 can be considered as large. With 1038 records in
the Banking Product Data Set, it is safe to use the t-test. Table 5.11 repeats the
dimension disconfirmation, together with the 95% confidence intervals.

Table 5.11: Mean dimension disconfirmation with 95% CI for banking product data
set

Dimension Mean Disconfirmation 95% CI

Image Performance 0.05 [0.00, 0.10]

Price Performance -0.09 [−0.15,−0.04]

Quality Performance 0.65 [0.60, 0.70]

Product Performance 0.08 [0.03, 0.13]

Invoices Performance 0.61 [0.53, 0.69]

Communications Performance -0.08 [−0.15, 0.00]

Disconfirmation is measured on a 1-to-5 scale

Figure 5.4, which plots both dimension performance and dimension expectation,
and Table 5.11 provide more insight into the company’s performance and allow the
companies to draw the following additional conclusions:
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Figure 5.4: Dimension performances with expectations.

• The performance of Price is less dramatic than appeared to be during the
descriptive analysis of product performance. Price is not performing very
high and is performing slightly worse than expected, but the disconfirmation is
limited because the customers are not expecting very much from this dimension.
This sounds reasonable because the company has a quasi-monopolistic position
in the market, which results in price-taking customers. These results reflect the
fact that customers think that the price is not performing good, but they accept
this situation because they cannot change anything.

• Communication, which was regarded as a good performing dimension seems
to perform less than expected, causing negative disconfirmation. However,
Table 5.11 indicates that the disconfirmation could also be 0.

• Product Performance appeared to be the overall best performing dimension
in the descriptive performance analysis, but dimensions Quality and Invoices
succeed much better in exceeding the customer’s expectation. It would be wrong
to decrease effort on Product Performance since it performs only slightly better
than expected. If the company has to decrease focus on one of these dimensions,
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they should probably choose the Invoices dimension. Even if performance would
drop for this dimension, the company would still be performing better than
expected.

Comparing these conclusions with the previous ones illustrates that the D-LIED
implementation adds new and important insights to the descriptive performance
analysis.

Case study 2

The previous case study illustrated how a traditional analysis of descriptive
performance statistics could be extended with a descriptive analysis of expectation
and disconfirmation. These univariate analyses are a good starting point for
studying the customer satisfaction process, but provide only limited insights in
the interpretation of the satisfaction data. Researchers wishing to go beyond
the univariate analysis of descriptive satisfaction statistics, typically calculate the
statistical impact of the individual dimension performance scores on the overall
satisfaction score with a regression analysis [97]. By studying the regression
coefficients, the CS/D key drivers can be identified.

Oliver discussed that analyzing the CS/D process by means of only performance
and satisfaction scores can be both correct and incorrect. Regressing satisfaction on
the dimension performances is a first step in gaining insights about the levels and
potential causes of satisfaction. Aided with expert interpretation of the results and
follow-up validation, nothing may be wrong with this approach. However, even if
the regression results identify problematic product dimensions, it will fail to explain
why particular dimensions are a problem (or a benefit) for the consumer. That is,
the traditional regression approach ignores the psychological process which customers
use to interpret the experienced levels of performance. Fortunately for the numerous
firms which conduct surveys in the traditional manner, consumers do bring their
psychological interpretations to performance ratings. At the same time, traditional
regression analysis is unable to reveal these interpretations [97].

In this case study, we will illustrate how expectations and disconfirmations,
extracted from the data by means of the D-LIED implementation, can extend
the traditional regression analysis and provide insights in the psychological process
underlying the customer’s interpretation of the experienced levels of performance.
The case study uses the Energy Data Set which contains customer satisfaction data
for two competitors. Within this case study, two different regression models will be
estimated for each company.

The first regression analysis uses the satisfaction score as the dependent variable
and the eight dimension performance scores as the explanatory variables. The
dimensions are: availability (p1), employees (p2), problem solving (p3), information
(p4), service (p5), invoices (p6), price (p7), product quality (p8). The first regression
model (cf Eq. 5.8) has 9 regression coefficients. Coefficient α0 is the intercept term
which can be interpreted as the basic level of satisfaction, i.e. the satisfaction when
all the performance scores are equal to zero. In theory this is the minimum level of
satisfaction, unless some product dimensions have a negative influence on product
satisfaction, which would not make sense. Coefficients β1 to β8 measure the influence
of a unit increase in dimension performance on satisfaction. These coefficients allow
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the researcher to identify dimensions which have a statistically significant influence
on satisfaction and to distinguish between less influential dimensions and real key
satisfaction drivers. Note that the hierarchical dimension scores are used instead
of the factorized dimension scores. Although the latter type of dimension scores
are multi-item scores which are less sensitive to measurement errors, the hierarchial
dimension scores were used for a correct comparison with the next regression model
which incorporates dimension expectations learned at the dimensional level by the
D-LIED implementation. Also keep in mind that the performance and satisfaction
scores have been transformed to the [0, 1] interval by dividing the satisfaction score
by 11 and the performance scores by 6. This results in satisfaction scores between
0.09 and 0.91 and performance scores between 0.17 and 0.83. This regression model
is referred to as the performance regression model.

Satisfaction = α0 +
8∑

i=1

βipi (5.8)

The second regression model, shown by Eq. 5.9, divides each performance score
in an expectation score and a disconfirmation score. The expectations are learned at
the dimensional level except for dimensions price and product quality, which do not
have corresponding product attribute performances. For the latter two dimensions,
the average expectation of the other dimensions was used as a best estimate of the
dimension expectation. Using expectation learned at the general level as an estimate
for the price and product quality expectation, as is done in the previous case study,
is not possible. Learning expectation at the general level is a function of general
satisfaction and dimension performance. Using this very construct in a regression with
general satisfaction as the dependent variable leads to a circular path of modeling.
The disconfirmations in this second regression model are the dimension expectations
subtracted from the dimension performances. The final regression model does not
incorporate the expectation levels for dimensions price and product quality because
this would lead to perfect collinearity between the expectation variables.

Satisfaction = α0 +
8∑

i=1

βidi +
6∑

i=1

γiei (5.9)

The second regression model contains 15 regression coefficients. Coefficients β1

to β8 measure the impact on customer satisfaction of a unit increase in dimension
disconfirmation, while coefficients γ1 to γ6 measure the impact of a unit increase in
dimension expectation. The difference with the previous regression is that dimension
performance is divided in an expectation element and a disconfirmation element which
reveals the psychological interpretation of the customers. While the performance
regression might identify a dimension as having a large impact on satisfaction, it
cannot tell if companies should try to keep expectations equal and create positive
disconfirmation or if companies should try to increase the customer’s expectations
and keep disconfirmation equal. With this type of regression, such conclusions are
possible. Only the expectation variables for dimensions price and product quality are
missing. Instead, the intercept term α0 can be interpreted as the average impact
of the expectations for these two dimensions on the customer’s satisfaction. This
regression model is referred to as the disconfirmation regression model.
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Traditionally, these regression models are conducted as ordinary least squares
(OLS) multiple linear regression analyses. The benefit of a linear regression model
is its parsimony and its ease of interpreting the coefficients, which can be important
during a presentation to people unfamiliar with statistics. On the other hand, a linear
model also assumes that the impact of performance, disconfirmation or expectation
is independent of the current level of performance, disconfirmation or expectation.
Some authors [90] question the validity of this assumption but in this case study, it
was chosen to build a linear model to achieve an easy interpretation of the results
while keeping in mind that the model might only approximate the possible non-linear
structure of the underlying process.

A multiple linear regression also relies on a set of assumptions to estimate unbiased
coefficients and efficient and unbiased confidence intervals. One of these assumptions
is the fact that the error terms are normally distributed with a mean equal to zero
and a constant variance σ2, which is referred to as the normality of the error terms.
A second and important assumption is that the variance of the error terms is equal
for any value of the explanatory variables, which is referred to as the equal variance
or homoscedasticity assumption. [93, 58]

Both assumptions were tested for all four regression analysis. Testing the
normality of the error terms is done by checking the normality of the residuals by
means of a quantile comparison plot. The quantile comparison plots in Figure 5.5
plot the studentized residuals against their expected value under a t-distribution
with (n − k − 2) degrees of freedom 2. The plots also show a 95 percent pointwise
confidence envelope for the studentized residuals, using a parametric version of the
bootstrap. The method used is from Atkinson [9, 53]. If the residuals follow a normal
distribution, the studentized residuals should align with the diagonal through the
origin. These plots reveal that the residuals are heavily skewed to the left for all four
regression models, suggesting non-normal error terms.

To test the homoscedasticity assumption, the Breusch-Pagan test [17] was
employed which calculates a test statistic X2

BP which follows approximately
the chi-quare distribution with one degree of freedom under the assumption of
homoscedasticity [93, 53]. Table 5.12 shows the results of the Breusch-Pagan test for
all four regression model and the results are highly significant, strongly suggesting
heteroscedastic error terms.

Table 5.12: Results of the Breusch-Pagan test for the energy data set

Performance Reg. Disconfirmation Reg.

Company 1 2 1 2

X2
BP 30.03 49.70 29.01 44.71

p-value < 0.01 < 0.01 < 0.01 < 0.01

These results indicate that two important assumptions of the OLS linear regression
model are violated which can lead to unreliable regression coefficients. Furthermore,
Figure 5.5 reveals that several observations in all four models have residuals which

2n refers to the number of cases, k refers to the number of parameters.
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(a) Performance regression model: company 1
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(b) Performance regression model: company 2
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Figure 5.5: Quantile-comparison plots of the studentized residuals for the energy data
set

are much lower than expected. These observations can be considered as outliers and
can wreak havoc with least squares estimates.

All these results suggest that the data is not appropriate for conducting multiple
linear regression. One could try various transformations of the dependent and
independent variables to resolve the issues of the non-normal and heteroscedastic
residuals, but even if a proper transformation was found, the ease of interpretation
of the regression coefficients would be lost. To limit the impact of outliers, one could
omit these cases from the data set, but this would substantially decrease sample size
and might omit important information from the data set.

Instead, a robust regression technique with non-parametric bootstrapping for the
construction of confidence intervals was used. The iteratively reweighed least squares
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(c) Disconfirmation regression model: company 1
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(d) Disconfirmation regression model: company 2
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Figure 5.5: Quantile-comparison plots of the studentized residuals for the energy data
set [continued]

(IRLS) robust regression technique was selected, which uses the weighted least squares
procedures to dampen the influence of outlying observations [93]. The basic idea
behind this approach is that observations with large residuals get small weights and
observations with small residuals receive large weights. The weights are determined
by the Huber weight function which is defined as follows:

w =

{
1 |u| ≤ 1.345
1.345
|u| |u| > 1.345

(5.10)

with u denoting the scaled residual. On Figure 5.6, which shows the Huber weight
function, it can be seen that any observation with a scaled residual between −1.345
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and 1.345 receives a maximum weight of 1, while observations with scaled residuals
larger than 1.345 or smaller than −1.345 receive lower weights. The value of 1.345 is
called the tuning constant and is chosen such that the IRLS robust procedure is 95
percent efficient for data generated by the normal error regression model [93].

 0

 1

-1.345  0  1.345

w

u

Figure 5.6: Huber weight function.

The advantage of the robust regression method is that it is less sensitive to outliers,
but the drawback of this approach is that the evaluation of the precision of the
estimated regression coefficients is more complex. To calculate 95 percent confidence
intervals, a non-parametric bootstrap technique must be used. Bootstrapping, which
was developed by Efron [41], is based on creating new bootstrap samples S∗b by
sampling with replacement from the original sample S until the new sample size is
equal to the original sample size. This process is repeated a number of times which
results in a set of B bootstrap samples, denoted as {S∗1 , . . . , S∗b , . . . , S∗B}. The key idea
is that all these bootstrap samples can be considered as samples from the unknown
population (or at least they look like the unknown population).

Next, the regression coefficients are estimated for each bootstrap sample, which
are denoted as β̂∗ib, while the regression coefficients estimates for the original sample
is denoted as β̂i. According to the bootstrap theory, the sampling distribution of
the regression coefficient estimate β̂i around the true regression coefficient βi, which
is needed to construct confidence intervals, is analogous to the distribution of β̂∗ib
around β̂i. Thus, by making B very large, the bootstrap approach can construct a
detailed empirical distribution of β̂∗ib around β̂i which serves as an estimate of the
true sampling distribution of β̂∗ib [52]. This estimate of the sampling distribution can
be used to construct confidence intervals around β̂i. Various approaches to construct
bootstrap confidence intervals exist, such as the normal-theory interval, the bootstrap
percentile interval and the bias-corrected, accelerated percentile intervals (BCa). The
first approach assumes a normally distributed bootstrap sampling distribution of
β̂∗ib, while the latter two use the quantiles of the bootstrap sampling distribution to
establish the end points of a confidence interval non-parametrically. Since the BCa

confidence intervals are an adjustment of the percentile confidence intervals, the BCa
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approach was used to construct 95% CI. In this case study, the confidence intervals
are based on 1000 bootstrap samples.3

By using a robust regression technique with bootstrapped confidence intervals,
various problems encountered by OLS multiple regressions are avoided. Firstly,
the regression technique is robust and consequently less sensitive to outliers.
Secondly, non-normality and heteroscedastic regression coefficients pose no problem
for nonparametric bootstrapping to construct 95 percent confidence intervals. For
a more detailed discussion on robust regression and bootstrapping, the interested
reader can refer to [93, 52, 42].

Table 5.13: Coefficients of the performance regression model and the disconfirmation
regression model for company 1 in the energy data set

Perf. Regression Disc. Regression

Coef. 95% CI Coef. 95% CI

α0 (Intercept) 0.35 [0.28, 0.41] 0.35 [0.28, 0.41]

β1 (Availability) 0.03 [−0.02, 0.1] 0.01 [−0.07, 0.08]

β2 (Employees) 0.02 [−0.13, 0.14] -0.03 [−0.16, 0.09]

β3 (Problem Solving) 0.22 [0.12, 0.34] 0.10 [−0.02, 0.25]

β4 (Information) -0.02 [−0.12, 0.07] -0.02 [−0.11, 0.08]

β5 (Service) 0.12 [0.00, 0.24] 0.09 [−0.02, 0.22]

β6 (Invoices) -0.02 [−0.09, 0.07] -0.03 [−0.11, 0.05]

β7 (Price) 0.19 [0.12, 0.26] 0.20 [0.13, 0.26]

β8 (Product Quality) 0.07 [−0.01, 0.15] 0.05 [−0.03, 0.14]

γ1 (Availability) 0.11 [0.03, 0.20]

γ2 (Employees) 0.07 [−0.07, 0.21]

γ3 (Problem Solving) 0.30 [0.18, 0.42]

γ4 (Information) -0.07 [−0.19, 0.04]

γ5 (Service) 0.17 [0.04, 0.31]

γ6 (Invoices) 0.03 [−0.06, 0.11]

Coefficients significant at 5% are marked in grey

The coefficient estimates of both the performance regression model and the
disconfirmation regression model for company 1 are presented in Table 5.13. In order
to interpret these results, it is important to have some background information about
this company. Company 1 used to have a monopolistic position before the energy
market was liberalized and is still the biggest player on the market. Many customers
have established a long time relationship with this company which might explain why
so few people switched companies after the liberalization of the energy market.

3The same reasoning holds for the other regression coefficients α0 and γi.
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In general, the results of both regression models support Oliver’s conjecture
that performance-based approaches can identify the key satisfaction drivers but
fail to reveal the psychological process underneath. Table 5.13 illustrates that the
performance regression model identifies dimensions Problem Solving, Service and
Price as key drivers. Since companies in this market are not really selling a tangible
product, Service and Problem solving could be considered as their core business
activities. The fact that the core business activities are identified as the key drivers of
satisfaction is in line with the findings of Parasuraman et al. [102]. In addition to these
three key drivers, the disconfirmation model succeeds in identifying one additional key
driver, i.e. the Availability dimension. The fact that the disconfirmation model finds
the same key drivers as the performance model furthermore validates the results of the
disconfirmation model. All the significant coefficients are positive as can be expected
from the theoretical relationship between satisfaction on one hand and performance,
disconfirmation and expectation on the other hand.

Up to this point, the disconfirmation model merely confirms the conclusions
of the performance model. However, in contrast to the performance model, the
disconfirmation model does offer an explanation of the CS/D process. According
to the results in Table 5.13, most key drivers, except Price, have an influence
on satisfaction only through expectation. For example, customers with a positive
disconfirmation on the dimension Problem Solving will not have a higher satisfaction
score on average than customers with a neutral disconfirmation level. On the other
hand, customers with a higher expectation on the dimension Problem Solving will
also have a higher satisfaction level. Customers are only sensitive to disconfirmation
for the dimension Price. These results demand some explanation.

Firstly, non-significant coefficients do not imply the absence of a real effect on
satisfaction. It only implies that there is not enough statistical evidence to reject
the null hypothesis of no effect. The 95 percent confidence intervals of β3 (Problem
Solving) and β5 (Price) for the disconfirmation model fall almost completely into the
positive range, suggesting a positive effect on satisfaction. On the other hand, even
if there is a positive effect on satisfaction, it will be relatively small.

Why disconfirmation has almost no effect on satisfaction can be explained by
the fact that company 1 used to be the only player on the market and almost all
its customers have a long history with this company, making them less sensitive to
disconfirmation (almost insensitive). Oliver [96] suggested that expectation acts as an
adaptation level based on previous experience. Given the long history of experiences
with this company, it is reasonable to assume that customers have built a very strong
adaptation level which discards almost any disconfirmation experienced. Customers
are only sensitive to disconfirmation on the dimension Price, which can be an effect of
the liberalization of the market, making customers more price-aware and weakening
their adaptation level for this dimension.

Company 2 is a new player which entered the energy market directly after
the liberalization. This company has more customers who consciously selected
their company, which explains why both regressions identified more key drivers of
satisfaction compared with company 1. Similar to company 1, the core business
activities, i.e. Problem Solving and Service, are identified as key drivers by the
performance model, as could be expected from the results of [102]. Additionally, the
performance model also identified dimensions Invoices, Price and Product Quality as
key drivers. Similar to company 1, the disconfirmation model identified one additional
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Table 5.14: Coefficients of the performance regression model and the disconfirmation
regression model for company 2 in the energy data set

Perf. Regression Disc. Regression

Coef. 95% CI Coef. 95% CI

α0 (Intercept) 0.34 [0.23, 0.42] 0.35 [0.26, 0.44]

β1 (Availability) -0.07 [−0.17, 0.03] -0.03 [−0.12, 0.09]

β2 (Employees) 0.00 [−0.15, 0.15] 0.02 [−0.14, 0.17]

β3 (Problem Solving) 0.27 [0.13, 0.41] 0.21 [0.08, 0.34]

β4 (Information) 0.10 [−0.01, 0.21] 0.15 [0.03, 0.27]

β5 (Service) 0.19 [0.04, 0.35] 0.14 [0.01, 0.29]

β6 (Invoices) 0.18 [0.10, 0.27] 0.13 [0.05, 0.23]

β7 (Price) 0.10 [0.03, 0.19] 0.13 [0.05, 0.21]

β8 (Product Quality) -0.18 [−0.29,−0.05] -0.15 [−0.26,−0.03]

γ1 (Availability) -0.11 [−0.22, 0.01]

γ2 (Employees) -0.16 [−0.35, 0.01]

γ3 (Problem Solving) 0.35 [0.16, 0.51]

γ4 (Information) 0.01 [−0.10, 0.13]

γ5 (Service) 0.25 [0.10, 0.43]

γ6 (Invoices) 0.23 [0.14, 0.33]

Coefficients significant at 5% are marked in grey

key driver, i.e. Information. The latter key driver was not a key driver for company 1,
which can be explained by the fact that customers of company 1 have a long history
with company 1 which makes quality of information less important than for customers
of a new company.

All coefficients were positive as was expected, except for dimension Product
Quality. The performance model suggests that if product quality increases, customer’s
satisfaction will drop. The disconfirmation model suggests that if disconfirmation
of product quality performance becomes more positive, the satisfaction will drop.
Both conclusions are contradicting with the existing CS/D theory and can not be
explained logically. Since both models find this result, company 2 should perform
further analysis and gather data more to discover what is going on.

The disconfirmation model reveals that customers with higher expectations
on dimensions Availability, Problem Solving and Service are also more satisfied.
Additionally, the disconfirmation model also reveals that customers of company 2
are much more sensitive to disconfirmation than customers of company 1, which can
be explained by the fact that customers of company 2 do not have the same long
history with their company as customers of company 1.

The results of the analysis on both companies clearly illustrate that performance
regression only provides part of the story behind customer satisfaction which could
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lead to incorrect decisions. For example, the performance model identified Problem
Solving and Service as key drivers, which could lead to an increase of effort
on these two dimensions. However, the disconfirmation model showed that any
additional positive disconfirmation created on these dimensions has almost no effect
on satisfaction. Apparently, the customer’s expectation of both dimensions have
a much larger impact on the customer’s satisfaction and companies could perhaps
focus on raising the expectation levels. If company 1 wants to increase satisfaction by
putting more effort in one of the dimensions, it should try to improve the performance
of the Price dimension, which is much more sensitive to an increase in positive
disconfirmation.

Furthermore, the disconfirmation model also revealed an interesting difference
between the customers of both companies, which remained hidden with the
performance regression model: while the performance model already showed that
company 2 has more key drivers than company 1, it failed to show that customers of
company 2 are much more sensitive to disconfirmation than customers of company 1.

5.5 Summary

In this chapter, the D-LIED implementation of the LIED framework was introduced,
which is based on Dombi’s evaluation operator. It was shown that this aggregation
function provides a valid implementation of the LIED framework and that the neutral
element of the aggregation function acts as an estimate for the customer’s expectation
level. It was also illustrated that the D-LIED implementation can be applied on two
different levels in case of hierarchical data, i.e. the general and the dimension level. At
the general level, the D-LIED implementation provides an overall expectation score
and at the dimension level, the D-LIED implementation extracts an expectation score
per dimension. With the customer’s expectation, one can estimate the customer’s
disconfirmation by subtracting the expectation from the performance score.

Next, both the theoretical and empirical validity of expectation and
disconfirmation, extracted with the D-LIED framework, were evaluated. The
empirical validity encompassed both existing and new research. The results of these
validation analyses showed that the expectation and disconfirmation learned from the
data with the D-LIED implementation could be used in customer satisfaction analysis.
Two different case studies showed how the new information can be imported directly
into traditional satisfaction analysis. These case studies gave a first impression of
what is possible with the D-LIED implementation and the next two chapters will
continue to illustrate the potential of this implementation.
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6 Application 1: importance-performance analysis

6.1 Introduction

Importance-Performance Analysis (IPA) is a graphical analysis of the product
attributes (or dimensions) to provide insights on necessary and corrective business
decisions. IPA calculates the importance and average performance for each product
attribute (or dimension) and plots each attribute on a two-dimensional grid, which is
illustrated by Figure 6.1.
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Figure 6.1: The importance-performance analysis.

The X-axis represents the attribute’s performance and is divided in a Low
Performance part and a High Performance part. The Y-axis represents the attribute’s
importance and is also divided in a Low Importance part and a High Importance
part. In total, the IPA plot is divided in four quadrants. Figure 6.1 shows four
different product attributes, each in a different quadrant. Product attribute a is
situated in the upper left quadrant which is called the Concentrate Here quadrant.
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Product attributes in this quadrant are highly important but are performing bad and
need immediate attention. Product attribute b, which is situated in the Keep up
the Good Work quadrant represents a product attribute of high importance which is
performing well. Product attribute c is situated in the lower right quadrant which
is called the Possible Overkill quadrant because the attributes in this quadrant are
performing above average but have low importance. The fourth quadrant, which
contains attribute d, is called the Low Priority quadrant because it contains attributes
which are not performing well but are not very important either.

The IPA technique, originally introduced by Martilla and James [82], is
particularly easy to interpret which makes it an attractive manager’s tool for
developing marketing strategies and a useful technique for evaluating the elements of
a marketing program. Due to its strengths and managerial attractiveness, IPA has
been adopted in other domains besides marketing strategy development. Slack uses
IPA as an important part of operations strategy formulation [115], but IPA has also
been used as an analysis tool in the field of customer satisfaction management [84, 83].
Sampson et al. [110] used IPA as part of a service quality improvement program of
a school’s district Food Services Department. Without question, IPA has become a
frequently applied analytical technique in various domains.

Recently, research publications in the field of customer satisfaction in general and
Importance-Performance Analysis in particular, revealed some hazardous pitfalls and
complications when measuring the product attribute’s importance . In this chapter,
these problems and their consequences are discussed for the two most commonly used
techniques and a new approach, based on the D-LIED implementation, is developed.
The next section will discuss the evolution of the IPA technique as well as the recent
developments which question the measurement and interpretation of the importance
figures. The third section will elaborate on the two most commonly used techniques
for measuring attribute importance, while the fourth section introduces a new method
to measure importance figures. Finally, the possible problems of the traditional
technique are tested empirically and a case study illustrates the application of the
D-LIED approach.

6.2 Evolution of importance-performance analysis

In their original work [82], Martilla and James emphasized that the main contribution
of IPA does not lie in the absolute positioning of the attributes on the grid, but in the
prioritization of the attributes, which is based on the relative positioning. In their
work, they implicitly assumed that importance and performance are independent.

Over the years, different authors have suggested several extensions of the basic
IPA model, which pertained to conceptualization and measurement of attribute
performance [110], but the performance-importance independence assumption
remained intact. One of the first authors to question this assumption was Nigel
Slack [115], who suggested that attribute prioritization was a function of attribute
performance interpreted in light of attribute importance. Sampson et al. [110]
continued this line of reasoning and argued that a causal relationship had to
exist between attribute importance and attribute performance. They assumed
that attribute importance was negatively correlated with attribute performance, i.e.
attribute importance increases when attribute performance drops.
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A similar result was found by Mittal et al. [90], who investigated the relationship
between attribute performance and their impact on overall satisfaction. They showed
that a negative attribute performance had a greater impact on overall satisfaction,
than a positive attribute performance. Although their research pertains to the field of
customer satisfaction, it can be linked to Importance-Performance Analysis, because
the impact on overall satisfaction is often used as a proxy for the relative attribute
importance [84].

Both Mittal et al. and Sampson et al. assumed a negative correlation between
attribute performance and attribute importance. Their findings largely confirmed this
hypothesis but some anomalies in their results indicated that there was still a part
that remained unexplained. Sampson et al. noticed that the Performance-Importance
Response Function was not linearly descending, but had a convex pattern, curving
back up at the highest attribute performance scores. Mittal et al. discovered that
one attribute showed a completely opposite pattern than expected. This attribute
became more important as performance increased.

Matzler et al. addresses these peculiarities by assuming a causal relationship
between attribute performance and attribute importance, without specifying the
sign of correlation [83]. They used Kano’s three-factor theory [73] and Oliver’s
ED paradigm [96] to explain the fact that not all attributes show the same sign
of correlation between attribute performance and importance.

According to Kano, three different types of attributes can be discerned:
basic factors, performance factors and excitement factors. Basic factors cause
dissatisfaction if not fulfilled but do not lead to customer satisfaction if fulfilled.
These, attributes show a negative correlation between attribute performance and
attribute impact. Performance factors lead to satisfaction if performance is high and
to dissatisfaction if performance is low. These attributes have the same importance
when performance is low as when performance is high. Finally, excitement factors
increase satisfaction if performance is high, but do not cause dissatisfaction if they
are not fulfilled. These attributes show a positive correlation between attribute
performance and attribute impact. [83]

Evidence is accumulating that the original assumption of performance-importance
independence is incorrect, which calls the applicability of current IPA analysis into
question [83]. Particularly, the determination of an attribute’s importance can be
problematic and unreliable. The next section discusses the two most commonly
approaches to determine attribute importance in detail.

6.3 Traditional approaches to measure attribute importance

Direct measurement

While attribute performance is always measured directly by means of a customer
survey, the measurement of attribute importance scores is not always trivial [110].
One of the most straightforward methods to measure attribute importance is by
surveying the customers. A variety of measurement scales exist for attribute
importance: e.g. direct rating, constant-sum scale, anchored scale and partial ranking
among others. According to a study by Griffin and Hauser [57], there are no significant
differences between these different measurement approaches. Their results were also
confirmed by Matzler et al. [84].
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One of the advantages of measuring attribute importance directly by means of
a survey is the level of information obtained. The importance is measured at the
level of a single respondent, providing information at the micro level. The data can
always be aggregated if information is needed at a higher level, such as the average
attribute importance for the entire population. The direct measurement approach
also seems to offer extensive control over the validity of the measures, because the
researcher can choose the appropriate measurement scale and question formulations.
However, both Sampson et al. [110] and Matzler et al. [84] argue that the existing
direct measurement scales for attribute importance are less valid than they appear
to be.

Sampson et al. claim that the survey question ‘How important is this attribute?’
will be interpreted as ‘How important is this attribute at the current level of attribute
performance?’. They postulate that attribute importance depends on attribute
performance level, which reflects in the answers of the respondents. This assumption
is supported by their results, which show a negative correlation between attribute
importance and attribute performance.

Also Matzler et al. question the validity of the directly measured importance
scores, but do not agree with Sampson et al. on the source of the problem. According
to Matzler et al., the respondent’s self-stated importance does not reflect the true
performance-importance relationship because these measures do not express the
importance of the current performance level on customer satisfaction. Instead,
customers interpret importance as the relative importance of an attribute compared
to other attributes, irrespective of the current performance level. Consequently,
basic factors will be rated as most important, performance factors as less important
and excitement factors as the least important. Their empirical results do show
a substantial difference between the directly measured importance scores and the
statistically derived importance scores.

Furthermore, when collecting attribute importance scores by direct measurement,
it is important to make sure that the importance related survey answers are not
contaminated by the performance related survey answers. Martilla and James warn
about this pitfall in their original work [82] and suggest to separate the importance
measures and the performance measures to minimize compounding and order effects.

Finally, direct measurement of attribute importance can also pose a practical
problem. Adding questions of attribute importance to a survey which also contains
the measurements of attribute performance makes the survey more elaborated which
could lead to a more costly survey or a survey which takes too much time from
the respondents. Secondly, it is possible that the IPA analysis has to be performed
with secondary data, i.e. data originally collected for other research, which does not
contain attribute importance data. In such situations, the researcher is forced to use
other approaches for measuring attribute importance.

Regression based measurements

Several articles on IPA and customer satisfaction analysis, describe the use of linear
regression, with satisfaction as the dependent variable and attribute performances
as the independent variables, to determine the attribute importance scores [90, 83,
37]. The regression coefficients measure the impact of the attributes on the overall
satisfaction, which can be used as proxies for the attribute importance.
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This indirect approach of measuring attribute importance has several advantages.
Firstly, it allows researchers to use secondary data and to derive the attribute
importance scores from customer satisfaction data. Furthermore, linear regression
is a well-known technique among researchers and is easy to apply. Linear regression
also allows researchers to build confidence intervals and to test statistical significance
to increase the validity of their results.

On the other hand, linear regression comes with a large set of assumptions which
should always be tested. One of these assumptions is that the model is specified
correctly. As shown in the previous chapter, a regression model with satisfaction and
attribute performance fails to capture the ED paradigm which is considered to be
a valid approximation of the CS/D process. Even if the performance regression is
assumed to hold for the available data, various other problems might occur with the
linear regression model.

The performance regression model assumes that the attribute’s impact on
customer satisfaction can be represented as a point-estimate which is contradicted
by results from Matzler et al. [83], Mittal et al. [90] and Sampson et al. [110]. Even if
confidence intervals were to be used in an IPA, the performance regression provides
a single importance estimate per attribute. This implies that the importance of
an attribute is independent of the attribute’s performance level which is not true
according to several authors [110, 84]. Therefore, the coefficients only capture a
fraction of the true impact on satisfaction and the remaining part hides inside the error
term, making it heteroscedastic. The danger of heteroscedasticity in a performance
regression was already mentioned by Sampson et al. [110], but they never tested it
for their data.

The regression can be adapted to capture the dependence between attribute
importance and attribute performance by creating a set of dummy variables for
every attribute performance variable. Each set comprises one dummy variable per
attribute performance level, except for the reference performance level. These dummy
variables measure the impact of a specific attribute performance level on satisfaction.
If the original attribute performance variable is continuous, this approach requires
discretization first.

A side effect of this approach is the explosion of the number of explanatory
variables. For example, if the original regression uses 4 attributes, all measured on
a categorical scale from one to ten, the adapted regression will have 36 explanatory
variables. This explosion of explanatory variables can cause a new problem, i.e. near
micronumerosity. This phenomenon is closely related to near perfect multicollinearity
and has the same symptoms. This problem generally arises when the number of
observations barely exceeds the number of parameters to be estimated [58]. It is
also possible to recode every explanatory variable into less dummy variables, but this
makes interpretation of the regression coefficients more difficult and less useful.

Furthermore, past research also assumed that no interaction effects between
attribute performance variables existed. This implies that the impact on satisfaction
of one attribute is independent from the performance level of other attributes. For
example, the impact of a performance increase of 10% on product quality has the
same impact on satisfaction when all other attributes perform very high or when
all other attributes perform extremely low. This is a rather unrealistic assumption
and can be resolved by adding interaction effects to the regression. However, the
researcher still has to make assumptions about the type of interaction and decide
which attributes interact.

111



6. Application 1: IPA

A final limitation of this technique is the fact that only information at the
level of the entire population can be derived. The calculated attribute importance
scores measure the attribute impact on satisfaction on average for the entire sample,
in contrast with directly measured importance, which identifies the impact on
satisfaction at the respondent’s level.

6.4 Attribute importance measure derived with D-LIED
implementation

The attribute importance derivation

The two traditional approaches to measure attribute importance, which are discussed
in the previous section, are widely adopted in IPA research, but have their limitations.
The direct measurement approach might suffer from incorrect interpretation of the
questions and is impossible to use with secondary data. The indirect regression
approach starts off wrong by applying a performance-based model which ignores
the dominant ED paradigm and might suffer from violations of OLS regression
assumptions making the results unreliable. This section proposes a new approach
which starts from the D-LIED implementation, allowing a much better modeling of
the CS/D process. This D-LIED approach only requires satisfaction and performance
data which makes it perfectly suitable for secondary customer satisfaction data sets
with limited information.

This new approach starts by applying the D-LIED implementation at the general
level to learn the general expectation ek for each customer k (cf Eq. 5.5 and 5.4). Next,
Eq. 5.5 can be used to find parameter αk for each customer k, which can be plugged
into the general modeling function of the D-LIED implementation (cf. Eq. 5.3). This
provides a unique customer satisfaction modeling function for each customer, i.e.

Uk(x1k, x2k, . . . , xnk) =
∏n

i=1 xik∏n
i=1 xik + αn−1

k

∏n
i=1(1− xik)

. (6.1)

With a unique CS/D modeling function for each customer, it becomes possible
to evaluate the customer’s satisfaction level in a hypothetical situation, which differs
from the experienced one. The first interesting hypothetical situation is where the
performance of attribute xi is equal to the customer’s expectation. This situation
can be modeled as follows:

Se
ik = Uk(x1k, . . . , x(i−1)k, ek, x(i+1)k, . . . , xnk), (6.2)

where Se
ik represents the satisfaction level experienced by the customer if attribute

xi performed as expected (ek). Since ek is the neutral element of the uninorm in
Eq. 6.1 and given Definition 4 of a neutral element, Se

ik can also be considered as the
satisfaction level the customer would experience if there was no attribute xi in the
CS/D process.

A second hypothetical situation which is interesting to simulate is where the
performance of attribute xi increases with a value δ. This situation can be modeled
as follows:

Sδ
ik = Uk(x1k, . . . , x(i−1)k, xik + δ, x(i+1)k, . . . , xnk), (6.3)
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where Sδ
ik measures the satisfaction of customer k if the performance of attribute

xi increases with δ.
Both Se

ik and Sδ
ik can be used to measure the impact of attribute xi on the

customer’s satisfaction by subtracting it from the experienced satisfaction Sk. A
more general way of expressing the impact of attribute xi is as follows:

Impact(xik) = Sk − S′ik, (6.4)

with S′ik representing the hypothetical satisfaction level.
If Se

ik is used as S′ik, then Impact(xik) represents the impact on satisfaction for
customer k, caused by the experienced disconfirmation for attribute xi. Note that
because of the monotonicity property of Dombi’s uninorm, the impact of xik on
satisfaction is positive if the attribute performs better than expected and negative if
the attribute performs worse than expected. These impacts can be used as proxies
for the importance of the attributes. The greater the impact of an attribute on
satisfaction, the more important it becomes.

However, these impact scores are at the customer level and need to be aggregated
to the population level for an IPA analysis. The easiest approach would be by
taking the average of all impact scores for a specific attribute xi for the entire
sample. However, not every customer experiences the same performance level for
attribute xi and taking the average would ignore the dependency between attribute
performance and attribute importance. Therefore, the average is taken conditional
on the performance level z of attribute xi. The disconfirmation impact scores Ie

(xi=z)

are calculated as follows:

Ie
(xi=z) =

∑Niz

k=1 (Impact(xik) | xi = z)
Niz

, (6.5)

with Niz representing the number of customers which have xi = z and Impact(xik)
calculated as follows:

Impact(xik) = Sk − Se
ik. (6.6)

These disconfirmation impact scores Ie
(xi=z) measure the average effect on

satisfaction if attribute xi would go from its current performance level z to the
expected performance level e and are useful to measure the importance of the product
attributes in the current situation.

If Sδ
ik is used as S′ik, then Impact(xik) represents the impact on satisfaction for

customer k, caused by a performance increase of δ for attribute xi. Similar to
the disconfirmation impact scores, these impact scores are also aggregated to the
population level by a conditional average. The marginal impact scores Iδ

(xi=z) are
calculated as follows:

Iδ
(xi=z) =

∑Niz

k=1 (Impact(xik) | xi = z)
Niz

, (6.7)

with Niz representing the number of customers which have xi = z and Impact(xik)
calculated as follows:

Impact(xik) = Sk − Sδ
ik. (6.8)
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The marginal impact scores are particularly useful in what-if analysis where
managers want to verify the possible outcome of efforts to increase the performance
of a particular product attribute. A case study in a following section will illustrate
how both disconfirmation and marginal impact scores can be used in the context of
an Importance-Performance Analysis.

Strengths and limitations of D-LIED derived attribute importance

For deriving the attribute importance, the D-LIED approach holds several advantages
over the two traditional approaches. Compared with the direct measurement
approach, the D-LIED approach can be used on secondary data and because it is an
indirect approach it does not suffer from incorrect interpretation of survey questions.
Compared with the regression approach, the D-LIED approach has the benefit
of providing importance scores at the respondent level. But the most important
difference with the regression approach is that the D-LIED approach is based on
the ED paradigm. In contrast with the regression approach which only focuses on
attribute performance, the D-LIED approach focuses both on customer’s expectation
and disconfirmation, providing a better theoretical fit.

The importance score of a specific attribute xi obtained with the regression
approach measures how satisfaction changes as the performance of xi changes, which
corresponds to the first partial derivative of the regression function with respect to
xi. Since the regression function is linear, the first partial derivative is the regression
coefficient,

∂(α0 +
∑n

i βixi)
∂xi

= βi, (6.9)

which implies two unrealistic assumptions. Firstly, because the derivative
is independent from xi, the regression approach assumes that performance and
importance are independent. Secondly, because the derivative is independent from
any other attribute xj , importance is also independent from the performance of other
attributes.

The D-LIED approach does not make such assumptions in most situations, as can
be illustrated by Figure 6.2 which plots the partial derivative of the D-LIED modeling
function U for a product with two attributes x1 and x2 and an expectation level of
0.5. Note that the derivative of U corresponds to Iδ

(xi=z) with δ infinitesimally small.
Three different situations need to be distinguished to fully understand the

relationship between the marginal impact of attribute x1 on one hand and the
performance of x1 and x2 on the other hand: attribute x2 performs worse than
expected, attribute x2 performs exactly as expected and attribute x2 performs better
than expected. All three situations are plotted in Figure 6.2 as separate functions.
Firstly, the marginal impacts are always positive in each scenario which implies that
an increase in performance of x1 always results in an increase in satisfaction. This is
a logical behavior and is directly related to the fact that U is monotone increasing.
Next, Figure 6.2 shows that the marginal impact of x1 is only constant when attribute
x2 performs as expected. Thus, when the other attribute causes no disconfirmation
and the only disconfirmation effect comes from attribute x1, each equal increase in
disconfirmation leads to an equal increase in satisfaction.
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with respect to x1

for different values of x2.

However, in both other scenarios, the marginal impact changes as the performance
of x1 changes, which implies a dependency between the attribute’s importance and
its performance. When attribute x2 performs worse than expected, attribute x1

needs to perform better than expected before it has a large marginal impact on
satisfaction. This reflects the fact that low performance of x2 causes such a negative
disconfirmation effect, which first must be compensated before the performance of
x1 really stands out and has a large marginal impact on satisfaction. On the other
hand, when attribute x2 performs better than expected, the impact of x1 is already
large for low performance on x1 and gradually fades out when performance on x1

increases. This implies that if one attribute already performs very good and creates
a high positive disconfirmation, any other low performing attribute stands out and
even the smallest improvement will be clearly noticed and has a large impact on
satisfaction. Finally, the fact that the impact of x1, for a fixed performance level of
x1 differs between the three scenario’s illustrates that the attribute importance is also
dependent on the performance level of the other attributes.

The above discussion about the dependency between an attribute’s importance
and the performance of that and other attributes, has focussed on a product with only
two attributes. Note that the conclusions above can be easily extended to products
with more attributes by means of the associativity property of the D-LIED modeling
function. This is shown by the following equation.

U(x1, x2, . . . , xn) = U(x1, U(x2, . . . , xn)) = U(x1, x
′
2) (6.10)

Since x′2 = U(x2, . . . , xn) represents a satisfaction score, while x2 represents
a performance score, it is not easy to provide a clear interpretation for the
interaction between the importance of x1 and the performance of x1, . . . , xn. Such
an interpretation is much easier to derive if the D-LIED modeling function is studied
in detail:
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U(x1, x2, . . . , xn) = f

(
n∑

i=1

f−1(xi)

)
= f

(
f−1(x1) +

n∑

i=2

f−1(xi)

)
(6.11)

Based on the three-step interpretation of the LIED framework,
∑n

i=2 f−1(xi) can
be interpreted as the total disconfirmation effect caused by all attributes except x1.
This allows the formulation of the following assumptions which are made by the
D-LIED framework regarding the importance of x1:

• The marginal impact of x1 is positive and constant if the total disconfirmation
effect of all other attributes is equal to zero.

• The marginal impact of x1 is positive and large for small performance levels,
while decreasing as the performance of x1 increases, if the total disconfirmation
effect of all other attributes is positive.

• The marginal impact of x1 is positive and large for high performance levels,
while decreasing as the performance of x1 decreases, if the total disconfirmation
effect of all other attributes is negative.

These assumptions have obviously more face validity than the assumptions made
by the regression approach.

Finally, the D-LIED approach also has a limitation compared with the regression
approach. Neither the marginal impact scores, nor the disconfirmation impact
scores can be considered as decompositions of the overall satisfaction score. That
is, one can not reconstruct the customer’s satisfaction by summing the impact
scores of each attribute multiplied by the attribute’s performance level. With the
regression approach, the sum of the regression coefficients multiplied by the attribute
performance levels results in the satisfaction score by definition.1

6.5 Empirical study

Purpose

In the previous section on regression based importance measures, two specific
modeling assumptions, frequently made in IPA analysis, were discussed. Firstly,
the regression approach assumes that attribute importance can be captured by a
single point-estimate. Sampson et al. argued that this was incorrect and causes
heteroscedastic error terms in the regression, making the regression coefficients
less reliable. Secondly, the standard regression approach does not incorporate
interaction terms, suggesting that the importance of attribute x1 is independent
of the performance on other attributes. The purpose of this empirical study is to
investigate both assumptions.

In this empirical study, the regression based approach will be applied to the Family
Entertainment Data Set. This data set contains customer satisfaction and product

1Actually, there is a difference between the measured satisfaction and the reconstructed
satisfaction, which is captured by the residual.
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performance data for seven different companies. For each company, a regression model
is built with Satisfaction as the dependent variable and the 9 different factorized
dimensions as the explanatory variables. Note that this study uses the factorized
product dimensions instead of the original product dimensions because there is no
need for expectation at the dimension level and factorized dimension scores are less
susceptible to measurement errors.

In the first analysis, the homoscedasticity of the regression’s error terms are
studied to verify the assumption of independence between an attribute’s importance
and its performance level. As Sampson et al. pointed out, a heteroscedastic error
term is probably caused by violation of this assumption. The second analysis adds
various interaction terms to the regression function and verifies if there are significant
interaction terms and if the model’s fit increases significantly when the interaction
effects are added.

In Importance–Performance Analysis and other customer satisfaction research, the
regression model often assumes that no interaction effects exist between the attributes’
performances. However, [62] suggests that the importance of an attribute depends
on the performance of another attribute.

“When Japanese companies entered the color television market, they changed
the way in which products won orders from predominantly price to product
quality (in terms of conformance) and reliability in service. . . . By the early
1980s, manufacturers that lost orders raised product quality so that they were
again qualified to be in the market. As a result, the most important order-
winning criterion in this market has reverted back to price.”

The purpose of this analysis is to test the validity of the ‘no interaction’
assumption. The goal of this study is not to identify all possible interaction effects.
The only type of interaction effects tested are two-factor interaction effects of type
Xi

Xj
. To fully understand the way this interaction effect influences the impact of an

attribute Xi on satisfaction, assume the following regression function:

Y = α0 + β1X1 + β2X2 + γ12
X1

X2
. (6.12)

The impact of attribute X1 on Y can be measured by the partial derivative of Y
with respect to X1, which is

∂Y

∂X1
= β1 + γ12

1
X2

. (6.13)

This illustrates that if γij > 0, the impact of product attribute Xi on satisfaction
Y will decrease as the performance of Xj increases. If γij < 0, the impact of product
attribute Xi on satisfaction Y will increase as the performance of Xj increases. If
significant interaction terms are found, the assumption of independence between an
attribute’s importance and the performance of other attributes is violated.

Note that both violations, i.e. heteroscedastic error terms and model
misspecification, make the regression terms unreliable and possibly biased.
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Homoscedasticity of the regression approach

“The Gaussian, standard, or classical linear regression model (CLRM), which is the
cornerstone of most econometric theory, makes 10 assumptions” [58]. One of these
assumptions is the homoscedasticity or equal variance of the disturbance term ui,
which implies that no relationship exists between the variance of ui and the regressors
Xi. Mathematically, this can be formulated as follows:

var(ui | Xi) = σ2 (6.14)

However, according to Sampson et al. [110], this basic assumption is violated
when the customer satisfaction is regressed on the attribute performances, which is
a common approach in IPA and customer satisfaction research. Sampson et al. refer
to the dependency between impact on overall satisfaction and attribute performance,
as the cause of the heteroscedastic disturbance term, which mathematically can be
formulated as follows:

var(ui | Xi) = σ2
i (6.15)

To verify the presence of heteroscedasticity in a performance-satisfaction
regression, 7 regressions models were built for the Family Entertainment Data Set,
i.e. one for each company. As mentioned before, each regression used satisfaction as
the dependent variable Y and the factorized dimension performances as explanatory
variables X1 to X9. The regression coefficients and the regression fit are presented in
Table 6.1.

These results show that the adjusted R2, which measures the amount of variance
in customer satisfaction explained by the variation in attribute performances and
corrected for the number of coefficients, falls between 28% and 40%. Furthermore,
almost all companies have customers whose satisfaction is significantly influenced by
the performance of Product A and the Overall experience. Product dimension Price
has a significant impact on satisfaction for 4 out of 7 companies. Accommodation
and Product B seem to have a negative impact on satisfaction which makes no sense,
i.e. an increase of performance cannot cause a decrease of satisfaction. Note that
such results cannot be modeled by the D-LIED implementation because a valid LIED
implementation uses a monotone increasing modeling function.

Next, to investigate whether heteroscedasticity is in play, the formal Goldfeld-
Quandt (GQ) heteroscedasticity test was applied. “This popular method is applicable
if one assumes that the heteroscedastic variance, σ2

i , is positively related to one of
the explanatory variables in the regression model”[58]. However, it is also possible
that the variance of the residuals ui decrease as the independent variable Xi increase.
Therefore, the GQ approach was adapted to test for both type of relationships.

Traditionally, the GQ starts by ranking the observations in increasing order,
according to the values of Xi. Secondly the data is split into two sets, omitting
the middle n observations. Thirdly, an OLS regression is fitted to both data set
1 (smallest Xi values) and data set 2 (largest Xi values). If no heteroscedasticity
is present, the residual sum of squares (RSS) of both regressions should not differ
significantly. The RSS is the sum of the squared residuals for each observation, with
the residual being the difference between the observed Y and the Y predicted by the
regression model. Therefore, the following ratio is computed:
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6.5. Empirical study

Table 6.1: Coefficients of the performance regression on family entertainment data
set

Company

1 2 3 4 5 6 7

(Intercept) 0.19 0.17 0.20 0.32 0.07 0.27 0.21

Overall Experience 0.37 0.30 0.49 0.30 0.57 0.31 0.79

Product A 0.33 0.26 0.10 0.34 0.32 0.28 0.18

Product B -0.08 -0.05 -0.03 0.01 -0.17 -0.03 0.03

Accommodation -0.07 0.15 0.03 -0.22 -0.03 0.06 -0.20

Product C 0.06 0.12 0.05 -0.01 -0.13 -0.01 0.18

Product D 0.06 -0.04 -0.04 0.00 0.09 -0.04 -0.07

Personnel 0.03 -0.05 0.11 0.05 0.11 0.00 -0.11

Prices 0.04 0.03 0.09 0.14 0.12 0.11 0.05

Communication 0.03 0.06 -0.05 0.01 0.05 -0.01 -0.09

Adj. R2 0.34 0.28 0.33 0.29 0.40 0.32 0.39

number of cases 295 239 314 255 270 266 483

Coefficients significant at 5% are marked in grey

λ =
RSS2\df
RSS1\df (6.16)

If the disturbance terms are homoscedastic, it can be shown that λ follows the
F distribution2. To test for a negative relationship between ui and Xi, it suffices to
rank the observations in decreasing order or to calculate λ differently, as follows:

λ =
RSS1\df
RSS2\df (6.17)

Table 6.2 shows the GQ test statistic calculated with Eq. 6.16, with the middle 60
observations deleted. If the variance of the residuals are positively correlated with the
independent variable Xi, the test statistic should be greater than 1. If the test statistic
is less than 1, a negative correlation is assumed and Eq. 6.17 is used to determine
the statistical significance. All regressions suffer from heteroscedasticity according
to the GQ tests. Companies 2, 5, 6 and 7 have many product attributes causing
heteroscedasticity, while companies 1, 2 and 3 have only a few product attributes
which cause heteroscedasticity. From an other point of view, product dimensions
Overall experience, Product A, Product B, Product C and Communication cause
heteroscedasticity in at least 4 regressions (out of 7). This suggest that the impact
of these dimensions are not independent from their performance.

2Actually, this approach also assumes that the disturbance terms ui are normally distributed.
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Table 6.2: Goldfeld-Quandt test statistics for the family entertainment data set

Company

1 2 3 4 5 6 7

Overall Experience 1.50 2.02 1.16 1.02 0.52 0.59 0.39

Product A 1.06 2.27 0.85 0.67 0.89 0.46 0.51

Product B 0.84 1.99 0.68 0.90 0.73 0.49 0.77

Accommodation 1.19 1.20 0.85 0.71 0.72 0.91 0.63

Product C 1.53 1.27 1.57 0.99 0.64 0.79 0.51

Product D 1.21 1.71 0.81 0.98 0.59 0.60 0.82

Personnel 1.41 2.54 0.89 0.75 1.15 0.64 0.80

Prices 0.87 1.93 0.91 0.77 0.76 0.83 0.54

Communication 1.09 1.53 1.18 0.87 0.63 0.67 0.72

Coefficients significant at 5% are marked in grey

Note that the GQ test studies the homoscedastic nature of ui in relation to
each independent variable Xi separately, generating a test statistic per independent
variable. In the previous chapter, the Breusch-Pagan test [93] was used to test for
heteroscedasticity which produced only a single test statistic per model. The benefit of
the GQ test is that it allows to identify the problematic product attributes. However,
for sake of completeness, the Breusch-Pagan test was also conducted on all seven
regression models.

Table 6.3: Breusch-Pagan test statistics for the family entertainment data set

Company

1 2 3 4 5 6 7

B-P Test Statistic 3.81 3.69 2.69 4.47 13.61 19.51 67.02

p-value 0.05 0.05 0.10 0.03 0.00 0.00 0.00

The results from this test largely confirm the results of the GQ-tests, suggesting
moderate to heavy heteroscedasticity in performance regressions, making the
regression coefficients unreliable.

Interaction effects between product attributes

To test for interaction between product attributes with regard to the impact on
satisfaction, 14 regression models were built for the Family Entertainment Data Set.
For each company a full model with interaction effects and a reduced model with
only main effects were estimated. Each model regresses the customer’s satisfaction
against the product attribute performances. The reduced model can be written
mathematically as follows:
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Y = α0 +
9∑

i=1

βiXi (6.18)

The reduced model contains 9 main effects which correspond to 9 (factorized)
product dimensions. Table 6.4 illustrates the correspondence between the variables
and the product dimensions.

Table 6.4: Variables and corresponding product dimensions for family entertainment
data set

Main effect Product Dimension

X1 Overall Experience

X2 Product A

X3 Product B

X4 Accommodation

X5 Product C

X6 Product D

X7 Personnel

X8 Prices

X9 Communication

The full model contains the main effects and various interaction effects. If all
interaction effects are added to the model, the full model can be written as follows:

Y = α0 +
9∑

i=1

βiXi +
9∑

i=1

9∑
j=1
j 6=i

γij
Xi

Xj
(6.19)

Because of the high number of interaction effects3 and the possible
multicollinearity among them, the AIC stepwise variable selection method [131] was
used to add (or delete) interaction effects to (from) the reduced model. The AIC
stepwise approach starts off by calculating the Akaike Information Criterium (AIC) [2]
of a base model with the following formula where k denotes the number of parameters:

AIC = −2maximized log-likelihood + 2k (6.20)

Next, various extended models are built and the AIC for each of them is calculated.
Each extended model adds a new interaction effect to the base model or removes a
recently added interaction effect from the base model. The extended model with the
lowest AIC is compared with the base model. If the AIC of the base model is lower,
the stepwise procedure finalizes. If the selected extended model has a lower AIC than
the base model, the extended model becomes the new base model and the procedure
is repeated. In this study, the first base model corresponds with the reduced model,
represented by Eq. 6.18.

3There are 72 two factor interaction effects in total!
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Table 6.5: Regression coefficients: company 1 from family entertainment data set

Reduced Model Extended Model

Intercept α0 0.19 1.35

Main effects

β1 0.37 0.35

β2 0.33 -1.98

β3 -0.08 0.71

β4 -0.07 0.28

β5 0.06 -0.11

β6 0.06 -0.83

β7 0.03 1.62

β8 0.04 -0.01

β9 0.03 0.73

Interaction effects

γ36 -0.59

γ29 0.39

γ75 -1.46

γ45 1.33

γ74 0.42

γ42 -1.27

Adjusted R2 0.34 0.39

Coefficients significant at 5% are marked in grey

Table 6.5 presents the regression coefficients of the reduced and the extended
model for company 1. The reduced model only has two significant main effects, i.e.
the performance of dimensions Overall Experience and Product A. This is remarkable
because the survey to collect the data was created with the family entertainment
sector in mind and only product dimensions which were expected to be significant
were measured. The extended model gives a different picture which corresponds
better with a priori expectations. The extended model has 6 significant main effects
(out of 9), and 5 significant interaction effects. Also note that the amount of variation
in satisfaction explained by the various effects in the model, after correction for the
number of model parameters, increases from 34% to 39%. These results strongly
indicate that interaction effects are present in the customer satisfaction process for
company 1.

The same analysis was conducted for the other 6 companies. The regression
coefficients of the other reduced and extended models, together with the adjusted
R2, can be found in Appendix C. Table 6.6 provides a summary of the results for
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Table 6.6: Extended model for all seven companies from the family entertainment
data set - summarized results

Company ] Interaction
effects∗

∆ Adjusted
R2

F-test statistic Pr(>F)

1 5 5% 5.26 < 0.01

2 5 6% 3.97 < 0.01

3 9 10% 5.23 < 0.01

4 3 6% 5.43 < 0.01

5 6 11% 9.33 < 0.01

6 6 7% 6.18 < 0.01

7 16 10% 5.93 < 0.01

∗ statistically significant at 5%

all 7 companies. These results show that all extended regression models contained
several statistically significant interaction effects and that the explanation power,
measured with adjusted R2, substantially increased for all regression models when
these interaction effects were added. Furthermore, the reduced model with only main
effects is a restricted version of the extended regression model, with the restrictions
that the coefficients of the interaction effects are all equal to zero. This allows the
use of an F test to test the null hypothesis that the interaction effect coefficients are
indeed equal to zero. The F-test statistic is calculated as follows [58]:

F =
(RSSR −RSSUR)/m

RSSUR/(n− k)
, (6.21)

with RSSR denoting the residual sum of squares of the restricted model, RSSUR

denoting the residual sum of squares of the unrestricted model, m denoting the
number of linear restrictions, k representing the number of parameters in the
unrestricted regression and n denoting the number of observations. The null
hypothesis was rejected for all seven companies, indicating that at least one of the
regression coefficients of the interaction effects is statistically significant from zero.

6.6 Case study: the D-LIED IPA

The purpose of this case study is to illustrate how the D-LIED approach can be used
to perform an IPA analysis. This analysis was done for each company of the Family
Entertainment Data Set, but only the results of company 4 will be discussed in detail.
The IPA plots for the other companies can be found in Appendix D.

The data contains one satisfaction score and 9 factorized dimension scores for each
customer. For an IPA analysis, a performance and an importance score is needed for
each dimension. The performance score xi of a dimension i is calculated as the average
factorized dimension performance pF

i :

xi =
∑n

i=1 pF
i

n
(6.22)
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The importance score of a dimension i can be measured in two different ways
with the D-LIED approach, i.e. with disconfirmation impact scores Ie

(xi=z) or with
marginal impact scores Iδ

(xi=z). Both impact scores lead to different interpretations
of the IPA plot and have different purposes. First, an IPA is made based on the
disconfirmation impact scores Ie

(xi=z). Firstly, the data is recoded to the [0, 1] interval
by dividing it by 11, next the D-LIED implementation is applied and Se

ik and the
corresponding Impact(xik) are computed for each customer. The next step would be
to take the conditional average as follows:

Ie
(xi=xi)

=
∑Niz

k=1 (Impact(xik) | xi = xi)
Nixi

. (6.23)

However, since the factorized dimensions xi are quasi-continuous, it is possible that
no observation is found for which xi = xi. Even when such observations are found,
the number of observations are probably low which makes the average less reliable.
Therefore, the 25% percentiles of xi were computed first and it was checked in which
percentile xi fell4. Next, the average was computed for all the observations from the
25% percentile which contained xi. This resulted in a disconfirmation impact score for
each product dimension which was then multiplied by 11 to retrieve the original scale.
The absolute value of these impact scores are used as the importance scores for each
dimension. The absolute value was taken because the disconfirmation impact score
can be negative and large negative impacts are equally important as large positive
impacts. To mark the difference between negative and positive impacts, a different
marker is used in the IPA plot, which is shown in Figure 6.3.

The X-axis of this plot was positioned at the mean customer’s expectation. The
Y-axis was positioned at the mean impact score. Other ways of positioning the axes
exist, such as putting it half way between the maximum impact (performance) score
and the minimum impact (performance) score or by positioning it such that the
number of attributes on one side of the axis equals the number of attributes on the
other side of the axis. However, the main point of an IPA analysis is the relative
positioning of the attributes, rather than the absolute positioning [82].

The importance dimension of the IPA plot in Figure 6.3 represents the impact of
the attributes on satisfaction caused by the disconfirmation currently experienced by
the customers. Therefore, this grid allows managers to analyze the current situation.
For company 4, this IPA shows that four attributes perform less than expected and
have a negative impact on satisfaction, i.e. Communication, Price, Product C and
Product D. However, only Price ends up in the “Concentrate Here” quadrant, while
the other three dimensions have only a small impact on satisfaction and belong to
the “Low Priority” quadrant. Furthermore, there are two dimensions within the
“Keep up the good work” quadrant, i.e. Personnel and Accommodation. These two
dimensions are the best performing dimensions and have a large contribution to the
customer satisfaction outcome. The final three attributes, i.e. Overall experience,
Product B and Product A are not really performing much worse than Personnel and
Accommodation, but have a much lower impact on satisfaction which is why they
belong to the “Possible Overkill” quadrant.

This IPA analysis provides a manager meaningful insights into the current
situation. For example, for company 4 it shows that attention should be given to

4This approach would not be necessary for the observed dimensions which are categorical.
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Figure 6.3: D-LIED IPA based on disconfirmation impact.

the performance of the Price dimension and an effort should be made to keep the
performance of Personnel and Accommodation at the current level.

However, managers will be equally interested in what the future brings if they
try to increase a specific attribute’s performance. This kind of information can
be retrieved by using the marginal impact scores Iδ

(xi=z) as the importance score.
The marginal impact scores measure the impact on satisfaction when performance is
increased by δ. In this study, δ was set to 1. The importance scores for each dimension
are calculated completely analogous as the disconfirmation impact scores, except
no absolute value was taken because marginal impact scores are always positive.
Figure 6.4 shows the IPA plot based on marginal impact scores. The axes were
positioned similar to the previous IPA plot.

This IPA analysis provides new and important information. Firstly, increasing
the performance of dimension Price, which appeared to be a priority in the previous
IPA analysis, has only low impact on satisfaction. This raises several questions. Is
it worthwhile putting effort in the performance of this dimension given the limited
impact, even if it currently has a rather large negative influence on satisfaction? And,
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Figure 6.4: D-LIED IPA based on marginal impact.

should the performance of dimension Price perhaps be increased with more than 1?
The first question requires a managerial decision, but the second question can be
answered by constructing another marginal IPA analysis with a larger δ.

Secondly, this marginal IPA analysis also shows that increasing the performance
of Accommodation, which belonged to the “Keep up the good work” quadrant has
much less impact than increasing the performance of Personnel which also belonged
to the “Keep up the good work” quadrant or even Overall Experience which belonged
to the “Possible Overkill” quadrant. Apparently, Overall Experience is currently not
having a large impact on satisfaction despite its high performance level, which puts
it in the “Possible Overkill” quadrant in the previous IPA, but the marginal IPA
analysis reveals that it might be worthwhile to increase its performance level by 1.
This result is supported by recent research which states that an attribute’s impact is
non-linear and performance dependent [90].

However, the final decision of which attributes the company is going to focus on,
does not only depend on the results of the IPA analysis. For example, increasing the
performance of the Price dimension, as suggested by the first IPA analysis, might be
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impossible because of financial reasons. Nevertheless, for developing proper marketing
strategies, both an IPA analysis which provides insights about the current situation
and an IPA approach which can simulate changes and takes the nonlinearity aspect
into account are recommended. The D-LIED IPA approach has the advantage of
offering both and allowing to simulate any change in the parameters, i.e. performance
and expectation, to measure the effect.

6.7 Summary

Importance-Performance Analysis is an important managerial marketing tool. It
plots each product attribute on a two dimensional grid, visualizing the attribute’s
performance and importance. While consensus exists about measuring the
performance of a product attribute, the importance dimension is much more
problematic. In this chapter two common approaches are discussed to determine
the importance of a product attribute, i.e. the direct measurement approach
and the regression based approach. The direct measurement approach uses a
survey to ask respondents about the attribute’s importance but has the danger
of measuring the wrong construct because respondents might interpret importance
questions incorrectly, as has been argued by different authors [110, 84]. The
regression based approach also faces several problems. Firstly, the regression is
likely to be heteroscedastic because it assumes independence between attribute
importance and attribute performance which is unlikely to be true according to
existing literature [110, 90]. Secondly, the regression approach most likely suffers
from model misspecification because it does not integrate interaction effects between
product attributes. In this chapter, elaborated tests were performed to evaluate
how strongly the assumptions of homoscedasticity and correct model specification
are violated and both analysis confirmed the assumption violations. These violations
make the coefficient estimates, which act as the dimension’s importance, unreliable
and possibly biased. Future research on the nature of and solutions for these problems
will be necessary.

Furthermore, an alternative approach to determine the attribute’s importance has
been presented which is based on the D-LIED implementation. As has been shown
throughout this chapter, this D-LIED approach has several benefits. Firstly, impact
measures are calculated at the level of a single respondent in contrast to the regression
based approach which only provides population level impact measures. Even when
these impact measures are averaged, in order to obtain population level scores, the
population level impact scores are still conditional to the performance score, which
is in line with the assumption of performance-importance dependency. Secondly,
the D-LIED approach implicitly takes interaction effects into account and focuses on
disconfirmation instead of attribute performance, allowing a close match with existing
customer satisfaction theory.

Finally, two different ways of utilizing the D-LIED IPA for managerial ends
was presented by means of a case study. The first way, which is based on the
disconfirmation impact scores, allows an analysis of the current situation, identifying
the attributes with a large positive or negative impact on the current satisfaction level.
The second way, which is based on the marginal impact scores, allows the manager to
perform what-if simulations, determining the impact on customer satisfaction in case
of a change in the attribute performance level or a change in the expectation level.
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To conclude, the use of the D-LIED implementation within the context of IPA
possesses a great deal of potential as a novel technique in the field of customer
satisfaction research and Importance-Performance Analysis.
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7 Application 2: expectation-performance

compatibility

7.1 Introduction

During the last four decades, customer (dis)satisfaction has taken an important role
in marketing research, both from an academic as from a managerial point of view [130,
122]. Although this has not always been the case, customer (dis)satisfaction is now
widely recognized as an important cornerstone for customer-orientated companies,
irrespective of the industry they operate in [129, 122]. Research results have shown
that customer (dis)satisfaction has an influence on several important aspects of a
competitive business, such as repurchase intention [122], consumer retention [89, 3],
firm performance [4], customer complaining behavior [122], negative word of mouth
behavior [122] and eventually on shareholder value [5].

Several theoretical models have tried to explain the human behavior in a customer
satisfaction context. One of the more dominant models which tried to do so is
Oliver’s expectancy disconfirmation paradigm. This paradigm has been introduced
and discussed in chapter 2 of this dissertation. Basically, it identifies two direct
causes of satisfaction, i.e. customer expectation and experienced disconfirmation,
which is the difference between the experienced performance and the expected
performance. Expectation has a direct influence on customer (dis)satisfaction:
“Consumers are thought to assimilate satisfaction levels to expectation levels in
order to avoid dissonance that would arise when expectations and satisfaction levels
diverge. This assimilation effect results in satisfaction judgments being high (low)
when expectations are high (low)” [122]. On the other hand, disconfirmation is
believed to have a contrasting effect on the overall (dis)satisfaction level. If consumers
perceive a great positive (negative) disconfirmation, their satisfaction level will rise
(drop).

While most research publications discuss the ED paradigm at the aggregate
(product) level which assumes a single performance, expectation and disconfirmation
score for the entire product or service, Oliver [96] already argued in a 1980 that
“disconfirmation takes place at the individual attribute level” [97]. This implies
that the consumer has expectations at the attribute level and perceives a specific
performance and disconfirmation for each product or service attribute (dimension).
The consumer will aggregate all these expectations, performance perceptions and
subjective disconfirmation scores into an overall satisfaction score. This aggregation
has been captured by the LIED framework and can be applied to satisfaction-
performance data with the D-LIED implementation, which has been extensively
discussed in the previous chapters.
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This chapter will proceed one step further in the process of customer
(dis)satisfaction and studies the customer’s intentions, such as the customer’s loyalty
and the customer’s recommendation intentions. More specifically, the role of the
customer’s expectation in the process of the customer’s intention will be investigated.
In the next section, the hypothesis is formulated that the degree of compatibility
between the customer’s expectation and the perceived product performance has a
direct influence on the customer’s intentions and it will be shown how the D-LIED
implementation can be used to estimate the expectation-performance compatibility.
Next, the results of an empirical study will be presented which tries to assess the
validity of hypothesis and which compares the different measures of compatibility.
Finally, an overall conclusion will be given.

7.2 Expectation-performance compatibility

The idea of considering the expectation-performance compatibility as a construct
in the customer’s intention process stems from the participatory learning paradigm
introduced by Yager [140, 32, 142]. The basic premise of this paradigm is that
learning takes place in the framework of what is already learned and observations
too conflicting with the learner’s beliefs are discarded. Central in the formulation of
the participatory learning system is the compatibility measure. A high compatibility
between the learner’s beliefs and the new information has a positive effect on the
learning process.

Analogously, the customer’s intentions are also formed in the framework of what
has already been learned about the product. Furthermore, the product experiences
result in the customer’s expectation, which will act as a comparison reference for
subsequent experiences. Therefore, it is believed that a high compatibility between
the customer’s expectation and the perceived performance must have a positive effect
on the customer’s intentions. Note that incompatibility implies unexpected product
experiences, both negative and positive. These unexpected product experiences can
make the customer uncertain about the product’s capabilities, which has a negative
influence on the customer’s loyalty and recommendation intentions. This leads to the
following two hypotheses:

Hypothesis 1. The expectation-performance compatibility is positively correlated
to the customer’s intended loyalty.

Hypothesis 2. The expectation-performance compatibility is positively correlated
to the customer’s recommendation intention.

It is important to stress that these hypotheses imply that both positive
and negative incompatibility are negatively related to the customer’s intention.
Incompatibility, caused by a much better product performance than expected, is also
assumed to have a negative effect on the customer’s repurchase and recommendation
intention because it creates uncertainty about the product’s performance.

In order to test these hypotheses, a formula is needed to express the expectation-
performance compatibility at the product or service level. This product-level
compatibility measure is based on the incompatibility between the product’s
performance and the customer’s expectation at the product attribute level. The
incompatibility at the attribute level can be expressed as the difference between the
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perceived performance and the expected performance. The perceived performance
is typically measured by means of a survey. In this chapter, it is assumed that
product attribute performance is measured on a [0, 1] scale, with 0 denoting the
lowest performance level and 1 denoting the highest performance level. Thus, if the
original survey measures performance and satisfaction on different scales, they first
need to be transformed to the [0, 1] interval. Next, customer expectation is derived
for each customer by means of the D-LIED implementation. If xik represents the
performance of attribute i as it was experienced by customer k and Sk represents
the satisfaction level of customer k, then Eq. 5.5 can be used to find the D-LIED
parameter αk for each customer as follows:

αk =
[ ∏n

i=1 xik∏n
i=1(1− xik)

1− Sk

Sk

] 1
n−1

(7.1)

Once αk is known, Eq. 5.4 can be used to find the expectation level ek for each
customer as follows:

ek =
αk

1 + αk
(7.2)

Next, attribute’s i incompatibility for customer k can be expressed as follows :

Iik = xik − ek (7.3)

Note that the domain of Iik is the [−1, 1] interval and that both −1 and 1 reflect
complete incompatibility while 0 reflects perfect compatibility. Next, the various
attribute incompatibility scores need to be aggregated into a compatibility score Ck

at the product level such that the following properties hold.

Property 11.

a) 0 ≤ Ck ≤ 1

b) ∀i : Iik = 0 ⇒ C = 1

c) ∀i : Iik ∈ {−1, 1} ⇒ C = 0

Property 11 a) sets boundaries to the compatibility measure which makes it easier
to interpret and compare the final compatibility outcome. Property 11 b) states that
if the performance of each product attribute is compatible with the expectation, the
product level compatibility measure should be maximized. Property 11 c) implies that
if each product attribute is completely incompatible with the expected performance,
the product level compatibility should be minimized.

The first aggregation function which has Property 11 and which is used to
define the product’s compatibility with the customer’s expectation is the same as
the compatibility measure in Yager’s participatory learning paradigm [140]. This
compatibility measure will be denoted as C1

k and is defined as follows:

C1
k = 1− 1

n

n∑

i=1

|Iik| (7.4)

A second possible aggregation function which has the necessary properties for
being a compatibility measure is also based on the original compatibility measure
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of Yager’s participatory learning paradigm but takes the square of the attribute
incompatibilities instead of the absolute value. This compatibility measure is denoted
as C2

k and can be expressed as follows:

C2
k = 1− 1

n

n∑

i=1

I2
ik (7.5)

It can be easily verified that both compatibility measures possesses all the required
properties. Next, the proposed hypotheses will be tested by means of an empirical
study.

7.3 Empirical study

Data

This empirical study uses the Energy Data Set which comprises customer satisfaction
data for two Belgian companies. The survey measured the overall satisfaction level
and the performance of various product attributes and product dimensions. A
factor analysis was performed to construct multi-item dimension performance scores
which are less sensitive to measurement errors than the directly measured dimension
performances. The details of the factor analysis can be found in Chapter 4.

The factorized dimension scores are expressed on a scale from 1 [very low] to 5
[very high] and the overall satisfaction was measured on a scale from 1 [extremely
dissatisfied] to 10 [extremely satisfied]. Additional to performance and satisfaction
scores, the data set also contains information about the customers’ intentions, such
as their intention to switch companies (disloyalty) and their intention to recommend
the company to a friend. Intention to switch was measured on a scale from 1 [No
intention to switch at all] to 5 [Strong intention to switch]. The recommendation
score was also measured on a scale from 1 [No intention to recommend] to 5 [Strong
intention to recommend].

Next, the D-LIED implementation was used to calculate the expectation score ek

and both compatibility scores, C1
k and C2

k for each customer. The expectation score
is transformed back to the same [1, 5] scale as the performances by multiplying it by
6.

Table 7.1 provides descriptive statistics about the data for company 1, while
Table 7.2 shows the descriptive statistics for company 2. In total, the data set contains
1053 records (525 observations for company 1, 528 observations for company 2).

Results

The purpose of the empirical study is to assess the validity of the proposed hypotheses.
Therefore, the Pearson correlations between both compatibility measures on the one
hand and loyalty and recommendation on the other hand were calculated. Both
hypotheses are compared against the null hypothesis which states that no correlation
exists between the compatibility measures and the customer’s intentions. The results
are presented in Table 7.3 for company 1 and Table 7.4 for company 2.

These results reveal that all correlations are statistically significant, which
rejects the null hypotheses in favor of the alternative hypotheses. These results
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Table 7.1: Descriptive statistics: company 1

Minimum Maximum Mean Std. Dev.

Satisfaction 1 10 7.90 1.45

Intention to Switch 1 5 3.63 1.07

Intention to Recommend 1 5 2.29 1.26

Availability 1 5 3.51 1.02

Employees 1 5 4.14 0.75

Service 1 5 3.80 0.83

Information 1 5 3.39 1.00

Invoices 1.33 5 4.22 0.75

Expectation 1.23 5.36 3.69 0.80

Compatibility C1 0.72 1 0.92 0.05

Compatibility C2 0.92 1 0.99 0.01

Table 7.2: Descriptive statistics: company 2

Minimum Maximum Mean Std. Dev.

Satisfaction 1 10 7.01 2.10

Intention to Switch 1 5 3.09 1.26

Intention to Recommend 1 5 2.71 1.38

Availability 1 5 3.81 0.95

Employees 1 5 4.22 0.80

Service 1 5 3.55 1.06

Information 1 5 3.06 1.15

Invoices 1 5 3.85 1.08

Expectation 1.17 5.54 3.68 0.89

Compatibility C1 0.66 1 0.90 0.05

Compatibility C2 0.88 1 0.98 0.02

confirm the assumed relationship between performance-expectation compatibility
and the customer’s intention. A positive correlation exists between the product’s
performance-expectation compatibility and the customer’s intention to recommend
the product. Furthermore, a negative correlation can be found between the product’s
performance-expectation compatibility and the customer’s intention to switch to
another company. The latter conclusion is analogue to saying that compatibility
is positively correlated with the customer’s loyalty. These results reveal some new
and interesting insights into the customer’s post-purchase intentions process.
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Table 7.3: Company 1: Pearson correlations

C1 C2

Intention to Switch −0.21a −0.19a

Intention to Recommend 0.29a 0.26a

a Statistically significant at 1%

Table 7.4: Company 2: Pearson correlations

C1 C2

Intention to Switch −0.39a −0.33a

Intention to Recommend 0.47a 0.44a

a Statistically significant at 1%

Furthermore, the results in Tables 7.3 and 7.4 seem to suggest that compatibility
measure C1 has a stronger correlation with the customer’s intentions than
compatibility measure C2. To verify if the correlation rS,C1 between Intention
to Switch and compatibility measure C1 is truly larger than the correlation rS,C2

between Intention to Switch and compatibility measure C2, further statistical analysis
of the difference between rS,C1 and rS,C2 is needed. The same holds for the difference
between rR,C1 , i.e. the correlation between Intention to Recommend and C1, and
rR,C2 , i.e. the correlation between Intention to Recommend and C2.

The test statistic for evaluating the null hypothesis that the correlations between
X and Z differs statistically significantly from the correlation between Y and Z is
computed with Eq. 7.6. In this equation, n refers to the sample size and rXY refers to
the correlation between X and Y . For a more detailed discussion of this test statistic,
the reader can refer to [118, 27, 114].

t=(rY Z−rXZ)

√
(n−1)(1+rXY )

2
[

(n−1)
(n−3)

]
[1−r2

Y Z
−r2

XZ
−r2

XY
+2rY Z rXZ rXY ]+

[
rY Z+rXZ

2

]2
[1−rXY ]3

(7.6)

Table 7.5 shows the results of the comparison of the correlations for both
companies. The reported p-values show that each hypothesis is statistically rejected at
a significance level of 5%, except for the difference between rS,C1 and rS,C2 . However,
for both companies, the test whether C1 has a stronger correlation with the customer’s
intentions than C2 actually consists of two separate hypothesis which are tested on the
same sample1. Therefore, Bonferroni’s correction of the statistical significance level
needs to be applied [93, 31]. This correction implies that each of the h hypotheses
in a set of hypotheses need to be tested at an adjusted significance level α′ = α/h
to achieve a significance level α for testing the set of hypothesis. This implies that
the hypotheses in Table 7.5 need to be tested against a 2.5% significance level to

1Note that there are 2 separate sets of two hypothesis because the samples for both companies
are different
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Table 7.5: Statistical test to verify which compatibility measure has the strongest
correlation with the customer’s intentions

H0 p-value (2-tailed)

Company 1

rS,C1 − rS,C2 = 0 0.13

rR,C1 − rR,C2 = 0 0.01

Company 2

rS,C1 − rS,C2 = 0 0.00

rR,C1 − rR,C2 = 0 0.02

achieve 5% significance for the test that C1 is stronger correlated with the customer’s
intentions than C2. Even at this adjusted significance level, the conclusions remain.
For company 2 C1 has a statistically significant stronger correlation with the
customer’s intentions than C2. For company 1, the null hypothesis that C1 is equally
strong correlated with the customer’s intentions as C2 cannot be rejected, but |rR,C2 |
is statistically smaller than |rR,C1 |. All these results suggest that C1 should be
preferred over C2 for predicting and explaining customer’s intentions. The reason
why C1 has a stronger correlation with the customer’s intentions than C2 might be
caused by the fact that incompatibilities are diminished in C2 by taking the square
of these incompatibilities.

Table 7.6: Mean comparison of compatibility measures and customer intentions
between both companies

Mean Mann-Whitney Test

Company 1 Company 2 p-value (2-tailed)

Switch 2.29 2.71 0.00

Recommend 3.63 3.09 0.00

C1 0.92 0.90 0.00

C2 0.99 0.98 0.00

Next, the study focuses on the differences between the companies by computing
and studying the mean Intention to Switch, the mean Intention to Recommend, the
mean compatibility measure C1 and the mean compatibility measure C2, which
are presented in Table 7.6. These results show that customers of company 1 are
statistically significantly more loyal and more likely to recommend their company
than customers of company 2. Furthermore, Table 7.6 also shows that company 1
succeeds better in meeting the customer’s expectations than company 2. Although
the difference between the average compatibility of both companies is rather small,
it is still statistically significant at the 1% level. The statistical significance of the
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difference between two means was calculated with the Mann-Whitney Test. The
classical t-test for two independent samples (cf [114]) was unreliable because the
assumption of equal variance between the two samples was heavily violated, which
was tested with Levene’s test for equality of variances (cf [93]). Also the normality
assumption, was violated according to the Kolmogorov-Smirnov test. Instead of
relying on the robustness properties of the t-test, the non-parametric Mann-Whitney
Test (cf. [114]) was applied which does not assume normality or equal variance. The
p-values of the Mann-Whitney Test were both derived asymptotically and with a
Monte-Carlo experiment with 10000 samples. Both approaches resulted in the same
p-values.

The results of Table 7.6 and the positive correlation found between performance-
expectation compatibility and the customer’s intentions suggest that the difference in
customers’ intentions between both companies can be partially explained by company
1 having a better ability to meet customer expectations. This difference makes sense
because the first company is a company which is in the market for decades while
company 2 is the newcomer to the market.

Finally, to illustrate how the compatibility measure helps a company understand
the customer’s intentions, a regression model with Intention to Recommend as
the dependent variable and Satisfaction, average performance and compatibility as
explanatory variables is built for company 2. C1 is used as compatibility measure
because the previous results indicated that this measure has the highest correlation
with the customer’s intentions. Average performance is a new variable which
represents the mean performance of the five factorized dimensions.

Note that the compatibility measure is a function of expectation and dimension
performance and expectation is a function of Satisfaction and dimension performance.
Therefore, the compatibility measure is actually a function of Satisfaction and
dimension performance. Even though it has been shown that the compatibility
measure is related to the customer’s intentions, the question remains whether
the compatibility measure merely summarizes the information from Satisfaction
and dimension performances or if it truly extracts new information hidden in the
relationship between these constructs. By adding all three constructs to the regression
function, i.e. Satisfaction, average performance and compatibility, it can be tested if
compatibility has a significant effect on the customer’s intention which has not been
captured by Satisfaction or average performance.

Intentions to Recommend is measured on a discrete five-point scale which is a
categorical scale rather than an interval scale. Therefore, a multinomial logistic
regression was conducted instead of a multiple linear regression model. A multinomial
logistic regression is much more appropriate for regressions with a categorical
dependent variable than a linear regression. The customer’s Intentions to Recommend
was recoded to a variable with three categories, i.e. “no intention to recommend”
(values 1 and 2 of the original variable), “undecided” (value 3 of the original variable)
and “intention to recommend” (values 4 and 5 of the original variable). Figure 7.1
shows a histogram of the new Recommendation variable.

A multiple linear regression would try to predict the customer’s Intention to
Recommend by means of the customer’s Satisfaction, the average performance and
the compatibility. However, this approach would most likely predict values for the
dependent variable which are impossible in reality, i.e. all values except for {1, 2, 3}.
Instead, a multinomial logit model does not try to predict the customer’s Intention
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Figure 7.1: Distribution of customer’s intention to recommend.

to Recommend, but the logit of the independent variable. The logit of a variable
is defined as the natural logarithm of the ratio of the probability that Y = i to
the probability that Y = r, with r representing the reference category [85]. In
this analysis, category 3 (“Intention to Recommend”) was selected as the reference
category. The regression model can be expressed as the set of following two equations,
with Y denoting Intentions to Recommend, X1 denoting Satisfaction, X2 denoting
the average performance and X3 denoting the compatibility C1:

ln

(
P (Y = 1)
P (Y = 3)

)
= β01 + β11X1 + β21X2 + β31X3 (7.7)

ln

(
P (Y = 2)
P (Y = 3)

)
= β02 + β12X1 + β22X2 + β32X3 (7.8)

One of the benefits of the multinomial logistic regression model over the
linear regression model is that the multinomial model does not make normality
or homoscedasticity assumptions about the error terms. On the other hand,
the multinomial model does make the assumption that no strong multicollinearity
between the independent variables exists and that the model is linear in the logit [85].
Both assumptions need to be tested before the regression model can be analyzed.

First, the assumption of multicollinearity was tested. Table 7.7 shows the variance
inflation factors (VIF) for each variable. The VIF of a variable shows how the variance
of the estimator is inflated by the presence of multicollinearity. As a rule of thumb,
Gujarati [58] suggests that a VIF of a variable exceeding 10 indicates a high level of
multicollinearity. Table 7.7 shows that multicollinearity is not a problematic issue in
this regression model.
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Table 7.7: Collinearity diagnostics (variance inflation factors)

X1 X2 X3

1.55 1.76 1.43

Next, the assumption of linearity in the logit is tested. This assumption implies
that the logistic regression model has a linear form and the change in logit(Y ) for a
one-unit change in X is equal to the logistic regression coefficient [85]. Menard [85]
suggests to use the Box-Tidwell transformation described by Hosmer and Lemeshow
(cf [65],p. 90), which involves adding a term of the form (X)ln(X) to the model.
Statistically significant coefficients for this variable suggest that the relationship
between logit(Y ) and X is nonlinear.

Table 7.8: Linearity in the logit test

χ2 df p-value

X1ln(X1) 2.23 2 0.33

X2ln(X2) 3.15 2 0.21

X3ln(X3) 0.18 2 0.91

Table 7.8 shows the statistical significance of the coefficients for the Box-Tidwell
transformations. The statistical significance is computed by means of a χ2 statistic
which is the difference in −2 log-likelihood between the model with the Box-Tidwell
transformed variable and the model without the Box-Tidwell transformed variable.
The results of Table 7.8 show that all independent variables are linearly related to
the logit of Intentions to Recommend.

Table 7.9: Goodness of model fit

McFadden R2

Model with C1 0.22

Model without C1 0.20

With none of the assumptions violated, the final model can be analyzed in detail.
Table 7.9 shows McFadden’s R2, which is a goodness of fit measure. McFadden’s
R2 is the multinomial regression variant of the R2 in a multiple linear regression
and indicates how much the inclusion of the independent variables in the model
reduces the variation [85]. The results in Table 7.9 show that the model with
Satisfaction, average performance and compatibility as independent variables explain
22% of the variation in the customer’s Intention to Recommend. McFadden’s R2

was also computed for the same regression model but without compatibility as an
explanatory variable. Apparently, without compatibility, the model could only explain
20% of the variation in the customer’s Intention to Recommend, which is a first
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Table 7.10: Likelihood ratio tests

χ2 df p-value

Intercept 59.61 2 0.00

Satisfaction 57.43 2 0.00

Average Performance 24.34 2 0.00

Compatibility (C1) 16.36 2 0.00

indication that compatibility contains information not captured by Satisfaction or
average performance.

Next, Table 7.10 shows the statistical significance of each independent variable by
means of a χ2 statistic which is the difference in −2 log-likelihood between the model
with the independent variable and the model without the independent variable. These
results show that all independent variables are statistically significant including the
compatibility measure which reconfirms that compatibility contains information not
captured by Satisfaction or average performance.

Table 7.11: Parameter estimates

β β∗ eβ p-value

Intention to Recommend = “No intention”

Intercept (β01) 19.52 - - 0.00

Satisfaction (β11) -0.66 -0.52 0.52 0.00

Average Performance (β21) -1.06 -0.32 0.35 0.00

Compatibility (β31) -12.38 -0.25 4e−6 0.00

Intention to Recommend = “Undecided”

Intercept (β02) 12.88 - - 0.00

Satisfaction (β12) -0.34 -0.42 0.71 0.00

Average Performance (β22) -0.81 -0.39 0.45 0.00

Compatibility (β32) -8.21 -0.26 3e−4 0.00

β∗ is the standardized regression coefficient.

Finally, Table 7.11 shows the estimates of the regression coefficients which allow
the interpretation of the relationship between the independent variables and the
dependent variable. The final column of this table shows that all variables are
statistically significant at 1%. Furthermore, the table provides the estimates of
the regression coefficients β as well as the estimates for the standardized regression
coefficients β∗ and the odds ratio’s eβ . The odds ratios provide a much easier
interpretation than the original regression coefficients. For example, an odds ratio
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eβ
11 = 1.2 would imply that if attribute X1 increases with one unit, the odds

P (Y =1)
P (Y =3) would increase with factor 1.2. This allows the formulation of the following
conclusions for company 2.

• As the customer’s Satisfaction increases with a single unit, e.g. from 4 to 5, the
odds of being indecisive about recommendation against having the intention to
recommend drops with 39% and the odds of having no intention to recommend
against the intention to recommend drops with 48%.

• As the average performance increases with a single unit, e.g. from 4 to 5, the
odds of being indecisive about recommendation against having the intention to
recommend drops with 55% and the odds of having no intention to recommend
against the intention to recommend drops with 65%.

• As the compatibility increases with a 0.01, e.g. from 0.90 to 0.91, the odds
of being indecisive about recommendation against having the intention to
recommend drops with 8% and the odds of having no intention to recommend
against the intention to recommend drops with 12%.2

Note that compatibility is measured on a [0, 1] scale which makes the impact on
the odds by an increase of 1 meaningless, which is why the impact of 0.01 was studied
instead. This indicates that comparing the odds ratios between variables which are
measured on different scales is prone to lead to incorrect conclusions. For example,
from the discussion above it might appear that the average performance has a larger
impact on the customer’s Intention to Recommend than the customer’s Satisfaction
which is positive news for a manager since the average performance is easier to
control than the customer’s satisfaction. However, a unit increase of Satisfaction,
which is measured on a [1,10] scale is less difficult than a unit increase of average
performance which is measured on a [1,5] scale. Therefore, to compare the relative
impact of the different independent variables, one needs to refer to the standardized
regression coefficients. The standardized regression coefficients in Table 7.11, which
are calculated by the procedure in [85] (p. 53), reveal that the strength of the
relationship between Satisfaction and Intention to Recommend is the strongest and
the strength of the relationship between compatibility and Intention to Recommend
is the weakest.

From all these results, one can conclude for company 2 that compatibility is
positively correlated with the customers’ intention to recommend the company to
their friends. Although average performance and customer satisfaction is more
strongly related to the customer’s intentions of recommendation, it would be incorrect
to ignore the importance of performance-expectation compatibility.

7.4 Summary

In this chapter, expectation-performance compatibility was defined as a new construct
in the process of customer’s intention behavior. Two different approaches were
suggested to compute the expectation-performance compatibility by means of the
D-LIED implementation, i.e C1 and C2. Empirical results proved that these

2The impact of an increase of 0.01 in X on the odds is equal to e0.01β .
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compatibility measures are positively correlated with the customer’s intentions,
which implies that both positive or negative incompatibility between the customer’s
expectation and the perceived performance has a negative effect on customer loyalty
and recommendation.

Furthermore, the empirical results suggested that C1 should be preferred in
customer intention analysis. To illustrate the use of the compatibility measure in
such customer intention analysis, a multinomial logistic regression model was built.
The results of this regression model indicated that the compatibility measure succeeds
in extracting new information from the performance and satisfaction data and helps
managers to better understand the customer’s intention process. Finally, it should
be noted that future research might benefit from adding external causes to explain
customer intentions, such as drastic changes in the customer’s personal situation (e.g.
moving to an other country) which might be relevant to the customer’s purchase
behavior.
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8 PSO driven collaborative clustering: a

clustering algorithm for ubiquitous

environments

8.1 Introduction

All previous chapters in this thesis were based on the Expectancy-Disconfirmation
Paradigm. This chapter leaves that path and considers a problem where a marketer
is faced with another type of incomplete data and where the ED Paradigm is of
no use. In contrast with the first part of this thesis, the data mining technique
introduced in this chapter will not start from an existing marketing theory, model
or paradigm but will extract knowledge from information within incomplete data
by letting the data speak for itself. The benefit of a information driven knowledge
discovery technique is that it can be much more flexible and powerful because it is
not constrained by assumptions imposed by theory. On the other hand, data mining
techniques which do not start from a well-accepted theory to extract knowledge from
data is more susceptible to learn noise. Therefore, with techniques such as presented
in this chapter, one must always carefully study the face validity of the extracted
knowledge. Much more than with theory driven techniques, expert knowledge is
required to distinguish results which reflect true knowledge and results which are
sampling artifacts or noise.

The marketing problem faced in this chapter is one of customer segmentation.
Traditionally, marketing research has employed clustering analysis to find meaningful
segments within a customer base which allows companies to target their customers in
a more efficient way [135]. Cluster analysis is a unsupervised data mining technique
which groups objects in clusters such that the distance between objects of the same
cluster is minimized and the distance between objects from different clusters is
maximized [59]. Not only have clustering algorithms been used in marketing, but
they are also popular in other domains such as engineering, computer sciences, medical
sciences, earth sciences, social sciences and traffic safety research [135, 34, 8, 45, 56, 60,
71, 92, 109]. Many clustering algorithm assume that researchers have the necessary
data available at their computer on which they can run the clustering algorithm.

However, sometimes companies might believe that their customer data is too
limited to perform a meaningful clustering analysis. The following two motivating
examples describe such situations where data is incomplete. These two examples
illustrate the type of applications for which the clustering algorithm in this chapter
is designed.
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Motivating example 1.

A company holds information on a set of potential customers which it wishes to
segment. This allows them to identify new opportunities and act appropriately. At
the same time, other companies hold other information on the same set of potential
customers and have similar needs to identify different segments. Due to privacy,
security or business reasons, these companies are unwilling or prohibited to exchange
their data. This prevents them from consolidating their data and performing analysis
on the enriched data set. Yet an overall discovery of common patterns through some
collaboration mechanisms enforced over the companies could be highly profitable in
contrast to a confined discovery of local knowledge structures (clusters). In some
sense, these companies could be regarded as members of a peer-to-peer ubiquitous
environment where data and computing power are distributed. They might benefit
from a KDUbiq clustering algorithm which allows them to segment the customers by
using local data and findings coming from other companies without violating privacy,
security or business constraints.

Motivating example 2.

Two companies retain the same type of information about their customers. Both
companies have a different customer base and are not necessarily active in the same
market. They want to segment their customers to identify customer stereotypes
and they expect the stereotypes of the first company to show some overlap with the
stereotypes of the second company. To increase the validation of specific customer
stereotypes found by cluster analysis, both companies would prefer to enrich their
own data with the data from the other company. However, privacy, security and
business restrictions prevent them from exchanging their data. Yet again, an overall
discovery of common patterns through some collaboration mechanisms enforced over
the companies could be highly profitable in contrast to a confined discovery of local
knowledge structures (clusters). The companies can be considered as members of a
peer-to-peer ubiquitous environment where data and computing power are distributed
and where both could benefit from an adequate KDUbiq clustering algorithm.

Both examples illustrate an environment where data is distributed such that
the data at each site can be considered as incomplete. This chapter, introduces
a new clustering algorithm which is a combination of particle swarm optimization
(PSO) and collaborative fuzzy clustering (CFC) and which is particularly suited
for this type of problems. This algorithm, denoted as PSO-CFC, is a modified
version of the technique introduced by Falcón et al. [46] and can be interpreted as
a Ubiquitous Knowledge Discovery (KDUbiq) clustering technique. KDUbiq is a
fairly new research domain which is shortly introduced in the next section. The third
section of this chapter continues by discussing other relevant literature on related
existing data mining techniques from domains such as distributed clustering. The
fourth section is devoted to a discussion of the original CFC algorithm, introduced by
Pedrycz [104, 105] while the fifth section introduces PSO and shows how it cooperates
with CFC in this KDUbiq environment. The sixth section contains the results
of elaborated experiments which test the added value of the PSO-CFC clustering
technique compared to local fuzzy clustering (i.e./ without collaboration between
data sites). Finally, the limitations of the current technique and the directions for
future research will be discussed before the final conclusions are drawn.
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8.2 Ubiquitous knowledge discovery

Computing environments and technologies are increasingly evolving towards mobile,
finely distributed, interacting and dynamic environments containing massive amounts
of heterogeneous, spatially and temporally distributed data sources. Examples are
peer-to-peer systems, grid systems and wireless sensor networks. These ubiquitous
computing environments pose new challenges to the field of knowledge discovery and
data mining which remain unsolved by traditional data mining techniques. The
research discipline fostering the inception of innovative data mining methodologies
which are capable to handle these new challenges has been termed Ubiquitous
knowledge discovery (KDUbiq).

KDUbiq is a very wide research area with features setting it aside from traditional
data mining and distributed data mining. KDUbiq algorithms typically operate
in environments with distributed computing power and distributed data sources.
KDUbiq algorithms must be capable of communication with different data sources
and computing sites and should also be usable in environments too large to set up a
master computer which collects and consolidates the different site results. Therefore,
a KDUbiq environment typically consists of several computing devices performing
local data mining on site using limited information at hand while communicating
with other sites. Sometimes computing and power resources are limited and require
resource-aware KDUbiq techniques. Sometimes, privacy and security restrictions hold
which prevent raw data to be communicated or to be gathered centrally. Sometimes,
KDUbiq algorithms have to deal with data streams and must be able to process the
data in real-time. Not all of these features have to be present at the same time for an
environment to be ubiquitous and neither does a KDUbiq algorithm necessarily have
to deal with all these challenges. It all depends on the application. A sensor network
will e.g. need algorithms which are very much resource-aware and limit communication
to the absolute minimum while grid systems have much less resource constraints.
On the other hand, KDUbiq algorithms that work on a peer-to-peer network are
more likely to have to deal with privacy issues than algorithms working in a sensor
network. For a more elaborated discussion of the different KDUbiq characteristics,
the interested reader may refer to the KDUbiq Blueprint [1] which will be available as
a Springer book by Fall 2008. Next, two motivating examples are given to illustrate
the type of applications our KDUbiq algorithm can deal with and to identify the
KDUbiq challenges faced in such applications.

If the motivating examples from the previous section are revised, it becomes clear
that they can be considered as ubiquitous environments with distributed data sources
and distributed computing power where privacy issues prevent the exchange of raw
data. Such environments require a clustering technique which can run locally, but
which can find similar results as if all data were consolidated at one site, without
violating the privacy restrictions. Other KDUbiq features, such as resource limitations
and real-time data mining are of much less importance in these types of applications
and it should be noted that PSO-CFC is not designed to consider these challenges.

8.3 Relevant work

Not only can PSO-CFC be considered a KDUbiq clustering algorithm, it shares
various properties with other clustering algorithms which are often studied under
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the umbrella of distributed or parallel computing. While distributed and parallel
computing are closely related, there are some important differences to be made.
Parallel clustering starts with a centralized data set and tries to increase clustering
performance. It distributes the data among different clients and all clients cooperate
intensively to simulate a global clustering. Examples of parallel clustering are the
parallel version of DBSCAN in [136] and the parallel version of k-means in [35].
Distributed clustering on the other hand assumes that the data is not centrally
available and the different clients work independently from each other. Each client
learns a local cluster model which is sent to a central node where the local models
are combined to a global cluster solution. Examples of distributed clustering are
the Collective Hierarchical Clustering algorithm [72], the distributed k-windows
algorithm [123] and the Density Based Distributed Clustering [70] among others.
From this perspective, PSO-CFC belongs to the domain of distributed clustering.

Within the field of distributed clustering, it is important to discern the way the
data is distributed. Horizontally partitioned data means that each party has the same
set of records/instances but a different set of features/attributes. In [72], Johnson
and Kargupta introduce a distributed clustering algorithm which tackles this type of
distributed data. Vertically partitioned data refers to data distributed among various
parties such that each party contains a joint set of features/attributes but a disjoint
set of records/instances. Some algorithms which tackle this type of data are presented
in [35, 123].

Both among vertically and horizontally distributed clustering techniques, two
different motivations can be discovered behind the various methodologies aimed at
amalgamating information from multiple clustering analyses such as multi-cluster
combiners [10], consensus clustering [91] or the well-known cluster ensembles [119,
126]. A first reason for this fusion of knowledge structures is to assess the robustness
of a specific clustering algorithm to the variability of sampled data, which is a pivotal
issue in noisy and uncertainty-permeated environments. The representative approach
in this category is consensus clustering [91], i.e./ a rather simple resampling technique
executing the same clustering method multiple times over a set of perturbed instances
of the same original data set. Finally, it attains an agreement or consensus among
the multiple runs.A second motivation behind these approaches stems from the need
to combine the output of manifold unsupervised learning algorithms, following the
footsteps of well-settled meta-classifier techniques, as a way of getting a coherent
picture of the underlying data dynamics which exists across the different data sites.
From this perspective, PSO-CFC belongs to the second group of distributed clustering
techniques which try to discover the global structure across various data sites.

However, most of the algorithms mentioned so far were not specifically designed
with the concept of privacy preservation in mind. Recently, some authors have
focussed their attention on privacy preserving distributed clustering algorithms, which
have resulted in several publications [119, 86, 128].

The privacy-preserving distributed clustering approach “cluster ensembles” [119]
has proven to be an efficient and general framework for mapping a set of hard
partitions into an optimal, combined partition, even when the number of clusters in
each partition may vary. Assuming a unique, global collection of patterns (possibly
distributed over several feature spaces), data confidentiality at the local level is
enforced by exchanging only the crisp labels corresponding to the cluster assignments
of each data object. Given the high computational complexity of the ensuing “median
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partition” problem as posed in [119], the need for heuristic methods to derive
approximate solutions of an acceptable quality becomes relevant to the topic. This is
less of an issue with PSO-CFC, where good solutions to the clustering guided by the
augmented objective function can be obtained with relatively modest computational
effort.

A second type of privacy-preserving distributed clustering is presented in [86]
and is concerned with distributed object collections which are described by the same
group of features, i.e./ vertical clustering. The proposed framework is general enough
to embrace unsupervised and semi-supervised scenarios and supports a broad range
of data types and learning algorithms. However, it suffers from several drawbacks
compared to collaborative fuzzy clustering, among them the assumption about the
existence of an underlying probabilistic distribution of the information dwelling at
each local repository. Such distributions are to be learned (e.g. Gaussian with full-
variance, von Mises-Fisher, etc.) and their condensed parameters are sent to a central
location for further aggregation into a unified model. However, the quantification of
the privacy requirements or the weights associated with the local models makes room
for subjective criteria which lead to undesirable effects at the global level.

A third privacy-preserving distributed clustering technique is the fine-grained
distributed version of the very popular K-Means algorithm with full privacy
preservation put forward in [128] which has a strong analogy with collaborative
fuzzy clustering. It targets the horizontal mode (i.e./ feature-scattered clustering) in
such a way that an elaborate degree of isolation in the communication phase among
the data sites has been envisioned. As part of the secure multiparty computation
approach enforced to prevent exchange of valuable data, not even cluster prototypes
or distances between patterns to clusters are disclosed, which turns the algorithm
more complicated and awkward. A problem with the algorithm in [128] is the way it
computes the closest cluster for each data point, which is believed to be the sum of
the partial distances found at the local level. While this is true for the most common
distance measures (e.g. Euclidean, Manhattan, etc.), this feature severely restricts
the shape of the clusters to be found and thus narrows the scheme’s applicability to
non-traditional scenarios.

A major difference between PSO-CFC and the other privacy-preserving
distributed clustering techniques is that the former assigns fuzzy cluster labels to
observations. With fuzzy cluster labels an observation can belong to several clusters
with different degrees of membership. Such approach provides a more powerful
representation of the reality where crisp memberships are more the exception than
the rule.

8.4 Collaborative fuzzy clustering

PSO-CFC is based on Collaborative Fuzzy Clustering (CFC) which was introduced
in 2002 by Pedrycz [104] as a novel clustering algorithm intended to reveal the
overall structure of distributed data which at the same time respects any restrictions
preventing data sharing. As discussed in the previous section, this approach exhibits
both similarities and differences with other distributed clustering techniques (cf [105]).

The collaborative clustering scheme consists of two major steps. First, a local
clustering analysis is performed at each individual data site separately. Next, the
local findings are exchanged and an augmented clustering algorithm is applied at
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each data site. This augmented clustering algorithm takes the local data as well as
the results of the other sites into account. The second step is repeated until some
termination criterium is met.

Typically, two types of collaborative clustering can be distinguished, i.e./ the
horizontal mode and the vertical mode. The horizontal mode assumes that each data
site holds information on the same set of objects but described in different feature
spaces, as is the case in the first motivating example. The vertical mode assumes that
each data site holds information on different objects described in the same feature
space. This is the case in the second motivating example. Next, the two versions of
CFC will be explained in detail with the motivating examples in mind.

Horizontal CFC

There are P companies and each company [ii] measured A[ii] variables xa[ii] for the
same set of N customers. The companies agreed to segment their customers in C
clusters. The first step of the collaborative scheme performs a local fuzzy C-means
cluster analysis (FCM) at each company [ii] separately using only the local data. The
generic version of the FCM method was proposed by Dunn [40] and Bezdek [15] in
the 1980s, but has undergone significant changes over the years. The reader may refer
to Hoppner et al. [64] for a comprehensive reference on this topic.

FCM identifies C cluster centers and assigns each record k (i.e./ a customer in our
case) with a specific membership degree uik to cluster i. The membership degrees
uik for i = 1, · · · , C are constrained to sum to 1. The FCM analysis tries to minimize
the objective function

Q[ii] =
N∑

k=1

C∑

i=1

u2
ik[ii]d2

ik[ii] (8.1)

where dik denotes the distance between case k and cluster center i and where [ii]
refers to one of the companies at which the local analysis is performed.

The local analysis provides each company with a C × A[ii] cluster prototype
matrix containing the cluster centers and a N × C partition matrix containing the
membership degrees of each case k to each cluster i. Note that the size of the cluster
prototypes differ across data sites because each site [ii] has a different feature set size
A[ii].

In the second stage of CFC, the companies have to exchange their local results,
without violating the privacy restrictions. In horizontal CFC the communication
between data sites is realized by exchanging the partition matrices. The partition
matrices are comparable between data sites in horizontal CFC because they relate to
the same customers and clusters. At the same time, no private information about the
customers is exchanged and without the prototype matrices, which are not exchanged,
it is impossible to retrieve the original data. By realizing the communication at the
level of granular information, collaborative clustering succeeds in complying to any
privacy, security or business constraints.

Once the companies receive the partition matrices, the true collaborative FCM
can be applied, which minimizes an augmented objective function (cf. Eq. 8.2). This
function integrates the information from the other companies with the local data and
uses collaboration links α[ii, jj] to control the extent of collaboration between two
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companies [ii] and [jj]. The set of all collaboration links is called the collaboration
matrix.

Q∗[ii] = Q[ii] +
P∑

jj=1
jj 6=ii

α[ii, jj]
N∑

k=1

c∑

i=1

(uik[ii]− uik[jj])2dik[ii] (8.2)

The augmented objective function adds a second term to the goal function which
quantifies the differences between the partition matrices of every data site. This forces
the CFC algorithm to search for similar clustering results across data sites. During
this collaborative stage, the entries of the partition matrix and prototype matrix will
be recomputed. Next, the new partition matrices will be exchanged and each company
will minimize the augmented objective function again. This is repeated until some
termination criterion is reached, which relies on the changes of the partition matrices
obtained in successive iterations of the clustering method. Algorithm 1 displays the
breakdown of the horizontal collaborative clustering scheme.

Algorithm 1 The horizontal collaborative clustering scheme

1: for each data location [ii] do
2: Perform standard FCM clustering, minimizing objective function Q[ii]
3: end for
4: repeat
5: Exchange the current partition matrices between the data locations
6: for each data location [ii] do
7: Run the collaborative FCM clustering, minimizing Q∗[ii]
8: end for
9: until some termination criterion is reached

Vertical CFC

In the vertical version of CFC, there are P companies and each company [ii] has a
different set of N [ii] customers which are all measured by the same set of A features
{x1, . . . , xa, . . . , xA}. The companies agreed to segment their customers in C clusters.
The first step of the collaborative scheme performs a local fuzzy C-means cluster
analysis (FCM) for each company [ii] using only the local data. This step is exactly
the same as for the horizontal CFC variant. The local analysis provides each company
with a C ×A cluster prototype matrix containing the cluster centers and a N [ii]×C
partition matrix containing the membership degrees of each case k to each cluster i.
Note that this time the size of the partition matrices differ across data sites because
each site [ii] has a different set of N [ii] customers.

In the vertical CFC, the prototype matrices are exchanged instead of the partition
matrices. Since the feature sets are equal across data sites, the cluster prototypes can
be compared among data sites which allows the measurement of the difference between
the local cluster solutions. Only prototype matrices are exchanged which preserves
the privacy of the data.

Once the companies receive the prototype matrices, the true collaborative FCM
can be applied, which minimizes an augmented objective function (cf. Eq. 8.3). As in
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the horizontal version, a new term is added to the goal function which quantifies
the inequality between the cluster solutions at different data sites. The second
term of the augmented function compares the local membership degrees uik[ii] with
the membership degree uik[jj]. This is the membership a case k would have if
cluster center i was positioned at the location of cluster center i from data site [jj].
The vertical version also uses collaboration links α[ii, jj] to control the extent of
collaboration between two companies [ii] and [jj].

Q∗[ii] = Q[ii] +
P∑

jj=1
jj 6=ii

α[ii, jj]
N∑

k=1

c∑

i=1

(uik[ii]− uik[jj])2dik[ii] (8.3)

During the collaborative stage, the entries of the partition matrix and prototype
matrix will be recomputed and the new prototype matrices will be exchanged. Next,
each company will minimize their augmented objective function again and this is
repeated until some termination criterion is reached. Algorithm 2 displays the
breakdown of the vertical collaborative clustering scheme.

Algorithm 2 The vertical collaborative clustering scheme

1: for each data location [ii] do
2: Perform standard FCM clustering, minimizing objective function Q[ii]
3: end for
4: repeat
5: Exchange the current prototype matrices between the data locations
6: for each data location [ii] do
7: Run the collaborative FCM clustering, minimizing Q∗[ii]
8: end for
9: until some termination criterion is reached

8.5 Optimizing the collaboration matrix

One of the parameters of CFC is the collaboration matrix which can be set by
using expert knowledge. Company experts should set high collaboration links with
companies they want to cooperate strongly with and low collaboration links with
companies whose data is not believed to be very compatible. Choosing the right
collaboration links can be a difficult task which could lead to unbalanced results if
chosen incorrectly. There is no guarantee that collaboration will yield meaningful
results no matter how strong the connection between two companies might be.

Falcón et al. [46] developed a technique to optimize the collaboration matrix
during the clustering analysis by applying the evolutionary optimization technique
of Particle Swarm Optimization (PSO). Their objective was to a maximize the level
of collaboration which differs from the objective in this chapter. The goal of the
PSO-CFC approach is to mimic the situation where all companies would consolidate
their data sets and perform a single global cluster analysis, which is impossible due
to privacy constraints. Therefore, the PSO-CFC approach will need a PSO objective
function which focuses on finding similar cluster solutions across companies. This
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section presents a modification of the PSO objective function to suit the needs of this
KDUbiq environment.

It should be noted that the KDUbiq approach only makes sense if companies
consider their own data as incomplete and want to improve the quality of their local
analysis by collaborating with other companies which they believe have compatible
data. If the data from other companies are not compatible or relevant or companies
do not want to dilute the knowledge structures found by local analysis in favor of
the knowledge structures revealed through a global clustering approach, companies
should stick with their local analysis.

Particle Swarm Optimization (PSO) is an evolutionary optimization technique
developed by Kennedy and Eberhart [74], inspired by the swarming behavior of bird
flocks and fish schools. The optimization algorithm initializes Z particles xz, each
representing a possible solution to the optimization problem. Next, the particles start
to fly throughout the solution space and at each time interval t, the fitness of the
solution is evaluated by means of a fitness function. During their flight, each particle
remembers its own best position pz. The direction of a particle in the solution space
is influenced by the particle’s current location xz(t), the particle’s current velocity
vz(t), the particle’s own best position pz and the global best position pg among all
particles. The particle’s new position xz(t + 1) is calculated by Eq. 8.4 and Eq. 8.5:

vz(t + 1) = wvz(t) + c1r1(pz − xz(t)) + c2r2(pg − xz(t)), (8.4)

xz(t + 1) = xz(t) + vz(t + 1), (8.5)

where w is the inertia weight and c1, c2 are the acceleration constants drawing
the particle toward the local and global best locations, respectively. The stochastic
components of the PSO meta-heuristic are given by r1 and r2, which represent two
uniformly distributed random numbers. All particles keep moving in the solution
space until some criterion is met. The global best position in the end is the solution to
the optimization problem. For a broader insight about this widespread optimization
technique, refer to [16].

In the PSO-CFC approach, a single particle will represent an entire collaboration
matrix and the flight of the particles represents the search for a collaboration matrix
which optimizes the similarity of the cluster solutions across data locations. To
achieve such optimization, an appropriate fitness function needs to be developed
which represents the average dissimilarity between cluster solutions across data sites.
The goal of the PSO algorithm is to minimize this function.

The fitness function can be defined in three steps. The first step, which is different
for the horizontal and vertical variant, measures the dissimilarity between cluster i
from data site [ii] and cluster j from data site [jj]. In the horizontal variant, cluster
dissimilarity must be based on the partition matrices which is the only information
available about the clusters from the other data sites. In horizontal PSO-CFC, a
cluster Ci[ii] is redefined as a set of membership degrees {u1i[ii], · · · , uNi[ii]} and the
dissimilarity between cluster i from data site [ii] and cluster j from data site [jj] are
measured as follows:

d(Ci[ii], Cj [jj]) =
1
N

N∑

k=1

|uik[ii]− ujk[jj]|. (8.6)
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This dissimilarity measure becomes zero, which is the lower bound, when all
patterns belong to both clusters with equal membership degree. On the other hand,
it will become 1, which is the upper bound, when both clusters are crisp and do not
have any pattern in common.

In the vertical variant, dissimilarity between two clusters must be based on the
prototype matrices which is the only information known from the cluster solutions
at the other data sites. In vertical PSO-CFC, the dissimilarity between cluster i
from data site [ii] and cluster j from data site [jj] is measured by calculating the
Euclidean distance between the two cluster centers vi[ii] and vj [jj] (cf Eq. 8.7 where
via[ii] represents the ath feature of cluster center vi[ii]).

d(Ci[ii], Cj [jj]) =

√√√√
A∑

a=1

(via[ii]− vja[jj])2 (8.7)

This distance measure has a lower bound equal to 0 which is reached when both
cluster centers are at the exact same location in the feature space. No upper bound
exists.

The second step is to measure the average dissimilarity between the clusters of
data site [ii] and data site [jj]. This requires a proper mapping between the clusters
of data site [ii] and the clusters of data site [jj]. Instead of developing an algorithm to
perform this non-trivial mapping, our approach uses a simple heuristic which appears
to work very well. This heuristic maps a cluster i from data site [ii] to the least
dissimilar cluster j from data site [jj]. Dissimilarity is measured with Eq. 8.6 for
horizontal PSO-CFC and Eq. 8.7 for vertical PSO-CFC. The average dissimilarity
between two data site [ii] and [jj] is calculated by means of Eq. 8.8. Note that this
measure equals 0 when both cluster solutions are identical.

D[ii, jj] =
1
c

c∑

i=1

c

Min
j=1

[d(Ci[ii], Cj [jj])] (8.8)

The third and final step of constructing the fitness function represents the level
of dissimilarity present between all data sites. The PSO fitness function, which will
be termed ρ, measures the average dissimilarity of all data sites pairs. With P data
sites, there are P (P−1)

2 data site combinations, which results in the following fitness
function:

ρ =
2

P (P − 1)

P∑

ii=1

P∑

jj>i

D[ii, jj] (8.9)

The PSO-CFC algorithm uses this fitness function to determine the optimal set
of collaboration links. In the KDUbiq clustering setting, this implies that aside
from data locations, which are called data nodes, a computing location is needed
which performs the PSO algorithm. This location will act as the coordination node.
It should be noted that the coordination node can be the same physical location
as a particular data node, but this is not necessary. Algorithm 3 shows how the
collaborative clustering scheme and the particle swarm optimization are integrated
to automate the determination of the collaboration links.
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Algorithm 3 The horizontal collaborative clustering scheme

1: Initialize Z particles xz (coordination node)
2: repeat
3: for each particle xz do
4: Perform Alg. 1 or 2 with collaboration matrix xz (data nodes)
5: Send the partition matrices to the coordination node
6: Calculate the fitness function ρ (coordination node)
7: Update pz (coordination node)
8: end for
9: Update pg (coordination node)

10: for each particle xz do
11: Calculate the new position xz(t + 1) (coordination node)
12: Send xz(t + 1) to the data nodes
13: end for
14: until some termination criterion is reached (coordination node)
15: Send the optimal collaboration links to the data nodes
16: Perform Alg. 1 or 2 with the optimal collaboration matrix (data nodes)

8.6 Experiments

Methodology

Each analysis compares three different clustering approaches, i.e./ the global
clustering (GC) approach, the local clustering (LC) approach and the collaborative
clustering (CC) approach, and requires a separate data set per data site for the
CC and LC approach and a consolidated data set for the GC approach. The LC
approach performs a standard FCM clustering for each data set separately. This
represents the situation where companies only have access to their own data and are
not willing to collaborate with other companies. The GC approach represents the
other extreme where no privacy constraints hold and where companies consolidate
their data sets to achieve a single data set of higher quality, i.e./ a larger feature
space or more observations. This approach is tested by performing a FCM cluster
analysis on the consolidated data set. The CC approach represents the KDUbiq
environment described in the motivating examples where privacy constraints prevent
companies from sharing their data. However, in contrast to the LC approach, where
companies work as isolated sites, the CC approach uses a collaboration mechanism
to approximate the results of the GC approach. The CC approach is tested by
performing a PSO-CFC clustering analysis across all data sites with the following
parameters: 20 particles, 100 iterations, c1 = c2 = 2.0 and the inertia weight
dynamically varied from 1.4 to 0.4. The purpose of each analysis is to evaluate
the quality of the clustering results from all three approaches. In this chapter, cluster
quality is defined as the number of correctly assigned cases. Analyses are performed
on both artificial data sets and real-life data sets.

Artificial data sets have the benefit of keeping full control over the structure
of the data, which allows the researcher to isolate the effect of a specific data
structure property on cluster quality. It also has the benefit that the true cluster
memberships are known which allows an exact evaluation of the cluster quality. Once
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the artificial data structure is designed, a sample can be drawn for each data site
and the consolidated data set is created by joining all local data sets. Next, the
three approaches are applied to the data sets and the number of incorrectly assigned
observations are counted for each approach. Cluster assignment is based on the cluster
with the highest cluster membership.

Assume that the cluster quality of the GC approach has to be compared against
the cluster quality of the CC approach. This comparison is done by subtracting εcc,
i.e./ the number of errors of the CC approach, from εgc, i.e./ the number of errors
of the GC approach, which results in the new variable d = εcc − εgc. Note that one
experiment leads to a single observation of d which cannot lead to reliable conclusions.
Therefore, for each analysis, 30 experiments are performed. Each experiment z draws
new data from the artificial data distributions and dz is calculated. This results in
a sample of cluster quality comparisons {d1, . . . , dz, . . . , d30}. Ultimately, inferences
about the population mean µd need to be drawn which indicates if CC performs
better than GC on average or not. To draw conclusions about µd, an estimator of this

population parameter is needed, which is typically the sample average d =
∑30

z=1
dz

30 .
However, the true population mean µd might differ to some extent from its estimator
d. Therefore, confidence intervals need to be constructed to know how reliable d is
as an estimator of µd. To build such confidence intervals, the sampling distribution
of d around µd has to be known.

If the underlying variable d is normally distributed, the t-test could be used to
evaluate the sample mean and to construct confidence intervals [114, 29]. However,
the underlying distribution of d is unknown and the sample size is not very large
in the experiments in this chapter (z = 30) which makes the t-test more sensitive
to violations of the normality assumption. Instead of relying on the robustness of
the t-test, it was opted to use the non-parametrical bootstrap technique to construct
confidence intervals.

Nonparametric bootstrap [42] is a recently fashionable way for statistical inference
for quantities for which theoretical and/or even asymptotic results are hard to derive.
The basic idea behind bootstrapping is that new samples S∗b are created by resampling
with replacement from the original sample S = {d1, . . . , dz, . . . , d30} until the new
sample size is equal to the original sample size. This process is repeated a number
of times which results in a set of B resamples, denoted as {S∗1 , . . . , S∗b , . . . , S∗B}. The
key idea is that all these resamples can be considered as samples from the unknown
population (or at least they look like the unknown population).

If the sample average d based on sample S∗b is denoted as d∗b , then the distribution
of d∗b around d is analogous to the sampling distribution of d around the population
mean µd [52]. Since B, i.e./ the number of resamples, can be made very large, a
very detailed empirical distribution of d∗b can be acquired which provides a detailed
estimate of the sampling distribution of d. This estimate of the sampling distribution
can be used to construct confidence intervals around d. Various approaches to
construct bootstrap confidence intervals exist, such as the normal-theory interval,
the bootstrap percentile interval and the bias-corrected, accelerated percentile intervals
(BCa). According to Fox [52], the latter are preferable and for a 95% BCa confidence
interval, the number of bootstrap samples should be on the order of 1000 or more.
For more technical details about the construction of bootstrap confidence intervals
and the use of bootstrapping to evaluate the results of machine learning algorithms,
the interested reader should refer to [52, 29].
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In summary, the following methodology is used for each analysis:

a) An artificial data distribution is designed.

b) For each of 30 experiments, samples from the artificial data distribution are
drawn for each data site and the consolidated data set is created.

c) For each experiment, the measurements of interest are constructed and the
average for the thirty experiments is calculated.

d) Bootstrapping is used to generate BCa confidence intervals, based on 10000
bootstrap samples.

Artificial data sets give researchers full control over the structure of the data which
allows them to assign changes in cluster performances to specific causes, similar to a
controlled laboratory experiment. On the other hand, artificial data sets might not
always reflect reality which decreases the practical value of the results and conclusions.
Therefore, some analysis were conducted on a real-life marketing data set. A first
problem with real data is that the true cluster memberships of the customers are
unknown. In the experiments in this chapter, the cluster assignments of the GC
approach were used as the estimates for the true cluster memberships. The quality
of the CC and LC approach is measured by counting the number of customers they
assign differently than the GC approach.

A second problem is that there is only one data set and the underlying distribution
is unknown which prevents the generation of new samples. Therefore, the bootstrap
principle was used and new data sets were generated by sampling from the original
data set with replacement until the size of the new data sets are equal to the original
data set size. According to the bootstrap principle, these resamples can be considered
as samples from the unknown population (or at least they look like the unknown
population).

The subsequent steps of calculating the average quality difference between CC
and LC and the construction of confidence intervals is completely analogous to the
methodology followed for the artificial data sets.

Horizontal clustering: empirical results

Artificial data sets.

First, three different analysis were performed on artificial data to evaluate the relative
quality of the LC and CC approach in different situations. Each analysis uses different
data structures, which represent increasing clustering task complexity. First the data
structure of each analysis will be discussed, prior to the results.

All three analyses concern two data sites. Each data site has a data set from
three clusters, i.e./ C1, C2 and C3, with 200 observations in each cluster. The
difference between the data sites are the features used to describe the observations.
The consolidated data set is the combination of the local data sets and has four
features, i.e./ X1, X2, X3 and X4.

The first analysis represents the easiest clustering task. It uses cases drawn from
three different multivariate normal distribution, i.e./ one per cluster, with mean vector
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µ1, µ2 and µ3 for respectively clusters C1, C2 and C3 and with the same covariance
matrix Σ for all three clusters.

µ1 =
[
3 1 1 2

]
µ2 =

[
1 3 3 2

]

µ3 =
[
2 3 1 2

]
Σ =




0.1 0 0 0

0 0.1 0 0

0 0 0.1 0

0 0 0 0.1




Figure 8.1 shows the 2-dimensional scatterplots for a random data set generated
from the artificial data structure discussed above. These plots show that features X2

and X3 are sufficient to separate the three clusters while feature X4 does not help the
identification of the three clusters at all. In the first analysis, data site A has access
to features X1, X2 and X3 and data site B has features X3 and X4. Figure 8.1d
reveals that data site A should have no problem assigning the cases to the correct
cluster, while Figure 8.1f shows that it is impossible for site B to separate clusters
C3 and C1. The first analysis simulated a KDUbiq environment where one company
has all necessary features to solve a perfectly separable clustering problem, while the
second company lacks important features.

The situation simulated in the second analysis differs from the first analysis
because in the second analysis no single company has all necessary features to solve the
clustering problem. However, the clusters can still be separated for the consolidated
data set. The data sets generated for the second analysis use the same distribution
as the first analysis, but this time data site A has only access to features X1 and X2,
while data site B has access to features X3 and X4. Figure 8.1a shows that data site
A can no longer separate the three clusters as there is some overlap between clusters
C2 and C3, while Figure 8.1f shows that data site B still has problems separating
clusters C3 and C1.

The third analysis represents the same situation as analysis 2, but now for a
problem which is not perfectly separable, even if all features are available. This is
a more realistic situation. The data generated for the third analysis still uses three
multivariate normal distributions with the same covariance matrix as above, but with
the following mean vectors for respectively clusters C1, C2 and C3:

µ1 =
[
3 1.5 1 2

]
µ2 =

[
1 2 1.5 2

]
µ3 =

[
2 2 1 2

]

Analogue to analysis 2, data site A received features X1 and X2, while data site
B has access to features X3 and X4.

For all three analysis, the methodology described in subsection 8.6 was used
and the results are presented in Table 8.1. The ε statistics refer to the number of
incorrectly assigned cases in a certain data site by a specific approach. For example,
εAB
lc are the number of incorrectly assigned cases for data site A and B by the

LC approach. The ε statistics for the GC approach are always calculated for the
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Figure 8.1: Scatterplot of full artificial data set

consolidated data set and the superscript denoting the data sites is left out of the
notation.

Analyzing the results of the first analysis, the LC approach succeeded in assigning
the cases of the first data site to the correct clusters, while it had great troubles
assigning the cases of the second data site. These results were expected given the
data structure of both sites. The CC approach did succeed to overcome the clustering
problem of the second data site. The information exchanged during the collaboration
phase of the CC approach successfully lowered the number of incorrectly assigned
cases at data site B to 14 cases out of 600, compared with 202 cases out of 600 for
the LC approach. On the other hand, it is remarkable that the CC approach did
make assignment errors for data site A, which should be perfectly separable. Further
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(c) X1 vs X4
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Figure 8.1: Scatterplot of full artificial data set [continued]

analysis of the results revealed that the PSO-CFC algorithm got stuck in a local
optimum during three of the thirty experiments which caused these errors. Initially,
the PSO-CFC algorithm had even more problems getting stuck in local optima. By
changing the default number of particles to 40, the number of local optima problems
could be reduced, but could not be eliminated completely. These adjusted settings
were used for all horizontal PSO-CFC experiments. Comparing the CC and LC
approach, the results are very promising. When one data site contains all information
to segment the customers correctly, other data sites clearly benefit by applying the
CC approach.

The second analysis changed the environment such that no single data site has
all information available to solve a separable cluster problem. This is reflected in the
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Figure 8.1: Scatterplot of full artificial data set [continued]

results. While the LC approach did not make assignment errors for data site A in
the previous analysis, it now makes 20 assignment errors on average. Note that these
errors are caused by the fact that data site A is no longer perfectly separable into
three clusters. The number of errors made by the LC approach for data site B remains
the same as in the first analysis, which was expected since it concerns the same data
structure. Also in the second analysis, the CC approach succeeded to cluster the
observations of data site B much better than the LC approach, i.e./ 26.4 incorrect
cluster assignments versus 199.6 incorrect cluster assignments. However, the number
of errors made on data site B by the CC approach is higher than in the first analysis,
although the data structure of data site B did not change and the problem is still
perfectly separable given all features. Furthermore, the number of errors made by the
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Table 8.1: Cluster quality comparisons between the GC, LC and CC approach in a
horizontal clustering environment on artificial data

Analysis

Statistic 1 2 3

εA
LC mean 0.2 21.7 84.6

95% CI [0.1,0.4] [20.4,22.9] [79.9,90.7]

εB
LC mean 202.1 199.6 307.7

95% CI [200.9,203.3] [197.8,201.3] [302.7,314.8]

εA
CC mean 14.27 26.4 108.4

95% CI [3.6,38.83] [22.0,33.8] [94.9,129.0]

εB
CC mean 14.3 26.4 108.4

95% CI [3.6,38.9] [22.0,33.8] [94.9,129.0]

εAB
LC − εAB

CC mean 201.8 221.0 220.1

95% CI [200.5,203.0] [218.5,223.5] [213.3,227.9]

εAB
CC − 2εGC mean 28.0 52.4 44.6

95% CI [6.7,77.0] [43.6,67.1] [17.87,85.87]

εAB
LC − 2εGC mean 173.7 168.6 175.5

95% CI [124.0,195.0] [152.1,177.8] [132.8,203.1]

CC approach on data site A and B together is more or less equal to the difference in
number of errors between the CC and the GC approach. This indicates that the GC
approach still successfully separates the clusters in the second analysis. Therefore, it
can be concluded that when not all necessary features are present at a single data site,
the CC approach will make more errors, but still significantly decreases the number
of errors made compared to the LC approach, i.e./ 221 errors less on average for both
data sites.

The third analysis reflects the most realistic situation where observations are not
perfectly separable given all features. Because of this, the GC approach now also
makes assignment errors (86.1 on average, with [83.7,88.6] as 95% CI). Not only does
GC make more errors than in the previous two analysis, also the LC and CC approach
experience more difficulties clustering the data. However, comparing CC and LC, the
results show that the CC approach makes 220.1 errors less on average for both data
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sites than the LC approach. Thus, even when data is no longer perfectly separable,
the CC approach improves the clustering results compared to the LC approach.

Customer satisfaction data set.

Besides the artificial data set, experiments were also conducted on a real data set to
see how the PSO-CFC approach behaves in a real world setting. This data set is a
sample of 666 observations from the Family Entertainment Data Set. From this data
set, the dimension performances for Product A, Product B, Product C and Product D
were used as a proxy for the dimension’s satisfaction. Additionally, the corresponding
attribute performances were taken into account during the cluster analysis. Table 8.2
shows the number of attributes for each product. Although all products were sold by
the same company, the data could also reflect 4 companies selling a single product to
the same customer population. In the remainder of this chapter, the latter situation
will be assumed.

Table 8.2: Attribute dimensions.

Attribute
dimension

Number of
attributes

Product A 7

Product B 4

Product C 6

Product D 3

If no privacy or security issues would exist and all four companies were willing to
exchange private customer information, they could consolidate all their customer
data and use this to segment the customer population into different groups. This
would be the GC approach. However, companies often do not want to share private
customer information or privacy constraints forbid to do so. Therefore, the common
situation is that companies only use their own limited data to perform a customer
segmentation, which is the LC approach. In general, the global clustering approach
is assumed to provide better results since the clustering algorithm has access to more
information about the customers. In this chapter, also the CC approach is analyzed,
i.e./ a third approach trying to approximate the GC results without violating privacy
restrictions.

The purpose of this analysis is to analyze the differences between the clusters
found by all three approaches. Given the context of customer satisfaction and the
fact that all attributes measure performance or satisfaction on a “low-to-high” scale,
a 2-cluster model was considered. The cluster assignments of the GC approach were
used as an estimate of the true cluster memberships. The methodology described in
section 8.6 was used to calculate the average number of incorrectly assigned cases for
both the CC and the LC approach, together with their bootstrap confidence intervals.
The results are shown in Table 8.3

163



8. PSO driven collaborative clustering

Table 8.3: Cluster quality comparisons between the LC and CC approach in a
horizontal clustering environment on real data

Statistic LC CC

εA
. mean 223.9 185.5

95% CI [203.5,242.3] [170.6, 199.0]

εB
. mean 224.1 185.5

95% CI [208.2,238.2] [170.6, 199.0]

εC
. mean 214.8 185.5

95% CI [202.0,226.0] [170.6, 199.0]

εD
. mean 246.1 185.5

95% CI [233.2,257.9] [170.6, 199.0]

These results are very promising. Under the assumption that the cluster
assignments of the GC approach are good approximations of the true cluster
assignments, the CC approach outperforms the LC approach on all four data sites.
Summed over all four data sites, the CC approach makes 166.7 errors less for 2664
cluster assignments, with a 95% confidence interval of [152.8, 181.4]. These results
indicate that companies could achieve better cluster compositions by using the CC
approach instead of the LC approach. Also note that no local optima problems were
experienced for the real data set.

Not only does the collaboration aspect of the CC approach has an impact on the
cluster assignments, it also influences the cluster centers. Figure 8.2 show the profiles
for all the cluster centers found by the three approaches for each data site. These
figures are based on the original data. A profile shows the values of a cluster center for
each feature and gives an idea about the distance between the cluster centers. All four
profiles show that each cluster solution contains two clusters which can be identified
as a high satisfaction/performance group and a medium satisfaction/performance
group of customers. For company A, it can be seen that the cluster centers are more
separated in the LC approach than in the GC approach. The results also show that the
CC approach provides cluster centers which approximate the GC approach solution
much better. This pattern can be found for all four companies. This implies that
if companies would share their private information, they would find more balanced
customer clusters due to the additional customer information. These results confirm
that the CC approach can approximate the GC solution without revealing private
customer information.
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Figure 8.2: Cluster profiles

Vertical clustering: empirical results

Artificial data sets.

To assess the performance of the vertical variant of PSO-CFC, four different analysis
were conducted on artificial data sets. Each analysis represents a different task, which
ranges from easy to difficult. Each analysis assumes two data sites with their own
local data sets containing 300 cases for the first three analysis and 450 cases for the
last analysis. Both data sites have their data described by two features, X1 and X2.
The consolidated data set, which is used for the GC approach, always consists of the
combination of both local data sets. The data sets in the first analysis contain data
from two clusters, while the other analysis use data containing three clusters.

The first analysis represents a very easy clustering problem for both data sites.
Both sites draw their data from two multivariate normal distributions, i.e./ one per
cluster, with the following mean vectors µ1, µ2 for respectively clusters C1, C2 and
with the same covariance matrix Σ for both clusters:

µ1 =
[
4 4

]
µ2 =

[
0 0

]
Σ =


0.7 0

0 0.7


 .
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8. PSO driven collaborative clustering

The data sets in analysis 1 represent a randomly drawn data sample, where both
clusters are equally represented and which is perfectly separable.

The second analysis tries to make the clustering problem more challenging by
adding a third cluster and by changing the data distribution of the clusters such that
the clusters do overlap which makes a perfect cluster assignment no longer possible.
This analysis uses the following Σ as a covariance matrix and µ1, µ2, µ3 as mean
vectors for respectively C1, C2 and C3:

µ1 =
[
2 3

]
µ2 =

[
2.5 2

]
µ3 =

[
3 3

]
Σ =


0.2 0

0 0.2


 .

The second analysis represents a situation where the data is drawn completely at
random and where both clusters are equally present in the data, but for a problem
which is no longer perfectly separable.

The third analysis makes the situation more realistic and more complex by
changing the distribution of the clusters within the data. The data are still sampled
at random from the same data distributions as in analysis 2, but this time cluster C3

is oversampled and C2 is undersampled in data site A, while C2 is oversampled and C3

is undersampled in data site B. The exact sampling distributions of the clusters are
shown in Table 8.4. This analysis represents a situation where data is not perfectly
separable and where some clusters might be more present within the data than others.
This is a very common situation in real-life data sets. For example, a company which
mainly sells to one type of customer will most likely have a majority of customers of
this type in its data set. However, it should be noted that conditional on the cluster,
the data are still a random sample.

Table 8.4: Cluster distribution for third analysis

C1 C2 C3

Site A 100 50 150

Site B 100 150 50

The fourth analysis goes one step further by creating so called biased samples for
both data sites. The data for data site A and B are still drawn from the same data
distributions as in the previous two analysis, but no longer at random, except for
the observations of cluster C3. Cluster C1 was split in two parts based on the test
expression X2 − X1 > 1. Observations passing this test, belong to the first part of
C1, those failing the test belong to the second part. Cluster C2 was split with the test
expression X2 > 2. Table 8.5 shows the exact sampling distribution for the fourth
analysis. Note that the clusters are not equally represented locally, neither are they
drawn at random.

The results of all four analysis are presented in Table 8.6. The results of this
first analysis show that the starting problem was indeed very easy, since none of the
approaches made significant cluster assignment errors. The second analysis, which
represented a problem which was no longer perfectly separable was a bigger challenge.
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Table 8.5: Cluster distribution for fourth analysis

C1 C2 C3

X2 −X1 > 1 X2 −X1 ≤ 1 X2 > 2 X2 ≤ 2

Site
A

120 30 60 90 150

Site
B

30 120 90 60 150

The results show that both the CC and LC approach make some cluster assignment
errors, i.e./ around 56 cases out of 600. However, no statistically significant difference
can be found between the error rate of the CC and LC approach. It should be noted
that the LC approach still performs as good as the GC approach, which suggests that
CC can only improve on LC in a vertical PSO-CFC setting if LC performs worse than
GC. This confirms our idea that the CC approach mimics the GC approach.

The results from the third analysis, show that the error rate of the LC approach
increases compared to the second approach. This must be caused by the fact that
the clusters are no longer equally present within the local data sites. Apparently,
unequal representations of clusters can make it more difficult to find the true clusters
within the data when the clusters overlap. However, the CC approach does not seem
to suffer from this new cluster challenge. The error rate of the CC approach on both
data sites remain equal to the previous analysis. A direct comparison of the cluster
quality of the CC approach versus the GC approach, reveals that the CC approach
still performs equally good as the GC approach. Compared with the LC approach,
the results show that the CC approach results in significantly less cluster assignment
errors.

The results of the fourth analysis, were rather surprising. Apparently, the LC
approach outperforms both the GC and CC approach. The biased sampling produced
data sets which were easier to cluster individually, than collectively. This suggests that
the CC approach (and the GC approach!) should only be used under the assumption
that the observations are sampled at random conditional on the cluster.

8.7 Remarks and future research

Some general remarks about the limitations of the current study should be made.
Firstly, the horizontal PSO-CFC algorithm appears to get stuck in local optima for
some analysis on the artificial data sets. Although this did not occur on the real-life
data sets and the overall conclusions on the artificial data sets are still favoring the
CC approach, future research should investigate this. The analysis should be repeated
for other real-life data sets to verify if this problem is perhaps caused by the structure
of the artificial data sets. On the other hand, it might be promising to search for an
improvement of the current algorithm to prevent this situation.

Secondly, the current version of the algorithm uses a heuristic (cf Eq. 8.8) to
perform the cluster mapping across data sites, which does not offer a guarantee of a
perfect mapping in every situation. However, the results show no problems with the
heuristic. Empirical results gave the author the impression that the CFC algorithm
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Table 8.6: Cluster quality comparisons between the GC, LC and CC approach in a
vertical clustering environment on artificial data

Analysis

Statistic 1 2 3 4

εA
LC mean 0.1 56.46 69.3 61.9

95% CI [0.0,0.2] [54.4,58.7] [66.6,72.1] [59.0,64.6]

εB
LC mean 0.1 57.8 67.9 87.9

95% CI [0.0,0.2] [55.8,59.9] [65.6,70.9] [83.5;93.0]

εA
CC mean 0.1 56.7 57.6 68.4

95% CI [0.0,0.2] [54.7,58.7] [55.9,59.1] [65.9,70.7]

εB
CC mean 0.1 56.6 56.7 91.4

95% CI [0.0,0.2] [54.1,58.9] [54.2,58.9] [88.5,94.8]

εAB
LC −εAB

CC mean 0.1 1.2 22.9 -10.0

95% CI [0,0] [-0.5,2.6] [20.4,25.5] [-12.9,-
6.8]

εAB
CC−εGC mean 0.1 2.0 23.5 -4.9

95% CI [-0.2,0.1] [0.4,3.3] [20.8,25.9] [-7.8,-
1.1]

εAB
LC −εGC mean 0.1 0.8 0.6 5.1

95% CI [-0.2,0.1] [0.0,1.9] [-1.03,2.33] [3.4,6.9]

automatically creates a partially correct mapping because incorrect mappings are
penalized by the second term of the augmented objective function of CFC. However,
if the algorithm starts with an incorrect mapping, the CFC algorithm needs various
runs only to create a correct mapping, before it can do the real collaboration. The
author has the impression from empirical experiments that this mapping phase takes
longer as the number of data sites and clusters increases. Currently, an idea of
integrating a binary integer programming problem to solve the mapping problem
such that the CFC algorithm can directly start with the collaboration phase is being
studied. Future research must show if this approach can increase the speed of the
algorithm.

The speed aspect can be important if the current algorithm has to become
resource-aware. In this chapter, the PSO-CFC algorithm has been introduced as
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a KDUbiq algorithm, but has not considered the computational complexity of the
algorithm because the algorithm was developed with a KDUbiq situation in mind
where computing power is not a scarce resource, such as in P2P networks or grid
computing. The current code has not been developed with resource restrictions in
mind as can occur in other KDUbiq environments such as sensor networks. It could
be interesting for future research to create a sensor-network variant of the PSO-CFC
algorithm. Currently, the complexity of the PSO-CFC algorithm is mainly dependent
on the complexity of the CFC algorithm, since the PSO part only repeats the CFC
algorithm for each particle a number of iterations long. Empirical experiments
suggested that the algorithm is rather sensitive to the number of data sites and
the number of clusters. However, exact complexity analysis have not been performed
in this study. As for the communication requirements, which is also important in
sensor networks, the vertical version is much more interesting than the horizontal
version since it only passes cluster prototypes. These are much smaller than partition
matrices, which are passed by the horizontal version. There is still a lot of ground to
cover on the resource-awareness aspect of the algorithm which creates some interesting
paths for future research.

8.8 Summary

In this chapter, the authors presented a PSO driven collaborative clustering algorithm
to the KDUbiq community. This technique can address some typical issues in KDUbiq
research, such as privacy constraints and distributed computing. Previous research of
PSO-CFC in non-KDUbiq environments and the new empirical results in this study
demonstrate the quality of this collaborative clustering approach.

As for the horizontal variant of PSO-CFC, the analysis on artificial data sets
showed that the CC approach always outperforms the LC approach. Even if not
a single data site has all the necessary features to separate the clusters or when a
perfect separation of the clusters is not possible for the consolidated data set, the CC
approach makes less assignment errors and approximates the GC result more closely.
The latter was also confirmed by the analysis on the real-life data set.

As for the vertical variant of PSO-CFC, the analysis on artificial data sets showed
that CC performs equally well as LC and GC when the data is sampled completely at
random and the clusters are equally represented in the different data sets. When the
data is drawn at random conditional on the clusters, but the clusters are no longer
equally represented in the data sets, the CC approach significantly outperforms the
LC approach and performs equally well as the GC approach. Only when the sampling
is biased, it is not certain that CC performs equally well as LC. The analyses showed
that a biased sampling led to better clustering results for LC. However, one has to
be careful to generalize this conclusion since the experiment only implemented one
specific type of bias.

Overall, PSO-CFC appears to be an interesting clustering approach for companies
which have only access to incomplete customer data and which are willing to
collaborate with their partners to find better customer segments.
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At the beginning of this thesis it was suggested that companies trying to understand
their customers might be applying knowledge discovery techniques to incomplete
data which can lead to incomplete conclusions. A possible scenario of incomplete
data occurs when companies try to model customer satisfaction with only product
performance data and customer satisfaction data. Such models implicitly assume that
product performance is the only and main construct influencing customer satisfaction
which is in contradiction with most of the current beliefs and theories regarding
the CS/D process. The Expectancy-Disconfirmation Paradigm, i.e. one of the most
dominant models, considers performance as an indirect cause of customer satisfaction,
which is compared against a customer’s expectation level and results in an experience
of disconfirmation. According to the ED Paradigm, customer satisfaction is directly
influenced by this experience of disconfirmation and the customer’s expectation level.
The literature review on the ED Paradigm illustrated the important position it takes
in the marketing literature. However, it also showed that the research community
never reached a consensus on the expectation construct. Several definitions of
expectation were formulated in the literature and some authors argued that it were
not expectations but norms set by other companies which acted as the comparative
referent in the CS/D process.

Given the lack of consensus on how to measure the comparative referent, two
scenarios of incomplete data can be identified under the assumption that the
ED Paradigm is the appropriate CS/D model. Firstly, companies do not have
information about the customer’s expectation and/or disconfirmation levels and are
modeling customer satisfaction directly with product performance, hereby completely
ignoring existing marketing theory. Secondly, companies did measure the customer’s
expectation level, but have measured the wrong construct. The goal of the first part
of this thesis was to model CS/D according to the principles of the ED Paradigm with
incomplete data, i.e. containing only product performance and customer satisfaction
data, and to offer several KD techniques to marketers allowing them to draw richer
conclusions from their incomplete data.

Firstly, the CS/D process was separated into three parts, i.e. the evaluation of the
product’s performance against the customer’s expectation at an attribute level, the
aggregation of the attribute disconfirmation effects to a product level disconfirmation
effect and the interaction between the customer’s initial satisfaction level and the
product level disconfirmation effect causing the final satisfaction outcome. For
each step, mathematical properties were defined to enforce a correct modeling
representation of the the ED Paradigm and other consumer satisfaction related
research. This resulted in a very flexible modeling framework, called the LIED
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framework, which encompasses a wide range of mathematical functions to model
the ED Paradigm with incomplete data. Furthermore, it is shown that within the
mathematical research domain of aggregation functions, a family of functions, i.e.
the generated functions, can be identified as valid implementations of the LIED
framework. This results in a large set of functions, which have already been
extensively studied from a mathematical point of view in the domain of aggregation
functions, which can be directly used to model CS/D according to the principles of
the ED Paradigm when companies only have access to product performance data and
customer satisfaction data.

The match between the LIED framework and the family of generated functions
offers great opportunities to marketers. Because the LIED framework offers a clear
translation of CS/D properties to mathematical properties, marketers can identify
the mathematical properties required for modeling CS/D as they believe it should be
modeled. Next, the vast amount of literature on aggregation functions allows them
to identify an appropriate function which possess all the necessary mathematical
properties. Furthermore, the LIED framework can also be used to modify existing
functions such that they provide a better match with the theory.

In this thesis, the D-LIED implementation of the LIED framework was studied,
which is based on Dombi’s evaluation operator, i.e. a representable uninorm. This
implementation has only one parameter which makes it possible to learn the model
for each customer separately resulting in an estimate of the customer’s individual
expectation level. The drawback of this advantage is that the customer’s expectation
is estimated at a general product level instead of a product attribute level. This
disadvantage was circumvented by exploiting the hierarchical structure in the
available data which made it possible to learn expectation at the product dimension
level. Furthermore, several experiments were conducted to evaluate the empirical
validity of the expectation estimate and they all confirmed that results from the
D-LIED implementation made practical sense.

The first two case studies proved that having information about the customer’s
expectation enriched the conclusions drawn from the performance data. For example,
product dimensions which were identified as performing much worse than all the other
dimensions suddenly appeared to be much less problematic because customers did
not expect a great deal from these dimensions. On the other hand, dimensions which
were performing very good appeared to be only slightly exceeding the customer’s
expectations.

The D-LIED model also allowed the author to create a new type of Importance-
Performance Analysis. Traditional IPA analysis uses a survey or regression analysis
to measure the product dimension importance, which calls for several precautions.
The main problem is that importance is often represented as a point estimate while
theory and empirical evidence suggests that the importance of a product dimension
changes as the performance changes. Because the D-LIED implementation is a
mathematical representation of the customer’s satisfaction process, the impact of
changes in dimension performance can be simulated. This allowed the creation of
two new types of IPA analysis, i.e. an IPA analysis to assess the shares of the
current dimension performance levels in the overall satisfaction score and an IPA
analysis to calculate the impact on satisfaction of an increase or decrease in dimension
performance.

Finally, the expectation estimate of the D-LIED model could also be used to
measure the compatibility between the customer’s expectation and the product’s
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performance. Based on the theory of reinforcement learning, it was hypothesized that
customer’s intentions, such as intentions to recommend the company or to repurchase,
are positively related to the performance-expectation compatibility. Two different
compatibility measures were defined and empirical results confirmed that both were
positively related to the performance-expectation compatibility. Finally, a case study
illustrated how companies can use this new construct to advance their understanding
of customer satisfaction consequences.

The LIED framework, together with the D-LIED implementation, appears to be
a very powerful approach to extract new knowledge from product performance data.
The first part of the thesis showed that the model can be used in various ways, each
way enriching the conclusions drawn from the data and the understanding of the
customer’s satisfaction process. At the same time, the flexibility and generic nature
of the LIED framework offers many opportunities for future research. It might be
very interesting to search for other implementations of the LIED framework which
allows the marketer to estimate the customer’s expectation at a product dimension
level without the need of hierarchical data. Such implementation will automatically
have more than one parameter which makes the estimation more difficult. Firstly,
most generated functions are highly non-linear which require appropriate estimation
techniques to prevent them from getting stuck in local optima. Secondly, expectation
and the CS/D process is often assumed to differ between customers, which require
different models to be learned for different customer groups. However, the researcher
does not know which customers have a similar level of expectation and CS/D
process. A possible inspiration to tackle this problem might come from the theory
of finite mixture modeling which faces similar challenges. Finally, it might also be
worthwhile to further investigate the results found regarding performance-expectation
compatibility from a theoretical marketing point of view. Currently, the idea for the
relationship between compatibility and customer’s intentions comes from information
processing theory, but the evidence suggests that it might be transferred to the
marketing domain.

The second part of this thesis focuses on a totally different type of incomplete data.
In this part, the problem of customer segmentation is studied in situations where
important observations or variables are missing from the data which are necessary
to find the true underlying customer clusters. The author studies a new fuzzy
clustering approach, PSO-CFC, which tries to overcome the limitations of the data
by collaborating with other data sites without exchanging privacy-protected data.
This clustering approach is based on collaborative fuzzy clustering and uses particle
swarm optimization to determine the level of collaboration between the different
data sites. It is also shown that the PSO-CFC clustering technique shares several
aspects with other distributed clustering techniques and can be positioned within the
domain of ubiquitous knowledge discovery. Experiments for both situations where
observations are missing and where important variables are missing were conducted
and the empirical evidence illustrated that the PSO-CFC approach outperforms a
classical local clustering analysis on several occasions. When important variables are
missing, the results show that PSO-CFC significantly improves the clusters when they
are not perfectly separable. When important observations are missing, the results
show that PSO-CFC outperforms local clustering as long as the data is sampled at
random from each cluster. Particularly when the clusters are not equally represented
in the data, PSO-CFC provides better clustering results.
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This new clustering approach also offers some interesting new directions for future
research. One particular interesting idea is to analyze the final collaboration matrix
to learn more about the different data sets. Data sites which contain almost the same
information might generate different collaboration matrices than data sites which
really complement each other and have almost no overlap in information. If such
information can be retrieved from the collaboration matrix, PSO-CFC might even be
able to detect concept drifts when applied on different data sets which represent the
same observations at different moments in time. Overall, PSO-CFC offers a new and
interesting clustering approach when several companies are willing to collaborate but
when privacy restrictions prevent them from exchanging raw data and future research
might even further extend the application possibilities of this new technique.

174



Appendices

175





A Factor analysis: additional results

177



A. Factor analysis: additional results

A.1 Energy data set

Table A.1: Univariate statistics

Original data Missing Imputed data

N Mean Std. Dev. Count Perc. Mean Std. Dev.

Company 1053 0 .0

Satisfaction 986 7.46 1.904 67 6.4 7.45 7.46

Disconfirmation 950 2.71 .681 103 9.8 2.71 2.71

ValueForMoney 816 3.28 .809 237 22.5

Recommendation 961 3.36 1.229 92 8.7 3.36 3.36

IntentionToSwitch 1010 2.50 1.356 43 4.1 2.50 2.50

ChoiceCommitment 1037 4.18 .997 16 1.5 4.18 4.18

D1a 975 4.04 1.099 78 7.4 4.05 4.04

D1b 1005 3.42 1.290 48 4.6 3.42 3.42

D1c 990 3.50 1.285 63 6.0 3.51 3.50

D1 1013 3.63 1.111 40 3.8 3.64 3.63

D2a 982 3.82 1.087 71 6.7 3.81 3.82

D2b 1005 4.20 .895 48 4.6 4.20 4.20

D2c 1008 4.17 .871 45 4.3 4.16 4.17

D2d 937 3.80 1.031 116 11.0 3.78 3.80

D2 999 3.94 .866 54 5.1 3.93 3.94

D3a 938 3.73 1.084 115 10.9 3.72 3.73

D3b 949 3.58 1.237 104 9.9 3.58 3.58

D3c 982 3.70 1.170 71 6.7 3.70 3.70

D3d 882 3.46 1.273 171 16.2 3.48 3.46

D3e 923 3.74 1.121 130 12.3 3.74 3.74

D3 945 3.61 1.094 108 10.3 3.62 3.61

D4a 952 3.41 1.268 101 9.6 3.40 3.41

Continued on next page

178



A.1. Energy data

continued from previous page

Original data Missing Imputed data

N Mean Std. Dev. Count Perc. Mean Std. Dev.

D4b 942 3.51 1.254 111 10.5 3.50 3.51

D4c 997 3.82 1.123 56 5.3 3.82 3.82

D4d 947 3.03 1.334 106 10.1 3.04 3.03

D4e 952 2.94 1.419 101 9.6 2.96 2.94

D4 1003 3.54 1.046 50 4.7 3.54 3.54

D5a 995 3.72 1.172 58 5.5 3.72 3.72

D5b 933 3.72 1.168 120 11.4 3.71 3.72

D5c 967 3.52 1.235 86 8.2 3.52 3.52

D5 999 3.73 1.013 54 5.1 3.72 3.73

D6a 1001 3.93 1.202 52 4.9 3.92 3.93

D6b 997 4.25 1.084 56 5.3 4.24 4.25

D6c 956 3.99 1.220 97 9.2 3.94 3.99

D6 995 3.87 1.115 58 5.5 3.86 3.87

D7 924 3.13 1.162 129 12.3 3.14 3.13

D8 1026 4.34 .735 27 2.6 4.34 4.34

GreenEnergy 1015 2.64 1.367 38 3.6 2.64 2.64

Age 1053 48.55 14.174 0 .0 48.55 48.55

Gender 1053 0 .0

MaritalState 1053 0 .0
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A. Factor analysis: additional results

Table A.2: Partial correlations and MSA per variable
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A.1. Energy data

Table A.3: Total variance explained

Initial Eigenvalues

Component Total % of Variance Cumulative %

1 12.007 52.206 52.206

2 1.490 6.479 58.685

3 1.231 5.353 64.038

4 1.191 5.177 69.216

5 .911 3.959 73.175

6 .606 2.634 75.809

7 .585 2.545 78.354

8 .517 2.250 80.604

9 .468 2.034 82.637

10 .448 1.946 84.584

11 .399 1.735 86.319

12 .383 1.666 87.985

13 .364 1.582 89.567

14 .346 1.506 91.073

15 .293 1.274 92.348

16 .278 1.209 93.557

17 .265 1.152 94.709

18 .259 1.125 95.834

19 .234 1.019 96.853

20 .201 .875 97.728

21 .198 .860 98.588

22 .172 .748 99.336

23 .153 .664 100.000
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A. Factor analysis: additional results

Table A.4: Factor loadings for varimax rotated 4 factor model

Factor

1 2 3 4

D1a .065 .111 .789 .140

D1b .236 .195 .714 .049

D1c .352 .229 .688 .056

D2a .755 .209 .322 .150

D2b .526 .022 .532 .124

D2c .460 .096 .509 .183

D2d .635 .275 .290 .230

D3a .733 .210 .297 .186

D3b .806 .261 .187 .211

D3c .803 .269 .211 .183

D3d .799 .276 .190 .138

D3e .815 .201 .211 .185

D4a .395 .654 .229 .224

D4b .428 .623 .270 .216

D4c .619 .387 .370 .099

D4d .336 .795 .165 .151

D4e .213 .820 .103 .124

D5a .687 .328 .291 .161

D5b .723 .234 .095 .272

D5c .735 .306 .112 .285

D6a .209 .236 .153 .731

D6b .154 .079 .141 .788

D6c .363 .163 .030 .740
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A.1. Energy data

Table A.5: Factor loadings for oblimin rotated 4 factor model

Component

1 2 3 4

D1a -.154 .829 .051 .123

D1b .079 .698 .117 -.024

D1c .222 .633 .126 -.043

D2a .808 .117 -.003 -.015

D2b .538 .424 -.170 .021

D2c .415 .409 -.068 .094

D2d .614 .107 .103 .094

D3a .775 .093 .001 .032

D3b .869 -.052 .045 .040

D3c .865 -.024 .058 .008

D3d .873 -.043 .074 -.042

D3e .903 -.023 -.027 .015

D4a .179 .085 .629 .098

D4b .228 .123 .580 .084

D4c .570 .199 .252 -.063

D4d .084 .027 .826 .013

D4e -.066 -.006 .898 .007

D5a .680 .094 .159 .000

D5b .774 -.130 .035 .130

D5c .756 -.120 .115 .134

D6a -.030 .055 .128 .754

D6b -.058 .064 -.049 .846

D6c .221 -.119 .004 .741
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A. Factor analysis: additional results

Table A.6: Factor loadings for varimax rotated 5 factor model

Component

1 2 3 4 5

D1a .042 .097 .255 .764 .146

D1b .280 .158 .098 .785 .055

D1c .369 .201 .180 .721 .060

D2a .646 .229 .487 .177 .136

D2b .325 .071 .726 .258 .109

D2c .234 .156 .773 .197 .168

D2d .517 .302 .483 .128 .217

D3a .668 .215 .367 .212 .176

D3b .805 .247 .198 .189 .203

D3c .775 .264 .268 .176 .173

D3d .811 .257 .161 .213 .131

D3e .775 .199 .301 .160 .175

D4a .355 .660 .221 .176 .219

D4b .334 .646 .374 .141 .207

D4c .499 .412 .494 .212 .087

D4d .329 .792 .107 .160 .148

D4e .218 .816 .039 .114 .123

D5a .609 .340 .388 .188 .150

D5b .758 .211 .073 .145 .266

D5c .744 .291 .141 .127 .277

D6a .176 .243 .183 .092 .728

D6b .149 .078 .105 .116 .786

D6c .376 .156 .069 .033 .736
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A.1. Energy data

Table A.7: Factor loadings for oblimin rotated 5 factor model

Component

1 2 3 4 5

D1a -.199 .809 .003 .108 -.135

D1b .142 .821 .027 -.037 .093

D1c .232 .723 .059 -.053 .012

D2a .584 .026 .054 -.007 -.369

D2b .154 .142 -.069 .027 -.710

D2c -.008 .067 .061 .098 -.778

D2d .383 -.023 .176 .097 -.384

D3a .634 .079 .027 .037 -.220

D3b .842 .056 .033 .045 .001

D3c .787 .034 .065 .014 -.088

D3d .865 .088 .052 -.037 .045

D3e .805 .018 -.015 .023 -.134

D4a .098 .050 .673 .087 -.071

D4b .045 -.006 .661 .077 -.259

D4c .328 .065 .326 -.062 -.384

D4d .060 .040 .859 .000 .060

D4e -.064 .008 .931 -.008 .109

D5a .515 .045 .203 .003 -.250

D5b .821 .030 .003 .133 .129

D5c .758 -.007 .105 .136 .054

D6a -.057 .008 .151 .741 -.080

D6b -.028 .063 -.055 .833 -.005

D6c .272 -.060 -.004 .732 .070
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A. Factor analysis: additional results

Table A.8: Factor loadings for varimax rotated 6 factor model

Component

1 2 3 4 5 6

D1a .102 .134 .228 .125 .468 .710

D1b .222 .141 .157 .079 .833 .114

D1c .325 .190 .228 .078 .740 .145

D2a .640 .230 .498 .141 .155 .060

D2b .337 .076 .722 .105 .146 .231

D2c .219 .145 .786 .172 .160 .079

D2d .473 .282 .519 .234 .208 -.135

D3a .700 .237 .353 .168 .090 .254

D3b .805 .256 .207 .208 .173 .069

D3c .773 .271 .279 .179 .163 .056

D3d .814 .268 .169 .136 .194 .083

D3e .786 .212 .301 .175 .111 .116

D4a .343 .660 .239 .224 .168 .038

D4b .299 .632 .406 .219 .187 -.075

D4c .475 .404 .519 .097 .229 -.004

D4d .319 .794 .124 .153 .156 .030

D4e .230 .829 .039 .120 .055 .117

D5a .553 .317 .435 .173 .305 -.180

D5b .741 .211 .094 .277 .189 -.043

D5c .691 .273 .187 .301 .267 -.224

D6a .153 .234 .200 .735 .107 -.019

D6b .167 .090 .092 .779 .016 .196

D6c .350 .148 .088 .745 .079 -.082

186



A.1. Energy data

Table A.9: Factor loadings for oblimin rotated 6 factor model

Component

1 2 3 4 5 6

D1a .027 .435 .084 .090 -.115 .662

D1b -.033 .931 -.017 -.002 .028 .027

D1c .100 .790 .029 -.025 -.041 .056

D2a .562 .023 .055 -.005 -.377 -.021

D2b .199 .027 -.060 .018 -.723 .151

D2c -.053 .060 .031 .099 -.818 -.008

D2d .238 .119 .127 .115 -.426 -.221

D3a .740 -.072 .076 .025 -.193 .190

D3b .838 .046 .055 .050 .013 .001

D3c .777 .032 .081 .018 -.081 -.015

D3d .869 .073 .078 -.033 .059 .018

D3e .837 -.036 .015 .021 -.116 .049

D4a .081 .056 .663 .093 -.087 -.017

D4b -.047 .084 .620 .089 -.298 -.145

D4c .256 .120 .300 -.054 -.415 -.088

D4d .057 .044 .854 .004 .048 -.014

D4e .011 -.070 .949 -.015 .116 .093

D5a .331 .236 .147 .027 -.297 -.270

D5b .755 .100 .005 .148 .131 -.103

D5c .572 .203 .061 .166 .023 -.300

D6a -.127 .048 .125 .760 -.104 -.063

D6b .038 -.062 -.029 .837 .009 .172

D6c .185 .015 -.024 ..755 .058 -.124

187



A. Factor analysis: additional results

A.2 Family entertainment data set

Table A.10: Univariate statistics

Original data Missing Imputed data

N Mean Std. Dev. Count Perc. Mean Std. Dev.

ID 2122 .0

Company 2122 .0

Wave 2122 .0

D1a 2114 8.5828 1.22175 8 .4 8.5791 1.22373

D1b 2091 8.2315 1.42600 31 1.5 8.2277 1.42398

D1c 2114 8.1447 1.33533 8 .4 8.1454 1.33422

D1d 2121 8.3810 1.36641 1 .0 8.3808 1.36610

D1e 2096 8.3068 1.46653 26 1.2 8.3057 1.46378

D1f 2098 8.1473 1.37757 24 1.1 8.1446 1.37404

D1g 2099 8.4216 1.25907 23 1.1 8.4178 1.25747

D1h 2038 7.3140 1.97219 84 4.0 7.3018 1.94915

D1i 2040 7.7598 1.64719 82 3.9 7.7512 1.63596

D1 2112 8.3504 1.20529 10 .5 8.3455 1.21304

D2a 2018 8.3642 1.48389 104 4.9 8.3573 1.46068

D2b 2098 8.1249 1.40020 24 1.1 8.1218 1.39507

D2c 1976 8.1771 1.51081 146 6.9 8.1723 1.47718

D2d 2101 8.6516 1.22765 21 1.0 8.6475 1.22477

D2e 2114 7.6921 1.88883 8 .4 7.6902 1.88633

D2f 2088 8.3563 1.32299 34 1.6 8.3574 1.31743

D2g 2114 8.1500 1.32461 8 .4 8.1488 1.32439

D2 2114 8.3434 1.16517 8 .4 8.3429 1.16402

D3a 2066 7.8591 1.52969 56 2.6 7.8529 1.51901

D3b 2041 7.9005 1.53246 81 3.8 7.8834 1.51698

Continued on next page
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A.2. Family entertainment data

continued from previous page

Original data Missing Imputed data

N Mean Std. Dev. Count Perc. Mean Std. Dev.

D3c 2036 8.1346 1.47729 86 4.1 8.1179 1.46423

D3d 2110 8.0640 1.48461 12 .6 8.0646 1.48191

D3 2046 8.1417 1.37439 76 3.6 8.1209 1.37364

D4a 2119 8.7074 1.18110 3 .1 8.7076 1.18067

D4b 2071 8.5171 1.28144 51 2.4 8.5169 1.27394

D4c 2085 8.3046 1.44270 37 1.7 8.3046 1.43624

D4d 2086 8.0959 1.42314 36 1.7 8.0956 1.41558

D4e 1982 8.5646 1.39286 140 6.6 8.5653 1.36331

D4f 2079 8.1554 1.49989 43 2.0 8.1530 1.49434

D4g 1122 7.7638 1.70019 1000 47.1

D4h 2103 8.2853 1.41872 19 .9 8.2842 1.41429

D4 2107 8.3484 1.12730 15 .7 8.3480 1.12529

D5a 1978 7.6749 1.70808 144 6.8 7.6854 1.68425

D5b 2044 8.1732 1.44785 78 3.7 8.1753 1.43733

D5c 1957 7.5565 1.72658 165 7.8 7.5546 1.69889

D5d 1797 7.8598 1.58055 325 15.3 7.8499 1.52570

D5e 1795 7.7755 1.71011 327 15.4 7.7838 1.64253

D5f 1829 8.1755 1.50975 293 13.8 8.1753 1.46170

D5 1985 7.8685 1.46647 137 6.5 7.8721 1.45447

D6a 2081 7.8808 1.53116 41 1.9 7.8801 1.52402

D6b 2094 8.0162 1.41884 28 1.3 8.0100 1.41711

D6c 2088 7.9277 1.49076 34 1.6 7.9223 1.48478

D6 2081 7.9044 1.44148 41 1.9 7.8977 1.43733

D7a 2106 8.5760 1.31542 16 .8 8.5734 1.31389

D7b 2088 8.3755 1.34788 34 1.6 8.3661 1.34770

D7c 2052 8.4703 1.24619 70 3.3 8.4505 1.24563

D7d 2081 8.1951 1.38758 41 1.9 8.1887 1.38310

D7e 1856 8.5210 1.42166 266 12.5 8.4946 1.37357

D7 2101 8.4446 1.22178 21 1.0 8.4421 1.21955

Continued on next page
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A. Factor analysis: additional results

continued from previous page

Original data Missing Imputed data

N Mean Std. Dev. Count Perc. Mean Std. Dev.

D8a 2039 6.5238 2.03123 83 3.9 6.5239 2.00703

D8b 1895 5.9288 2.37945 227 10.7 5.9539 2.29375

D8c 1626 6.1507 2.21437 496 23.4

D8d 1805 6.4681 1.96271 317 14.9 6.4739 1.90214

D8e 1947 6.4751 1.90574 175 8.2 6.4857 1.85644

D8f 2040 6.3613 1.93047 82 3.9 6.3672 1.90781

D8g 1974 6.4772 1.89679 148 7.0 6.4851 1.87418

D8 2081 6.6060 1.78089 41 1.9 6.6029 1.77581

D9a 1372 7.7004 1.80199 750 35.3

D9b 1952 7.7618 1.62947 170 8.0 7.7531 1.59117

D9c 1943 8.0160 1.50805 179 8.4 8.0022 1.47266

D9d 1835 7.3428 1.77794 287 13.5 7.3295 1.71982

D9e 1876 7.6844 1.69599 246 11.6 7.6732 1.64994

D9 1980 7.7753 1.45455 142 6.7 7.7692 1.44103

Satisfaction 2122 8.2469 1.26473 .0 8.2469 1.26473

ValueForMoney 2084 7.6526 1.57734 38 1.8 7.6472 1.57061

Recommendation 2105 8.3957 1.46722 17 .8 8.3942 1.46682

Revisit 2067 8.2346 2.18319 55 2.6 8.2318 2.16401
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A.2. Family entertainment data

Table A.11: Partial correlations and MSA per variable

D1a D1b D1c D1d D1e D1f D1g D1h D1i D2a D2b D2c D2d D2e D2f D2g D3a

D1a .966

D1b .245 .974

D1c .244 .099 .979

D1d .053 .031 .093 .960

D1e .029 .026 .037 .363 .965

D1f .054 .080 .048 .296 .157 .977

D1g .267 .118 .011 .023 .063 .107 .978

D1h .020 .059 .042 .038 .035 .039 -.059 .973

D1i -.011 .092 .107 .041 .072 .130 .061 .234 .977

D2a .040 .111 .010 -.050 -.017 .040 .039 -.013 -.016 .976

D2b -.024 .043 .067 .008 -.048 .031 .053 .035 .023 .048 .970

D2c .027 -.046 -.013 .011 .011 .017 .024 .040 -.006 .038 .288 .969

D2d .077 -.045 -.028 .005 .042 .002 -.014 -.079 .014 .096 .140 .054 .974

D2e -.022 .014 -.014 -.071 .053 -.037 -.004 .027 .004 .026 .091 .045 .033 .948

D2f .050 .016 .000 .005 -.022 -.004 .029 -.002 -.049 .130 .037 .100 .077 .233 .967

D2g .001 .043 .176 .054 -.041 -.003 .066 .022 .000 .176 .128 .102 .159 .022 .128 .975

D3a -.037 .036 .049 -.019 -.005 -.001 .054 .026 -.003 -.005 .008 .011 -.026 .010 -.008 -.025 .968

D3b .013 -.015 .012 -.028 -.035 .027 -.012 .018 .046 -.022 -.009 .043 .039 .017 .087 -.046 .210

D3c .051 -.004 .007 .027 .039 -.018 -.028 .036 -.006 .083 -.032 .015 .002 -.010 -.089 .104 .207

D3d .025 -.017 -.017 .016 -.049 -.028 .008 -.026 -.002 -.055 -.005 -.014 .035 -.008 .053 .003 .231

D4a .072 -.016 -.052 .156 .029 .027 .024 -.020 -.057 .006 .042 -.025 .007 -.040 .038 -.008 .013

D4b .003 -.012 .065 -.071 .011 .010 -.004 -.008 .016 -.003 .026 .037 .097 .006 .002 -.040 -.018

D4c -.044 .052 -.011 .043 -.063 .008 -.012 .023 .028 -.022 -.027 -.016 .118 .020 -.043 -.012 .005

D4d -.036 .002 -.015 .007 .024 .016 .052 .033 .031 -.033 .033 -.011 .011 .037 .031 -.003 .065

D4e -.043 -.006 .020 -.004 .034 .011 .023 .011 -.080 .010 -.036 .067 .009 .085 .019 -.003 -.029

D4f -.028 .041 .020 .020 .025 .019 -.022 .020 .040 .071 .004 .043 -.026 .011 -.017 -.006 -.024

D4h .017 -.048 -.011 -.037 -.003 .003 .030 .031 -.023 -.027 .023 -.049 .047 -.005 .055 .025 .034

D5a .011 .029 -.006 .060 -.007 -.016 -.044 -.005 .049 .049 -.009 -.046 .027 -.020 .011 -.026 -.005

D5b .023 .049 .012 -.052 .042 -.034 .054 .005 -.054 .000 .004 .009 .031 -.014 -.005 -.031 -.007

D5c .060 -.041 .019 .014 -.016 -.023 -.020 .022 .030 -.061 .039 .020 .025 .022 -.036 .016 .023

D5d -.033 .067 .012 -.019 .059 .000 -.044 -.057 .045 .018 .020 -.028 -.032 -.077 .008 .019 .019

D5e .001 -.031 .008 .007 -.061 .033 -.017 .048 -.023 .024 .001 .005 -.071 .107 -.008 -.019 -.030

D5f .034 -.099 -.035 .024 -.052 .013 .082 .019 -.006 -.015 -.020 .001 .055 -.045 .046 -.004 .009

D6a .000 -.014 .015 .027 .003 .022 -.027 -.024 -.023 .046 .031 .021 .006 .002 -.045 -.015 -.013

D6b .042 -.068 .024 -.086 .067 -.018 .044 .026 .047 -.001 .014 -.039 -.066 .051 .006 .058 -.046

D6c -.028 .063 .007 .008 -.042 .028 -.018 .002 -.009 .056 -.032 .010 .068 -.076 .052 -.010 .073

D7a .049 .004 -.023 .027 .030 -.059 .027 .046 -.035 .027 -.025 -.025 .045 -.022 -.002 -.002 -.041

D7b -.029 .067 .051 -.037 -.046 .011 .068 .048 .055 .025 -.045 -.061 .017 -.004 .026 .015 -.052

D7c -.022 -.033 .036 -.008 -.014 .077 -.017 -.012 .035 -.047 .019 .066 .001 .045 .003 -.016 -.029

D7d -.019 -.012 -.031 .034 .075 -.001 -.030 -.034 .018 -.032 .018 -.009 .000 .096 -.004 .058 .066

D7e -.011 .016 -.037 .004 .020 .002 .018 -.108 -.004 -.019 .000 .125 -.050 -.009 -.011 .011 .063

D8a -.023 .024 .005 .020 .041 -.009 .036 -.031 .005 .032 .019 -.022 .013 .074 .007 -.010 .011

D8b .022 .019 .005 .020 -.017 -.009 .022 .041 .014 .022 .005 .053 -.072 .005 -.023 -.037 .015

D8d -.071 .007 -.042 -.028 .010 .056 -.027 .020 -.016 .030 -.015 .023 -.012 .069 .016 .007 .041

D8e -.001 -.003 -.030 -.010 .002 -.019 -.025 -.004 .006 -.026 .005 .013 .012 -.012 -.014 .013 -.022

D8f .029 .031 .028 .002 -.016 -.009 -.023 -.025 -.016 -.034 .013 .039 -.037 -.008 -.068 .051 .023

D8g -.012 -.014 .012 .029 -.012 .016 .010 -.009 .035 .017 -.032 -.053 .038 .017 .064 -.021 .002

D9b -.026 .066 .058 .007 .008 -.022 .060 .022 -.022 .004 -.026 .021 .008 .052 -.037 -.033 .030

D9c .046 -.060 -.044 .031 .041 -.025 .046 -.014 .086 .024 .041 .008 .046 -.077 .016 -.013 .011

D9d -.079 .025 .018 .002 -.028 .069 -.018 .108 .037 .036 -.031 .025 -.043 .004 -.014 .041 .004

D9e .065 -.012 -.008 -.007 .040 -.019 -.038 .048 -.028 -.028 .036 .004 .035 -.034 .031 .015 .022
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A. Factor analysis: additional results

Table A.11: Partial correlations and MSA per variable [continued]

D3b D3c D3d D4a D4b D4c D4d D4e D4f D4h D5a D5b D5c D5d D5e D5f D6a

D1a

D1b

D1c

D1d

D1e

D1f

D1g

D1h

D1i

D2a

D2b

D2c

D2d

D2e

D2f

D2g

D3a

D3b .957

D3c .367 .955

D3d .145 .239 .958

D4a -.034 .029 -.023 .962

D4b -.037 .035 .073 .108 .974

D4c .022 .029 -.039 .319 .151 .959

D4d -.025 -.001 -.006 .031 .118 .077 .981

D4e .024 -.008 .021 .156 .103 .068 .085 .976

D4f -.033 -.055 .224 .071 .107 .007 .139 .090 .971

D4h .051 -.029 -.021 .110 .063 .033 .104 .050 .134 .975

D5a -.076 .022 .053 .006 -.019 -.016 -.012 -.012 -.031 .010 .967

D5b -.024 .068 .053 .058 .005 -.044 .025 .067 -.046 .022 .193 .976

D5c .024 -.020 -.047 -.030 .037 .001 .041 -.020 .059 -.033 .325 .198 .964

D5d .032 .002 -.033 -.013 -.010 -.040 .020 -.033 .015 .034 .076 .091 .185 .969

D5e .061 -.028 -.006 .014 .037 -.045 -.027 -.014 -.004 -.018 .126 .036 .111 .179 .967

D5f -.031 .036 .058 .045 -.009 .133 -.040 .025 .008 -.041 .125 .187 .049 .291 .255 .964

D6a .041 .011 .021 -.057 -.029 .036 .003 .038 -.018 -.018 -.045 .009 .069 .019 -.012 .035 .950

D6b .034 .022 .005 .026 .046 -.010 .052 .008 -.042 .018 .031 .001 -.037 .036 .013 -.020 .378

D6c -.052 -.019 -.008 .023 -.034 -.018 -.006 .062 .046 .009 -.007 .020 -.007 .025 .010 .024 .369

D7a -.031 -.008 .059 .042 .031 .000 .023 -.010 -.010 .034 -.014 .018 -.066 .000 -.002 .007 .036

D7b .006 .035 .013 .011 -.034 .041 -.008 -.018 -.010 .032 .007 -.008 .063 .015 -.043 -.018 .013

D7c .019 .012 -.032 .015 -.003 -.003 .004 -.001 -.003 .039 .022 .023 .001 -.022 -.018 .007 .016

D7d .033 -.008 -.046 -.009 .045 .064 -.026 .041 .068 .014 .034 .016 -.033 -.046 .161 .014 -.018

D7e .039 -.001 .023 -.004 .055 -.029 .027 .032 -.041 -.035 -.011 .002 -.029 .101 .094 -.037 -.007

D8a -.009 -.027 .005 .033 .060 -.041 .007 .030 .025 .016 -.042 -.001 -.023 .007 -.018 .016 -.060

D8b -.008 -.010 .041 -.041 .002 .005 -.040 .100 -.041 .009 .058 -.045 .046 .058 -.059 -.033 .030

D8d .018 -.014 -.044 -.017 -.031 .027 .016 .002 .003 .014 .093 .008 .050 -.002 .100 .031 -.010

D8e .035 .059 .008 .005 .007 .001 .008 -.013 .016 -.033 -.052 .007 -.005 .000 -.008 .024 .052

D8f .022 -.057 .013 -.015 -.018 .014 .009 .025 .038 -.012 -.031 .029 -.014 -.003 .001 -.012 -.026

D8g -.006 .017 -.011 -.017 -.008 .021 .023 -.070 -.006 .024 .052 -.005 .014 -.004 -.034 -.035 .012

D9b -.037 .033 -.018 -.025 .005 -.012 -.021 .009 -.033 .095 .045 -.074 .060 -.040 .018 .013 -.016

D9c .039 -.068 .116 .029 .003 .023 -.071 .038 .041 -.061 -.017 .038 -.035 -.012 .025 -.012 .049

D9d .053 -.013 .039 -.018 -.067 .001 .059 -.044 .005 .046 -.007 -.019 .098 .012 .072 -.055 .030

D9e -.023 .012 -.053 -.028 .053 -.007 .068 .036 .001 -.018 -.009 .011 -.076 .057 -.029 .050 .012
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A.2. Family entertainment data

Table A.11: Partial correlations and MSA per variable [continued]

D6b D6c D7a D7b D7c D7d D7e D8a D8b D8d D8e D8f D8g D9b D9c D9d D9e

D1a

D1b

D1c

D1d

D1e

D1f

D1g

D1h

D1i

D2a

D2b

D2c

D2d

D2e

D2f

D2g

D3a

D3b

D3c

D3d

D4a

D4b

D4c

D4d

D4e

D4f

D4h

D5a

D5b

D5c

D5d

D5e

D5f

D6a

D6b .949

D6c .347 .952

D7a .000 -.016 .961

D7b -.033 .001 .303 .962

D7c .023 .002 .309 .317 .960

D7d -.011 -.002 .113 .161 .212 .971

D7e .028 .022 .092 .097 .137 .149 .974

D8a -.003 .012 -.028 .043 .016 -.057 -.008 .968

D8b .007 -.008 -.028 -.022 -.028 .045 -.038 .248 .963

D8d -.007 .005 .043 -.005 -.041 -.048 .014 .102 .077 .956

D8e .074 .041 -.005 -.032 .015 .009 .023 .155 .129 .172 .974

D8f -.003 .046 .047 -.020 .017 -.015 -.008 .048 .024 .332 .115 .946

D8g -.010 -.028 -.028 .062 -.036 .052 -.001 .060 .071 .288 .184 .426 .949

D9b -.025 .052 -.010 .014 .019 -.028 .007 .028 -.008 .007 .024 -.003 -.001 .963

D9c .056 -.018 -.052 .016 .061 -.002 .005 .015 -.032 -.022 -.008 .033 .029 .252 .970

D9d -.040 .009 .061 .007 -.030 -.066 .017 .032 .029 -.071 .049 -.001 .011 .187 .135 .955

D9e .034 -.047 .000 -.022 .025 .044 -.047 -.027 .069 .057 -.054 -.012 .007 .255 .182 .373 .952
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A. Factor analysis: additional results

Table A.12: Total variance explained

Initial Eigenvalues

Component Total % of Variance Cumulative %

1 17.782 34.867 34.867

2 3.093 6.064 40.931

3 2.222 4.357 45.288

4 1.931 3.786 49.074

5 1.709 3.351 52.425

6 1.555 3.049 55.474

7 1.457 2.857 58.331

8 1.430 2.805 61.136

9 1.333 2.614 63.749

10 .885 1.735 65.484

11 .833 1.634 67.118

12 .771 1.512 68.630

13 .755 1.481 70.111

14 .706 1.384 71.495

15 .670 1.313 72.808

16 .646 1.268 74.076

17 .617 1.210 75.285

18 .592 1.162 76.447

19 .573 1.123 77.570

20 .558 1.094 78.664

21 .537 1.053 79.717

22 .508 .995 80.712

23 .493 .968 81.680

24 .482 .945 82.624

25 .461 .905 83.529

Continued on next page
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A.2. Family entertainment data

continued from previous page

Initial Eigenvalues

Component Total % of Variance Cumulative %

26 .456 .893 84.422

27 .447 .876 85.298

28 .435 .852 86.151

29 .427 .836 86.987

30 .407 .798 87.785

31 .398 .781 88.566

32 .388 .761 89.327

33 .382 .750 90.076

34 .373 .731 90.807

35 .366 .717 91.524

36 .352 .691 92.215

37 .344 .675 92.891

38 .333 .654 93.544

39 .316 .619 94.163

40 .290 .568 94.731

41 .285 .560 95.291

42 .283 .555 95.846

43 .272 .534 96.379

44 .266 .521 96.901

45 .256 .502 97.402

46 .247 .485 97.887

47 .240 .470 98.358

48 .235 .461 98.819

49 .227 .446 99.265

50 .195 .382 99.647

51 .180 .353 100.000
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A. Factor analysis: additional results

Table A.13: Factor loadings for varimax rotated 9 factor model

Factor

1 2 3 4 5 6 7 8 9

D1a .682 .026 .178 .141 .100 .280 .084 .154 .117

D1b .673 .155 .110 .095 .122 .237 .113 .109 .070

D1c .652 .092 .131 .110 .126 .273 .150 .155 .126

D1d .733 .123 .152 .268 .142 .062 .119 .063 .042

D1e .680 .116 .091 .243 .155 .049 .129 .033 .082

D1f .710 .156 .135 .223 .168 .127 .136 .077 .098

D1g .617 .059 .124 .197 .160 .282 .100 .125 .106

D1h .455 .131 .118 .106 .089 .081 .360 .131 .020

D1i .607 .166 .151 .090 .183 .077 .242 .142 .066

D2a .321 .120 .125 .082 .045 .540 .080 .104 .211

D2b .288 .074 .128 .175 .068 .623 .142 .072 .085

D2c .203 .111 .096 .151 .131 .595 .162 .154 .091

D2d .236 .032 .150 .344 .125 .505 .078 .120 .101

D2e -.039 .249 .049 .148 .205 .569 .054 .034 -.051

D2f .145 .103 .110 .178 .128 .659 .065 .100 .067

D2g .406 .108 .111 .123 .145 .576 .109 .152 .143

D3a .172 .190 .162 .151 .083 .114 .148 .717 .079

D3b .137 .161 .139 .109 .172 .173 .129 .742 .111

D3c .240 .094 .193 .154 .145 .142 .084 .740 .119

D3d .126 .103 .179 .252 .107 .129 .132 .705 .099

D4a .311 .024 .172 .683 .161 .100 -.010 .059 .073

D4b .128 .057 .137 .640 .149 .196 .077 .136 .052

D4c .189 .108 .146 .655 .174 .063 .032 .088 .060

D4d .180 .178 .110 .541 .112 .145 .179 .108 .095

D4e .104 .119 .112 .601 .108 .205 .092 .083 .206

Continued on next page
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A.2. Family entertainment data

continued from previous page

Factor

1 2 3 4 5 6 7 8 9

D4f .213 .166 .109 .544 .086 .146 .138 .177 .049

D4h .093 .105 .052 .535 .178 .147 .177 .088 .031

D5a .196 .224 .762 .113 .126 .090 .118 .088 .057

D5b .179 .140 .704 .204 .145 .135 .057 .165 .133

D5c .185 .224 .748 .121 .086 .117 .163 .109 .090

D5d .179 .179 .737 .105 .125 .085 .134 .134 .174

D5e .081 .174 .723 .107 .224 .141 .151 .117 .088

D5f .149 .124 .751 .233 .129 .119 .093 .156 .144

D6a .162 .157 .206 .132 .139 .129 .155 .146 .785

D6b .165 .176 .175 .162 .135 .145 .131 .129 .777

D6c .171 .193 .204 .171 .110 .143 .112 .116 .774

D7a .227 .082 .106 .227 .759 .125 .108 .073 .092

D7b .277 .115 .145 .181 .752 .139 .126 .097 .067

D7c .232 .065 .138 .216 .776 .164 .145 .085 .106

D7d .184 .109 .218 .261 .687 .174 .069 .120 .041

D7e .105 .091 .211 .122 .638 .155 .047 .191 .137

D8a .158 .681 .048 .176 .035 .148 .109 .050 .026

D8b .149 .652 .127 .074 -.033 .074 .162 .087 .092

D8d .077 .808 .294 .101 .104 .126 .090 .085 .073

D8e .080 .752 .143 .103 .093 .094 .087 .156 .219

D8f .119 .817 .169 .098 .123 .100 .086 .090 .088

D8g .138 .823 .186 .094 .133 .105 .102 .094 .062

D9b .216 .169 .143 .130 .110 .133 .725 .093 .089

D9c .246 .127 .135 .185 .136 .138 .623 .166 .184

D9d .218 .178 .172 .090 .098 .112 .748 .145 .084

D9e .202 .147 .156 .176 .092 .153 .754 .081 .090
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A. Factor analysis: additional results

Table A.14: Factor loadings for oblimin rotated 9 factor model

Factor

1 2 3 4 5 6 7 8 9

D1a .630 -.068 -.103 .004 .100 .018 .002 .063 .188

D1b .634 .095 -.016 .050 .052 -.020 -.043 .015 .146

D1c .585 .003 -.030 .041 .097 -.061 -.039 .073 .176

D1d .704 .063 -.069 .062 -.008 -.026 .170 -.020 -.068

D1e .652 .065 .005 .093 -.040 -.048 .151 .038 -.075

D1f .662 .090 -.031 .092 .000 -.040 .101 .043 .000

D1g .548 -.026 -.030 .079 .063 -.007 .068 .054 .187

D1h .365 .046 -.031 .019 .078 -.340 -.003 -.048 -.022

D1i .540 .089 -.047 .123 .082 -.172 -.052 -.001 -.048

D2a .207 .027 -.047 -.055 .034 -.003 -.051 .186 .513

D2b .150 -.031 -.070 -.038 -.004 -.089 .055 .037 .610

D2c .042 .006 -.008 .040 .095 -.109 .018 .038 .570

D2d .086 -.078 -.083 .016 .052 -.007 .255 .052 .458

D2e -.183 .206 .013 .164 -.024 -.011 .055 -.105 .580

D2f -.006 .010 -.048 .039 .037 -.003 .062 .020 .658

D2g .277 .005 -.012 .052 .086 -.024 -.034 .095 .532

D3a .010 .077 -.005 -.036 .803 -.036 .010 -.025 -.028

D3b -.041 .041 .035 .072 .828 -.011 -.057 .012 .034

D3c .081 -.036 -.039 .029 .825 .049 -.006 .019 -.006

D3d -.054 -.028 -.031 -.019 .783 -.022 .128 .000 -.015

D4a .204 -.054 -.106 .053 -.015 .100 .688 .025 -.025

D4b -.028 -.034 -.057 .037 .079 -.011 .635 -.004 .090

D4c .064 .040 -.065 .076 .023 .047 .662 .010 -.063

D4d .029 .098 -.006 .004 .037 -.125 .519 .044 .029

D4e -.059 .031 -.010 -.006 .002 -.026 .593 .182 .099

Continued on next page
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A.2. Family entertainment data

continued from previous page

Factor

1 2 3 4 5 6 7 8 9

D4f .074 .089 -.009 -.031 .131 -.072 .523 -.013 .031

D4h -.059 .032 .045 .101 .028 -.145 .524 -.019 .047

D5a .056 .079 -.837 .004 -.032 -.020 -.020 -.052 -.014

D5b .022 -.017 -.750 .014 .063 .058 .076 .039 .023

D5c .030 .069 -.813 -.049 -.011 -.072 -.012 -.015 .013

D5d .022 .017 -.787 .000 .017 -.033 -.037 .085 -.030

D5e -.099 .013 -.776 .123 -.002 -.065 -.042 -.015 .039

D5f -.022 -.047 -.809 -.012 .044 .014 .111 .047 .003

D6a -.022 .017 -.033 .049 .022 -.056 -.010 .846 -.015

D6b -.013 .046 .003 .045 .005 -.030 .029 .841 .005

D6c -.002 .066 -.037 .012 -.012 -.005 .043 .836 .004

D7a .064 -.001 .045 .822 -.025 -.030 .056 .037 -.019

D7b .116 .027 .002 .809 .001 -.042 -.009 -.001 -.008

D7c .051 -.036 .014 .834 -.020 -.070 .029 .046 .018

D7d .011 .014 -.102 .716 .030 .023 .096 -.036 .039

D7e -.064 -.007 -.090 .673 .124 .047 -.057 .080 .030

D8a .074 .708 .075 -.034 -.011 -.028 .112 -.029 .070

D8b .067 .658 -.021 -.114 .028 -.089 -.002 .042 -.009

D8d -.045 .808 -.198 .025 -.004 .024 -.010 -.004 .025

D8e -.041 .755 .013 .021 .090 .027 -.005 .178 -.020

D8f .014 .839 -.037 .062 .015 .026 -.009 .023 -.005

D8g .031 .842 -.057 .071 .017 .010 -.020 -.010 -.003

D9b .005 .021 -.031 .026 -.012 -.785 .008 .018 .021

D9c .034 -.027 .001 .046 .072 -.648 .058 .125 .009

D9d .003 .023 -.060 .009 .050 -.806 -.044 .004 -.006

D9e -.022 -.011 -.049 -.003 -.032 -.822 .063 .017 .042
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A. Factor analysis: additional results

Table A.15: Factor loadings for varimax rotated 10 factor model

Factor

1 2 3 4 5 6 7 8 9 10

D1a .672 .046 .176 .130 .118 .297 .162 .117 .097 -.144

D1b .665 .163 .112 .087 .132 .248 .115 .120 .066 -.002

D1c .644 .096 .135 .103 .133 .282 .161 .148 .126 .046

D1d .731 .128 .156 .259 .149 .071 .070 .123 .041 .005

D1e .681 .114 .097 .237 .157 .054 .039 .117 .090 .083

D1f .707 .155 .141 .215 .172 .134 .083 .127 .104 .075

D1g .607 .078 .123 .187 .177 .296 .132 .130 .088 -.121

D1h .459 .094 .135 .113 .069 .067 .133 .270 .072 .502

D1i .607 .146 .162 .089 .173 .073 .146 .190 .096 .299

D2a .305 .142 .122 .076 .064 .551 .108 .113 .188 -.137

D2b .275 .079 .132 .177 .078 .623 .075 .134 .086 .087

D2c .189 .114 .100 .153 .139 .591 .156 .151 .093 .103

D2d .221 .064 .144 .336 .151 .515 .126 .132 .067 -.246

D2e -.045 .220 .062 .162 .193 .544 .032 -.025 -.010 .440

D2f .131 .109 .112 .181 .139 .656 .102 .059 .066 .066

D2g .390 .124 .111 .119 .162 .582 .156 .125 .129 -.045

D3a .164 .190 .164 .146 .085 .111 .719 .137 .084 .064

D3b .127 .160 .141 .104 .173 .168 .743 .115 .116 .076

D3c .230 .100 .194 .146 .152 .144 .743 .089 .114 -.027

D3d .117 .109 .180 .245 .113 .128 .708 .134 .096 -.012

D4a .310 .043 .170 .674 .179 .105 .065 .027 .054 -.185

D4b .127 .062 .140 .637 .157 .190 .141 .079 .052 .003

D4c .189 .124 .145 .647 .188 .063 .094 .062 .046 -.144

D4d .184 .159 .121 .545 .104 .130 .110 .128 .125 .284

D4e .104 .121 .115 .600 .115 .199 .087 .088 .209 .029

Continued on next page
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A.2. Family entertainment data

continued from previous page

Factor

1 2 3 4 5 6 7 8 9 10

D4f .215 .154 .118 .546 .083 .136 .180 .103 .070 .197

D4h .094 .099 .058 .536 .179 .135 .091 .156 .043 .130

D5a .190 .225 .763 .108 .129 .088 .091 .113 .058 .024

D5b .171 .148 .704 .196 .153 .137 .168 .067 .126 -.061

D5c .180 .219 .752 .118 .086 .113 .111 .144 .099 .098

D5d .173 .179 .739 .099 .128 .084 .137 .128 .176 .024

D5e .075 .167 .727 .104 .222 .132 .118 .127 .099 .123

D5f .142 .134 .751 .225 .138 .121 .160 .106 .135 -.074

D6a .158 .156 .208 .127 .141 .134 .148 .149 .788 .013

D6b .162 .171 .178 .159 .135 .148 .131 .117 .785 .059

D6c .167 .194 .206 .166 .113 .149 .118 .111 .774 -.014

D7a .219 .090 .107 .218 .766 .116 .076 .116 .087 -.016

D7b .269 .120 .146 .172 .758 .129 .100 .128 .065 .018

D7c .225 .068 .140 .209 .781 .153 .088 .142 .107 .048

D7d .178 .108 .221 .256 .689 .161 .122 .056 .048 .088

D7e .097 .095 .211 .115 .643 .146 .193 .048 .135 .006

D8a .152 .687 .049 .172 .041 .141 .052 .112 .022 .011

D8b .146 .650 .130 .071 -.033 .067 .089 .150 .097 .081

D8d .070 .809 .295 .097 .107 .114 .086 .083 .075 .051

D8e .074 .757 .143 .098 .097 .086 .158 .088 .217 .004

D8f .112 .823 .169 .092 .128 .091 .092 .090 .083 .000

D8g .131 .829 .186 .087 .138 .095 .096 .104 .059 .012

D9b .207 .181 .145 .123 .118 .131 .099 .737 .081 .014

D9c .235 .148 .133 .175 .151 .142 .172 .655 .164 -.102

D9d .211 .177 .177 .087 .098 .105 .150 .731 .092 .160

D9e .194 .157 .158 .171 .100 .150 .087 .760 .085 .047
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A. Factor analysis: additional results

Table A.16: Factor loadings for oblimin rotated 10 factor model

Factor

1 2 3 4 5 6 7 8 9 10

D1a .620 -.037 -.094 .020 .105 -.031 -.012 .039 .155 -.173

D1b .631 .103 -.015 .053 .056 -.028 -.050 .011 .131 -.028

D1c .587 .000 -.034 .040 .101 -.053 -.043 .081 .166 .017

D1d .708 .064 -.073 .064 -.002 -.025 .155 -.016 -.075 .007

D1e .662 .050 -.005 .087 -.035 -.021 .141 .057 -.071 .088

D1f .669 .078 -.039 .087 .004 -.019 .092 .059 -.001 .068

D1g .539 .005 -.022 .094 .067 -.054 .053 .032 .157 -.154

D1h .398 -.042 -.067 -.022 .081 -.195 .014 .037 .031 .496

D1i .558 .036 -.069 .097 .085 -.084 -.045 .050 -.021 .297

D2a .192 .066 -.033 -.035 .035 -.064 -.059 .158 .474 -.215

D2b .152 -.027 -.075 -.031 .000 -.090 .058 .046 .598 -.004

D2c .042 .009 -.012 .045 .097 -.107 .022 .046 .560 .013

D2d .067 -.012 -.064 .052 .057 -.110 .234 .003 .410 -.323

D2e -.157 .149 -.018 .145 -.022 .095 .080 -.038 .618 .349

D2f -.006 .020 -.051 .051 .040 -.012 .066 .024 .645 -.034

D2g .268 .031 -.006 .068 .089 -.060 -.038 .080 .503 -.127

D3a .009 .072 -.007 -.041 .806 -.025 .006 -.020 -.027 .043

D3b -.042 .033 .033 .067 .831 .003 -.058 .019 .035 .046

D3c .076 -.029 -.036 .032 .830 .036 -.013 .013 -.016 -.047

D3d -.058 -.019 -.028 -.015 .788 -.035 .118 -.005 -.022 -.035

D4a .204 -.015 -.102 .080 -.006 .036 .654 .004 -.047 -.196

D4b -.019 -.023 -.063 .051 .088 -.027 .614 .002 .088 -.028

D4c .063 .075 -.060 .100 .031 -.009 .630 -.010 -.081 -.156

D4d .056 .053 -.031 -.011 .044 -.051 .513 .100 .060 .263

D4e -.047 .031 -.016 .001 .008 -.028 .573 .198 .098 -.002

Continued on next page
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A.2. Family entertainment data

continued from previous page

Factor

1 2 3 4 5 6 7 8 9 10

D4f .096 .062 -.028 -.038 .139 -.024 .513 .026 .052 .176

D4h -.046 .021 .033 .103 .034 -.125 .511 .003 .059 .104

D5a .056 .079 -.837 .003 -.031 -.017 -.022 -.050 -.016 .003

D5b .020 -.005 -.746 .021 .065 .038 .069 .032 .012 -.085

D5c .035 .054 -.819 -.057 -.010 -.047 -.011 .001 .019 .074

D5d .023 .010 -.787 -.005 .016 -.025 -.039 .092 -.031 .007

D5e -.093 -.005 -.783 .115 -.003 -.035 -.037 .004 .049 .093

D5f -.025 -.033 -.804 -.004 .046 -.011 .101 .038 -.010 -.097

D6a -.018 -.008 -.030 .032 .015 -.033 -.018 .876 -.022 .004

D6b -.005 .012 .002 .025 -.002 .008 .023 .880 .004 .048

D6c .002 .046 -.033 -.002 -.019 .010 .032 .862 -.006 -.026

D7a .052 .016 .052 .832 -.027 -.052 .045 .023 -.029 -.040

D7b .105 .039 .008 .816 -.002 -.054 -.017 -.011 -.015 -.008

D7c .043 -.031 .017 .839 -.023 -.074 .022 .043 .015 .018

D7d .010 .012 -.105 .719 .030 .034 .092 -.029 .043 .057

D7e -.072 .001 -.084 .677 .121 .038 -.060 .074 .025 -.023

D8a .064 .729 .084 -.027 -.013 -.048 .100 -.046 .059 -.028

D8b .062 .659 -.017 -.119 .024 -.080 -.008 .042 -.010 .055

D8d -.055 .819 -.190 .026 -.009 .020 -.017 -.014 .020 .010

D8e -.053 .768 .025 .021 .084 .016 -.015 .166 -.030 -.027

D8f .000 .861 -.024 .067 .009 .006 -.020 .003 -.017 -.036

D8g .016 .863 -.044 .075 .012 -.008 -.030 -.030 -.013 -.026

D9b -.017 .047 -.014 .032 -.017 -.827 -.009 -.015 .000 -.024

D9c .008 .015 .024 .059 .068 -.718 .035 .081 -.024 -.136

D9d -.008 .019 -.054 .001 .045 -.800 -.051 -.001 -.008 .128

D9e -.040 .009 -.035 .001 -.037 -.856 .047 -.009 .024 .007
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A. Factor analysis: additional results

A.3 Banking product data set

Table A.17: Univariate statistics

Original data Missing Imputed data

N Mean Std. Dev. Count Perc. Mean Std. Dev.

Satisfaction 1038 7.27 1.792 .0 7.27 1.792

Disconfirmation 983 2.65 .713 55 5.3 2.65 .697

Recommendation 1038 3.76 1.112 .0 3.76 1.112

Usage 949 1.67 .751 89 8.6 1.67 .721

Value for money 969 2.62 .967 69 6.6 2.64 .943

D1 1005 3.56 .879 33 3.2 3.55 .873

D1a 1026 3.77 1.036 12 1.2 3.77 1.032

D1b 995 3.20 1.195 43 4.1 3.19 1.177

D1c 980 3.80 .913 58 5.6 3.79 .897

D1d 895 3.55 1.030 143 13.8 3.55 .976

D1e 920 3.74 .973 118 11.4 3.71 .945

D1f 949 2.84 1.429 89 8.6 2.83 1.391

D1g 968 3.74 1.034 70 6.7 3.73 1.010

D1h 1011 4.03 .876 27 2.6 4.03 .869

D1i 993 3.16 1.192 45 4.3 3.17 1.176

D1j 962 3.19 1.135 76 7.3 3.19 1.112

D2 976 2.39 1.048 62 6.0 2.43 1.031

D2a 959 2.43 1.222 79 7.6 2.45 1.193

D2b 973 2.36 1.205 65 6.3 2.39 1.187

D2c 896 2.49 1.199 142 13.7 2.51 1.148

D2d 928 2.27 1.172 110 10.6 2.30 1.142

D2e 968 3.11 1.295 70 6.7 3.12 1.263

D2f 944 2.34 1.236 94 9.1 2.37 1.202

Continued on next page
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A.3. Banking product data

continued from previous page

Original data Missing Imputed data

N Mean Std. Dev. Count Perc. Mean Std. Dev.

D3 1012 3.77 .769 26 2.5 3.76 .763

D4 1009 3.89 .642 29 2.8 3.89 .637

D4a 878 3.59 1.001 160 15.4 3.59 .953

D4b 969 4.04 .766 69 6.6 4.05 .746

D4c 1025 4.11 .763 13 1.3 4.11 .759

D4d 1006 3.33 1.146 32 3.1 3.33 1.134

D4e 1021 3.89 .925 17 1.6 3.88 .920

D4f 1031 3.76 1.070 7 .7 3.76 1.067

D4g 1019 3.42 1.157 19 1.8 3.41 1.150

D4h 1021 4.23 .861 17 1.6 4.22 .856

D4i 980 3.80 .921 58 5.6 3.80 .904

D5 665 3.70 .815 373 35.9

D5a 105 3.55 1.248 933 89.9

D5b 112 4.06 .852 926 89.2

D5c 92 3.14 1.339 946 91.1

D5d 114 3.21 1.379 924 89.0

D5e 118 3.73 1.114 920 88.6

D5f 108 3.89 1.026 930 89.6

D5g 116 3.31 1.435 922 88.8

D5h 120 4.08 1.124 918 88.4

D5i 118 3.66 1.249 920 88.6

D5j 111 3.77 1.061 927 89.3

D6 657 3.76 .825 381 36.7

D6a 604 3.81 1.183 434 41.8

D6b 455 3.83 1.010 583 56.2

D6c 532 3.57 1.269 506 48.7

D6d 526 3.80 1.086 512 49.3

D6e 508 3.57 1.189 530 51.1

D6f 296 2.91 1.303 742 71.5

Continued on next page
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A. Factor analysis: additional results

continued from previous page

Original data Missing Imputed data

N Mean Std. Dev. Count Perc. Mean Std. Dev.

D6g 518 4.00 .894 520 50.1

D6h 510 3.97 .907 528 50.9

D6i 555 4.19 .903 483 46.5

D6j 232 3.86 1.275 806 77.6

D6k 231 4.04 1.042 807 77.7

D6l 228 3.05 1.306 810 78.0

D6m 224 4.18 .861 814 78.4

D6n 229 4.13 .884 809 77.9

D6o 232 4.28 .885 806 77.6

D7 875 3.37 .994 163 15.7 3.39 .936

D7a 883 3.57 1.218 155 14.9 3.59 1.147

D7b 899 2.69 1.448 139 13.4 2.68 1.353

D7c 819 3.97 .919 219 21.1

D7d 799 3.89 1.005 239 23.0

D7e 847 2.24 1.289 191 18.4 2.24 1.179

D7f 856 3.25 1.186 182 17.5 3.27 1.112

D8 796 3.55 .878 242 23.3

D8a 231 2.79 1.430 807 77.7

D8b 91 3.24 1.285 947 91.2

D8c 87 2.93 1.283 951 91.6

D8d 129 3.09 1.305 909 87.6

D9 893 3.27 1.037 145 14.0 3.27 .991

D9a 916 3.50 1.154 122 11.8 3.48 1.110

D9b 730 3.64 1.007 308 29.7

D9c 789 3.57 .983 249 24.0

D9d 734 3.50 1.174 304 29.3

D9e 908 3.49 1.231 130 12.5 3.48 1.173

D9f 863 3.33 1.152 175 16.9 3.30 1.095

D9g 947 2.10 1.148 91 8.8 2.11 1.104

Continued on next page
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A.3. Banking product data

continued from previous page

Original data Missing Imputed data

N Mean Std. Dev. Count Perc. Mean Std. Dev.

D9h 981 4.25 .793 57 5.5 4.24 .775
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A. Factor analysis: additional results

Table A.18: Partial correlations and MSA per variable

D1a D1b D1c D1d D1e D1f D1g D1h D1i D1j D2a D2b D2c D2d D2e D2f D4a

D1a 0.955

D1b 0.142 0.943

D1c -0.001 0.033 0.941

D1d 0.144 -0.022 0.132 0.945

D1e 0.199 0.106 0.063 0.106 0.934

D1f -0.004 0.139 0.138 0.066 -0.073 0.953

D1g 0.086 -0.028 0.214 0.022 0.054 0.070 0.947

D1h 0.196 0.015 0.145 0.024 0.280 -0.006 0.090 0.929

D1i 0.005 0.227 0.026 -0.072 0.114 0.116 0.047 0.078 0.956

D1j 0.110 0.206 0.022 0.043 0.024 0.178 0.130 0.050 0.070 0.956

D2a 0.021 0.112 0.009 0.057 -0.068 -0.001 0.022 -0.018 0.022 0.018 0.927

D2b 0.043 -0.057 -0.057 0.030 -0.047 0.135 -0.002 -0.002 -0.002 0.051 0.310 0.936

D2c -0.013 0.077 0.066 -0.087 0.066 -0.046 -0.014 -0.040 -0.008 0.048 0.196 0.191 0.928

D2d 0.026 -0.031 -0.049 -0.016 0.031 0.061 -0.008 0.009 0.003 0.017 0.288 0.108 0.302 0.918

D2e 0.055 0.022 -0.032 -0.013 0.090 0.030 -0.021 -0.011 0.035 -0.013 0.123 0.094 0.068 -0.072 0.942

D2f -0.025 0.062 -0.079 -0.004 0.100 0.106 0.077 0.011 -0.006 -0.061 0.123 0.173 -0.011 0.199 0.120 0.932

D4a 0.049 0.008 0.091 0.043 -0.070 -0.037 0.088 -0.042 0.007 0.102 -0.009 0.064 -0.060 -0.015 0.021 0.044 0.922

D4b -0.013 -0.062 0.029 0.069 0.006 0.019 -0.050 0.104 -0.034 0.065 -0.013 -0.026 -0.018 0.026 -0.026 -0.019 0.158

D4c 0.034 0.005 0.001 -0.004 0.047 0.062 -0.005 0.042 -0.048 -0.051 0.016 0.002 0.003 -0.019 0.048 -0.061 0.084

D4d -0.047 0.032 0.066 -0.010 0.081 -0.011 -0.021 0.016 0.014 -0.027 0.050 0.069 -0.025 -0.013 -0.052 -0.039 0.290

D4e 0.020 -0.022 0.063 -0.003 -0.038 -0.039 0.013 -0.070 0.030 0.007 -0.016 0.008 -0.037 0.014 -0.009 0.078 0.121

D4f -0.015 0.074 0.080 -0.094 -0.036 -0.022 0.003 0.014 -0.025 -0.030 0.020 0.026 0.009 0.003 -0.009 -0.056 0.141

D4g 0.013 0.040 0.001 0.025 -0.013 0.043 0.007 -0.024 0.009 0.021 0.062 -0.012 0.035 0.032 -0.025 0.037 0.075

D4h 0.043 -0.042 0.006 0.074 0.047 0.024 0.023 -0.014 0.037 -0.029 -0.039 0.047 0.028 -0.054 0.070 0.005 -0.044

D4i 0.024 0.046 0.021 0.047 -0.030 0.018 0.027 0.036 -0.030 -0.061 -0.076 0.002 0.080 0.073 0.048 -0.034 0.116

D7a 0.059 0.101 -0.032 -0.029 0.034 -0.040 0.044 0.029 0.016 -0.028 0.024 0.009 -0.064 -0.037 0.258 -0.070 -0.094

D7b -0.039 -0.005 -0.016 0.021 -0.029 0.015 -0.025 0.059 0.026 0.003 0.040 -0.007 0.032 -0.063 -0.007 0.008 0.014

D7e 0.013 -0.022 -0.048 -0.024 -0.029 0.001 0.098 -0.025 -0.041 0.028 0.000 -0.090 0.016 0.025 -0.018 0.067 -0.001

D7f -0.061 -0.036 -0.003 0.031 0.043 0.026 -0.100 -0.029 0.054 0.074 0.044 0.001 0.004 0.020 -0.042 0.096 0.076

D9a -0.023 -0.081 0.051 0.056 -0.025 0.071 -0.033 0.019 0.131 0.068 0.039 -0.077 0.022 0.043 0.117 -0.023 0.151

D9e -0.051 0.160 -0.031 0.010 0.010 -0.087 0.006 -0.024 0.038 -0.040 -0.086 0.074 -0.069 0.067 0.016 -0.084 -0.066

D9f 0.059 -0.060 0.010 -0.004 -0.010 0.037 0.034 -0.031 0.015 0.033 0.048 -0.037 0.067 -0.115 -0.065 0.156 0.010

D9g 0.016 0.059 0.009 0.020 -0.003 -0.005 -0.050 -0.054 0.093 -0.057 -0.101 0.056 -0.040 0.051 0.037 -0.069 0.038

D9h 0.068 0.032 -0.023 0.019 0.043 -0.037 -0.024 0.017 -0.020 -0.034 -0.055 0.009 0.065 -0.038 -0.063 -0.052 0.054
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A.3. Banking product data

Table A.18: Partial correlations and MSA per variable [continued]

D4b D4c D4d D4e D4f D4g D4h D4i D7a D7b D7e D7f D9a D9e D9f D9g D9h

D1a

D1b

D1c

D1d

D1e

D1f

D1g

D1h

D1i

D1j

D2a

D2b

D2c

D2d

D2e

D2f

D4a

D4b 0.907

D4c 0.155 0.920

D4d -0.018 0.068 0.904

D4e 0.055 0.260 0.083 0.924

D4f 0.031 0.155 0.086 0.105 0.919

D4g -0.008 0.016 0.063 0.087 -0.019 0.936

D4h 0.155 0.000 -0.058 0.097 0.080 0.009 0.903

D4i 0.081 0.057 -0.027 0.031 -0.019 0.298 0.139 0.922

D7a 0.107 -0.021 -0.020 0.072 0.054 -0.040 -0.011 0.030 0.820

D7b -0.017 0.013 0.018 -0.062 -0.024 0.037 -0.035 -0.031 -0.087 0.678

D7e 0.084 -0.037 0.090 0.022 -0.056 -0.001 0.056 -0.053 -0.088 0.191 0.511

D7f -0.056 -0.002 0.080 -0.074 0.020 -0.035 0.075 0.036 0.559 0.055 0.112 0.833

D9a -0.061 -0.039 -0.089 0.092 0.044 0.020 -0.060 -0.017 0.026 -0.077 0.041 0.044 0.912

D9e 0.117 -0.005 0.023 0.073 -0.010 -0.004 0.011 0.028 -0.059 -0.059 -0.024 0.039 0.183 0.798

D9f 0.011 0.054 0.110 -0.009 -0.023 -0.013 0.001 -0.010 0.044 0.005 0.024 -0.019 0.249 0.423 0.859

D9g -0.044 0.002 -0.013 -0.020 0.058 0.000 -0.053 0.022 -0.021 0.098 0.225 0.026 0.019 0.077 0.078 0.568

D9h 0.027 0.111 -0.051 -0.015 -0.025 -0.001 0.162 0.039 0.108 0.088 -0.092 -0.014 0.133 0.059 0.040 -0.082 0.867
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A. Factor analysis: additional results

Table A.19: Total variance explained

Initial Eigenvalues

Component Total % of Variance Cumulative %

1 9.194 27.041 27.041

2 2.666 7.842 34.883

3 1.791 5.267 40.150

4 1.587 4.668 44.818

5 1.561 4.590 49.409

6 1.275 3.750 53.159

7 1.130 3.324 56.483

8 .923 2.714 59.197

9 .907 2.667 61.864

10 .865 2.545 64.409

11 .799 2.351 66.760

12 .761 2.238 68.998

13 .712 2.093 71.091

14 .699 2.055 73.146

15 .674 1.981 75.127

16 .664 1.953 77.080

17 .605 1.780 78.860

18 .588 1.731 80.591

19 .577 1.698 82.288

20 .542 1.593 83.882

21 .538 1.582 85.464

22 .507 1.490 86.955

23 .493 1.451 88.405

24 .471 1.386 89.792

25 .442 1.300 91.092

26 .421 1.238 92.330

27 .405 1.192 93.523

28 .386 1.136 94.659

29 .363 1.068 95.726

30 .334 .981 96.707

31 .321 .945 97.653

32 .299 .880 98.533

33 .270 .794 99.327

34 .229 .673 100.000
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A.3. Banking product data

Table A.20: Factor loadings for varimax rotated 4 factor model

Component

1 2 3 4

D1a .275 .679 .213 -.022

D1b .443 .561 .143 .164

D1c .128 .490 .383 -.024

D1d .115 .481 .247 -.037

D1e .214 .725 .107 -.012

D1f .524 .392 .162 .080

D1g .260 .479 .229 -.030

D1h .109 .701 .151 -.113

D1i .322 .547 .065 .286

D1j .425 .532 .162 .103

D2a .837 .190 .111 .050

D2b .790 .165 .166 .046

D2c .765 .141 .099 .004

D2d .813 .095 .093 .028

D2e .458 .405 .086 .134

D2f .728 .184 .057 .100

D4a .240 .186 .667 .182

D4b -.049 .250 .572 .031

D4c .043 .169 .683 .033

D4d .221 .048 .500 .226

D4e .113 .092 .690 .149

D4f .088 .065 .555 .098

D4g .383 .057 .470 -.020

D4h .008 .316 .400 -.062

D4i .218 .208 .539 -.048

D7a .125 .533 .101 .230

D7b .037 -.150 -.143 .127

D7e .078 -.176 -.052 .390

D7f .251 .381 .066 .353

D9a .160 .331 .284 .534

D9e -.064 .198 .270 .626

D9f .092 .242 .283 .637

D9g -.018 -.093 -.039 .556

D9h -.158 .351 .308 .067
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A. Factor analysis: additional results

Table A.21: Factor loadings for oblimin rotated 4 factor model

Component

1 2 3 4

D1a .686 -.132 -.088 -.064

D1b .571 -.314 .102 -.011

D1c .441 -.006 -.082 -.298

D1d .466 -.007 -.085 -.151

D1e .771 -.068 -.072 .065

D1f .366 -.438 .021 -.076

D1g .459 -.156 -.085 -.131

D1h .734 .028 -.169 .008

D1i .591 -.187 .236 .074

D1j .531 -.306 .042 -.041

D2a .128 -.806 -.011 -.069

D2b .089 -.759 -.014 -.136

D2c .079 -.748 -.050 -.069

D2d .027 -.804 -.025 -.073

D2e .408 -.368 .083 .012

D2f .146 -.695 .048 -.011

D4a .028 -.138 .122 -.683

D4b .137 .148 -.014 -.566

D4c .010 .046 -.018 -.708

D4d -.080 -.154 .184 -.532

D4e -.077 -.029 .099 -.732

D4f -.072 -.023 .058 -.592

D4g -.087 -.346 -.071 -.501

D4h .246 .080 -.104 -.362

D4i .075 -.145 -.103 -.540

D7a .576 .009 .188 .028

D7b -.127 -.066 .143 .122

D7e -.168 -.079 .402 .022

D7f .413 -.140 .317 .032

D9a .317 -.022 .495 -.218

D9e .192 .190 .607 -.234

D9f .227 .041 .607 -.237

D9g -.062 .054 .569 .031

D9h .329 .262 .038 -.250
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A.3. Banking product data

Table A.22: Factor loadings for varimax rotated 5 factor model

Component

1 2 3 4 5

D1a .241 .683 .173 .146 .143

D1b .421 .542 .124 .275 .026

D1c .057 .611 .365 .019 -.049

D1d .072 .532 .221 .055 .051

D1e .190 .695 .059 .187 .179

D1f .481 .463 .165 .101 -.083

D1g .187 .615 .220 -.009 -.099

D1h .062 .741 .105 .051 .134

D1i .302 .510 .050 .374 -.049

D1j .378 .587 .152 .163 -.058

D2a .838 .192 .124 .082 .025

D2b .793 .160 .177 .083 .047

D2c .768 .145 .110 .035 .046

D2d .810 .122 .113 .024 -.017

D2e .498 .243 .055 .327 .260

D2f .723 .194 .073 .111 -.035

D4a .192 .261 .675 .156 -.103

D4b -.062 .224 .544 .133 .161

D4c .029 .157 .663 .110 .147

D4d .172 .145 .525 .131 -.221

D4e .102 .077 .684 .183 .063

D4f .083 .042 .548 .137 .084

D4g .346 .152 .483 -.053 -.043

D4h .030 .202 .353 .138 .353

D4i .213 .189 .517 .055 .199

D7a .204 .224 .036 .548 .455

D7b -.022 .025 -.096 -.086 -.434

D7e .011 -.004 .013 .115 -.601

D7f .308 .146 .034 .546 .220

D9a .172 .198 .277 .602 -.053

D9e -.042 .038 .267 .663 -.096

D9f .094 .134 .290 .639 -.182

D9g -.057 -.029 .012 .347 -.524

D9h -.117 .165 .253 .297 .368
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A. Factor analysis: additional results

Table A.23: Factor loadings for oblimin rotated 5 factor model

Component

1 2 3 4 5

D1a .695 -.093 .012 .042 -.096

D1b .499 -.310 -.031 .192 .006

D1c .636 .093 .260 -.080 .104

D1d .557 .053 .114 -.027 -.008

D1e .731 -.041 -.117 .094 -.136

D1f .411 -.399 .051 .018 .116

D1g .643 -.056 .103 -.102 .149

D1h .815 .101 -.055 -.048 -.081

D1i .489 -.188 -.111 .318 .074

D1j .568 -.259 .006 .075 .098

D2a .039 -.843 .051 .005 -.014

D2b .001 -.799 .116 .006 -.036

D2c .003 -.783 .054 -.035 -.037

D2d -.029 -.832 .064 -.044 .025

D2e .138 -.460 -.056 .269 -.254

D2f .068 -.721 -.002 .049 .044

D4a .151 -.101 .645 .071 .140

D4b .168 .151 .519 .062 -.130

D4c .059 .045 .661 .031 -.116

D4d .051 -.113 .514 .077 .247

D4e -.053 -.044 .690 .114 -.039

D4f -.066 -.042 .557 .082 -.066

D4g .044 -.313 .481 -.133 .071

D4h .149 .036 .311 .071 -.332

D4i .088 -.156 .497 -.031 -.171

D7a .146 -.139 -.093 .512 -.457

D7b .070 .022 -.088 -.060 .437

D7e .000 -.001 .012 .151 .601

D7f .045 -.266 -.078 .525 -.226

D9a .098 -.090 .174 .579 .059

D9e -.050 .108 .198 .676 .090

D9f .038 -.016 .203 .635 .184

D9g -.041 .080 -.012 .398 .516

D9h .132 .189 .196 .259 -.357
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A.3. Banking product data

Table A.24: Factor loadings for varimax rotated 7 factor model

Component

1 2 3 4 5 6 7

D1a .235 .669 .083 .081 .240 .151 -.053

D1b .390 .555 .141 .192 .017 .236 -.020

D1c .054 .628 .363 .073 .074 -.059 -.042

D1d .104 .506 .048 .077 .340 -.033 .048

D1e .164 .679 .015 .055 .183 .254 -.056

D1f .477 .480 .151 .114 .009 .042 .033

D1g .191 .631 .199 .057 .038 -.083 .012

D1h .046 .727 .058 -.025 .184 .124 -.050

D1i .267 .528 .092 .292 -.058 .256 .032

D1j .361 .604 .157 .144 .004 .103 .019

D2a .825 .208 .118 .038 .003 .147 -.026

D2b .789 .171 .143 .053 .060 .124 -.038

D2c .781 .150 .028 .043 .097 .055 -.032

D2d .820 .135 .060 .045 .032 .034 -.005

D2e .453 .229 .061 .094 .135 .461 -.077

D2f .720 .203 .045 .078 .015 .117 .048

D4a .197 .275 .665 .167 .180 .015 .080

D4b -.030 .185 .368 .087 .509 .060 .030

D4c .042 .147 .586 .089 .355 .056 -.078

D4d .145 .174 .647 .095 -.060 .062 .154

D4e .118 .084 .624 .214 .267 .022 -.078

D4f .039 .062 .679 .030 .023 .204 -.098

D4g .405 .140 .295 .061 .350 -.186 .072

D4h .065 .134 .098 .009 .655 .181 -.010

D4i .266 .149 .269 .063 .566 -.010 -.015

D7a .108 .189 .125 .094 .184 .810 -.103

D7b -.005 -.014 -.123 -.184 .065 -.056 .658

D7e .020 -.024 .039 .023 -.036 -.011 .763

D7f .216 .115 .152 .094 .101 .764 .133

D9a .187 .219 .190 .662 .099 .145 -.028

D9e .004 .054 .108 .806 .159 .038 -.006

D9f .132 .157 .164 .769 .106 .042 .069

D9g -.063 -.024 .080 .287 -.143 .075 .568

D9h -.074 .112 -.019 .253 .582 .153 -.134
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A. Factor analysis: additional results

Table A.25: Factor loadings for oblimin rotated 7 factor model

Component

1 2 3 4 5 6 7

D1a .659 -.033 .025 -.098 -.090 -.038 .137

D1b .487 .037 .135 -.265 -.171 -.019 -.095

D1c .652 .294 .016 .097 .120 -.042 -.046

D1d .516 -.059 .048 -.011 .083 .062 .276

D1e .691 -.089 -.004 -.014 -.204 -.038 .086

D1f .413 .053 .066 -.396 .022 .030 -.086

D1g .653 .111 .010 -.066 .144 .011 -.068

D1h .786 -.033 -.084 .111 -.078 -.032 .088

D1i .479 -.011 .249 -.130 -.196 .030 -.167

D1j .567 .053 .090 -.237 -.037 .018 -.108

D2a .037 .038 -.015 -.831 -.091 -.029 -.061

D2b -.004 .064 .003 -.801 -.069 -.040 .000

D2c -.009 -.060 .010 -.812 -.002 -.034 .053

D2d -.030 -.023 .010 -.855 .020 -.011 -.014

D2e .096 -.003 .034 -.396 -.428 -.063 .076

D2f .059 -.040 .039 -.722 -.067 .046 -.038

D4a .163 .625 .099 -.097 .043 .075 .076

D4b .120 .318 .045 .098 -.027 .049 .463

D4c .049 .567 .031 .031 -.016 -.070 .281

D4d .085 .656 .025 -.056 -.028 .143 -.148

D4e -.048 .597 .168 -.056 .029 -.081 .184

D4f -.038 .722 -.046 .042 -.182 -.100 -.058

D4g .028 .219 .033 -.411 .238 .074 .307

D4h .060 .029 -.025 -.035 -.161 .023 .645

D4i .035 .189 .028 -.251 .056 .002 .529

D7a .076 .106 .013 .007 -.806 -.075 .128

D7b .027 -.120 -.195 -.013 .019 .670 .128

D7e -.028 .033 .008 -.008 -.011 .764 -.002

D7f -.020 .138 .010 -.122 -.766 .156 .060

D9a .086 .064 .668 -.094 -.067 -.043 -.001

D9e -.067 -.023 .852 .062 .034 -.025 .086

D9f .026 .025 .796 -.050 .038 .049 .016

D9g -.051 .060 .289 .108 -.078 .557 -.144

D9h .053 -.112 .258 .114 -.121 -.111 .562
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A.3. Banking product data

Table A.26: Factor loadings for varimax rotated 8 factor model

Component

1 2 3 4 5 6 7 8

D1a .675 .227 .092 .085 .162 .152 -.040 .159

D1b .557 .378 .123 .188 .249 .067 -.041 -.073

D1c .632 .041 .348 .072 -.047 .111 -.052 -.036

D1d .517 .072 .036 .086 .007 .308 .048 .152

D1e .682 .172 .040 .057 .247 .038 -.033 .184

D1f .483 .455 .121 .113 .064 .128 .010 -.121

D1g .633 .179 .184 .057 -.072 .089 .004 -.050

D1h .729 .061 .091 -.021 .109 .018 -.015 .210

D1i .529 .255 .070 .287 .269 .007 .000 -.133

D1j .605 .355 .146 .143 .108 .045 .008 -.062

D2a .207 .834 .127 .040 .132 .030 -.011 .002

D2b .173 .792 .149 .055 .118 .085 -.024 .028

D2c .151 .786 .043 .048 .046 .090 -.008 .086

D2d .137 .812 .052 .047 .038 .116 -.002 -.030

D2e .235 .438 .052 .091 .479 .126 -.089 .040

D2f .203 .721 .048 .082 .113 .050 .056 -.010

D4a .281 .178 .653 .175 .033 .222 .068 -.008

D4b .198 -.048 .387 .104 .086 .352 .055 .328

D4c .154 .050 .623 .101 .048 .191 -.042 .279

D4d .171 .160 .660 .102 .040 -.043 .155 -.087

D4e .094 .096 .614 .220 .046 .275 -.088 .075

D4f .062 .051 .691 .028 .187 .000 -.096 -.007

D4g .159 .316 .208 .066 -.084 .609 .013 -.103

D4h .153 .026 .104 .025 .235 .493 .010 .407

D4i .174 .168 .189 .069 .106 .728 -.068 .065

D7a .195 .103 .132 .089 .821 .060 -.114 .122

D7b -.023 .045 -.038 -.150 -.109 -.175 .737 .234

D7e -.025 -.001 .023 .046 .014 .059 .741 -.172

D7f .119 .209 .154 .094 .776 .040 .115 .021

D9a .223 .183 .190 .663 .152 .067 -.049 .031

D9e .059 -.001 .113 .810 .049 .090 -.025 .092

D9f .158 .143 .186 .776 .033 .010 .066 .095

D9g -.020 -.126 -.006 .292 .148 .161 .472 -.435

D9h .119 -.032 .084 .273 .117 .111 -.039 .688
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A. Factor analysis: additional results

Table A.27: Factor loadings for oblimin rotated 8 factor model

Component

1 2 3 4 5 6 7 8

D1a .654 -.029 .091 .030 -.103 -.020 .091 .094

D1b .483 .019 .244 .120 -.185 -.060 -.021 -.120

D1c .649 .276 -.104 .009 .111 -.060 .031 -.080

D1d .515 -.085 -.030 .049 .043 .054 .284 .066

D1e .684 -.064 .031 .006 -.203 -.003 -.023 .128

D1f .411 .028 .364 .052 .004 -.011 .055 -.157

D1g .651 .102 .059 .005 .138 -.002 .017 -.087

D1h .779 .004 -.078 -.066 -.067 .026 -.038 .162

D1i .475 -.033 .111 .231 -.211 -.037 -.087 -.183

D1j .562 .050 .232 .084 -.039 -.002 -.042 -.100

D2a .032 .069 .839 -.005 -.070 .009 -.031 .016

D2b -.009 .087 .800 .013 -.055 -.004 .030 .034

D2c -.013 -.026 .818 .027 .016 .022 .050 .097

D2d -.032 -.014 .838 .014 .025 .007 .072 -.022

D2e .091 -.027 .359 .020 -.454 -.090 .082 -.008

D2f .055 -.018 .721 .047 -.056 .066 -.001 -.011

D4a .156 .605 .080 .100 .032 .056 .145 -.063

D4b .115 .315 -.116 .066 -.054 .087 .343 .241

D4c .041 .594 -.007 .058 -.004 .000 .148 .241

D4d .075 .677 .091 .037 .001 .148 -.125 -.097

D4e -.052 .569 .029 .167 .011 -.093 .218 .028

D4f -.047 .724 -.022 -.046 -.165 -.091 -.065 -.012

D4g .034 .100 .272 -.003 .144 -.032 .602 -.196

D4h .057 -.002 -.026 -.014 -.221 .048 .524 .294

D4i .039 .056 .094 -.010 -.061 -.099 .740 -.066

D7a .068 .078 -.036 -.005 -.838 -.113 .021 .044

D7b .018 .001 .113 -.122 .079 .793 -.137 .219

D7e -.032 .023 -.010 .019 -.032 .696 .072 -.248

D7f -.029 .113 .094 -.003 -.795 .101 .001 -.060

D9a .081 .067 .093 .673 -.068 -.081 -.030 -.013

D9e -.070 -.015 -.061 .864 .032 -.061 .012 .047

D9f .020 .063 .081 .821 .059 .043 -.086 .060

D9g -.049 -.046 -.204 .247 -.152 .355 .142 -.531

D9h .044 -.005 -.038 .327 -.085 .059 .112 .648
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A.3. Banking product data

Table A.28: Factor loadings for final varimax rotated 7 factor model

Component

1 2 3 4 5 6 7

D1a .688 .236 .101 .089 .124 .209 -.048

D1b .564 .366 .138 .200 .270 -.045 -.040

D1c .627 .039 .368 .077 -.054 .026 -.042

D1d .515 .107 .078 .084 -.053 .318 .058

D1e .699 .172 .025 .059 .219 .173 -.050

D1g .634 .183 .204 .064 -.095 .002 .019

D1h .739 .054 .066 -.022 .096 .173 -.039

D1i .531 .241 .082 .298 .292 -.103 .009

D1j .596 .349 .156 .148 .125 -.016 .012

D2a .217 .835 .129 .045 .124 -.002 -.020

D2b .177 .800 .162 .060 .095 .055 -.030

D2c .169 .794 .046 .053 .038 .068 -.026

D2d .149 .830 .072 .054 .035 -.002 -.004

D2f .207 .728 .057 .086 .090 .020 .056

D4a .287 .182 .677 .177 .028 .099 .075

D4b .187 -.006 .409 .089 .015 .520 .051

D4c .149 .052 .616 .090 .010 .351 -.062

D4d .175 .140 .637 .098 .086 -.106 .147

D4e .093 .116 .646 .218 .003 .230 -.076

D4f .058 .045 .679 .025 .192 .016 -.099

D4h .146 .088 .151 .014 .137 .666 .008

D7a .202 .106 .121 .092 .812 .195 -.122

D7b -.022 .009 -.116 -.175 -.060 .093 .676

D7e -.032 .029 .044 .035 -.017 -.030 .771

D7f .117 .219 .140 .092 .812 .106 .107

D9a .219 .173 .195 .665 .139 .086 -.040

D9e .058 .002 .116 .807 .033 .144 -.017

D9f .150 .136 .168 .769 .032 .114 .064

D9g -.010 -.099 .078 .305 .112 -.241 .536

D9h .113 -.039 .015 .246 .126 .638 -.116
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B. Empirical validity

B.1 Energy data set

Table B.1: Energy data set: mean satisfaction for different expectation and different
disconfirmation levels

(a) Disconfirmation of Availability dimension

Disconfirmation

- 0 +

Expectation
Low 3.51 3.91{a} 3.92

High 3.98{a,b} 4.42{a,b} 4.49{b}

a Stat. sign. different at 5% from the cell to the left

b Stat. sign. different at 5% from the cell above

(b) Disconfirmation of Employees dimension

Disconfirmation

- 0 +

Expectation
Low 2.60 3.63 3.90

High 3.52 4.35{b} 4.39{b}

a Stat. sign. different at 5% from the cell to the left

b Stat. sign. different at 5% from the cell above

(c) Disconfirmation of Services dimension

Disconfirmation

- 0 +

Expectation
Low 2.79 3.88{a} 4.44{a}

High 3.48{b} 4.42{a,b} 4.99{a,b}

a Stat. sign. different at 5% from the cell to the left

b Stat. sign. different at 5% from the cell above
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B.1. Energy data

Table B.1: Energy data set: mean satisfaction for different expectation and different
disconfirmation levels [continued]

(d) Disconfirmation of Information dimension

Disconfirmation

- 0 +

Expectation
Low 3.53 4.03{a} 4.51{a}

High 4.04{b} 4.53{a,b} 4.78

a Stat. sign. different at 5% from the cell to the left

b Stat. sign. different at 5% from the cell above

(e) Disconfirmation of Invoices dimension

Disconfirmation

- 0 +

Expectation
Low 2.71 3.75{a} 4.09{a}

High 3.52{b} 4.32{a,b} 4.56{a,b}

a Stat. sign. different at 5% from the cell to the left

b Stat. sign. different at 5% from the cell above
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B. Empirical validity

B.2 Family entertainment data set

Table B.2: Family entertainment data set: mean satisfaction for different expectation
and different disconfirmation levels

(a) Disconfirmation of Overall Experience dimension

Disconfirmation

- 0 +

Expectation
Low 6.69 7.73{a} 8.18{a}

High 7.80{b} 8.70{a,b} 8.93{a,b}

a Stat. sign. different at 5% from the cell to the left

b Stat. sign. different at 5% from the cell above

(b) Disconfirmation of Product A dimension

Disconfirmation

- 0 +

Expectation
Low 6.69 7.78{a} 8.12{a}

High 8.24{b} 8.71{a,b} 8.77{b}

a Stat. sign. different at 5% from the cell to the left

b Stat. sign. different at 5% from the cell above

(c) Disconfirmation of Product B dimension

Disconfirmation

- 0 +

Expectation
Low 7.76 7.88 7.91

High 8.52{b} 8.68{b} 8.64{b}

a Stat. sign. different at 5% from the cell to the left

b Stat. sign. different at 5% from the cell above
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B.2. Family entertainment data

Table B.2: Family entertainment data set: mean satisfaction for different expectation
and different disconfirmation levels [continued]

(d) Disconfirmation of Accommodation dimension

Disconfirmation

- 0 +

Expectation
Low 7.59 7.84 7.89

High 8.17 8.72{a,b} 8.67{b}

a Stat. sign. different at 5% from the cell to the left

b Stat. sign. different at 5% from the cell above

(e) Disconfirmation of Product C dimension

Disconfirmation

- 0 +

Expectation
Low 7.62 7.88 8.06

High 8.31{b} 8.72{a,b} 8.76{b}

a Stat. sign. different at 5% from the cell to the left

b Stat. sign. different at 5% from the cell above

(f) Disconfirmation of Product D dimension

Disconfirmation

- 0 +

Expectation
Low 7.75 7.96 7.80

High 8.39{b} 8.76{a,b} 8.61{b}

a Stat. sign. different at 5% from the cell to the left

b Stat. sign. different at 5% from the cell above
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B. Empirical validity

Table B.2: Family entertainment data set: mean satisfaction for different expectation
and different disconfirmation levels [continued]

(g) Disconfirmation of Personnel dimension

Disconfirmation

- 0 +

Expectation
Low 7.63 7.85 7.90

High 8.18 8.59{b} 8.76{b}

a Stat. sign. different at 5% from the cell to the left

b Stat. sign. different at 5% from the cell above

(h) Disconfirmation of Prices dimension

Disconfirmation

- 0 +

Expectation
Low 7.80 8.09{a} 7.75

High 8.55{b} 8.93{a,b} 9.50{b}

a Stat. sign. different at 5% from the cell to the left

b Stat. sign. different at 5% from the cell above

(i) Disconfirmation of Communication dimension

Disconfirmation

- 0 +

Expectation
Low 7.63 7.90{a} 8.12

High 8.40{b} 8.77{a,b} 8.67{b}

a Stat. sign. different at 5% from the cell to the left

b Stat. sign. different at 5% from the cell above
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B.3. Banking product data

B.3 Banking product data set

Table B.3: Banking product data set: mean satisfaction for different expectation and
different disconfirmation levels

(a) Disconfirmation of Image dimension

Disconfirmation

- 0 +

Expectation
Low 2.74 3.67{a} 4.17{a}

High 3.22 4.11{a,b} 4.45{a,b}

a Stat. sign. different at 5% from the cell to the left

b Stat. sign. different at 5% from the cell above

(b) Disconfirmation of Price dimension

Disconfirmation

- 0 +

Expectation
Low 3.72 4.18 4.52

High 3.93 4.48{a,b} 4.96{a}

a Stat. sign. different at 5% from the cell to the left

b Stat. sign. different at 5% from the cell above

(c) Disconfirmation of Product Performance dimension

Disconfirmation

- 0 +

Expectation
Low 2.88 3.78{a} 3.96

High 3.67{b} 4.13{b} 4.17

a Stat. sign. different at 5% from the cell to the left

b Stat. sign. different at 5% from the cell above
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B. Empirical validity

Table B.3: Banking product data set: mean satisfaction for different expectation and
different disconfirmation levels [continued]

(d) Disconfirmation of Product Reliability dimension

Disconfirmation

- 0 +

Expectation
Low 2.86 3.45 3.88

High 3.49 3.82 4.20{a,b}

a Stat. sign. different at 5% from the cell to the left

b Stat. sign. different at 5% from the cell above

(e) Disconfirmation of Invoices dimension

Disconfirmation

- 0 +

Expectation
Low 3.57 3.81 4.07

High 3.61 4.13{a,b} 4.24

a Stat. sign. different at 5% from the cell to the left

b Stat. sign. different at 5% from the cell above

(f) Disconfirmation of Communications dimension

Disconfirmation

- 0 +

Expectation
Low 3.62 3.73 4.05{a}

High 3.78 4.09{b} 4.30{b}

a Stat. sign. different at 5% from the cell to the left

b Stat. sign. different at 5% from the cell above
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C. Interaction effects

C.1 Company 2

Table C.1: Regression coefficients: company 2

Reduced Model Extended Model

Intercept α0 0.17 2.67

Main effects

β1 0.30 -1.01

β2 0.26 -0.33

β3 -0.05 0.02

β4 0.15 0.07

β5 0.12 0.11

β6 -0.04 0.88

β7 -0.05 1.46

β8 0.03 -1.03

β9 0.06 0.31

Interaction effects

γ72 -1.58

γ87 0.35

γ79 0.73

γ64 -0.68

γ82 0.41

γ21 -0.95

γ49 -0.56

Adjusted R2 0.28 0.34

Coefficients significant at 5% are marked in grey
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C.2. Company 3

C.2 Company 3

Table C.2: Regression coefficients: company 3

Reduced Model Extended Model

Intercept α0 0.20 1.15

Main effects

β1 0.49 -0.23

β2 0.10 0.12

β3 -0.03 1.01

β4 0.03 -0.09

β5 0.05 0.29

β6 -0.04 0.49

β7 0.11 -0.63

β8 0.09 -0.58

β9 -0.05 0.36

Interaction effects

γ84 0.77

γ29 0.20

γ54 -1.05

γ52 0.77

γ68 -0.09

γ48 0.20

γ32 -0.55

γ38 -0.16

γ75 0.16

γ85 -0.29

γ61 -0.61

γ47 -0.61

γ67 0.33

Adjusted R2 0.33 0.43

Coefficients significant at 5% are marked in grey
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C. Interaction effects

C.3 Company 4

Table C.3: Regression coefficients: company 4

Reduced Model Extended Model

Intercept α0 0.32 0.66

Main effects

β1 0.30 0.86

β2 0.34 0.31

β3 0.01 -0.34

β4 -0.22 -0.25

β5 -0.01 0.00

β6 0.00 -0.18

β7 0.05 0.25

β8 0.14 -0.16

β9 0.01 0.02

Interaction effects

γ28 -0.29

γ38 0.19

γ68 0.10

γ12 -0.42

γ87 0.15

Adjusted R2 0.29 0.35

Coefficients significant at 5% are marked in grey

232



C.4. Company 5

C.4 Company 5

Table C.4: Regression coefficients: company 5

Reduced Model Extended Model

Intercept α0 0.07 -0.38

Main effects

β1 0.57 1.02

β2 0.32 -0.44

β3 -0.17 -0.20

β4 -0.03 0.86

β5 -0.13 0.84

β6 0.09 -0.10

β7 0.11 -0.94

β8 0.12 -0.37

β9 0.05 0.13

Interaction effects

γ52 -0.72

γ74 1.16

γ14 -0.66

γ87 0.45

γ12 0.32

γ46 -0.03

γ58 0.03

Adjusted R2 0.40 0.51

Coefficients significant at 5% are marked in grey
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C. Interaction effects

C.5 Company 6

Table C.5: Regression coefficients: company 6

Reduced Model Extended Model

Intercept α0 0.27 0.93

Main effects

β1 0.31 -0.05

β2 0.28 -0.10

β3 -0.03 0.58

β4 0.06 0.18

β5 -0.01 -0.37

β6 -0.04 0.22

β7 0.00 0.10

β8 0.11 0.08

β9 -0.01 -0.03

Interaction effects

γ31 -0.63

γ41 0.75

γ63 -0.16

γ42 -0.87

γ52 0.65

γ51 -0.37

Adjusted R2 0.32 0.40

Coefficients significant at 5% are marked in grey
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C.6. Company 7

C.6 Company 7

Table C.6: Regression coefficients: company 7

Reduced Model Extended Model

Intercept α0 0.21 0.45

Main effects

β1 0.79 1.07

β2 0.18 -0.14

β3 0.03 0.40

β4 -0.20 -0.12

β5 0.18 -0.26

β6 -0.07 -0.33

β7 -0.11 -0.39

β8 0.05 0.82

β9 -0.09 -0.18

Interaction effects

γ53 -0.61

γ84 -0.67

γ54 1.50

γ15 0.74

γ42 -0.69

γ36 -0.36

γ46 1.28

γ14 -0.79

γ86 -0.36

γ69 0.37

γ19 -0.22

γ25 -0.54

γ76 -0.54

Continued on next page
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C. Interaction effects

continued from previous page

Reduced Model Extended Model

γ83 0.51

γ81 -0.42

γ85 0.38

γ71 0.83

γ39 -0.20

γ41 -0.52

Adjusted R2 0.39 0.49

Coefficients significant at 5% are marked in grey
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D. D-LIED IPA

D.1 Company 1
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Figure D.1: D-LIED IPA based on disconfirmation impact: company 1.
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D.1. Company 1
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Figure D.2: D-LIED IPA based on marginal impact: company 1.
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D. D-LIED IPA

D.2 Company 2
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Figure D.3: D-LIED IPA based on disconfirmation impact: company 2.
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D.2. Company 2
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Figure D.4: D-LIED IPA based on marginal impact: company 2.
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D. D-LIED IPA

D.3 Company 3
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Figure D.5: D-LIED IPA based on disconfirmation impact: company 3.
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Figure D.6: D-LIED IPA based on marginal impact: company 3.
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Figure D.7: D-LIED IPA based on disconfirmation impact: company 5.
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Figure D.8: D-LIED IPA based on marginal impact: company 5.
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Figure D.9: D-LIED IPA based on disconfirmation impact: company 6.
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Figure D.10: D-LIED IPA based on marginal impact: company 6.
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Figure D.11: D-LIED IPA based on disconfirmation impact: company 7.

248



D.6. Company 7

6 7 8 9

0.
6

0.
7

0.
8

0.
9

1.
0

1.
1

Performance

Im
po

rt
an

ce

Overall Experience

Product A

Product B

Accommodation

Product C

Product D

Personnel

Prices

Communication

Figure D.12: D-LIED IPA based on marginal impact: company 7.
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