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"If we knew what we were doing, it wouldn't be called research"  

Albert Einstein, theoretical physicist (1879-1955) 
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SUMMARY 

Transport has both positive and negative effects on health. On the one hand, 

transport connections help people to reach services, maintain contacts and 

interactions. On the other hand, transport causes annually hundreds of 

thousands of premature deaths in Europe, not only due to traffic accidents, but 

also due to air pollution problems. Transport related gaseous and particulate 

emissions are one of the main sources of air pollution and air pollution is 

estimated to cause around 370 000 premature deaths a year in the European 

Union.  

Due to the negative effects of transport, one of the key challenges of the 

modern policy making consists of promoting a sustainable transportation system 

aiming at the prevention or reduction of the negative effects of the 

transportation system on health and environment. To give more accurate and 

complete estimates on the impact of (transport) policies on the environment, 

the use of a modelling framework, taking into account the different causal links 

between activities, trips, emissions, concentrations and exposure, is however 

required. 

 

This dissertation describes the development and application of a modelling 

framework that enables the assessment of trips, emissions, concentrations and 

exposure in The Netherlands. Besides the use of an emission model (MIMOSA) 

and a dispersion model (AURORA), the research includes the application of an 

‘activity-based’ transport model (ALBATROSS) to predict people’s activity-travel 

behaviour.  

 

The different research phases in this dissertation can be described as follows. In 

a first phase, the activity-based model ALBATROSS was used to predict activity-

travel patterns for the Dutch population. The model started by developing a 

synthetic population for The Netherlands and activity-travel schedules were 

simulated for all the individuals within this population. Next, the predicted trips  

for the entire population were assigned to a road network and traffic flows were 

converted into vehicle emissions by applying the emission factor approach from 
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the MIMOSA emission model. A comparison between the modelled emissions and 

reported emission values demonstrated good correspondence. CO2 emissions 

were overestimated by 11%. Differences between modelled and reported 

emissions of NOx, VOC, SO2 and PM varied between 3 and 26%. This result was 

not validated against measured values, because emissions cannot be measured 

at the national level. The mere replication of approximately the same emission 

values with a different model is however not really innovative. Compared to 

other travel or emission studies, though, this first step provides much more 

detailed temporal and spatial information on passenger car emissions instead of 

allowing only aggregated (yearly) emission values.  

 

In a second phase, the activity-based emission approach was further explored 

by converting the emissions into pollutant concentrations. For this purpose, the 

AURORA dispersion model was applied to simulate the transport and conversion 

of the emissions into concentrations. An important advantage of this air quality 

modelling step is that it enables to validate the activity-based model predictions 

by comparing the simulated concentrations with measured values at Dutch 

monitoring stations. Both temporal and spatial validation analyses were 

performed. Results of the statistical analysis demonstrated a very good 

correspondence between the simulated and measured concentrations of O3 (IA 

between 0.69 and 0.80). For NO2 the IA value varied between 0.40 and 0.70. 

And for PM10 IA values between 0.48 and 0.64 were calculated. The comparison 

of concentrations constitutes an end-of-pipe validation of the accuracy of the 

entire model chain. We have specifically looked at the results for NO2, a 

pollutant typical of transport which has both a strong spatial and temporal 

variation. NO2 is the pollutant best suited to attempt a validation of the 

ALBATROSS-MIMOSA-AURORA model chain because its (modelled) 

concentrations will tend to be sensitive to errors in traffic streams, emission 

functions as well as atmospheric modelling. The analysis demonstrated that the 

activity-based air quality model chain was able to simulate the hourly 

concentration patterns in the Dutch study area with sufficient accuracy.  
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And finally, in the last phase of this research, population exposure analyses were 

performed. The predicted hourly concentration fields from the ALBATROSS-

MIMOSA-AURORA modelling chain were combined with hourly information on 

people’s location to calculate the exposure. By using the population information 

from the activity-based simulation, hourly population maps were simulated and 

dynamic exposure values could be estimated.  

In a first exposure analysis, this dynamic exposure framework was applied on a 

Dutch urban area to demonstrate the importance of taking into account people’s 

travel behaviour when calculating the exposure. The exposure study in the 

Dutch urban area demonstrated that large inflows of people occur during the 

day in the urban areas, causing people to be exposed to higher concentration 

values compared to their residential (static) situation. Traditional exposure 

studies that link concentration values with residential information therefore often 

underestimate the real exposure values.  

In a second exposure analysis, these dynamic exposure values were calculated 

for the entire Dutch study area and further disaggregated according to different 

activity-based features like the gender of the person or the performed activity. 

Results demonstrate that, by neglecting people’s travel behaviour, total average 

exposure to NO2 will be underestimated by 4 % and hourly exposure results can 

be underestimated by more than 30 %. A more detailed exposure analysis 

revealed the intra-day variations in exposure estimates and the presence of 

large exposure differences between different activities (traffic > work > 

shopping > home) and between subpopulations (men > women, low socio-

economic class > high socio-economic class). Understanding exposure variations 

among activities and subpopulations can be very useful for scientific and policy 

purposes. It can provide information on locations or population groups most at 

risk, or can indicate where and when the largest exposure values occur.  

 

In summary, this dissertation demonstrated the advantages of an activity-based 

approach for air quality purposes by presenting three kinds of applications: the 

calculation of vehicle emissions, the  simulation of pollutant concentration 

patterns and the assessment of the population exposure to air pollution. 



 8 

SAMENVATTING  

Transport heeft zowel positieve als negatieve effecten op de gezondheid van 

mensen. Aan de ene kant zorgen transportverbindingen ervoor dat mensen 

allerlei diensten kunnen bereiken, contacten kunnen onderhouden en sociale 

interacties kunnen aangaan. Aan de andere kant veroorzaakt transport jaarlijks 

enkele duizenden sterftes in Europa, niet alleen door verkeersongelukken, maar 

ook door de luchtverontreiniging die veroorzaakt wordt door het verkeer. 

Transportgerelateerde emissies zijn één van de belangrijkste bronnen van 

luchtverontreiniging, en men schat dat deze luchtverontreiniging jaarlijks 

ongeveer 370 000 vroegtijdige sterftes veroorzaakt in de Europese Unie. 

Door de negatieve effecten van transport is het belangrijk om een duurzaam 

transportsysteem te stimuleren dat de negatieve effecten van transport op de 

gezondheid en het milieu vermijdt of reduceert. Om betere inzichten te 

verkrijgen in de impact van beleidsmaatregelen op de omgeving, is het echter 

noodzakelijk om de causale links tussen activiteiten, verplaatsingen, emissies, 

concentraties en blootstelling in kaart te kunnen brengen. 

 

Dit proefschrift beschrijft de ontwikkeling en de toepassing van een 

modellenkader dat in staat is om de verplaatsingen, emissies, concentraties en 

blootstelling in Nederland in kaart te brengen. Naast het gebruik van een 

emissiemodel (MIMOSA) en een verspreidingsmodel (AURORA) wordt in dit 

kader gebruik gemaakt van een activiteitengebaseerd model (ALBATROSS) dat 

instaat voor de voorspelling van de activiteiten –en verplaatsingspatronen in het 

studiegebied.  

 

De verschillende onderzoeksdelen in dit doctoraatsonderzoek kunnen als volgt 

samengevat worden. In een eerste onderzoeksfase werd het 

activiteitengebaseerde model ALBATROSS ingezet om de verplaatsingspatronen 

van de Nederlandse populatie te simuleren. Het model maakt hiervoor eerst een 

synthetische populatie aan en simuleert daarna activiteitenpatronen voor alle 

individuen die deel uitmaken van deze populatie.  Vervolgens werden de 

voorspelde verplaatsingen toegedeeld op een verkeersnetwerk en werden de 
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resulterende verkeersstromen omgezet tot verkeersemissies met behulp van het 

emissiemodel MIMOSA. Een vergelijking tussen de gemodelleerde en de 

gerapporteerde emissies toonde een goede overeenkomst aan: CO2 emissies 

werden ongeveer 11% te hoog geraamd, en de afwijkingen voor NOx, VOC, SO2 

en PM varieerden tussen 3 en 26%. Dit resultaat kan echter niet echt 

gevalideerd worden met andere (gemeten) waardes vermits emissies niet 

gemeten worden op nationale schaal, enkel geschat. Het herberekenen van 

emissies met een alternatief model op zich is niet echt vernieuwend. In 

vergelijking met andere verplaatsings –en emissiestudies die voornamelijk 

geaggregeerde (jaarlijkse) waardes rapporteren, verschaft deze eerste stap 

echter wel meer gedetailleerde temporele en ruimtelijke informatie over de 

emissies van personenvoertuigen. 

 

In een tweede onderzoeksfase werden de activiteitengebaseerde 

emissiewaardes omgezet tot concentraties. Het verspreidingsmodel AURORA 

werd aangewend om het transport en de conversie van emissies tot 

concentraties te berekenen. Een belangrijk voordeel van deze omrekeningsstap 

is dat het toelaat om de modelvoorspellingen te valideren met gemeten 

concentratiewaardes door Nederlandse meetstations. Zowel de temporele als de 

ruimtelijke voorspellingswaarde van het model werden geanalyseerd. De 

resultaten van de statistische analyse toonden goede overeenkomsten aan 

tussen de gesimuleerde en de gemeten O3 concentraties (IA tussen 0.69 en 

0.80). Voor NO2 varieerde de IA waarde tussen 0.40 en 0.70; en voor PM10 

werden IA waardes tussen 0.48 en 0.64 berekend. Deze vergelijkingsstudie kan 

beschouwd worden als een ‘end-of-pipe’ validatie van de nauwkeurigheid van de 

volledige modelketen. Daarnaast werd een meer gedetailleerde analyse 

uitgevoerd op NO2, een typische verkeerspolluent met sterke temporele en 

ruimtelijke variaties. Aangezien de NO2 concentraties sterk beïnvloed worden 

door fouten in de verkeersstromen (en de resulterende emissies en 

concentraties) is deze polluent het meest geschikt om de ALBATROSS-MIMOSA-

AURORA modelketen te valideren.  De analyse toonde aan dat het 

activiteitengebaseerde luchtkwaliteitsmodel in staat was om de 

concentratiepatronen in Nederland met voldoende nauwkeurigheid temporeel en 

ruimtelijk te kunnen voorspellen.  
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Finaal, in de laatste onderzoeksfase werden blootstellingsanalyses uitgevoerd. 

Hiervoor werden de voorspelde concentratievelden van de ALBATROSS-MIMOSA-

AURORA modelketen (per uur) gecombineerd met informatie over de locatie van 

de populatie. Door gebruik te maken van de activiteitengebaseerde simulatie 

van de populatie werden dynamische bevolkingskaarten opgesteld (eveneens 

per uur) en kon de blootstelling op een dynamische manier berekend worden.  

In een eerste blootstellingsanalyse werd het dynamische blootstellingskader 

toegepast op een stedelijk gebied in Nederland. Deze blootstellingsstudie 

bevestigde de grote toestroom van mensen gedurende de dag in het stedelijke 

gebied waardoor mensen overdag blootgesteld worden aan hogere concentraties 

in vergelijking met hun residentiële situatie. Traditionele blootstellingsstudies, 

die concentratiewaardes combineren met residentiële informatie, zullen de 

werkelijke blootstelling dus vaak onderschatten. 

In een tweede blootstellingsanalyse werden de dynamische 

blootstellingswaardes berekend voor gans Nederland en verder opgesplitst naar 

verschillende activiteitengebaseerde kenmerken zoals het geslacht van de 

persoon of de uitgevoerde activiteit. De resultaten van deze studie toonden aan 

dat, door geen rekening te houden met het verplaatsingsgedrag van mensen, de 

gemiddelde blootstelling aan NO2 met ongeveer 4% onderschat wordt en de 

uurlijkse blootstelling zelfs tot 30% onderschat kan worden. Een opsplitsing van 

deze blootstelling toonde aan dat er grote blootstellingsverschillen kunnen 

optreden tussen verschillende activiteiten (transport > werk > winkelen > thuis) 

en tussen verschillende subpopulaties (man > vrouw; lage socio-economische 

klasse > hoge socio-economische klasse). Het in kaart brengen van 

blootstellingsvariaties tussen activiteiten en tussen subpopulaties kan zeer nuttig 

zijn voor wetenschappelijke en beleidsdoeleindes. Het kan informatie 

verschaffen over de locaties of de groepen die het meeste risico lopen of 

aangeven waar en waneer de hoogste blootstellingswaardes voorkomen. 

 

Samengevat toonde dit proefschrift de voordelen aan van een 

activiteitengebaseerde aanpak voor luchtkwaliteit door het presenteren van drie 

toepassingen: het berekenen van voertuigemissies, de simulatie van 

concentraties en het berekenen van de blootstelling aan luchtverontreiniging. 
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1 GENERAL INTRODUCTION 

1.1 Problem statement 

The rapid economic development in most Western countries has led to a quasi 

linear growth in the yearly number of vehicle miles travelled since the 1970’s 

(European Commission, 2001).  Personal mobility, which increased from 17 km 

a day in 1970 to 35 km in 1998, is now more or less seen as an acquired right.  

For passenger transport, the determining factor in this rise is the spectacular 

growth in car ownership. The number of cars has tripled in the last 30 years. 

Although the level of car ownership is likely to stabilize in most countries of the 

European Union, this will not be the case in the developing countries. The claim 

about the increasing demand for mobility is also supported by research, based 

on predictions about world trade, national income and urbanization, which 

demonstrate that the demand for mobility in Europe is expected to rise 

considerably in the years to come (United Nations Economic and Social Council, 

2001; European Commission, 2001).  

 

Transport has both positive and negative effects on health. On the one hand, 

transport connections help people to reach services, maintain contacts and 

interactions. On the other hand transport causes annually hundreds of 

thousands of premature deaths in Europe. For example every year about 45 000 

people die in traffic accidents and 1.5 million people are injured in the European 

Union. Further, transport related gaseous and particulate emissions are one of 

the main sources of air pollution. Air pollution is estimated to cause around 370 

000 premature deaths a year in the European Union and an average estimated 

reduction of life expectancy of around 8,7 months per EU citizen (EU, 2006). 

Traffic air pollutants that raise most health concerns are fine particles (PM), 

nitrogen dioxide (NO2) and ozone (O3).   
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Due to the negative effects of transport, one of the key challenges of the 

modern policy making consists of promoting a sustainable transportation system 

aiming at the prevention or reduction of the negative effects of the 

transportation system on health and environment. As indicated in the EU White 

Paper “European transport policy for 2010: time to decide” (European 

Commission, 2001) a modern transport system must be sustainable from an 

economic and social as well as an environmental point of view. It is therefore 

not surprising that governments today are considering several traffic policy 

measures to reduce the negative effects of the increasing mobility on the 

environment.   

 

While formulating policy measures concerning traffic and transportation, a 

number of considerations with regard to the environment, health, etc. needs to 

be taken into account enabling as such an evaluation of the strategies producing 

the best net advantages in an integrated manner. However, often only direct 

isolated measures have been taken into account in the past by governments to 

reduce a specific targeted negative effect.  Amongst these, one can think for 

instance of measures against impaired driving for improving road safety.  We 

call these measures direct measures because they are created to contribute 

directly to solving the problem. Yet, there also exist a number of general 

mobility-related policy measures, mostly to influence transportation demand, 

but whose impact on the environment is much less straightforward to 

determine.  In other words, these general road policy measures are expected to 

have only an indirect effect on road safety and environment. They have a direct 

influence on the demand for transportation (in fact, this is usually their reason 

for existence, e.g. to reduce congestion). But since the demand for 

transportation is the principle driver behind problems regarding traffic air 

pollution, they hereby also contribute indirectly to the environment and 

ultimately thus also to human health. Examples of such general policy measures 

include, for instance, promoting telecommuting activities, stimulating car 

pooling, changing institutional aspects like shop opening hours, etc. Therefore 

there is an important challenge in developing a coherent framework in which a 

variety of inputs can be joined and their effects can be evaluated. 
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To give more accurate and complete estimates on the impact of (transport) 

policies on the environment, the use of a modelling framework, taking into 

account the different causal links between activities, trips, emissions, 

concentrations and exposure, is preferred.  Such an integrated approach to 

describe and mitigate environmental problems is also present in the DPSIR-

chain, developed by the Dutch RIVM (Rijksinstituut voor Volksgezondheid en 

Milieu) in the late 1980’ties and later adapted by the European Environmental 

Agency (Jol and Kielland, 1997).  The DPSIR is a conceptual model used to 

describe and analyse environmental problems. Driving forces (D) like transport 

and industry lead to environmental pressures (P) that degrade the state (S) of 

the environment that has an impact (I) on human health or the environment 

which makes society carry out a response (R) through various actions. In Figure 

1 the DPSIR concept has been illustrated using the case of air pollution with a 

focus on transport. This concept can be considered as a leitmotiv throughout this 

PhD manuscript and the principle motivation for this study can therefore be 

summarized as: Providing a framework that enables an assessment of general 

traffic policy measures on transport, emissions, concentrations and human 

health”.  

 

Further, besides the motivation out of modelling perspective, another important 

topic in this research concerns the improvement of the travel demand link in the 

problem chain. To provide more insight into people’s travel behaviour, 

information is required on travel aspects like: ‘why are people travelling’, ‘who is 

performing the trips’, ‘when are trips performed’, etc. Also, insights need to be 

present on the interactions among individual and household travel decisions to 

be able to give good estimates on the impact of transportation control measures 

(TCMs) on the travel behaviour. Traditional four-step trip-based models lack in 

the ability to model these interactions. These trip-based models focus on 

individual trips, ignoring the spatial and temporal interrelationships between all 

trips. In this PhD study a different approach for travel demand is therefore 

adopted: an ‘activity-based’ approach.  
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The rich information provided by activity-based transportation models (i.e. 

information on why, when and where people are travelling) enables a more 

accurate approach to assess the impact of transport on the environment. The 

activity-based approach models an individual’s daily pattern of activities in its 

entirety, taking into account his/her role in the household and experiencing 

various constraints like time availability and coordination with other household 

members. Further, activity-based models offer a technique to micro-simulate 

activity patterns of a population with a high resolution in space and time. Due to 

these advantages, the use of an activity-based approach in the modelling 

framework should enable a more accurate assessment for air pollution exposure. 

 

 

 

 

Figure 1. Illustration of the DPSIR concept for transport related air pollution 
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1.2 Research objectives 

The overall objective of this doctoral dissertation work is “To develop and 

evaluate an activity-based modelling methodology for the assessment of 

population exposure to air pollution”.  

 

This approach should involve all the compartments of the DPSIR-concept, as 

mentioned in the previous section, to give a complete overview of this 

environmental problem of air pollution exposure. First the activities and the 

travel demand of people should be modelled (D), then the emissions resulting 

from the modelled vehicle trips need to be simulated (P), the concentrations and 

the exposure of people to these pollutant concentrations should be calculated 

(S) and the health impact (I) has to be assessed. Finally, this exposure model 

should allow for evaluating various responses (R) by recalculating all the values 

in the different compartments for a certain scenario.  

 

The overall objective can by achieved by performing the following three specific 

tasks.  

- Calculate and validate the emissions resulting from passenger car trips by 

using the trip information from an activity-based model (I) (D,P) 

- Calculate and validate the pollutant concentrations by converting the 

activity-based emissions into ambient pollutant concentrations (II) (S) 

- Establish a population exposure model using the time series population 

information from an activity-based model and detailed air quality data (III, 

IV, V) (I) 

 

The original articles that tackle each task in detail are listed in parentheses, their 

link with the components of the DPSIR-chain is also indicated. Each of these 

specific tasks will be presented in more detail in chapters 3 to 6. Developing new 

models or applying large adjustments on existing models was not part of this 

thesis. It was rather recommended to apply and combine existing models from 

the different domains. Therefore model experts from each domain were involved 

to achieve the thesis objectives efficiently. Information on the models used for 

the listed tasks can be found in chapter 2.  
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1.3 Background on exposure assessment 

Exposure assessment involves a description of the population exposed, the 

pollutants and the duration of the exposure. This section briefly describes the 

assessment methods used in current exposure studies and lists the projects that 

apply an integrated exposure analysis.  

1.3.1 Exposure assessment methods 

Human exposure may be estimated by different methods. Basically, exposure 

methods can be classified in direct and indirect approaches. 

 

1.3.1.1 Direct methods  

Personal monitoring and biological monitoring are direct methods to measure 

exposure to air pollution. Personal portable samplers can be used in personal 

monitoring to measure the concentrations a person is exposed to. Biological 

monitoring is also a personal monitoring method where the concentration of a 

pollutant or the metabolite of a pollutant is determined in biological material e.g. 

urine or blood. 

 

Direct exposure methods have the advantage that they give the ‘correct’ 

exposure results. Personal samplers e.g. indicate the amount of pollutants in the 

immediate vicinity of the individuals. By planning large scale experiments with  a 

lot of personal samplers (e.g. in a sensor network) good insights can therefore 

be provided on the variation in exposure between individuals and locations. 

Further, by taking into account measures or estimates on parameters like 

breathing rate, the inhaled dose for specific pollutants can be assessed by using 

this direct method. Biological monitoring methods immediately measure the 

amount of pollutants taken in by the individual over a certain period of time (see 

e.g. Koppen et al. 2008). However, exposure varies a lot between individual 

receptors and is determined by numerous parameters. The main drawback of 

using these direct methods is therefore the amount of time and receptors 

(people) that is necessary to draw general conclusions about the population 

exposure.  
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1.3.1.2 Indirect methods  

 

Fixed monitoring stations 

Indirect exposure studies determine personal or population exposure indirectly 

by combining  pollutant concentration information with information about the 

time people spend in specific environments. A crude indirect method is the use 

of fixed location measurements, e.g. from the ambient air quality monitoring 

stations, to obtain an indicator for population exposure (Dockery et al. 1993; 

Pope et al. 2002; Pope et al. 2009). However, fixed monitor stations are 

generally poor indicators of personal exposure as they represent a single point in 

space and they are not able to reflect the variety of personal exposures. 

Monitoring is also extremely costly, so the density of these monitoring networks 

is often limited. Moreover, by using only residential address information to 

determine people’s location, this method implicitly assumes that people are 

always at home and often underestimates the ‘real’ exposure of people 

(assuming that the exposure at out-of-home locations such as at workplaces and 

near traffic is generally higher than at home). For epidemiological purposes the 

residential exposure information is however of much interest since exposure-

health functions, developed in the epidemiological research, are mainly based on 

this kind of exposure information (Dockery et al. 1993; Pope et al. 2002). On 

the other hand, for policy purposes it would be interesting to obtain more 

information about where and when the exposure occurs and who is at risk, 

therefore taking into account people’s travel behaviour during the day. 

 

Microenvironment approach 

Another indirect method is the microenvironmental approach where air pollution 

data in different microenvironments are combined with the time people spend in 

each of these microenvironments. Using the microenvironmental approach the 

integrated exposure of an individual can be calculated as: 

 

j

J

j
ji tcE *∑=   

 



 24 

where Ei is the integrated exposure of an individual i who visits J different 

microenvironments with a concentration Cj in microenvironment j during time 

period tj.  

 

Exposure models like NEM, AirPEx and SHAPE are based on an indirect exposure 

method using this microenvironmental approach (Jenssen, 1999). These models 

combine air quality data in selected microenvironments with the time-activity 

patterns of individuals that describe the time that individuals spend in these 

microenvironments. This method provides better indicators of personal exposure 

than using fixed monitors but they are usually limited to studies of a small 

number of subjects.  

 

Time-activity patterns and dispersion models 

For many uses, the need is to understand much more about the geographic 

variation of both pollutants and populations. Combining the results from 

pollutant dispersion models with information on the location of people, as also 

used in the current work, defines therefore the last indirect exposure method. 

This method takes into account the spatial and temporal variation in both the air 

pollution and the population. This approach involves the use of a geographic 

information system (GIS) to match the pollutant data exactly with the 

population data. This method is perhaps the most complete exposure 

assessment method since people’s travel behaviour is also taken into account 

(instead of using only residential information) to calculate the population 

exposure. However, due to the fact that accurate information from different 

sectors is required (both travel behaviour and air quality), this kind of 

interdisciplinary method is usually less explored compared to studies using the 

fixed monitor approach.  

 

Examples of this approach can be found in Kousa et al. (2002) and Marshall et 

al. (2006). In Kousa et al. (2002) the spatial and temporal variation of the 

average exposure of an urban population was evaluated by combining 

population data with predicted concentration data. Population data however did 

not originate from a population simulation procedure, but from combining 

information on the home/work locations with standard time-activity patterns. 
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Marshall et al. (2006) examined the distributional characteristics of the exposure 

and inhalation intake for certain subgroups of the population. As in the doctoral 

research, this study was restricted to pollutants of outdoor origin, i.e.. it does 

not incorporate intake in a microenvironment from direct emissions into that 

microenvironment. The population data, however, were not simulated, but 

extracted from geocoded activity diaries. By approaching a large number of 

respondents in this survey, still good insights were provided on the variations in 

exposure between locations and between people. 

  

In the next section a number of projects are listed that apply an integrated 

modelling approach to assess both travel and environmental aspects in one 

general framework. 

 

1.3.2 Integrated exposure analysis 

The complexity of today’s policy decision making has motivated several research 

teams to develop policy frameworks aimed at evaluating the impact of 

transportation policy measures on emissions, concentrations and exposure.  This 

section provides an overview of some important initiatives, mostly carried out as 

(part of) European projects.  At the same time, the most important differences 

of those projects compared with the current work are addressed. 

 

The HEAVEN project (Healthier Environment through Abatement of Vehicle 

Emission and Noise) is a European project (HEAVEN, 2003) funded under the 

Information Society Technology Programme (1998-2002) (Tomassini, 2003).  Its 

main objective was to develop and demonstrate a decision support system 

(DSS) which can evaluate the environmental effects (air quality and noise 

quality – both emissions and dispersion forecasting) of Transportation Demand 

Measures (TDMs) in large urban areas.  The project was applied under real-life 

conditions in the project cities of Berlin, Leicester, Paris, Prague, Rome and 

Rotterdam.  The most important differences of the HEAVEN project compared to 

this work are: 
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- The HEAVEN project was set up as a tool to obtain a description and 

inform professional users and the public in near real-time about the 

traffic and environmental situation in urban agglomerations.  It therefore 

combines near real-time traffic flow and environmental information into 

emissions and dispersion models.  The approach in this study is rather 

different.  Although the model framework presented here will also 

provide the ability to estimate effects on a very low level of detail, both 

in time and space, it is not the objective to create (near) real-time 

forecasts and feed the model with real-time traffic flow and 

environmental information to provide online scenario testing.  The 

presented framework in this research should therefore be seen as an off-

line model.  

- The HEAVEN project does not model the exposure to pollutants.  It does 

model the emission and dispersion of pollutants, but since there is no 

information available on activity behaviour of individuals, it is not 

possible to estimate the exposure to pollutants at a particular point in 

time and space.  

- The HEAVEN project deals with TDMs in the field of infrastructure and 

traffic management and regulation, such as changes in vehicle fleet, 

access restrictions, speed limits, park-and-ride schemes and changes to 

the street network.  The proposed model in the current work however 

enables to assess the effects of a wider range of TDMs including also 

measures like telecommuting, road pricing, flexible working hours, …  

 

The HEARTS project (Health Effects And Risks of Transport Systems) is a 

European research project carried out under the Fifth Framework Programme 

(WHO, 2006). The HEARTS project provides a method for estimating the health 

effects of air pollution, noise and road accidents and an instrument for 

integrating health impact assessment in the decision-making on and assessment 

of transport and land-use policies in urban areas. Case studies were carried out 

in the cities of Leicester, Lille and Florence. The most important differences of 

the HEARTS project compared to the current research are: 
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- The HEARTS project models, in detail, over relatively smaller areas of 

the city across peak and off-peak periods. This is rather different from 

the current work since the activity-based transportation model enables 

complete time-segmentation for different time periods during a day and 

thus enables to create complete time-segmented origin-destination (OD) 

–information. 

- Concerning the traffic modelling, within the three cities running case 

studies, classical traffic models have been used. These include a typical 

static 4-step transport model such as EMME/2 (Constantin, 2000) and a 

typical micro-simulator such as PARAMICS (see paramics-online.com/).  

- The HEARTS project also models noise and the effects on health.  These 

aspects are not covered in the current project. However, the necessary 

information to enable such analyses is available and can be used as 

input for noise modelling or for health impact studies.   

 

The TRANS-TOOLS project (TOOLS for TRansport forecasting ANd Scenario 

testing) is a research project co-funded by the European Commission under the 

6th Framework Programme for Research and Development (Burgess and 

Nielsen, 2008). TRANS-TOOLS aims to produce a European transport network 

model covering both passengers and freight, as well as intermodal transport.  

The project builds on several existing transport models and networks, such as 

SCENES, VACLAV, NEAC and SLAM.  Some notable differences with this research 

project are: 

- The TRANS-TOOLS project deals with a strategic European-wide 

transport model and is designed to produce European level transport 

forecasts, both for freight and passenger transport.  The activity-based 

model used within this study deals with national passenger transport 

only. 

- The TRANS-TOOLS project uses the classical 4-stage transportation 

approach (trip generation, trip distribution, modal split and assignment), 

whereas in this project an activity-based approach was adopted.  For 

example, this implies that in the TRANS-TOOLS project trip generation in 

passenger transport is driven by socio-demographic and economic 
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variables of the zones, whereas in the presented study trip generation is 

also driven by the activities that households perform. 

- The TRANS-TOOLS project makes forecasts for 3 time periods (peak, off 

peak and rest of the day) whereas this modelling framework enables 

continuous time segmentation throughout any user-defined period of the 

day. 

 

The aim of the ISHTAR project (an Integrated Models Suite for Sustainable 

Transport Planning) was to build an Integrated Suite of software models to 

assess the impacts of urban policies on the quality of life, and in particular on 

traffic congestion, air quality, human health and the conservation of monuments 

(Agostini et al. 2005) . Differences between ISHTAR and the current study are: 

- Concerning the traffic modelling, an analysis of the available transport 

models was part of the ISHTAR project.  Based on this screening, the 

VISUPOLIS traffic model was described as the best tool to integrate 

within the suite. However, future users are not obliged to use this model 

and can link their own traffic model with the ISHTAR suite, indicating 

that the traffic modelling part was not the main research topic in this 

project. In the doctoral research, however, this topic is one of the main 

research themes. 

- The suite calculation path goes through the modelling of traffic safety, 

noise emissions and monuments degradation. These aspects are not 

covered by the current work although they might be included in future 

research since necessary data for performing these analyses is available. 

- The ISHTAR framework is primarily developed for use within urban areas 

whereas the study area of the current work is larger and also wants to 

take into account inter-city issues. 
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1.4 Study area 

To illustrate the feasibility of the integrated exposure framework, this research 

will involve a case study in one specific study area: The Netherlands. Reasons 

counting in favour of this choice can be found in the activity-based modelling 

part since, at the beginning of the research, a fully operational activity-based 

model was already available for The Netherlands.  

 

The Netherlands cover an area of approximately 42 000 km² with a population 

of around 16 million people. Some well-known cities in the Netherlands are 

Amsterdam, The Hague, Rotterdam and Utrecht. Exposure to air pollution is 

considered a major problem in The Netherlands, as well as in neighbouring 

regions. A European analysis e.g. estimated that the average life expectancy in 

The Netherlands was reduced by about one year in 2000 because of exposure to 

pollutants such as PM2.5 (Amann et al. 2005). 

 

Future activity-based model developments however can facilitate their 

application for other study areas. Recent research projects for example aim at 

establishing an activity-model for Flanders (Belgium) and specifically focus on 

the flexibility of the activity-based platform towards ‘foreign’ data (i.e. data from 

other years or other regions) (Janssens et al. 2007). Of course, these 

developments can result in applications in other study areas based on the 

approach presented in this thesis.  
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1.5 Outline of the dissertation 

This introductory chapter gives a short introduction to the state of the art in 

exposure analysis as well as a rough description of the problem. It also indicates 

the need for and the advantages of an exposure modelling framework.  

 

In Chapter 2 more background information is presented on the different models 

included in the PhD modelling framework. In this work three types of models are 

interrelated to establish an integrated exposure framework: an activity-based 

transport model, an emission model and a dispersion model. Chapter 2 presents 

the general characteristics of these models and describes the specific model 

used in the modelling framework of the PhD project. For each model the model 

input and its configuration are described.  Changes performed within the scope 

of the current research are listed separately. 

 

Chapters 3 to 6 deal with the specific steps in the development towards an 

integrated exposure framework. In chapter 3 the first step, the link between the 

activity-based transport model and the emission model, is described. This 

chapter presents the methodology to couple the activity-based model 

(ALBATROSS) with the emission model (MIMOSA) to calculate the vehicle 

emissions in the Netherlands. The estimated emission results are compared with 

reported emissions to validate the applied methodology. Chapter 4 continues on 

the work described in Chapter 3 and describes the methodology to calculate 

pollutant concentrations in the Netherlands based on the emission results from 

the activity-based emission approach. This chapter describes the conversion of 

the emissions into concentrations by using the dispersion model AURORA. The 

estimated concentration results are compared with measured concentrations at 

Dutch measurement stations to validate the applied methodology..  

 

By combining these concentration data with the activity-based population data, 

the integrated exposure modelling framework was established In Chapters 5 and 

6 two applications of the integrated exposure framework are presented. Chapter 

5 describes the calculation of population exposure in a Dutch urban area and 

mainly focuses on differences between the activity-based exposure approach 
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and the traditional static exposure approach assuming that people are always at 

home. In Chapter 6 the study area is extended to the whole Netherlands and 

exposure is disaggregated based on information from the activity-based 

framework.  

 

Chapter 7 summarizes the new information and conclusions resulting from this 

PhD work. It concludes with some recommendations for future studies. 

 

To clarify the content of the different chapters in this manuscript Figure 2 gives 

an overview of the developed exposure modelling framework and indicates in 

which chapter the different components of the framework are further explored. 

Parts of this figure will be reused in the methodological section from their 

corresponding chapters to clarify the adopted methodology in this PhD. 

 

 

  

Figure 2. Overview of the exposure modelling framework with references to the relevant 

chapters in this book. 
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2 OVERVIEW AND DESCRIPTION OF USED 

MODELS 
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2.1 Introduction 

The evaluation of population exposure to air pollution requires spatial and 

temporal information on both air quality and population attributes. In this 

research an integrated model framework was therefore established including the 

following models: an activity-based model (to derive information on the 

population and the travel patterns), an emission model (to convert trips into air 

emissions) and a dispersion model (to convert the air emissions into 

concentration levels). As it was not the purpose of this PhD to develop new 

models, but mainly to combine existing models in an innovative way, modelling 

experts from the different research institutes (IMOB, VITO, TU/e) were closely 

involved to perform the modelling steps efficiently.  

 

In this chapter some general information is provided on each model type and a 

description is given of the specific model that was used in the current research. 

The model changes performed within the scope of this research are listed 

separately. A schematic overview of the different models being part of the 

modelling framework can be found in Figure 2 from the introductory chapter.  

 

2.2 Activity-based modelling 

2.2.1 Overview of the activity-based modelling approach 

2.2.1.1 The evolution towards an activity-based approach 

Modelling traffic patterns has always been a major area of interest in 

transportation research. Since 1950, due to the rapid increase in car ownership 

and car use in the US and in Western Europe, several models of transport mode, 

route choice and destination were used by transportation planners. These 

models were necessary to predict travel demand on the long run and to support 

investment decisions in new road infrastructure which originated from this 

increased level of car use. In these days, travel was assumed to be the result of 

four subsequent decisions which were modelled separately: trip generation, trip 

distribution, modal split and trip assignment. Within transportation literature 
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those models are also referred to as Four-Step trip-based models (Ruiter and 

Ben-Akiva, 1978). Many of these aggregate Four-Step models failed to make 

accurate predictions. Their major drawback clearly is the focus on individual 

trips, where the spatial and temporal interrelationships between all trips are 

ignored. Furthermore, another drawback is the complete negation of travel as a 

demand derived from activity participation decisions. 

 

From the mid seventies onwards the original Four-Step models were replaced by 

tour-based models (Daly et al. 1983). In the tour-based model, trips are 

explicitly connected in chains that start and end at the same home or work base.  

By means of this property, the spatial interrelationship, which was so apparently 

lacking in the Four-Step trip based models, is dealt with. Nevertheless in these 

models, travel still has an isolated existence and the question why people 

undertake trips is completely neglected. This is why activity-based 

transportation models came into play.  

 

The contributions of Hägerstrand (1970), Chapin (1977) and Fried et al. (1977) 

are the undisputed intellectual roots of activity analysis. Hägerstrand suggested  

the time-geographic approach characterizing a list of constraints on activity 

participation. Chapin has identified patterns of behaviour across time and space. 

Fried dealt with the social structure and the question of why people participate 

in activities. These contributions came together in a study of Jones et al. (1983), 

where activities and travel behaviour were integrated. This was the first attempt 

to model complex travel behaviour with an activity-based approach.   

 

The major idea behind activity-based models is that travel demand is derived 

from the activities that individuals and households need or wish to perform, with 

travel decisions forming part of the broader activity of scheduling decisions 

(Ettema and Timmermans, 1997). Travel is merely seen as just one of the 

attributes. Moreover, decisions with respect to travel are driven by a collection 

of activities that form an agenda for participation. Travel should therefore be 

modelled within the context of the entire agenda, or in other words, as a 

component of an activity scheduling decision.  



 36 

Activity-based approaches aim at predicting which activities are conducted, 

where, when, for how long, with whom and the transport mode involved. 

 

McNally (2000) has listed 5 themes which characterize the activity-based 

modelling framework: 

(i) travel is derived from the demand for activity participation; 

(ii) sequences or patterns of behaviour, and not individual trips are the 

relevant unit of analysis; 

(iii) household and other social structures influence travel and activity 

behaviour; 

(iv) spatial, temporal, transportation and interpersonal 

interdependencies constrain activity/travel behaviour; 

(v) activity-based approaches reflect the scheduling of activities in time 

and space. 

 

In the more recent work from Davidson et al. (2007) a synthesis of the first 

practices of activity-based models for travel demand is provided and the main 

features of this ‘new’ generation of regional travel demand models are listed as 

follows: 

(i) an activity-based platform, implying that modelled travel is derived 

within a general framework of the daily activities undertaken by 

households and persons; 

(ii) a tour-based structure of travel where the tour is used as the basic 

unit of modelling travel instead of the elemental trip; 

(iii) micro-simulation modelling techniques that are applied at the fully-

disaggregate level of persons and households.  
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Over the last years, several research teams have focused on building activity-

based models of transport demand. Partial and fully operational activity-based 

micro simulation systems include the Micro-analytic Integrated Demographic 

Accounting System (MIDAS) (Goulias and Kitamura, 1996), CEMDAP (Bhat et al. 

2004), Prism Constrained Activity-Travel Simulator (PCATS) (Kitamura and Fujii, 

1998), SIMAP (Kulkarni and McNally, 2000), ALBATROSS (Arentze and 

Timmermans, 2000; 2004; 2005), Florida’s Activity Mobility Simulator (FAMOS) 

(Pendyala et al. 2005), the Travel Activity Scheduler for Household agents 

(TASHA) (Miller and Roorda, 2003), the FEATHERS framework (Janssens et al. 

2007) and other systems using a nested-logit framework (Bowman and Ben 

Akiva, 2001).  Other AB models currently in use are present in New York City 

(Vovsha et al. 2002), Columbus (Vovsha and Bradley, 2004) and San Francisco 

County (Bradley et al. 2001).  

 

2.2.1.2 Advantages for air quality purposes 

Although the activity-based model was originally developed to gain more 

insights into people’s travel behaviour, the activity-based approach for transport 

modelling also offers advantages for other sectors. In this section the main 

benefits of using an activity-based approach for air quality purposes are 

presented.  

 

Transportation information 

The accuracy of air emissions and air quality estimates can be no better than the 

underlying transportation information (Int Panis et al. 2001; 2004). Due to the 

richer set of concepts which are involved in activity-based transportation models 

the estimate of some important transportation variables can be improved by 

using an activity-based approach (Shiftan, 2000). E.g. vehicle energy use and 

emissions depend not only on distance and the driving speed, but also on the 

number of trips, the time between them, and whether the engine was hot or 

cold when started (Recker and Parimi, 1999). The activity-based prediction of 

trips as parts of a tour can identify whether a trip is a cold or a hot start.  
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Furthermore, an activity-based model, by predicting which activities are 

conducted, where, when, for how long, with whom and the transport mode 

involved, gives in addition information about important transportation variables 

such as vehicle miles travelled (VMT), travel mode and occupancy rates for auto 

modes, travel by time of day and time/location of starts. These variables all are 

relevant and important for vehicle emission analysis.  

 

Temporal travel and emission analysis 

In most traffic air pollution studies aiming at a temporal differentiation of traffic 

emissions, either hourly traffic counts are used (e.g. Ghenu et al. 2008) or the 

emission model applies normalised distribution factors expressing the time 

dependency of traffic with respect to peak values (e.g. Schrooten et al. 2006). 

As a consequence of this time factor approach, similar variations in traffic flows 

are assumed over the entire region and local characteristics are usually not 

taken into account. An activity-based approach, however, does not work with 

traffic counts nor peak hour predictions, but simulates entire activity-travel 

schedules covering a complete day and taking into account local and temporal 

variations in travel behaviour. Extraction of the simulated travel information, can 

therefore provide temporal travel and emission values more accurately.   

 

Activity-based policy measures 

Since the demand for transportation is the principle driver behind the 

environmental problem of traffic air pollution, governments are considering 

several TDMs to reduce the negative impact of the increasing mobility on the 

environment. However, for a number of TDMs such as congestion pricing, 

promoting telecommuting and stimulating car pooling, the impact on the 

environment is not straightforward to determine. Current transportation 

forecasting models use the "trip" (usually a vehicular trip) as the basic unit of 

analysis and prediction. Consequently, by starting with the trip, these 

transportation models are less accurate in addressing issues related to activities 

(e.g. telecommuting, teleshopping, trip chaining behaviour,…). Activity-based 

models on the other hand are able to evaluate the impact of these measures on 

travelers’ responses, and due to this, the impact on travel behaviour and air 

quality can be better assessed.  
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Secondary effects 

One of the main advantages of the activity-based modelling system is its ability 

to consider the secondary effects of TCMs (Shiftan and Suhrbier, 2002). 

Secondary effects are adjustments to the activity pattern that have to be made 

in response to the primary effect. For instance, a public transport subsidy may 

make a commuter change his or her mode from drive alone to public transport; 

this is the primary effect of the TCM. However, because the person no longer 

drives to work, there can be no stop on the way back to do the shopping. 

Therefore, upon returning home, the person takes the car and drives to a 

nearby store. This is the secondary effect. In such cases, the environmental 

advantages of this TCM may be limited, and the reduction of the work auto trip 

is partially offset by a new shopping auto trip. Due to the considered constraints 

and household interactions, an activity-based approach is most suited to deal 

with these secondary effects (Shiftan, 2000).  

 

Exposure assessment 

Conventional exposure studies take into account variations of the emission 

sources, but typically assume static receptor conditions (Pope et al. 1995; Pope 

et al. 2009; Walker et al. 1999). According to this approach the receptors (i.e. 

the people) are considered to be always at home and, therefore, only exposed to 

pollutants at their home address. Attempts for assessing dynamic exposure are 

very rare and often focus on long time scales (e.g. De Ridder et al. 2008a; 

2008b). However, when temporal information is available on both the sources 

(i.e. the emissions) and the receptors of the air pollution, a dynamic exposure 

procedure can be established. An activity-based approach takes into account 

that people move during the day and therefore this approach can account for the 

exposure to pollutants at different locations and different moments. Further, by 

taking advantage of information on ‘which activity is performed’ or ‘who is 

performing the activity’, the activity-based procedure allows for a disaggregated 

exposure analysis according to different subgroups. This information can for 

example give more insights into the subgroups most at risk.  

 

 



 40 

2.2.1.3 Applications of activity-based models for environmental 

purposes 

Although the advantages of an activity-based approach for air-quality purposes 

are well-known (see section 2.2.1.2), models that have been developed along 

these lines are still scarce. Perhaps the most ambitious project in this field of 

research is TRANSIMS (Rickert and Nagel, 2001). TRANSIMS, the 

TRansportation ANalysis and SIMulation System, was developed at the Los 

Alamos National Laboratory as part of the multi-track Travel Model Improvement 

Program (TMIP). The TRANSIMS project is a major effort to develop new 

integrated transportation and air quality forecasting procedures to satisfy the 

Clean Air Act Amendments (CAAA) and the Intermodal Surface Transportation 

Efficiency Act (ISTEA). The detailed simulation in TRANSIMS, in comparison with 

simplistic and unrealistic aggregate link cost functions used in conventional 

models, provides increased accuracy in prediction of environmental impacts 

(e.g. emissions) and travel times. An important disadvantage of this micro 

simulation approach is the large amount of data required to make accurate 

predictions on this detailed time-space level. Considering the fact that a lot of 

policy questions do not require such a time-consuming microscopic analysis and 

that detailed analyses are not suited for very large study areas, less detailed 

emission estimations are desirable. Moreover, TRANSIMS is somewhat limited 

regarding the prediction of activity patterns. Activity schedules of simulated 

individuals are drawn from activity data sets and hence the model, on that level, 

is insensitive to changed space-time conditions that may be involved in 

applications. 

 

Another application of activity-based models for air quality can be found in 

Recker and Parimi (1999). They developed a microscopic activity-based 

framework to analyze the potential impacts of TCMs on vehicle emissions. 

Although this approach is very useful in estimating upper bounds of certain 

policy measures in reducing vehicle emissions, their framework falls short of 

actually forecasting changes in travel behaviour.  
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In Shiftan (2000) the first application of a real activity-based model in the US 

was examined, evaluating the advantages of the Portland activity-based model 

for emissions and air quality analyses against the use of a traditional four-step 

model. Only qualitative comparisons were made. Afterwards, this research was 

further explored, evaluating the transportation and air-quality impacts of four 

travel demand strategies with the Portland activity-based model (Shiftan and 

Suhrbier, 2002). The following strategies were evaluated: pricing of automobile 

travel, telecommuting incentives, transit improvements and a combination of the 

three measures. By predicting a wider range of impacts and taking indirect 

effects into consideration, the activity-based approach proved to be very useful 

in determining some important variables for emission estimation. 

 

The most recent accomplishment in this line of research concerns the integration 

of the Canadian version of the MOBILE6.2 emission model with the travel 

demand modelling capabilities of the Travel Activity Scheduler for Household 

Agents (TASHA) (Hatzopoulou et al. 2007). This study provided an initial 

attempt at quantifying vehicle emissions in the Greater Toronto Area with an 

activity-based transport model. By exploiting travel information from the TASHA 

model, travel activity inputs (for light-duty gasoline vehicles) were provided for 

the MOBILE6.2 emission model and emissions were calculated more accurately 

compared to the default version by taking into account region specific 

information on activities and vehicles (on hourly basis). In a next phase, 

Hatzopoulou also calculated pollutant concentrations by applying the CALPUFF 

model (Hatzopoulou, 2008). 

 

Unfortunately, both the Portland and the Canadian study demonstrate the 

advantages of the activity-based approach for the analysis of environmental 

topics, but do not carry out an independent benchmark based on external 

information of the predicted emissions or concentrations. Further, the Portland 

study has not looked beyond emissions. 
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2.2.2 ALBATROSS  

For use within the exposure modelling framework, the activity-based model 

ALBATROSS, developed at the Eindhoven University of Technology (TU/e), was 

selected. The version of the Albatross model used in this study is version 2.0, 

which was the latest one at the time of this study. Prof. dr. Theo Arentze from 

the TU/e is kindly acknowledged for his support with the ALBATROSS modelling 

procedures. 

 

The activity-based model ALBATROSS, A Learning-Based Transportation 

Oriented Simulation System, was developed for the Dutch Ministry of 

Transportation, Public Works and Water Management as a transport demand 

model for policy impact analysis. The model is able to predict which activities are 

conducted, when, where, for how long, with whom, and the transport mode 

involved. Albatross is unique in that ‘decision rules’ as opposed to ‘principles of 

utility maximization’ underlie the scheduling decisions. Furthermore, the rather 

detailed classification of activities and inclusion of a full set of space-time and 

scheduling constraints are distinctive features of the model compared with most 

other models.  

 

2.2.2.1 Model input 

ALBATROSS is a computational process model that relies on a set of decision 

rules, which are extracted from observed activity diary data, and dynamic 

constraints on scheduling decisions, to predict activity-travel patterns (Arentze 

and Timmermans, 2000; 2005; Arentze et al. 2003). To simulate activity-travel 

patterns for a whole population, information on both the population 

characteristics and their activity-travel patterns is required. Other necessary 

input data include physical information about the study area. 

  

Population data 

In the Dutch case study presented in this dissertation, ALBATROSS was used to 

simulate activity schedules for the individuals within the Dutch population. The 

model was estimated by Arentze and Timmermans (2005) on approximately 

10,000 person-day activity-diaries collected in the period of 1997-2001 in a 

selection of regions and neighbourhoods in the Netherlands. In a sub application 
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of the model, a synthetic population was created with iterative proportional 

fitting (IPF) methods, using demographic and socio-economic geographical data 

from the Dutch population and attribute data of a sample of households 

originating from a national survey including approximately 67,000 households. 

IPF is used to generate a sample consistent with known statistics of the target 

population. In IPF the sample defines an initial frequency cross table of all 

attributes involved. Demographic data are used to define constraints on 

marginal distributions of the tables. IPF is applied to find cell proportions that 

are consistent with given marginals.  

 

Attributes of households/individuals that Albatross considers as potential 

predictors of choice behaviour include (see also Arentze and Timmermans, 

2000; 2005): 

- Household type: single non-worker, single worker, double non-workers, 

double one-worker, double two workers 

- Age of the oldest member of household: younger than 25 years, 25-44, 45-

64, 65 or older 

- Age of the youngest child: no children, younger than 6 years, 6-11 years, 12 

or older 

- Socio-economic class: very low household income, low, average, high 

- Cars: number of cars in household 

- Gender of person 

- Availability of car for person (capable of driving) 

- Number of weekly working hours of person 

 

The first five attributes are measured at the household level, whereas the last 

three attributes relate to individuals within households. In the Netherlands 

several nationwide surveys exist that are updated on a regular basis and can 

provide these attribute data at household/individual level. For the ALBATROSS 

model development, data were used from the Dutch national travel survey 

(NTS) (‘Onderzoek Verplaatsingsgedrag’ or ‘OVG’ in Dutch), which is used by the 

Dutch Ministry of Transportation for travel demand analysis and forecasting. The 

Dutch NTS records trips of persons of 12 years or older of households that 

participated in the survey. Although it is a trip-based database, the complete list 
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of household and individual attributes is included in every recorded trip. 

Therefore, household and individual information about all persons that 

participated in the survey can be derived from the trip data.  

 

Activity-travel data  

The empirical derivation of the model is based on several pooled activity diary 

sets that were collected specifically for various research projects. These include 

the following: 

(i) the Zwijndrecht/Hendrik-Ido-Ambacht data collected for Albatross 1.0;  

(ii) the Voorhout data set collected for investigating the impact of a new 

railway station ;  

(iii) a data set of nationwide random neighborhoods collected for 

investigating the impact of urban form on activity-travel patterns  

(iv) the Amsterdam/Utrecht/Almere data set collected for the Amadeus 

research program. 

 

Except for the last data set, the diary formats used in the different surveys were 

the same. They all used an open format, a precoded activity scheme, and similar 

classifications of activities and attributes. The Amadeus diary differed in that 

travel data were reported at the more detailed trip-stage level and the activity 

classification was less detailed.  

 

Information on the classifications of activities and choice facets used in 

ALBATROSS can be found in Appendix A and in Arentze and Timmermans (2000, 

2005). The distinction between fixed and flexible hereby refers to activities that 

supposedly belong to the schedule skeleton (fixed) and those that supposedly 

are scheduled on a daily basis (flexible). The duration and start time of fixed 

activities are predicted on a continuous time scale, whereas in the case of 

flexible activities these facets are treated as a choice between pre-defined 

discrete alternatives.  
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Physical information 

The 4-position postcode area (4PCA) was chosen as the spatial unit for the 

ALBATROSS database and model. The Netherlands counts a total of 

approximately 4000 4PCA’s. Given a population of roughly 16 million people, the 

average number of individuals per 4PCA is approximately 4000 people. The 

average size is approximately 880 ha and area size is inversely related to urban 

density. For the highest level of urban density measured on a 5-point scale the 

average size is 109 ha and for the lowest level (i.e. rural areas) average size is 

14 210 ha. Therefore, we should keep in mind that the identification of location 

is more precise in urbanized areas than in non-urbanized areas.  

 

Distance data between locations for car and slow modes (walking, cycling) are 

derived from an existing national transport network data file called 

‘Basisnetwerk’. This file describes the nationwide road network down to the level 

of neighborhood roads. Each record describes a network link in terms of begin 

and end node, average speed by car, length, and type. Car distance data 

derived from the Basisnetwerk are based on fastest routes, whereas slow mode 

data are based on shortest routes. In the Basisnetwerk file, link speed 

represents an average flow speed on the link concerned throughout the day at 

the level of individual links for main roads. To estimate time-dependent travel 

times, free-floating, morning-peak, and evening-peak travel time data are used, 

which are available through the current national model system. Time-of-day-

dependent travel time adjustment coefficients for each pair of PCA’s were 

derived from these data. Besides information on car trips and slow modes, 

public-transport-system data and land-use data are also included in the 

database. 

 

Additional information on the data sources used to construct the physical 

database for ALBATROSS is listed in appendix A. More detailed information can 

be found in Arentze and Timmermans (2000; 2005).  
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2.2.2.2 Model configuration  

The activity scheduling agent of ALBATROSS is the core of the system which 

controls the scheduling processes. The scheduling model of ALBATROSS 2.0 and 

higher, which generates a schedule for each individual and each day, consists of 

four major components as displayed in Figure 3 (adapted from Anggraini et al. 

2007). The first model component generates a work activity pattern consisting 

of one or two work episodes, their exact start time, the duration of each 

episode, and their location. It also predicts the transport mode to the work 

activity. The second component determines the part of the schedule related to 

secondary fixed activities such as bring/get activities, business and others. It 

determines which types of activities are conducted that day, the number of 

episodes of each activity that occurs, their start time and duration. Furthermore, 

it also identifies possible trip-linkage to the work activity and predicts the 

location of each episode. The third component concerns the scheduling of 

flexible activities. Almost similar to the previous component, it predicts activity 

types, the number of episodes of each activity type, the start time and duration 

of each episode as well as the location of each episode. The additional prediction 

of sequence of activities and possible trip-chaining links between activities are 

also part of this stage. Finally the last model component predicts the transport 

mode used for each tour (except for the work activity where transport mode is 

known as the outcome of an earlier decision). These main components assume a 

sequential decision process in which key choices are made and predefined rules 

delineate choice sets and implement choices made in the current schedule. 

Interactions between individuals within households are to some extent taken 

into account by developing the scheduling processes simultaneously and 

alternating decisions between the persons involved. ALBATROSS does not 

represent activity schedules of children explicitly.  More information about the 

detailed working of this model and other computational process models can be 

found in Arentze and Timmermans (2005) and Anggraini et al. (2007). 

Validation studies of the scheduling process of ALBATROSS are described in 

Arentze et al. (2003) and Arentze and Timmermans (2004). 
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Concerning the computer runtime, total time required to simulate activity-travel 

schedules for a synthetic population of 30% (i.e. approximately 2 million 

household days), amounts 73 hours. Part of this runtime is used for the 

simulation of the synthetic population (+/- 5 hours), the rest is applied for 

assigning the individual schedules. Computer runs were simulated on a Dual 

Core Intel 7500 2.20 GHz processor with 2.00 GB RAM. The size of the final 

schedule file amounts approximately 2 GB. 

 

 

Figure 3. Schematic representation of the main steps of the ALBATROSS process model. 

Source: Anggraini et al. (2007) 
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2.2.2.3 Model adjustments for this research 

Since the ALBATROSS model was already developed for simulation of activity-

travel patterns for the Dutch population, no considerable changes were 

introduced in the ALBATROSS scheduler nor were the model input data from this 

model version altered. However, since the current work requires a more detailed 

spatial and temporal resolution compared with previous ALBATROSS 

applications, the analysis module from the model was somewhat modified and 

also a larger synthetic population was simulated compared with previous 

applications.  The following adjustments or additional analyses can be listed: 

 

- A synthetic population of 30% was simulated instead of using the smaller 

synthetic populations used for previous ALBATROSS projects. A synthetic 

population of 30% was, at that time, the maximum population size that 

could be synthesized and yields results that are virtually identical to a 

simulation of the whole population. 

- Whereas previous model applications only worked with the synthetic 

population results to make conclusions, the current work finally deals with 

the total Dutch population (approximately 11 million adult inhabitants). 

Information about the 30% synthetic population was therefore extrapolated 

to represent the entire Dutch adult population.  

- Based on the scheduled activity-travel patterns, the ALBATROSS model 

enables to extract origin-destination (O/D) matrices to represent the number 

of trips from one location to another. Instead of working only with O/D 

matrices for an average weekday, the current work applied more detailed 

O/D ‘s, extracted for different time periods per day and for three different 

days (weekday, Saturday and Sunday).  

- To obtain information about the number of vehicles per traffic link (required 

for the emission assessment) the simulated O/D matrices were assigned to a 

road network (Basisnetwerk). An ‘all-or-nothing’ traffic assignment algorithm 

from the TRANSCAD software program (Caliper, 2004) was therefore applied 

to convert the matrices into traffic flows. ‘TransCAD’ is a GIS platform 

designed specifically for transportation purposes (Caliper, 2004). The ‘all-or-

nothing’ algorithm from this programme assumes that all traffic from zone A 

to zone B occurs on the same route and it therefore does not take into 
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account that people will adapt their route when traffic volumes reach road 

capacity. 

- Information from the national travel survey (NTS or ‘OVG’ in Dutch) (SWOV, 

2000) was used to reorganize the periodical, mainly two-hourly traffic flows 

into hourly traffic flows. As a result of this procedure hourly traffic flows 

were available for every link in the Dutch road network.  

 

The model adjustments mentioned in this section are further clarified in chapter 

3 where the use of the ALBATROSS model for emission assessment in The 

Netherlands is described.  

 

2.3 Emission modelling  

2.3.1 Overview of the emission modelling approach 

Vehicle emission modelling is a necessary step to quantify the impact of traffic 

flows on air quality. Depending on the purpose of the emission model, distinction 

can be made between macroscopic and microscopic modelling.  

 

On a microscopic scale emissions are calculated on instantaneous (second-by-

second) vehicle parameters like speed and acceleration.  A microscopic emission 

modelling approach is therefore able to assess the impact of changes in driving 

behaviour. Examples of these microscopic models are the MODEM emission 

model (Joumard et al. 1995) and the VeTESS computer program (Pelkmans et 

al. 2004; Beckx et al. 2007a) where emission calculations are based on 

previously performed measurements on engine test benches. Input data for 

these emission models often originate from microscopic traffic models and can 

be limited to ‘speed’ and ‘acceleration’ profiles. However, the generation of these 

data is very time consuming and input (e.g. acceleration) is often not validated 

(Int Panis et al. 2006). An approach to use microscopic emission models on a 

larger scale includes the use of GPS based travel data instead of micro 

simulation traffic models. In Jackson et al. (2005) the ability of GPS receivers to 

measure real-world operating mode for emissions research is already 

demonstrated. Beckx et al. (2006; 2007b) applied a similar approach to convert 
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real-time travel data into emissions by using the PARROTS data collection tool 

developed by Kochan et al. (2005). In addition driving behaviour and 

parameters like revolutions per minute, engine temperature and fuel 

consumption can also be monitored by using CAN information data as 

demonstrated by Beusen et al. (2009). These types of microscopic emission 

modelling are useful to gain more insights into the relationship between travel, 

driving behaviour and emissions, but not appropriate for assessing the impact of 

transportation measures taking place at a larger scale. 

 

Vehicle emission modelling inventories in Europe are usually performed with 

macroscopic emission software tools like COPERT (Computer Programme to 

calculate Emissions from Road Transport) (Ntziachristos and Samaras, 2000). 

With this macroscopic approach total emissions are calculated on a medium and 

large scale as a product of activity data (number of kilometres on the road) and 

speed-dependent emission factors (expressed in g/km), assuming an average 

trip speed. Input data like the average trip length and the number of vehicle 

kilometres travelled per year usually originate from both travel data and traffic 

counts.  Other emission models operating with a similar methodology are the US 

Environmental Protection Agency (EPA) Mobile model (current version is 

Mobile6) (US EPA, 2009) and California’s EMFAC model (California Air Resources 

Board, 2007). Since the emission factors in these models are based on an 

average driving situation, the macroscopic model is not sensitive to vehicle’s 

operating modes such as idling, accelerating, cruising and decelerating and 

therefore changes in driving behaviour can not be taken into account. However, 

this macroscopic approach does have the advantage of being simple and easy to 

apply in emission estimations for larger areas. Further, it allows to quantify the 

effect of scenarios on technological enhancements or changes in the vehicle 

fleet, and it can estimate the large scale impact of TDMs by taking into account 

the changes in vehicle activity data. Considering the scope of the current 

research and the size of the study area, a macroscopic emission modelling 

approach was preferred in this research. 
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2.3.2 MIMOSA  

The emission model that was selected for the current work, is the macroscopic 

MIMOSA emission model, applying mainly the COPERT emission functions, as 

mentioned in the previous section. The first MIMOSA emission model was 

developed by Mensink et al. (2000) for the city of Antwerp. Later the model was 

further extended and improved by Lewyckyj et al. (2004) to calculate emissions 

and emission reduction scenarios for larger study areas (e.g. Schrooten et al. 

2006). Mr. Jean Vankerkom from VITO is kindly acknowledged for his assistance 

with the MIMOSA modelling procedures. 

 

2.3.2.1 Model input 

In order to calculate the vehicle emissions, MIMOSA requires input information 

on the road network and the traffic situation. Emission factors are used to 

convert the vehicle distances into emissions. In this section an overview of the 

required input data is provided. 

 

Road  network data 

MIMOSA not only aims at calculating total emission evaluations, but also 

calculates geographically distributed emissions. Therefore, the geographic 

location of the different traffic links in the study area is required. For every link 

in the road network the xy coordinates of the start point and endpoint are 

necessary. Further, information on the road type (highway, national road, main 

road outside the city, main road inside the city, secondary road) is also required 

to take into account the variations in the vehicle fleets on different road types. 

 

Traffic flows 

One of the most important pieces of information for the modelling of emissions 

is of course the amount of vehicles passing on each traffic link. This information 

usually originates from a traffic model, but it can also be obtained through traffic 

counts. At least the total amount of vehicles passing during traffic peaks is 

required to calculate the emissions for larger time periods (by using time factors 

to simulate the traffic flows at off peak periods), but hourly traffic flows can also 

be used by the model. In order to take into account the impact of speed on the 
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emissions of pollutants, the average driving speed per traffic link should be 

available.  

 

Emission factors 

The MIMOSA road traffic emission model uses a ‘static’ emission approach, i.e. 

hourly average speeds of the different vehicles instead of short-term fluctuations 

in speed (accelerations and decelerations) are used. The emission factors (g/km) 

used within the MIMOSA model were partially extracted from experimental data 

collected by on-road measurements (Lenaers et al. 2003) as well as from the 

COPERT-III report (Ntziachristos and Samaras, 2000).  For missing data (some 

specific pollutants e.g. PM emissions), emission functions from MEET (1999) 

were applied. Within the basic model four major vehicle categories can be 

distinguished (Passenger Cars, Light-Duty Vehicles (LDV), Heavy-Duty Vehicles 

(HDV), Motorcycles and Mopeds) with further sub-categories depending on the 

age of the vehicle and its cylinder capacity for the passenger cars. In this study, 

however, only the emissions from passenger cars are modelled explicitly. 

Furthermore, a distinction can be made between four fuel types (gasoline, 

diesel, LPG and 2-stroke gasoline), with lead and sulphur contents depending on 

the year of the simulation. More detailed information on the used emission 

factors in this research are provided in Appendix B. 

 

2.3.2.2 Model configuration 

MIMOSA belongs to the ‘average speed macroscopic emission models’, 

expressing emission and fuel consumption rates for each trip as functions of 

average speed.   

 

The basic version of MIMOSA calculates geographically distributed hourly traffic 

emissions for Flanders based on peak-hour (17h–18h) mobility data from a 

Flemish road traffic model (the ‘multimodal modal Flanders’). The time 

dependency of the traffic flows/emissions is simulated using normalized 

distribution factors expressing the fluctuations of the traffic flow as a function of 

the hour of the day, the day of the week and the month of the year. By using 

this approach a uniform traffic flow variation is therefore assumed in the entire 

study area.  
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Concerning the emission calculation, the model uses a ‘static’ macroscopic 

approach, i.e. hourly average speeds per road segment are combined with 

emission factors to calculate the emissions per road segment and per hour.  

 

By combining hourly traffic volumes computed per road segment with fleet 

statistics and the corresponding emission factors, the MIMOSA model can 

calculate temporally and geographically distributed traffic emissions. These 

emissions include hot, cold and evaporative emissions. Cold start emissions can 

be calculated based on information on the trip length and the ambient 

temperature. Short trips, carried out with cold engines, will result in higher 

emissions. Evaporative emissions are only obtained for the running losses, i.e. 

vapour losses generated in gasoline tanks during vehicle operation which are 

significant at high temperatures. Ambient temperature data are therefore used 

to calculate these evaporative emissions. 

 

Since the COPERT approach was originally developed for emission estimation of 

entire trips (not traffic links), one should be careful when reporting the MIMOSA 

emissions on a very detailed link level. A presentation of the emission results at 

larger scales should therefore be preferred. Previous studies (e.g. Lewyckyj et 

al. 2002) already reported on comparisons between the emission results from 

MIMOSA with results from the COPERT-III model, the European reference model 

in scientific emission research. Using the same data as input, both models 

provided similar emission results. However, in comparison with the COPERT-III 

model, MIMOSA adds three important advantages: 

 

- MIMOSA model simulations can be performed for every requested time 

period (going from one hour up to several years). This is not possible with 

the COPERT-III model. 

- MIMOSA model calculations are made separately for every traffic link in the 

study area, allowing for a geographic distribution of emissions. The COPERT 

approach is designed for aggregated emission estimates, allowing general 

emission estimates for an entire study area. 
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- MIMOSA emissions can be calculated on the basis of speeds from a traffic 

flow model, resulting in more realistic estimates than the use of only generic 

vehicle speeds as done in COPERT-III 

 

Concerning computer runtime, the MIMOSA modelling procedure to calculate 

emissions for the predicted traffic flows in this research, took approximately 4-6 

hours on a Dual Core Intel 7500 2.20 GHz processor with 2.00 GB RAM.  

 

2.3.2.3 Model adjustments for this research 

In order to calculate the vehicle emissions for passenger car trips in the 

Netherlands, as aimed at in this study, the basic, Flemish, MIMOSA model was 

adjusted with information regarding the Dutch vehicle fleet and road conditions. 

Further, the settings within the model were altered to benefit maximally from 

the information provided by the activity-based approach. Summarizing, the 

following adjustments can be mentioned: 

 

- The MIMOSA model was originally developed for applications within the 

Flemish region of Belgium. To be able to calculate the emissions for the 

Dutch study area, as aimed at in this dissertation, the input data were 

adjusted to the Dutch situation. Information on the Dutch road network was 

therefore added to the MIMOSA input data. The Dutch road network, 

‘Basisnetwerk’, used in this research includes information on the geographic 

coordinates of each traffic link and on the type of road. Information on the 

Dutch vehicle fleet was obtained by statistical information from the Dutch 

statistical agency (CBS, 2001). Appendix B provides more information on the 

characteristics of the used vehicle fleet. 

- For each traffic link information on number of vehicles per hour and the 

traffic speed was provided. This information did not result immediately from 

the activity-based model, but was provided by an intermediary calculation 

with a traffic flow model that assigned the simulated activity-based trips to a 

road network (as stated in section 2.2.2.3). Further, based on statistical 

information on the Dutch vehicle fleet (including data from traffic counts and 

vehicle registration actions) the MIMOSA vehicle fleet composition was 

determined per road type (CBS, 2001, see also Appendix B).  
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- Because the activity-based approach used in this study only focuses on 

personal travel behaviour, only the characteristics of the passenger cars 

were taken into account for the emission analysis. Emission results for 

freight transport were therefore not calculated nor reported separately. As 

explained in section 2.4.2.3 on the concentration modelling, information on 

the emissions from freight transport was obtained from other sources.  

- The basic version of MIMOSA calculates geographically distributed hourly 

traffic emissions based on peak-hour (17h–18h) mobility data. However, by 

using an activity-based approach instead of this peak-hour approach, hourly 

traffic flow information was provided for all considered road segments. In 

this study the uniform traffic flow method from the basic MIMOSA model was 

therefore replaced with an advanced traffic simulation procedure, allowing 

geographic and temporal differences in traffic flows and emissions (e.g. 

simulation of emissions per hour and per km²). 

- Link-specific traffic speeds were not provided from a traffic model, but are 

derived from the activity-based estimates on the travel time between 

different locations. These link-specific traffic speeds refer to an average 

speed over the course of a day and were estimated for the Dutch road 

network according to expert assessment at the level of individual links and 

they are applied in ALBATROSS to estimate network distances and travel 

times by mode between different activity locations (Arentze and 

Timmermans, 2005). 

 

The model adjustments mentioned in this section are further clarified in chapter 

3 where the combined use of MIMOSA and ALBATROSS to calculate emissions 

for the Netherlands is described.  
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2.4 Dispersion modelling  

2.4.1 Overview of dispersion modelling  

Calculating emissions is useful for environmental policy, but it is not sufficient to 

study human exposure to air pollution. Dispersion models are needed to convert 

the emissions into concentrations at which the population is exposed. Over the 

past decade several modelling tools were developed to assess air quality at 

various scales, ranging from the local scale to the continental scale (Mensink et 

al. 2008).  

 

Local-scale dispersion models quantify the concentration levels of pollutants that 

can cause adverse health effects at a very detailed spatial level. These local-

scale models are able to allow for the structure of the atmospheric boundary 

layer and the various local-scale effects, such as the influence of buildings and 

obstacles. Examples of such models include the Computational Fluid Dynamics 

(CFD) models and the Gaussian plume models.  Both are widely accepted as 

tools for local air-quality assessment. They are used in assessing the 

environmental impact of certain private or public initiatives. Unfortunately, 

without information on boundary conditions, the modelling domain of these 

local-scale models is rather small. CFD models for example generally work with 

study domains of approximately 500 by 500 meters. In Flanders, the Gaussian 

IFDM (Immission Frequency Distribution Model) is often used for regulatory 

purposes and environmental impact studies (Cosemans et al. 1997). This model 

applies a receptor-based concentration calculation approach allowing for 

concentration modelling in an irregular receptor grid.  
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In order to calculate pollutant concentrations at larger scales, regional and 

global atmospheric models are used.  Examples of such models include BelEuros 

and AURORA. BelEuros is based on the EUROS (European Operational Smog) 

model and calculates the foreign contributions to local pollutant concentrations 

(Deutsch et al. 2008). It was originally developed for Belgium, but can also used 

for other countries if the necessary input data are available. The AURORA (Air 

quality modelling in Urban Regions using an Optimal Resolution Approach) 

model (Mensink et al. 2001, De Ridder et al. 2008a) can be applied from a 

regional down to an urban scale to calculate pollutant concentrations.   

 

2.4.2 AURORA 

For application within the current modelling framework, the AURORA large scale 

dispersion model was used. Dr. Karen Van de Vel and dr. Wouter Lefebvre from 

VITO are kindly acknowledged for performing the AURORA modelling steps 

required for this doctoral research.  

 

AURORA, Air quality modelling in Urban Regions using an Optimal Resolution 

Approach, is a 3-dimensional model of the atmosphere (Mensink et al. 2003; De 

Ridder et al. 2008a). The model assesses how, after being emitted from a 

source, air pollutants are transported and mixed in the air, undergo chemical 

reactions, generate secondary pollutants, etc. Both air pollutants in the gaseous 

and the particulate phase are taken into account. The model’s outcome are 3-

dimensional concentration fields, giving an overall assessment of the air quality 

for the region of interest, and this from the ground up to approximately 20 km 

altitude.  

 

AURORA provides concentration fields on an hourly basis, allowing for the 

assessment of the hourly and daily variation in air pollution levels. In the 

following sections the input data for the AURORA model are presented and all 

modules that are needed to run the AURORA model are discussed as well as the 

way the different elements are coupled to each other into an integrated system.  
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2.4.2.1 Model input 

In order to calculate pollutant concentrations, AURORA requires information 

about the meteorological conditions, the amount and location of emitted 

pollutants and the physical situation of the study area (land use, vegetation 

cover,…). 

 

Meteorology  

AURORA requires the specification of 3-D fields of relevant meteorological 

parameters, including wind vector components, temperature, humidity, 

precipitation, radiation, cloud properties, and turbulent diffusion coefficients, 

among others. The meteorological fields were simulated using the Advanced 

Regional Prediction System (ARPS), a non-hydrostatic meso-scale atmospheric 

model developed at the University of Oklahoma. More information about ARPS 

can be found in Xue et al. (2000; 2001).  

 

Emissions 

The emissions input required by the AURORA model consists of gridded two-

dimensional emissions maps on an hourly basis. AURORA contains routines in 

order to combine emission data from different sources. Emission sources are 

broken down over 11 SNAP categories: 10 anthropogenic source sectors and one 

natural sector (biogenic emissions), whereby SNAP stands for ‘Selected 

Nomenclature for sources of Air Pollution’ (European Environmental Agency, 

2007). AURORA distinguishes between the following emission classes :  

1. combustion in energy and transformation industries; 

2. non-industrial combustion plants; 

3. combustion in manufacturing industry; 

4. production processes; 

5. extraction and distribution of fossil fuels and geothermal energy; 

6. solvents and other product use; 

7. road transport; 

8. other mobile sources and machinery; 

9. waste treatment and disposal; 

10. agriculture; 

11. nature.  
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For the anthropogenic emissions of sectors 1-6 and 8-10 as well as for the road 

transport emissions outside the Netherlands, the E-MAP GIS tool was applied. E-

MAP performs a spatial disaggregation of CORINEAIR/EMEP emission inventories 

by using spatial surrogate data (Maes et al. 2009).  CORINAIR (Core Inventory 

of Air Emissions) is a project performed since 1995 by the European Topic 

Centre on Air Emissions, with the aim to collect, maintain, manage and publish 

information on emissions into the air, by means of a European air emission 

inventory and database system (European Environmental Agency, 2007).  EMEP 

is the scientific programme of the Convention on Long-range Transboundary Air 

Pollution. The spatial variables include the CORINE land cover data, EPER 

database, TREMOVE data, EUROSTAT statistics together with ESRI data and 

maps. A good description of these auxiliary data sets can be found in Maes et al. 

(2009).  

 

The annual emissions are distributed temporally according to monthly (January 

– December), daily (Monday – Sunday) and hourly (0h – 23h) correction factors. 

These factors are specific to each pollutant and emission sector, and hence 

reflect the different energy-use patterns as a function of time. Apart from the 

above-mentioned anthropogenic emissions, biogenic emissions from forests 

were also taken into account. Geographically distributed maps were calculated 

on an hourly basis, using the hourly temperature and shortwave radiation values 

simulated by the meteorological model ARPS and the land cover data. 

 

Other input data 

Below a brief overview is provided on the external data required to run the 

meteorological, emission and air quality calculations. These data consist of both 

European and international databases, as well as satellite-derived data :   

 

• Land use parameters were specified from CORINE land use data, 

covering Europe at a resolution of 250m (Heymann et al. 1994); 

• Vegetation cover fractions were derived from SPOT-VEGETATION 

imagery containing the Normalized Difference Vegetation Index (NDVI). 

The vegetation cover fraction was used to estimate the fractional green 

vegetation cover of each model grid cell at the surface; 
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• Terrain height was interpolated from the Global 30 Arc-second Elevation 

Data Set distributed by the U.S. Geological Survey; 

• Sea surface temperature was derived from the MODIS instrument 

onboard the TERRA/AQUA satellites;  

• Lateral boundary conditions (see section 2.4.2.2).  

 

 

2.4.2.2 Model configuration 

The AURORA air quality modelling system consists of different parts allowing for:  

1. meteorological calculations to derive the relevant meteorological 

parameters (a.o. air temperature, wind speed and direction, humidity, …); 

2. the generation of two-dimensional emission fields for air pollutants;  

3. the release, chemical transformation, the transport and the deposition of 

air pollutants.  

 

The first two issues, meteorology and emissions, are discussed in a previous 

section (2.4.2.1). The actual “heart” of the AURORA model is a number of 

routines dealing with the transport (advection, diffusion and deposition) and 

chemical transformation of the air pollutants. They are all indicated in Figure 4. 

In order to drive these modules AURORA needs meteorological data, emission 

data and background concentrations.  

 

By using the AURORA dispersion model one aims at producing high-resolution air 

quality maps for one specific region or country. However the air quality at one 

country is not only determined by emissions taking place in its territory, but also 

by air pollutants that are being emitted in the neighbouring countries. These air 

pollutants are taken into account through applying the following method. The 

AURORA calculations are initiated covering a large domain (at coarse resolution) 

and gradually move to the region of interest at ever higher resolutions. The 

lateral boundary conditions of the model domain are always specified from the 

previous run (or from external data in the case of the outer domain).  This 

method can also be referred to as the nesting principle. 
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Figure 4. Lay-out of the AURORA modelling system  

 

 

 

The same principle of nesting also applies to the ARPS meteorological 

calculations, allowing large-scale atmospheric features to enter the domain 

through the lateral boundaries. In order to specify the lateral boundary 

conditions for the ARPS model archived output data from Final Analysis data 

from the US National Centre for Environmental Prediction was used. These data 

are provided at a six-hourly time step and at a resolution of 1° (approximately 

100km), they were interpolated to the AURORA model grid (De Ridder et al. 

2008).  
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More detailed information on the model configuration, the chemical 

transformation of air pollutants and other input data (land use parameters, 

vegetation cover,…) can be found in (De Ridder et al. 2008a). The AURORA 

model is also registered in the Model Documentation System of EIONET 

(http://air-climate.eionet.europa.eu/databases/MDS/index_html) and the “Model 

Inventory” database of COST 728 (http://www.mi.uni-hamburg.de/List-

classification-and-detail-view-of-

modelentr.567.0.html?&user_cost728_pi2[showUid]=101).  

 

Concerning the computational performance, modelling hourly pollutant 

concentrations for 6 calendar months on a 3 by 3 km grid takes approximately 

14 days. This runtime includes the meteorological modelling by ARPS (+/- 10 

days) and the concentration modelling by AURORA (+/- 4 days). Hereby a 

Quad-Core Xeon E5335 2GHz processor with 4 GB RAM was applied and 

processors were used in parallel. For each hour, a 75 MB file was generated by 

AURORA. 

 

2.4.2.3 Model adjustments for this research 

As already stated in section 1.2, the objectives of this dissertation did not 

include large scale adaptations on existing models, but rather focused on the 

combination of existing models into a new modelling framework. The main 

modifications in the AURORA model for this study therefore mostly concern the 

adaptations to the study area. Other specifications within this project that can 

be mentioned involve the size and resolution of the model grid, and the 

calculation period. These specifications were altered by the AURORA modelling 

experts from VITO. The following issues can be mentioned: 

- Concerning the spatial resolution, three different resolution steps were used 

for the AURORA modelling, starting with a domain at 30km resolution (2400 

km x 1500 km) through 10km down to 3km resolution. This 3 by 3 km 

resolution defines the ‘AURORA grid’. The AURORA model (run at 30km) was 

driven by the BelEUROS model (Deutsch et al. 2007; 2008). This model 

calculates air quality above the whole of Europe at a resolution of 60km. 

Hourly BelEUROS data were interpolated to the AURORA model grid. Within 

this domain, a smaller domain was nested with a spatial extension of 700 
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km and a resolution of 10 km. Within the latter a still smaller domain 

covering an area of 360 by 270 km was modelled with a resolution of 3-km 

centred on the Netherlands and the Northern part of Belgium. Only results 

from the 3-km resolution model domain will be discussed in this research. 

Studies on a smaller, more precise grid size can be performed in future 

research. 

- Concerning the emission input in the current work, the share from Dutch car 

traffic (tailpipe only) emissions (sector 7 from section 2.4.2.1) was 

calculated by means of the MIMOSA emission model on an hourly basis. The 

MIMOSA results were therefore interpolated to the AURORA grid (see section 

2.4.2.2 for grid details). The remainder of the emissions from this sector 

(car non-tailpipe as well as heavy duty vehicles, motorbikes, ….) for the 

Netherlands were taken from the national Dutch emission inventory (PBL, 

2008), which distinguishes between the various types of road transport. The 

Dutch emission inventory is available on a yearly basis, and at a 

geographical resolution of 5x5km². Bi-lineair interpolation techniques were 

employed to transfer the data to the AURORA grid. 

- Hourly pollutant concentrations were calculated for the following six months: 

March, April, May and September, October, November, all in the year 2005. 

Calculating hourly pollutant concentrations for 6 months was sufficient to 

validate the results from the dispersion model. Often much less data are 

used for such a validation analysis (see also the characteristics of other 

validation studies in chapter 4).  

 

The model adjustments mentioned in this section are further clarified in chapter 

4 where the combined use of AURORA, MIMOSA and ALBATROSS to calculate 

concentrations for the Netherlands is described.  

 



 64 



 65 

3 ACTIVITY-BASED MODELLING OF 

EMISSIONS: LINKING ALBATROSS WITH 

MIMOSA 

 

Adapted from: Beckx C., Arentze T., Int Panis L., Janssens D. Vankerkom J., 

Wets G., 2009. An integrated activity-based modelling framework to assess 

vehicle emissions: approach and application. Environment and Planning B: 

Planning and Design. In press. 
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3.1 Introduction 

Advances in technology (e.g., the European directives 91/441/EEC, 94/12/EC 

and 98/69/EC) have played and will continue to play a role in managing the 

emissions associated with vehicular transport. However, the report of the 

European Environmental Agency (2006) “Transport and the Environment: facing 

a dilemma” highlights how the technological improvements which have led to 

reductions in vehicle emissions are being offset by the growth of transport 

volumes. Due to this, one of the key challenges of  modern policy making 

consists of promoting a sustainable transportation system aiming primarily at 

the prevention of the negative effects of the transportation system on 

environment and health. Many transportation control measures (TCMs), 

including transportation demand management (TDM) strategies specifically 

focusing on the driving forces of the problem, have therefore been defined. Their 

main purpose is to counter the rise in vehicle emissions and energy consumption 

due to increased travel. A good overview of potential TDMs can be found in the 

TDMs encyclopedia of the Victoria Transport Institute (2009).  

 

In the US, the Clean Air Act Amendments (CAAA) and the Intermodal Surface 

Transportation Efficiency Act of 1991 (ISTEA) have, in combination, defined a 

broad range of TCMs and established procedures and requirements for 

integrating such TCMs as flexible work hours, congestion and parking charges, 

ridesharing, signal prioritization and expansion of public transport into 

transportation and environmental planning (Recker and Parimi, 1999). Also in 

Europe, similar initiatives are established to examine the potential impact of 

policy measures such as telecommuting, congestion pricing and no-drive days  

on travel demand and air quality (e.g. Emmerink et al. 1995; Priemus, 1995). 

However, because of the limited data available to predict the travel effects of 

combined (or even individual) TCM strategies and the inadequacy of 

conventional trip-based models to forecast changes in travel behaviour, the 

impact of these TCMs is often uncertain.  
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The lack of  interactions among individual and household travel decisions in 

response to TCMs lay at the heart of the failings of conventional trip-based 

models to provide adequate measures of their potential impact. These trip-based 

models focus on individual trips where the spatial and temporal 

interrelationships between all trips are ignored.  Further, these conventional 

approaches tend to focus on peak hour values whereas the impact of certain 

policy measures can take place at other moments, either direct or indirect. 

These kinds of issues limit the possibilities for the use of these trip-based 

models for policy impact analysis.  

 

In the early nineties, the US Department of Transportation supported four 

projects to examine how transportation planning models could and should be 

improved to properly address both the impacts of new transportation 

technologies and the need for real policy sensitivity, particularly relative to air 

quality considerations (Spear, 1996). Three of the four proposals recommended 

that the former trip-based methodologies be replaced by activity-based 

approaches. The activity-based model framework is based on the premise that 

travel is derived from the need to perform various personal or household 

activities (Ettema and Timmermans, 1997).  Under this premise, an individual's 

daily pattern of activities is modelled in its entirety, as a function of his/her role 

in the household, and influenced by various constraints including time 

availability, access to alternative travel modes, coordination with other 

household members, etc..  By assuming the ‘activity’, instead of the ‘trip’, as the 

basic unit for transportation analysis and prediction, and incorporating such 

constraints as interpersonal dependencies among household members this 

activity-based approach is a better representation of the actual decision making 

process. However, although the potential advantages of an activity-based 

approach for air quality purposes have been recognized from the beginning 

(e.g., Spear, 1996) and have been re-iterated more recently (e.g. Beckx et al. 

2005; Shiftan, 2000; see also section 2.2.1.2) - to the best of our knowledge - 

models that have been developed along these lines are still scarce (see section 

2.2.1.3 for a brief overview). 
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The aim of this study is to make a contribution to this line of research by 

proposing a comprehensive activity-based emission modelling framework. For 

this purpose, the activity-based model ALBATROSS (see section 2.2.2) was 

applied to micro-simulate activity patterns for the Dutch population. By using 

the simulated vehicle trips as input for the MIMOSA emission model (see section 

2.3.2), the vehicle emissions for base year conditions in the Netherlands can be 

evaluated. Furthermore, by converting the predicted activity-based trips into 

emissions, temporal emission estimates instead of aggregated daily or yearly 

emission values can be assessed. The model’s ability to replicate base year 

travel behaviour and emission assessment with good accuracy and precision was 

verified in this study by comparing the travel and emission results with officially 

reported Dutch emission values.  

 

3.2 Methodology 

To illustrate the activity-based approach for emission evaluation, the activity-

based model ALBATROSS was combined with the MIMOSA emission model to 

assess the vehicle emissions in the Netherlands. This section briefly presents the 

adopted methodology and describes the data that were used to validate the 

model results.  A detailed description of the used models with a list of the model 

adjustments that were necessary for this research is provided in Chapter 2.  

 

3.2.1 General approach 

This study comprehends the first step of the modelling framework to assess a 

dynamic population exposure to air pollution.  

Figure 5 schematically presents the methodology applied in this first modelling 

step. Basically, in this first step, the activity-based model ALBATROSS was 

combined with the MIMOSA emission model. As indicated in Figure 5 the time-

activity patterns, predicted by the ALBATROSS model, were converted into 

vehicle emissions by the MIMOSA emission model. In this section a brief 

description is present on how the time-activity patterns were obtained and how 

they were converted into emissions.  
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Figure 5. Schematic presentation of the emission modelling methodology 

 

To obtain the necessary time-activity patterns, the ALBATROSS model was used 

to simulate the activity-patterns for a synthetic population representing 30% of 

the Dutch population (see section 2.2.2 for more information on the ALBATROSS 

model configuration and specifications). Based on the predicted patterns, origin-

destination (O/D) matrices for the synthetic population were extracted from the 

activity schedules. The O/D information was based on a subdivision of the 

Netherlands in 1308 zones (the so-called ‘LMS subzones’). As the focus in this 

study is on passenger car trips, the O/D-matrices only provided information on 

car trips. Furthermore, trip matrices were analyzed for different time periods, to 

account for intra-day and intra-week differences in travel behaviour. 

 

After multiplying the matrices from the synthetic population by the inverted 

sample fraction, the trip matrices, representing the travel behaviour of the 

whole Dutch population, were assigned to the Dutch road network (the 

‘Basisnetwerk’). By using a standard ‘all-or-nothing’ traffic assignment algorithm 

from the software package ‘TransCAD’ (see section 2.2.2.3) the conversion of 

O/D-matrices into traffic flows was performed. After this traffic assignment 

procedure, detailed traffic information, taking into account intra-day and intra-

week differences in traffic flow, was available for all the car passenger trips in 

the Netherlands. Traffic flow information was available on hourly basis per traffic 

link. 
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In a final step, the simulated hourly traffic flows were converted into emissions 

by applying the emission factor approach from the macroscopic MIMOSA 

emission model (see section 2.3.2 for more information on the MIMOSA model 

configuration and model specifications). Besides information on the traffic flows 

(i.e. amount of vehicles per traffic link per hour) information on the average 

speed is also required to calculate the emissions with the COPERT-like emission 

functions. Hereby we assumed that the average speed remained constant during 

the day and equalled the speeds used as input for the ALBATROSS model to 

calculate travel times between different zones (Arentze and Timmermans, 

2005). By using this approach emissions for The Netherlands could be estimated 

for hourly and yearly time periods as well as for different geographic locations. 

 

3.2.2 Validation data 

The (activity) travel values and emissions from the activity-based approach were 

compared with reported values originating from other (independent) travel 

surveys to examine the accuracy of this innovative activity-based emissions 

approach. In this study data from the Dutch National Travel Survey (NTS) and 

the Dutch Scientific Statistical Agency (CBS) were used to perform a validation 

test.  

 

Although the Dutch NTS uses trip diaries (as opposed to activity diaries), this 

travel survey has very similar survey characteristics as the activity-based survey 

(no holiday trips, no freight trips, no vehicle kilometres in other countries, no 

vehicle kilometres of foreigners), and is executed yearly to gain more insights 

into the travel behaviour of the Dutch population. The travel results from the 

year 2000 survey were used for comparison. This survey includes trip diaries of 

more than 100,000 persons and results were reweighed to compensate for the 

under– and over-representation of certain groups, e.g. degree of urbanization, 

age, journeys,… More information about the NTS in the Netherlands can be 

found in Van Evert and Moritz (2000) and on the Dutch Road Safety Website 

(SWOV, 2000). 
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The emission results from the activity-based emission modelling approach were 

compared with reported emission values provided by the CBS. These emission 

results are published yearly by this statistical agency since 1990 and provide 

good insights into the emissions of passenger cars. These values are obtained in 

cooperation with other environmental and traffic institutes by multiplying 

gathered activity data (vehicle kilometres and fuel consumption) with 

corresponding vehicle fleet emission factors. The emission results from the year 

2000, including hot emissions, cold emissions and evaporative emissions were 

used for comparison (CBS, 2000). Non-exhaust emissions, e.g. PM emissions 

caused by abrasion or resuspension, were not included in the figures used for 

the validation of the emission estimates. 

 

3.3 Results & discussion 

In this section the results of the activity-based modelling approach for base year 

conditions in the Netherlands are presented and the model outcome is validated 

against travel and emission results from other studies.  

  

3.3.1 Model outcome 

3.3.1.1 Synthetic population data  

Using IPF methods, a synthetic population procedure was first established to 

simulate a population representing 30% of the Dutch population in the base 

year. The individual and household characteristics of this synthetic population 

are presented in Table 1, Table 2 and Table 3. In total the synthetic population 

consists of approximately 3 million individuals or 2 million households. Each 

individual is characterized by its gender and work status, whereas each 

household is characterized by the household composition, the age of the 

youngest child (if present) and the age of the oldest person of the household.  
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Table 1. Characteristics of the synthetic population at the individual level 

 

 

Table 2 Household characterization by composition of the household 

 Household composition* 

Total S-0W S-1W D-0W D-1W D-2W 

1,938,224 363,335 391,446 446,383 462,958 274,102 

*S-0W: Single No Work; S-1W: Single One Work; D-0W: Double No Work; D-1W: Double 

One Work; D-2W: Double Two Work 

 

 

Table 3. Household characterization by age of the household members. The values indicate 

the number of households. 

Age of youngest child 

No < 6 6-12 > 12 

1,396,129 262,383 154,292 125,420 

Age of household head 

< 25 25-44 44-64 >64 

65,155 868,378 569,958 434,733 

 

 

3.3.1.2 Trip analysis 

The ALBATROSS model simulated activity schedules for every individual within 

the synthetic population. These activity schedules include information on both 

activities and trips (if two consecutive activities occur at different locations). 

Next in the modelling procedure, the predicted trips were extracted from the 

activity database and extrapolated for the whole population. Further, matrices 

for the whole population were assigned to a Dutch road network (Basisnetwork) 

using standard traffic assignment algorithms from the software package 

TransCAD.  

 Gender Work status 

Total Male Female No work Part-time Full-time 

3,121,667 1,544,367 1,577,300 1,719,059 333,418 1,069,190 
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By means of example Figure 6 presents the road network file with the resulting 

traffic flows for an average weekday. This figure gives more insights into the 

study area and the geographic location of zones with high traffic intensities. The 

higher traffic intensities (up to 150,000 vehicles per traffic link) near the larger 

cities such as Amsterdam, Rotterdam and Utrecht can be easily distinguished 

from the map. The peripheral roads tend to have smaller traffic loads . 

  

 

Figure 6. Geographic map of the study area (the Netherlands) with the simulated traffic 

flows per traffic link for an average weekday in the base year. 
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3.3.2 Model validation 

In this section the simulated traffic flows and emission estimates are compared 

with reported values to validate the accuracy of the integrated model results.  

 

3.3.2.1 Validation of the vehicle trips 

In Figure 7 and Figure 8 the hourly distances travelled are presented for 

weekdays and weekend days respectively. Both the predicted values from the 

activity-based modelling procedure (bars) as the reported values from the NTS 

(line) are presented.  

 

In Figure 7 the morning and evening traffic peaks can be easily distinguished 

from both curves. Both approaches have similar predictions for the morning 

peak, simulating a traffic peak around 7 a.m., but differ in their predictions for 

the evening peak. According to the activity-based approach the evening peak 

occurs at 6 p.m. whereas the NTS largest peak occurs one hour earlier.  

 

In Figure 8 the variation in travelled distances during the weekend days in the 

year 2000 is presented. According to the activity-based prediction distances 

travelled during the daytime remain rather constant with the exception of one 

small traffic peak at 9 a.m. The NTS curve shows a higher amount of travelled 

distances during the day, but did not reproduce the small morning peak at 9 

a.m. A possible explanation for this small peak might be visits to the church 

(Arentze, personal communication 2009). The predicted travelled distances 

during the early morning and the late evening seem to correspond well with the 

NTS values. 
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Figure 7. Hourly distances travelled on weekdays in the year 2000: predicted activity-

based (AB) values versus reported NTS values (SWOV, 2000) 

  

 

 

Figure 8. Hourly distances travelled on weekend days in the year 2000: predicted activity-

based (AB) values versus reported NTS values (SWOV, 2000) 
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By aggregating the results from the traffic assignment procedure and 

extrapolating the values for a whole year, the total travelled distance during a 

whole year was calculated. In Table 4 the calculated value is presented next to 

the reported travelled distance value from the NTS, representing the total 

number of travelled kilometres by passenger cars during the base year.  The 

relative difference between both values is less than 10%. This small 

overestimate by the activity-based model can be attributed to the characteristics 

of the survey. The activity-based survey uses activity diaries to gather activity 

and travel data in a very comprehensive way. Respondents are asked to report 

every performed activity, together with information about the time, the location, 

travel mode, etc.. The NTS survey, on the other hand, works with travel diaries 

where respondents only need to fill in information about their travel behaviour. 

Previous research already indicated that the trip-diary method often slightly 

underestimates the amount of trips (SWOV, 2000). Small, short trips are 

frequently under-reported by the respondents in the NTS method while these 

trips are much better reported in the activity diary method. This underreporting 

in the NTS method can explain (part of) the difference with the activity-based 

results. 

 

 

Table 4. Total travelled distance by passenger cars in the Netherlands in the year 2000 

(aSWOV, 2000) 

 Travelled distance (x 109 km) 

Modelled travelled distance 93.3 

Reported travelled distancea 85.9 

Relative difference (%) 8.6 % 
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3.3.2.2 Validation of the vehicle emissions 

Based on the modelled traffic flows, the emission model MIMOSA calculated 

traffic emissions produced by the predicted vehicle trips. The results for five 

major air pollutants: carbon dioxide (CO2), nitrogen oxide (NOx), volatile organic 

compounds (VOCs), sulphur dioxide (SO2) and particulate matter (PM) are 

presented in Table 5. Since hourly emission values or location-specific emissions 

could not be validated against reported values, only the aggregated emission 

values are presented here. 

 

In Table 5 the differences between predicted and reported total emission values 

for the base year are presented. Relative differences vary between 3 and 26 % 

for  PM and SO2 respectively. Given that the SO2 emissions are based on a fixed 

ratio of sulphur in the fuel, the result for SO2 indicates that the emission model 

overestimated the sulphur content in the fuel. The sulphur content of the fuel is 

subject to national standards, changing every few years, so this can be an 

acceptable explanation of this difference. Since the CO2 emissions are highly 

related to the number of kilometres travelled, a small overestimate in the 

amount of CO2 emissions can be expected. The CO2 predictions differ by 

approximately 11 % from the reported CBS emission values, NOx emissions are 

overestimated by 17 % and the VOCs are overestimated by 9 %.    

 

 

Table 5. Total vehicle emissions for the year 2000: predicted versus reported values 

(aCBS, 2000) 

 

 

 

 

Emissions (x106 kg) CO2 NOx VOC SO2 PM 

Modelled results 19292.25 70.21 43.97 1.59 2.97 

Reported resultsa  17346.00 60.10 40.35 1.26 2.88 

Relative difference (%) 11.22 16.71 8.98 26.30 3.21 
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3.3.2.3 Discussion 

Of course, there are some qualifications to the presented results that need to be 

discussed.  First of all the ‘static’ emission factor approach used in this study can 

be a subject of discussion. This static approach assumes hourly stable traffic 

conditions and, at first sight, ignores the local dynamics in driving patterns and 

street characteristics which influence emissions (De Vlieger, 1997; De Vlieger et 

al, 2000). However, the average speed emission factors do take into account the 

characteristics of the underlying driving patterns depending on the estimated 

average speed and the location of the specific road (urban, rural or highway) 

(Ntziachristos and Samaras, 2000).  This emission factor based approach is 

widely used in modelling traffic-related emissions (e.g. Salles et al. 1996; 

Jenssen, 1999) with its accuracy of course depending mostly on the reliability of 

traffic data (traffic volume and velocity, their temporal and spatial variations, on 

road vehicle composition etc.) and the choice of emission factors.  

 

Another issue in the discussion can be the use of an all-or-nothing traffic 

assignment to distribute the traffic over the network. This kind of assignment is 

a simplification of the real traffic patterns since it does not take into account 

redistributions at peak hour situations unlike the more advanced, equilibrium 

assignment. However, since this study does not include information on freight 

traffic and only focuses on passenger cars, using the more advanced procedure 

would not improve the model outcome and an all-or-nothing procedure is 

therefore justified. If hourly freight data is available together with link-specific 

capacity information, future research can include the emission assessment of all 

road traffic based on a more advanced traffic assignment procedure (see also 

section 7.2.1.1 on the potential improvements for traffic flow prediction). 

 

Finally, one can argue the validation method in itself. The predicted results from 

the activity-based emission modelling approach were compared with travel and 

emission values from the Dutch Scientific Statistical Agency whose data 

originates from other model simulations. A good agreement between both values 

does not automatically indicate a good representation of the real situation, and 

only states the similarity between both models. Moreover, uncertainties in both 

simulated and reported data were not looked at. Ideally, a validation method 
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should comprise the use of measurements instead of simulation values, but the 

procedure of comparison with other models provides useful cross-validation (e.g. 

Int Panis et al. 2006; Schrooten et al. 2008).  Since travel and emission 

measurements were not available on a national level (only concentration 

measurements are executed), the values from the Dutch Scientific Statistical 

Agency were therefore considered as an acceptable alternative for the validation 

of travel and emission data. In a next step of this modelling framework, 

pollutant concentrations (based on the emissions presented here) will be used 

for validation purposes by comparing the model results with air quality 

measurements (see Chapter 4). 

 

3.4 Conclusion 

In this study the use of an activity-based model for the assessment of mobile 

source emissions was described and illustrated. For this purpose the activity-

based model ALBATROSS was combined with the emission model MIMOSA to 

assess the total amount of vehicle emissions produced by passenger cars in the 

Netherlands and the distribution of emissions across space and time.  By 

converting the predicted travel behaviour into emissions and comparing the 

results with values from the Dutch Scientific Statistical Agency, the model’s 

ability to replicate base year travel behaviour and emission assessment with 

good accuracy was verified.  

 

Regarding the temporal variation in travel behaviour, the activity-based 

predictions corresponded well with the reported NTS results. Both the timing and 

the magnitude of the morning traffic peak were predicted with good accuracy by 

the activity-based model. The prediction for the evening peak on weekdays 

slightly differed from the NTS values, but the overall picture of the temporal 

variation turned out very well. The feasibility to model the temporal variation in 

travelled distance instead of using only peak-hour information is an important 

improvement compared to most other travel studies (e.g. Schrooten et al. 2006) 

who often work with time factors to derive hourly information from one peak-

hour value. When the traffic flows fluctuate differently throughout the study 

area, this activity-based approach will certainly be a better option. 
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Concerning the total distance travelled, the activity-based approach 

overestimated the total travelled distance by approximately 8% compared to the 

NTS values. The results of the emission assessments varied between pollutants. 

For the CO2 emissions the estimated value differed approximately 11% from the 

reported value. The SO2 emissions differed 26% from the published value. The 

predictions for NOx, VOC and PM differed from their reported counter values for 

16%, 9% and 3% respectively. Considering the overestimation of vehicle 

kilometres compared to the NTS values, these relative differences are quite 

small and probably the amount of PM emissions is still underestimated.  

 

The validation test in this study is an essential first step: if a model is unable to 

replicate its base year behaviour, it has little hope of forecasting the future 

adequately. Based on the results presented in this chapter we can conclude that 

the activity-based modelling approach is able to reproduce base year travel and 

emissions with sufficient accuracy and that the resulting emissions can be used 

as input for dispersion modelling.  



 81 

4 ACTIVITY-BASED TRANSPORT MODELS AND 

AIR QUALITY MODELLING: ESTABLISHING 

THE LINK WITH THE AURORA DISPERSION 

MODEL 

 

Adapted from: Beckx C., Int Panis L., Van De Vel K., Arentze T., Janssens D., 

Wets G., 2009. The contribution of activity-based transport models to air quality 

modelling: a validation of the ALBATROSS - AURORA model chain. Science of the 

Total Environment 407, 3814-3822. 

 

 



 82 

4.1 Introduction 

Activity-based approaches aim at predicting which activities are conducted, 

where, when, for how long, with whom and, if travel is involved, the transport 

mode used. Using an activity-based approach will provide more accurate 

estimates of the emissions produced in a certain study area due to the richer set 

of concepts which are involved in activity-based modelling (information on travel 

by time of day and location, vehicle miles travelled,…). In the previous chapter 

the integration of the MIMOSA emission model with the travel demand modelling 

capabilities of the Dutch ALBATROSS model was already described. The fact that 

this activity-based emission approach is based on hourly travel and emission 

values, instead of using aggregated results or peak hour values, a common 

practice with other traditional models, is an important added value.  

 

Validation results from this latter study indicated that the total amount of 

emissions predicted by the ALBATROSS-MIMOSA model chain corresponded well 

with reported emission values from the Dutch statistical agency. However, that 

validation analysis only compared the results from two different emission 

‘models’ without evaluating the situation on the spot, and only aggregated 

emission results were evaluated. By converting these emissions into 

concentrations, a more accurate validation analysis can be performed using the 

actual measurements in the study area and examining also the temporal and 

spatial variation of  the predictions. Taking into account that the activity-based 

approach provides more detailed information on pollutant emissions, one can 

expect the activity-based approach to also contribute to more accurate 

concentration modelling results.  

 

The aim of this study is to present and validate an integrated activity-based air 

quality modelling framework where calculated pollutant concentrations are 

compared with measured concentrations at Dutch monitoring stations.  
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4.2 Methodology 

To illustrate the activity-based approach for air quality modelling, the emission 

information from a previous application of the activity-based model ALBATROSS 

(see Chapter 3) was used as an input for the AURORA dispersion model to 

calculate pollutant concentrations in the Netherlands. This section briefly 

presents the applied methodology to develop the activity-based air quality 

modelling chain and also describes the data that were used to validate the 

model results.  

 

4.2.1 General approach 

This study comprehends a second step in the modelling framework to assess a 

dynamic population exposure to air pollution. It continues on the work 

previously performed to link the activity-based model with the emission model 

(see Chapter 3) and focuses on the conversion of the emissions into 

concentrations. Figure 9 schematically presents the applied methodology.  

 

 

 

 

Figure 9. Schematic presentation of the adopted methodology 
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In a previous study, the application of ALBATROSS for the simulation of traffic 

flows and emissions for the Netherlands was already examined (see chapter 3). 

In that study, the activity-based model ALBATROSS was first used to simulate 

the travel behaviour for the individuals in the Dutch population (results from a 

30% simulation run were extrapolated to the whole population). Next, hourly 

O/D trip matrices were composed for all the motorized trips in the activity 

schedules and these matrices were assigned to a traffic network to simulate 

hourly traffic flows. In combination with the MIMOSA emission model, the 

resulting hourly traffic flows and traffic speeds were converted into 

geographically and temporally distributed traffic emissions. Using this hourly 

emission information as input for an air quality model will result in temporally 

and geographically distributed concentration fields. For this purpose, the 

AURORA dispersion model was applied (see section 2.4.2 for more information 

on the AURORA model configuration and specifications). 

 

In the AURORA dispersion model the MIMOSA emissions were combined with 

emission data from other sources (household, industry,…) and meteorological 

data (temperature, wind speed, wind direction,…) to calculate the pollutant 

concentrations on a 3 by 3 km grid. The model hereby assesses how, after being 

emitted from a source, air pollutants are transported and mixed in the air, 

undergo chemical reactions, generate secondary pollutants, etc. AURORA 

calculations were performed on hourly basis for six months (March, April, May, 

September, October and November) for the year 2005 and the following 

pollutants were considered: NO2, O3 and PM10.   
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4.2.2 Validation data 

To validate the results from the AURORA model, predicted concentrations were 

compared with measured concentrations from monitoring stations. There are 

around 100 stations in the Netherlands that monitor air quality within the 

European environment information and observation network (Eionet). The Eionet 

database was accessed and hourly pollutant concentrations for a six month 

period in the year 2005 were extracted (Airbase, 2008). The concentrations for 

three ‘spring’-months (March, April and May) and three ‘fall’-months 

(September, October and November) were analyzed for the following pollutants: 

NO2, O3 and PM10. Since not all the Eionet monitoring stations measured (one of) 

these pollutants (continuously), different subsets of the monitoring stations per 

pollutant were made. NO2 concentrations were observed by the largest number 

of stations (37), followed by O3 (33) and PM10 (31).  

 

Table 6 presents an overview of the number of stations that have continuously 

monitored PM10, O3 and NO2 over that period. The stations were classified in 

zones according to their spatial characteristics. The zone is called urban, when 

the station is located in a city. Residential areas outside a main city represent 

the suburban zone. When a station is located outside a city, far from city 

sources of air pollution, the type of zone is called rural. Further, a distinction can 

be made regarding the specific type of location of the station. When a station is 

located such that its pollution level is determined predominantly by the 

emissions from nearby traffic, the type of station is called traffic station. When 

the pollution level is not determined significantly by any single source or street, 

but by the integrated contribution from all sources upwind of the station, the 

station is said to be located in a background area. All of these types of stations 

can be located in urban, suburban as well as rural zones. Most stations in the 

study have been classified as rural. Concerning the location, most stations were 

classified as background locations, but a significant number are referred to as 

traffic stations, meaning their location was specifically chosen to reflect the 

contribution of important local traffic sources.  
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Table 6: Number of Dutch air quality monitoring stations for which the data are used in the 

validation of the ALBATROSS - AURORA modelling results. Classification by type and area. 

See Figure 10 for the locations of these stations. 

 

 

 

 

 

 

 

 

 

 

In Figure 10 the locations of the air quality monitoring stations that were used in 

this study are presented. The network consists of 37 monitoring stations in total, 

distributed over the entire study area. Each of the stations measures 

concentrations of NO2 on an hourly basis and most of them also register hourly 

concentrations of O3 and PM10. Each pollutant is monitored by at least 31 

monitoring stations and the dataset for each monitoring station consists of 

~4000 hourly observations for each pollutant in the selected time period. Most 

other validation studies work with significantly fewer stations, shorter time 

periods or larger time resolutions (see also the characteristics of other validation 

studies listed in Table 8). The comprehensive and elaborated dataset used in 

this validation study can therefore be considered as quite uncommon.  

 

 

 

  Area 

Pollutant Type Urban Suburban Rural 

NO2  Background 5 2 20 

 Traffic 9 0 1 

O3  Background 5 2 20 

 Traffic 6 0 1 

PM10  Background 4 1 16 

 Traffic 9 0 1 
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Figure 10. The air quality monitoring network in the Netherlands in the year 2005. The 

triangles represent the 37 measurement stations that were used in this study (see table 2 

for more details) 
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4.3 Results & discussion 

The agreement of model predictions with observations from the measurement 

stations was evaluated using a statistical analysis on the hourly concentration 

data. In this section the statistical parameters are first described and then the 

validation results of the activity-based air quality model in the Netherlands are 

presented. 

 

4.3.1 The statistical parameters 

To evaluate the performance of the activity-based air quality model chain a 

statistical analysis was carried out on the predicted and measured hourly 

concentration values. The statistical analysis includes the calculation of four 

statistical parameters: the index of agreement (IA), the correlation coefficient 

(r), the normalised mean square error (NMSE) and the fractional bias (FB). 

Although no single set of evaluation techniques is universally recommended for 

the validation of an air quality model, the statistical measures used here have 

been widely used in regional air quality and meteorological model evaluations 

(Kousa et al. 2001; Choi and Fernando, 2007; Karppinen et al. 2000; 

Kauhaniemi et al. 2008) and have also been discussed previously by Willmott 

(1981). 

 

The parameters r, IA, and NMSE are measures of the correlation of the predicted 

and observed time series of concentrations, while FB is a measure of the 

agreement of the mean concentrations. The four statistical parameters can be 

defined as follows: 
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Cp and Co are the predicted and observed concentrations respectively, and σo 

and σp are the standard deviations of observations and predictions respectively. 

The over-bar refers to the average over the hourly values. For each parameter 

the sum over all the observed/predicted values needs to be taken.  

 

The correlation coefficient r has received much criticism (Comrie, 1997; EPA, 

1999) because it is not related to the differences between predicted and 

observed values. It only reflects the linear relationship between two variables 

and is thus insensitive to either an additive or a multiplicative factor (Chang and 

Hanna, 2004). Therefore, the index of agreement IA, which is based on the 

squared differences, is used complementarily (Chaloulakou et al. 2003). The 

index IA allows for sensitivity towards differences in observed and predicted 

values as well as proportionality changes (Borrego et al. 2008). The IA varies 

from 0.0 (theoretical minimum) to 1.0 (perfect agreement between the 

observed and predicted concentrations) and determines the degree to which 

magnitudes and signs of the observed value about mean observed value are 

related to the predicted deviation about mean predicted value. An IA value of 

0.5 or more represents an acceptable model performance (Park and Seok, 2007; 

Zawar-Reza et al. 2005). Of course, the applied time resolution will have an 

impact on this value since annual mean model data will normally agree better  

with annual averaged measurements than hourly concentration data. FB is a 

measure of mean relative bias and indicates only systematic errors, whereas 

NMSE is a measure of mean relative scatter and reflects both systematic and 

unsystematic (random) errors. FB ranges from -2.0 to +2.0 in cases of extreme 

under- and over-prediction respectively. Values of FB that are equal to -0.67 and 

+0.67 are equivalent to under- and over-prediction by a factor of two 

respectively.  
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A perfect model would have IA = 1.0; r = 1.0; NMSE = 0.0 and FB = 0.0. Of 

course, because of the influence of random atmospheric processes, there is no 

such thing as a perfect model in air quality modelling. However, calculated 

values can be used to evaluate model performance and to compare different air 

quality models. 

 

4.3.2 Results from the statistical analysis 

4.3.2.1 Overall statistical values 

Table 7 presents the mean concentration values for both the predicted and the 

observed time series of concentrations, together with the results from the 

statistical analysis. In this analysis all the concentration values that were 

monitored and predicted for the entire six month period at all the monitoring 

stations were taken into account. 

 

 

Table 7: Results of the statistical analysis of the observed and the predicted hourly time 

series concentrations of NO2, O3 and PM10 in the year 2005.  

 

 

 

 

Notation: oC  = mean observed concentration (in µg/m3), pC  = mean predicted 

concentration (in µg/m3), IA = index of agreement, r = correlation coefficient, NMSE = 

normalised mean square error and FB = fractional bias.  

 

 

Considering the comparison of the averages, the model apparently 

overestimates the concentrations of NO2, but slightly underestimates the 

concentrations of O3 and PM10. An analysis of the calculated statistical 

parameters indicates that the model performs best for O3 with an IA equal to 

0.75 and a very small bias. Second best are the model results for NO2 with an IA 

value of 0.64 and a FB of 0.25.  The lowest IA is found in the evaluation of PM10 

 
oC  

pC  IA r NMSE FB 

NO2  30 38 0.64 0.43 0.44 0.25 

O3  39 32 0.75 0.58 0.70 -0.20 

PM10  33 27 0.57 0.33 0.78 -0.19 
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concentrations, indicating that it is more difficult to predict the short-term 

temporal variations of the PM10 concentrations compared to NO2 and O3. Due to 

the difficulties to reliably model the temporal variations of the emissions of non-

exhaust particulate matter, this weaker performance for PM10  is not surprising 

(Kauhaniemi et al. 2008).  However, the overall IA value for PM10 evaluation is 

still above 0.5, indicating that the overall ability of the model to predict 

concentrations of PM10 is still acceptable (Park and Seok, 2007; Zawar-Reza et 

al. 2005). 

 

 

4.3.2.2 Comparison with findings from other validation studies 

The value of IA is a measure of the degree to which the model predictions are 

error free. Moreover, it is a standardized measure that makes it possible to 

perform a cross-comparison of its magnitudes for a variety of models, regardless 

of units (Gokhale and Raokhande, 2008). In Table 8 the IA values and study 

designs from different recent dispersion model validation studies are listed. For 

each pollutant a number of studies are listed chronologically and, if available, a 

range of IA values calculated for different measurement stations is presented. 

The purpose here is not to present a complete review of the literature and 

discuss every study in detail (Table 8 is biased to include more recent studies 

and air quality models), but it does give a fair overview of the typical accuracy 

that is achieved by air quality models. The last study mentioned for each 

pollutant in Table 8 presents the results from the current study of the 

ALBATROSS - AURORA chain in the Netherlands. The ranges of IA values, 

calculated by ALBATROSS – AURORA, were judged against the ranges calculated 

for other model applications.  
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Table 8. Comparison of IA values from dispersion model validation studies. 

Poll. Site N°  Duration Temp. 

Resol.  

IA (Rangea) Referenceb 

NO2 Oslo, Norway 1 2 months Hour 0.78 Walker et al. 

1999 

 Helsinki, 

Finland 

4 1 year Hour 0.69 – 0.79 Karppinen et al. 

2000 

 Helsinki, 

Finland 

7 2 years Hour 0.65 – 0.82 Kousa et al. 

2001 

 Helsinki, 

Finland 

1 2 months Hour 0.70 Kukkonen et al. 

2003 

 Auckland, 

New Zealand 

4 1 year Hour 0.50 – 0.80 Scoggins et al. 

2004 

 Southeast of 

England, UK 

6 5 days Hour 0.75 Yu et al. 2008 

 The 

Netherlands 

37 6 months Hour 0.40 – 0.70 This study 

O3 Helsinki, 

Finland 

1 2 months Hour 0.62 Kukkonen et al. 

2003 

 London, UK 9 10 days Hour 0.69 – 0.70 Sokhi et al. 2006 

 Southeast of 

England, UK 

6 5 days Hour 0.79 Yu et al. 2008 

 The 

Netherlands 

33 6 months Hour 0.69 – 0.80 This study 

PM10  Christchurch, 

New Zealand 

4 6 days Hour 0.67 – 0.87 Barna and 

Gimson, 2002 

 Christchurch, 

New Zealand 

11 2 months Day 0.40 -0.70 Wilson and 

Zawar-Reza, 

2006 

 Milan, Italy 14 1 week Hour 0.45 – 0.75 Silibello et al. 

2008 

 Guwahati, 

India 

1 4 months Day 0.50 – 0.60  cGokhale and 

Roakhande, 

2008 

 The 

Netherlands 

31 6 months Hour 0.48 – 0.64 This study 
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aIf available, a range of IA values over the different measurement stations is shown, 

otherwise the overall IA value is reported.  bNone of these studies reported the use of 

activity-based transport models. Most have used a traditional approach to traffic modelling 

based on peak hour values but not all authors are explicit about the methodologies that 

were used. cIn this study the results from three different models at one monitoring station 

were presented. 

 

 

When comparing the range of calculated IA values for NO2 with the ranges from 

the other validation studies in Table 8, the general model performance of the 

ALBATROSS-AURORA application appeared to be slightly weaker. However, large 

differences were present between the monitoring stations. The lowest IA values 

in the study approach 0.4, indicating only a moderate model performance. The 

highest IA values approach 0.7, indicating a very good agreement between 

predictions and measurements. A geographical analysis demonstrated that the 

stations with an IA value of less than 0.5 were all located near the country 

border, probably indicating a worse prediction of the contribution of ‘foreign’ 

emissions to the local NO2 concentrations in these areas. Hence these lower IA 

values cannot be attributed to the performance of the activity-based approach. 

Moreover, further analysis demonstrated that these ‘inferior’ stations did not 

include any traffic station indicating that the prediction of NO2 concentrations at 

traffic stations was better.  

 

For O3, the results from the ALBATROSS - AURORA chain seem very successful. 

The AURORA model performance (IA = 0.69 – 0.80) scores even better than the 

performance results from the other studies in Table 8 who report IA values 

between 0.62 and 0.79. Since all the stations in the study report IA values of 

more than 0.69 we can conclude that the ALBATROSS - AURORA model system 

predicts the hourly O3 concentrations with sufficient accuracy at all locations. 
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Concerning the results for PM10, the IA values are comparable with the ranges 

from the other studies mentioned in Table 8. Given the generally lower 

agreement values for this pollutant, it is clearly more difficult to simulate the 

temporal and spatial variations in PM10 concentrations. A more detailed analysis 

on the inferior stations yielded similar conclusions for PM10 as for NO2, namely 

that the location of the station has an influence on the model performance. 

Stations located near the border of the country provided the worst validation 

results.  

 

A lower model performance can also be attributed to the stations exact location. 

As the model provides predictions for mean concentration values for the grid 

cells with a resolution of 3 x 3 km and not for specific receptor points within the 

cells, a monitoring station that is located near the border of a grid cell can be 

less representative for the concentrations within this cell. Part of the ‘inferior’ 

stations for NO2 and PM10 were indeed located near the grid border, indicating 

that the lower model performance at some stations can be explained by their 

specific location. For monitoring stations located within a street canyon, a street 

canyon dispersion model should be used in predicting the concentrations at this 

station. But, as far as the authors are aware off, no street canyon monitoring 

stations were present in the Eionet database used in the current study. 

 

Given the study design from the current study and the results from the 

statistical analysis, the validation results presented in Table 8 are very promising 

for all three pollutants. The other studies mentioned included ‘only’ 14 

monitoring stations or less while the validation study took into account the 

hourly concentration results of more than 30 monitoring stations distributed 

over the entire Dutch study area during a period of six months. Obviously, the 

larger the study area and the larger the number of monitoring stations, the 

more difficult it is to predict the concentrations at all the different locations 

accurately. Still, the ranges reported in Table 8 indicate that the model 

performance is acceptable at most locations and comparable with the 

performance results from other studies, except for a limited number of 

peripheral stations in the NO2 and PM10 modelling.  
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4.3.2.3 Temporal and spatial analysis 

Besides a statistical analysis taking into account all the concentration values of 

the monitoring stations, also a more detailed analysis was performed on 

different subsets of the monitoring data to gain more insight into the model 

performance. Statistical analyses, involving the calculation of statistical 

parameters as described in section 4.3.1 were performed on both a spatial and a 

temporal subset of the monitoring data. For the spatial classification the 

concentration data were classified by the type (background versus traffic) and 

by area (rural, suburban or urban) of the monitoring station. For the temporal 

classification a statistical analysis was separately performed on the daytime (8h 

– 20h) and the nighttime values; and on the weekend versus the weekday 

concentration values.  

 

Only for the analysis of NO2 a classification of the concentration data yielded 

different statistical results. The statistical parameters for PM10 and O3 did not 

significantly change by using subsets of the concentration data (although O3 

predictions performed slightly worse during nighttime). Given the fact that only 

NO2 is considered to be a typical traffic pollutant, this definitely makes sense. 

This may indicate that the air quality model can make good predictions for all 

three pollutants, but that the results from the activity-based transport model do 

not significantly change the prediction of O3 and PM10.  

 

Concerning PM10, in general both the spatial and temporal differences are small 

because the West European concentrations are mainly dominated by background 

concentrations from a multitude of sources and they are affected by local traffic 

emissions only in a very limited way. The indices for PM10 in Table 7 are 

therefore primarily an indication of how well AURORA has incorporated biogenic 

and (non-transport) anthropogenic emissions as well as boundary conditions and 

meteorology.  
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Concerning the detailed statistical analysis for O3, statistical results were also 

very similar across all subsets of monitoring stations which makes sense for a 

secondary pollutant (i.e. the reactions take some time and the pollutant is 

formed at some distance away from the source yielding a more average 

concentration field). The presence of slightly worse results for O3 during night 

time has been reported previously (e.g. by Sokhi et al. 2006). There are various 

possible factors which could cause these discrepancies, but they can often be 

explained by errors in the meteorological parameters (especially wind speeds) 

during the night (Int Panis and Beckx, 2007). Since the results for O3 and PM10 

did not significantly change across different subsets of monitoring data, only the 

spatial and temporal results for NO2 will be discussed further. In Table 9 and 

Table 10 the results for NO2 are presented for the spatial classification and the 

temporal classification respectively.  

 

 

Table 9. Spatial disaggregation of the statistical analysis for NO2 concentrations by type or 

by area of the measurement station  

Notation: oC  = mean observed concentration (in µg/m3), pC  = mean predicted 

concentration (in µg/m3), IA = index of agreement, r = correlation coefficient, NMSE = 

normalised mean square error and FB = fractional bias.  

 

 

 

 

 

 

 

Classification Monitoring stations  oC  pC  IA r NMSE FB 

Background 24 37 0.59 0.43 0.47 0.41 
Type 

Traffic 46 44 0.62 0.37 0.36 -0.04 

Rural 22 35 0.55 0.38 0.53 0.47 

Suburban 29 38 0.60 0.39 0.46 0.29 Area 

Urban 43 44 0.64 0.40 0.33 0.04 
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Table 10. Temporal disaggregation of the statistical analysis for NO2 concentrations by 

day/night or by week/weekend. 

Notation: oC  = mean observed concentration (in µg/m3), pC  = mean predicted 

concentration (in µg/m3), IA = index of agreement, r = correlation coefficient, NMSE = 

normalised mean square error and FB = fractional bias.  

 

 

The results presented in Table 9 indicate that AURORA predictions match actual 

measurements better in grid cells with traffic stations in comparison with grid 

cells containing background stations: slightly higher IA (p < 0.05 for unpaired 

one-sided t-test), much lower error estimates and better agreement of average 

values. Due to the resolution used in this study (3 by 3 km) the impact of traffic 

sources to the mean grid cell concentrations will of course be not very clear. 

However, one can assume that the contribution of traffic sources will be more 

explicit in grid cells with traffic stations compared to the background cells. The 

statistical analysis therefore indicates that the spatio-temporal variations in NO2 

emissions of traffic sources have been estimated better than the NO2 emissions 

from other sources. Since the traffic sources originated from the activity-based 

model ALBATROSS, these validation results demonstrate that the ALBATROSS 

model was able to simulate the traffic sources that contribute to local 

concentrations with good accuracy.  

 

Concerning the classification by area, the urban stations presented the best 

model results for the statistical parameters compared to the suburban or rural 

stations (p < 0.05 for unpaired one-sided t-test on IA values). Given the fact 

that the traffic modelling that preceded this study occurred more accurately in 

the urban areas (the size of the ALBATROSS traffic zones is inversely related to 

the population density, see section 2.2.2.1 on the physical information), this 

result also makes sense. Since these urban areas will attract a lot of people and 

Classification Monitoring data oC  pC  IA r NMSE FB 

Daytime 31 37 0.67 0.46 0.44 0.18 
Day/night 

Night 28 41 0.59 0.39 0.43 0.37 

Week 32 40 0.62 0.43 0.41 0.21 
Week/weekend 

Weekend 24 35 0.58 0.39 0.51 0.39 
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concentration values will often approach the concentration limit values in urban 

areas, the reliable model evaluation in these populated areas is positive news 

with an eye on future studies on exposure and health. 

 

In Table 10 the results of the temporal classification are presented. Clearly, the 

model’s ability to predict pollutant concentrations is much better during the day 

than in the night. The results in Chapter 3 already demonstrated that the 

activity-based traffic flows during the day were simulated much better than the 

nightly traffic flows. This can be an explanation of the observed differences 

between the day and the night concentration results. The same assumption can 

be made for weekly and weekend traffic flows since that study also indicated a 

much better simulation for week trips than for weekend trips. Again, this result 

is very important for further studies on the exposure analysis. Since most trips 

and activities occur during the day, a good estimate of the daytime 

concentrations is very important to conduct realistic exposure analyses in a next 

phase.  

 

Further, Table 10 presents mean model NO2 concentrations that are higher at 

night than during the day, whereas the opposite is observed in reality at the 

measurement stations. This can be explained by two main reasons. First of all, 

as already mentioned, nightly traffic flows (and the resulting vehicle emissions) 

were slightly overestimated by the ALBATROSS model. Secondly, at night, there 

is more stability in the atmosphere than during the day, when the sun creates 

instabilities due to diurnal heating.  This is observed in reality, but is also 

represented in the AURORA model by means of a lower boundary layer height.  

As a result of this boundary layer, the local emissions are not dispersed as easily 

which increases surface concentrations. As can be seen in Table 5 this physical 

effect is overestimated in the AURORA model. 
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4.4 Conclusion  

In this chapter the use of an activity-based model for the assessment of air 

quality was presented. Therefore, the ALBATROSS-MIMOSA link was combined 

with the AURORA air quality model to estimate concentrations of PM10, O3 and 

NO2 across space and time. By comparing the predicted hourly concentrations 

with actual measurements the ability of the ALBATROSS - AURORA model chain 

to replicate base year concentration profiles in different areas and time periods 

was evaluated. 

 

The results of the statistical analysis demonstrate that the modelling framework 

is able to predict hourly concentration values for NO2, PM10 and O3 with sufficient 

accuracy (IA values > 0.5). The best agreement between modelled and 

observed concentrations was calculated for O3 (overall IA of 0.75) while the 

overall agreement for PM10 was weaker (IA of 0.57). The statistical results for 

NO2, a traffic related air pollutant, are the most important in this study, 

considering the fact that this research wants to evaluate the use of an 

alternative transport model to give good estimates of the contribution of traffic 

sources to ambient pollutant concentration levels. Overall statistics for NO2 were 

satisfying with an overall IA value of 0.64. Poor results were reported in border 

stations indicating a possible wrong assessment of the contribution of foreign 

traffic. In comparison with other model validation studies this validation study 

included an extended dataset with hourly concentration data from more than 30 

measurement stations distributed throughout the Netherlands. The agreement of 

predicted and measured concentrations of the modelling system was very similar 

to the statistical results presented in the other papers, indicating that the 

ALBATROSS - AURORA system is definitely able to simulate both temporal and 

geographical variations of concentrations with sufficient accuracy.  
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A more thorough analysis of the NO2 results demonstrated that better model 

results were calculated for the traffic stations than for the background stations 

indicating a positive contribution of the activity-based transport model. Further, 

better agreement results were reported in urban areas compared to rural areas. 

Concerning the temporal analysis of the concentrations, the model performed 

better during the day and on weekdays. A similar conclusion was made in the 

Chapter 3 involving the calculation of traffic flows and emissions with the 

ALBATROSS. By comparing the predicted traffic flows with reported traffic 

values, the analysis in this chapter also concluded that the ability of the activity-

based model to simulate traffic flows during the day and on weekdays is better 

than the simulation of (nightly) traffic flows during the weekend. In general, one 

can conclude that the ALBATROSS-AURORA model chain performs well (given 

the results from the validation analyses presented here), but improvements on 

the nightly traffic flows (and resulting emissions) and on the boundary layer 

specifications will possibly produce even better agreement results.  

 

The results presented in this chapter demonstrate the ability of the AURORA 

model to simulate hourly concentrations of NO2, PM10 and O3 and show that an 

activity-based model can be used to predict the contribution of traffic sources to 

local air pollution with sufficient accuracy. This result confirms the usefulness of 

activity-based transport models for air quality purposes, and demonstrates their 

application in pollutant concentration modelling for the first time.  
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5 STATIC VERSUS DYNAMIC EXPOSURE 

ESTIMATES 

 

Adapted from: Beckx C., Torfs R., Arentze T., Int Panis L., Janssens D., Wets G., 

2008. Establishing a dynamic exposure assessment with an activity-based 

modeling approach: methodology and results for the Dutch case study. 

Epidemiology 19, S378-S379. 

 

And: Beckx C., Int Panis L., Arentze T., Janssens D., Torfs R., Broekx S., Wets 

G., 2009. A dynamic activity-based population modelling approach to evaluate 

exposure to air pollution: methods and application to a Dutch urban area. 

Environmental Impact Assessment Review 23, 179-185.    
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5.1 Introduction 

The study described in the previous chapter demonstrated that important 

differences in pollutant concentrations can occur over the day and between 

different locations. At the same time however, the location of individuals also 

varies over space and time causing a large geographical and temporal variation 

in the number of people present at any location during the day. Traditional 

exposure studies that link concentrations with population data however do not 

always take into account the temporal and spatial variations in both 

concentrations and population density, often because temporally resolved data 

are simply not available (Hertel et al. 2001).   

 

Epidemiological studies have consistently indicated a link between current levels 

of air pollution and public health. Ozone and PM are thought to be the key 

drivers although knowledge on the causal links between exposure to an air 

pollution mixture and resulting health effects remains imprecise. However, 

studies throughout the world have shown that any short term 10 µg/m³ increase 

in PM10 levels increases the mortality rate on the next day by 0.6% (Nawrot et 

al. 2007) and long term exposure to PM is considered to be responsible for a 

significant fraction of cardiovascular mortality and lung cancers among non-

smokers (Pope and Dockery, 2006). Several studies have tried to demonstrate 

that vehicle exhaust related air pollution is more harmful than PM10 in general 

and that proximity to busy roads is linked to health impacts (e.g. Beelen et al. 

2008; Brugge et al. 2007). These new insights have made policy makers aware 

of the fact that it is exposure of people that should be reduced in order to 

reduce health effects. The latest European directive on air quality (2008/50/EC) 

has therefore introduced new standards, mentioning for the first time a 

reduction of the exposure to air pollution. On one hand there is a specific ECO 

(‘Exposure Concentration Obligation’) of 20 µg PM2.5/m³ in urban areas (where 

most people live) to be reached by 2015.  On the other hand the average 

exposure of people in urban areas to PM2.5 should be reduced by up to 20% 

between 2010 and 2020 depending on the current level of exposure. 
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Since previous air quality directives (e.g. 1999/30/EC; 96/62/EC) only focused 

on the reduction of concentration limit values, the recent focus on exposure 

means that new scientific methodologies to estimate exposure more accurately 

should be devised. Exposure has traditionally been calculated by multiplying 

population densities with concentrations at different geographical scales (Kousa 

et al. 2002). While concentration data from models is often available at high 

temporal and spatial resolution, the population data is usually based on static 

administrative address data. According to this static exposure approach the 

receptors (i.e. the people) are only exposed to pollutants at their home address. 

Important policy related studies have likewise adopted this approach to 

exposure modelling to derive external costs of traffic (Friedrich and Bickel, 

2001). This approach is only sufficient for rough assessments at the national 

level. Any assessment focusing at urban or suburban scales (consistent with the 

new European legislation) should take into account that people are often 

exposed to air pollution at different sites, other than their home address, during 

the day. To establish such an improved assessment of human exposure, 

however, it is necessary to model the activity-travel behaviour of individuals 

during the day. A micro-simulation model of activity-travel behaviour is able to 

simulate temporal population maps of people present in a study area during all 

stages of the day and does not just assume a limited number of 

microenvironments. By combining these simulated population data with pollution 

data, a dynamic exposure procedure can be established.  

 

In this chapter the methodology is presented to estimate exposure to air 

pollution using population data from an activity-based transport model combined 

with air quality data from a dispersion model. The differences between this 

‘dynamic’ approach and the traditional ‘static’ approach, that assumes all people 

stay at their residential address during the day, are presented. The validity of 

the methodology is demonstrated by applying it to the city of Utrecht in The 

Netherlands as a case study.  
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5.2 Methodology 

In this section the applied methods and necessary data for establishing an 

dynamic activity-based exposure framework in The Netherlands are described.  

 

5.2.1 General approach 

The activity-based model ‘ALBATROSS’ was applied to provide the temporal 

variations in population distribution during the day. For this purpose, 

consecutive hourly cross sections on the locations of the modelled ALBATROSS 

population were performed on the schedules data. The resulting dynamic 

population information was used, together with air quality data from the 

ALBATROSS-MIMOSA-AURORA chain (see chapters 3 and 4) to assess a dynamic 

population exposure. On the other hand, static exposure estimates were 

calculated based on a similar approach but involving only residential population 

information (extracted from the synthetic population in ALBATROSS). In Figure 

11 a schematic overview of the applied methodology is presented. The static and 

dynamic exposure assessment method is explained in more detail in the next 

section.  

 

The concentration information for both the static and the dynamic approach is 

provided by a previous study involving the dispersion model AURORA (see 

chapter 4). Hourly concentration maps were developed with grid cell sizes of 3 

by 3 kilometre. In this study the concentration data for PM10 and PM2.5 for the 

month of April 2005 were used for analysis. Results for other pollutants and 

other time periods can be obtained by adopting a similar approach. 
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Figure 11. Schematic overview of the applied methodology 

 

5.2.2 Static and dynamic exposure assessment 

A synthetic population representing the residential information for 30% of the 

households in the study area was created with the ALBATROSS model. This 

population was extrapolated (multiplied with the inverted sample fraction) to 

represent the total Dutch residential information and considered as the ‘static 

population’ for further exposure analyses. In a next step, activity schedules for 

all the individuals within this Dutch population were generated using the 

scheduling process in ALBATROSS as described in section 2.2.2. The dynamic 

population was generated by extracting population location information from 

these simulated activity schedules. Consecutive cross sections of this modelled 

population result in a representation of a dynamic population. As in the 

traditional ALBATROSS approach, the 4-position postcode area (PCA) was 

chosen as the spatial unit for the database and time steps of one hour were 

chosen as the appropriate time unit.  
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By combining the population data with air quality data from the AURORA 

dispersion model two different exposure assessments can be established (see 

also Figure 11): a static and a dynamic exposure assessment.  

On the one hand, by combining the static (synthetic) population with the hourly 

concentration information, static hourly exposure estimates can be made. In this 

traditional static method, applied by most conventional exposure studies, people 

are considered to be only exposed to concentrations at their home address.  

On the other hand, the combination of the dynamic population maps, provided 

by the scheduling process in ALBATROSS, with the concentration information will 

result in dynamic hourly exposure assessments. In this case, people’s travel 

behaviour is taken into account and therefore they will be also exposed to 

concentrations at out-of-home locations.  

Both the static and the dynamic exposure assessment are performed in a GIS 

environment since population information as well as concentration information is 

available on a similar geographic level. Static and dynamic exposure estimates 

can be finally compared to examine the impact of using a different 

methodological approach on exposure evaluations. Observed differences are 

only due to differences in the population modelling approach since modelled 

concentration data have been kept identical for both approaches.  

 

5.2.3 The study area 

Activity-travel schedules were generated with ALBATROSS for all the individuals 

belonging to the Dutch adult population. However, to examine and present the 

population (and exposure) results more accurately, only the results for one 

specific location in the Netherlands will be analyzed in this chapter. The Dutch 

population information from the ALBATROSS model was therefore reduced to 

represent only the population present at one specific urban location:  the city 

centre of Utrecht. The selection for this location out of all the Dutch urban areas 

was made arbitrary.  
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The Utrecht city centre is an urban area in the centre of The Netherlands. It is 

the fourth largest city of The Netherlands with a population of over 0.25 million. 

It is an attractive city to live, work, shop, or recreate which causes a large inflow 

of people during the day. This is enhanced by the fact that the old historical 

centre and the cities central location tends to attract people from a large area 

for these purposes. The city centre of Utrecht (the inner part of the city) counts 

9 PCA’s with areas varying from 46 ha to 115 ha and covering a total area of 

approximately 800 ha.  

 

5.3 Results & discussion 

5.3.1 Dynamic population results 

Hourly cross-sections of the population present in the Utrecht city centre were 

first made to examine the in –and outflow of people in this region. Figure 12 

presents the variation in population during an average Monday for the Utrecht 

area. Results for other weekdays yield similar results. Population dynamics in 

the weekend differ from the travel behaviour on weekdays due to the larger 

amount of flexible (non-work) activities compared to weekdays. At 4 a.m. the 

dynamic estimate approaches the residential population. During the day (at 10 

a.m., 12 p.m. and 16 p.m.) more people tend to travel to Utrecht, resulting in 

an increase of the population during the day.  
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Figure 12. Geographic presentation of the number of people present in the Utrecht city 

centre on an average Monday at four different points in time: 4 a.m., 8 a.m., 12 p.m. and 

16 p.m.  
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5.3.2 Air pollution 

As a result of the AURORA dispersion modelling, hourly concentration maps for 

PM10 and PM2.5 were available for the Netherlands for the month of April in 2005. 

In a GIS environment the 3 by 3 km concentration grid cells were analyzed for 

the study area: the Utrecht city centre. Considering the variation in 

concentrations between the different locations, concentration differences of 

more than 50 µg/m3 were reported for both PM10 and PM2.5.  

 

5.3.3 Exposure assessment 

As explained in section 5.2.2 and illustrated in Figure 11 static and dynamic 

exposure estimates were calculated by combining population data and 

concentration information. For the Utrecht area, two kinds of exposure analyses 

were made on the static and dynamic population data: a calculation of the total 

exposure in the study area and an analysis of the exposure hours (i.e. the total 

number of hours spent in or above a certain concentration). 

 

The first exposure analysis in the Utrecht area concerned the calculation of total 

hourly exposure estimates by multiplying, for each hour, the number of people 

in each PCA with the corresponding concentration level. By summing all the 

exposure values per hour, a total exposure for the Utrecht city centre was 

calculated both for the static and the dynamic exposure approach. The relative 

difference in total exposure on weekdays between the static and the dynamic 

approach is presented in Figure 13. This figure is similar for all pollutants since it 

actually represents the relative population difference for the two approaches. 

Hence, Figure 13 also represents the relative in –or outflow in the Utrecht PCA’s 

during an average weekday, compared to the static population. Between 9 a.m. 

and 16 p.m. the relative difference between static and dynamic estimates 

amounts more than 100%, meaning that the Utrecht population more than 

doubles during a weekday compared to the (static) residential information. At 

night, the number of people estimated by the dynamic exposure method 

approaches the number of residents used in the static method.  Consequently 

differences between the total exposure estimates are smallest at night. 
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Figure 13. Relative difference between static and dynamic total exposure estimates on 

weekdays for the city of Utrecht. 

 

 

The second analysis concerns the amount of hours that people are exposed 

to/above certain concentrations. For this analysis, the number of people exposed 

each hour to a concentration was calculated for both the static and the dynamic 

approach. Each hour spent by a person at a certain concentration, was 

expressed as a ‘personhour’. In Figure 14 and Figure 15 the cumulative number 

of personhours spent above a certain concentration of PM10 or PM2.5 respectively 

is expressed for both the static and the dynamic approach. Both graphs 

represent exposure assessments for the month of April.  
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Figure 14. Personhours spent above a certain PM10 concentration level in the Utrecht city 

centre in April 2005 (S-static= 6.50 million personhours and D-dynamic = 7.34 million 

personhours for PM10 concentrations ≥ 40 µg/m3). 
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Figure 15. Personhours spent above a certain PM2.5 concentration level in the Utrecht city 

centre in April 2005 (S-static = 22.60 million personhours and D-dynamic = 30.99 million 

personhours for PM2.5 concentrations ≥ 20 µg/m3). 
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On both figures one can clearly see that the total number of hours spent in the 

Utrecht area is higher for the dynamic approach than for the static approach. 

According to the static approach approximately 35 million hours are spent in the 

Utrecht city centre in the month of April. The dynamic approach, on the other 

hand, simulates approximately 52 million hours spent in the Utrecht city centre. 

Apparently, the dynamic approach simulates an increase of the population in the 

study area during the day, confirming the result presented in Figure 13.   

 

Further, the difference between static and dynamic exposure estimates was also 

examined for certain concentration threshold values. Concerning PM10, the hours 

spent at concentrations higher than 40 µg/m3 were analyzed. This limit value 

was chosen because it is applied in the European Union as a threshold value for 

annual average PM10 concentrations. As illustrated in Figure 14 approximately 

6.5 million hours in the month of April were spent at concentrations above this 

limit value according to the static approach, whereas the dynamic approach 

simulated more than 7 million hours spent above 40 µg/m3, a difference of more 

than 10%. In Figure 15 the exposure to PM2.5 was examined in a similar way. 

According to the new EU air quality directive (2008/50/EC), EU member states 

are also obliged to bring PM2.5 exposure levels below 20 µg/m3 by 2015 in urban 

areas. Therefore, the exposure to concentrations above 20 µg PM2.5/m
3 was also 

examined. The static exposure approach predicted roughly 22 million hours 

spent at concentrations above this limit value. Using the dynamic approach on 

the other hand, more than 30 million hours are estimated to be spent at 

concentrations above 20 µg PM2.5 /m
3.  
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5.3.4 Discussion 

One can argue the analysis method in this study and especially the threshold 

values chosen in this study (40 µg/m3 for PM10 and 20µg/m3 for PM2.5). Official 

PM10 threshold values only exist on daily or yearly basis whereas PM2.5 

thresholds are only imposed on annual averaged concentrations. However, this 

kind of approach is also used and approved in other exposure studies (e.g. 

Borrego et al. 2006b) where the exposure to PM10 is evaluated by examining 

hourly exposure estimates. In the study presented here, it is not the intention to 

draw direct conclusions on the health impacts of the exposure estimates but 

only to indicate the large systematic error that is associated with the traditional 

static exposure approach. Since the results of the dynamic exposure analysis in 

the Utrecht area revealed significant differences on an hourly time scale, large 

differences can also be expected on larger time scales.  

 

5.4 Conclusions  

In this chapter the use of an activity-based model for the assessment of 

population exposure to urban air pollution is reported. Hourly population 

information from the activity-based model ALBATROSS was combined with 

hourly concentration data from the AURORA dispersion model to calculate the 

dynamic exposure of people living in an urban area in the Netherlands. This 

dynamic approach opposes the traditional, static exposure approach where 

people are implicitly assumed to be always at their residential address. Dynamic 

exposure estimates for the month of April 2005 were compared with static 

exposure results to gain insights into to the impact of performing a dynamic 

population modelling approach on the exposure analysis in an urban area. 

Results demonstrated large differences between static and dynamic exposure 

estimates, especially during the day. According to the dynamic approach a large 

number of people tend to travel to the urban area during the day whereas the 

static approach works with a constant number of people during the day, 

explaining the lower exposure estimates for the static approach.  
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Regarding the analysis on PM concentration thresholds, both approaches (static 

and dynamic) simulate the exceeding of these values in the month of April. The 

PM10 threshold of 40 µg/m3 was exceeded with 6.50  and 7.34 million 

personhours by the static and dynamic approach respectively. This means that, 

according to the dynamic approach, more than 7 million hours in April were 

spent at a PM10 concentration above 40µg/m3. For PM2.5 approximately 22 and 

31 million hours were spent above the concentration limit of 20 µg/m3 for the 

static and dynamic approach respectively.  The results of these analyses are 

very important for policy purposes since the real exposure of people to air 

pollution (and hence also the impact of the exposure) tends to be different than 

based on traditional analyses. Under the New EU Air Quality Directive 

(2008/50/EC) EU Member States are required to reduce exposure to PM2.5  in 

urban areas by an average of 20% by 2020 based on 2010 levels. Good 

exposure assessments, taking into account the exposure of people at locations 

different than their home address, are necessary to ensure a realistic impact 

analysis of this measure. In this study the relative difference of the hours spent 

at PM2.5 concentrations above 20 µg/m3 differed already more than 20% 

between the static and dynamic approach.  

 

Based on the results of this chapter we can conclude that the activity-based 

modelling approach offers the opportunity to perform a detailed, dynamic 

analysis of exposure to urban air pollution.  Considering the fact that these 

dynamic exposure assessments take the real activity-travel behaviour into 

account, this accomplishment can lead to a much more sensitive policy impact 

analysis than previously performed studies (based on static exposure 

estimates).  
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6 DISAGGREGATING DYNAMIC POPULATION 

EXPOSURE ESTIMATES 

 

 

Adapted from: Beckx C., Int Panis L., Uljee I., Arentze T., Janssens D., Wets G. 

Disaggregation of nation-wide dynamic population exposure estimates in The 

Netherlands: applications of activity-based transport models. Atmospheric 

Environment, available online from:  doi:10.1016/j.atmosenv.2009.07.035  
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6.1 Introduction  

To establish an improved exposure modelling framework that takes into account 

people’s travel behaviour, first of all one has to take into account variations in 

both pollutant concentrations and population. However, concerning the pollutant 

concentration data, most epidemiological research has focused on relating health 

endpoints in entire populations to pollutant concentration data from a small 

number of fixed site monitoring stations (e.g. Wang et al. 2008, Wu et al. 

2009). Unfortunately, the measurement data from these fixed stations do not 

necessarily represent areas beyond their immediate vicinity. For example, Alm 

et al. (1998) report that only a minor fraction of the variations in personal NO2 

exposure of children was explained by concentration data obtained from 

stationary monitoring stations. In evaluating the exposure of the population to 

air pollution, the use of atmospheric dispersion models or widespread sensor 

networks should therefore be preferred above the use of these fixed stations 

(Stein et al. 2007). Validated atmospheric dispersion models can provide more 

detailed information on the spatial distribution of the pollutant concentrations, 

allowing for more realistic exposure assessments.   

 

Concerning the location of the people, traditional exposure analyses often rely 

on official address data only, implicitly assuming that people are always at home 

and, therefore, only exposed to pollution at their place of residence (Hertel et al. 

2001). In chapter 5 was concluded that, to establish an improved assessment of 

exposure, it is necessary to take into account that people move during the day 

and are therefore exposed to pollutant concentrations other than at their home 

address (i.e. a dynamic exposure assessment).  

 

Understanding exposure variations among activities and subpopulations further 

advances the current state-of-the-art and might be even more important for risk 

management. In addition to this, a more detailed exposure analysis in terms of 

activities that are performed during the day (working, shopping, leisure,…) or 

concerning different subgroups (gender, socio-economic status,…) would provide 

more useful insights into the total exposure. Unfortunately, only few attempts 

(e.g. Kousa et al. 2002,  Marshall et al. 2006, De Ridder et al. 2008b) have been 
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made to perform such a detailed dynamic exposure assessment. Kousa et al. 

(2002) compared exposure distributions for different activities based on 

observed time-activity data for 435 adults in the Helsinki Metropolitan Area. 

They concluded that the average exposure to NO2 at home and in the workplace 

was substantially more important than in “other” activities. Marshall et al. 

(2006) examined exposure differences between population subgroups and 

reported differences in exposure concentration between whites and non-whites 

in the California’s South Coast Air Basin by examining geocoded activity diaries. 

Part of these differences were explained by the home location, but a significant 

fraction of the variation in exposure concentration was due to differences in 

travel behaviour and different exposures accumulated during daytime activities 

performed at other locations. De Ridder et al. (2008b) studied impacts on traffic 

emissions and exposure to air pollution of long-term changes in population 

densities and associated travel patterns in the German-Ruhr area. However, 

none of these studies can provide information on large areas or entire population 

values because they only covered a restricted (urban) area or only a small (non-

representative) sample of the population. Furthermore, these studies do not 

report exposure values or exposure differences on an hourly basis, while this 

information can be extremely useful for certain policy purposes.  

 

Further, in order to draw general conclusions on the exposure of the whole 

population, a sufficiently large dataset needs to be gathered, representing 

different subpopulations and time periods in a realistic and unbiased way. 

Examples of exposure analyses that use synthetic population data for exposure 

analysis are described in Burke et al. (2001), Freijer et al. (1998) and Gulliver 

and Briggs (2005). In general, these studies use observed activity-travel data 

from different subgroups at different moments to make predictions about the 

travel behaviour for the entire population. An interesting approach would be to 

use an activity-based model for such analyses. Activity-based models are not 

only a convenient way to derive time-location patterns of people (as 

demonstrated in chapter 5), but they can also provide detailed information 

about who is performing which activities, providing details that are usually not 

available in exposure assessments (e.g. activities, socio-demographic details). 

In accordance to the work reported in the previous chapter, the study presented 
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here aims to further contribute to this line of research by exploring the use of 

the new attributes of an activity-based model to create a complete national 

exposure analysis for The Netherlands. To this end, emissions and air quality 

results from an activity-based analysis of traffic streams are used and combined 

with dynamic population information over the entire country. The evaluation of  

population level exposure to NO2 at different time-periods, locations, for 

different subpopulations (gender, socio-economic status) and during different 

activities (residential, work, transport, shopping) in The Netherlands will be 

presented to point out the new features of this methodology.   

 

6.2 Methodology 

In this section the method to perform a disaggregated exposure analysis with an 

activity-based exposure modelling framework is explained.  

 

6.2.1 General overview 

In previous studies (chapters 3 and 4), the activity-based model ALBATROSS 

was used to model activities and trips of the entire Dutch population in The 

Netherlands. Trip data were combined with statistical data on the Dutch fleet of 

passenger cars to estimate emissions and model air quality. In chapter 5 air 

quality data were combined with population data to calculate static and dynamic 

exposure estimates. The analysis was performed for one urban area in The 

Netherlands. In the study presented in the current chapter, these hourly 

‘dynamic’ exposure analyses were extended to comprise the whole Dutch study 

area and were further disaggregated by different activity-based variables like 

characteristics on the performed activity or on the person involved. By applying 

this disaggregation, multiple hourly population maps could be constructed for 

each category. Figure 16 schematically presents the different components of this 

integrated activity-based modelling framework. In the next sections the 

performed disaggregation and exposure calculation are explained.  
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Figure 16. Schematic overview of the integrated activity-based modelling framework 

 

 

The study area for the components of the integrated modelling approach 

presented here encompasses the whole territory of The Netherlands. We 

examined the exposure to NO2, a pollutant which is typical for transport and is 

associated with negative health effects. Concerning the time-period for the 

exposure analysis in this study area, April 2005 was selected due to the 

availability of the necessary data for both population modelling and air quality 

modelling. Analyses for other pollutants or other time periods can be performed 

with a similar approach.  
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6.2.2 Time-activity data 

The ALBATROSS model was used to describe the population distribution over 

time. As in the previous studies described in this thesis, the 4-digit postal code 

area (PCA) was chosen as the spatial unit for the location assignment procedure 

and time steps of one hour were chosen as the appropriate time unit. 

Information on the performed activity and the person involved was expressed 

and recorded as ‘personhours’ performed at a certain location (PCA). Figure 17 

presents the distribution of personhours spent on different non-residential 

activities during an average weekday (Monday-Friday) over the entire study 

area. Considering the low number of non-residential activities at night in Figure 

1, it is clear that most people spend the night at home. However, during the day 

(between 7 am and 20 pm), non-residential activities account for a proportion of 

up to 60% of all activities. Performing a paid job outside the house (work) is the 

most frequent activity. Spending time in traffic between two activities 

(transport) is the second most time consuming activity before social activities 

and shopping activities. Considering the high number of personhours spent on 

non-residential activities, exposure during the day is likely to be significantly 

influenced by concentration differences between home and workplace and while 

in transport. 
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Figure 17. The distribution of non-residential activities performed by the adult population 

over an average weekday in The Netherlands as simulated by the ALBATROSS model 

 

6.2.3 Exposure modelling 

Concentrations to which people are exposed were taken from the gridcel 

corresponding to the location where the activity was performed (see chapter 4). 

For this reason the hourly population data were converted to a grid map 

consistent with the ambient concentration map from the AURORA model. A GIS 

software tool (ArcGIS) was used to match population data and concentration 

data on an hourly basis. This approach was adopted for people performing the 

activities “home”, “work” and “shopping”. For the activity “in transport” a 

different approach was adopted since it is more difficult to map this activity onto 

a set of grid cells. Other authors have circumvented this problem by either 

ignoring the transport activity (Hertel et al. 2001) or by simply assuming that 

the trajectory covered a straight line between origin and destination (Marshall, 

2006). We have allocated the hourly average NO2 concentration measured in the 

Dutch traffic-related monitoring stations to this activity (from the study 

described in chapter 4).  In this way we can attribute specific outdoor 

concentrations to each activity and exposure can be calculated in a 

straightforward and transparent way. 
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For calculating exposure, correction factors to account for specific breathing 

rates were not used nor did we take into account whether an activity was 

performed inside or outside.  Indoor/outdoor ratios are notoriously inaccurate 

(Kousa et al. 2002) and exposure in vehicles is even harder to quantify (e.g. 

Berghmans et al, 2009). We have decided, for clarity and to avoid confounding 

the main message, to look at ambient outdoor concentrations only in this 

research. 

 

6.3 Results & discussion 

6.3.1 Total exposure evaluation 

In order to illustrate the hourly variations in concentrations and population,  

Figure 18 (a)-(b) and (d)-(e) respectively present concentration and population 

data for a selected region in the study area (the Amsterdam region) at two 

different time-periods. Similar geographic illustrations can of course be 

presented for any other area in The Netherlands, but maps of the entire country 

would be illegible because of the high resolution and extent of the results. As an 

example the data values for a night period and an afternoon period are 

presented for a day that was selected randomly out of the entire dataset. A 

presentation of random chosen values was preferred above showing average 

concentration and population values to emphasize that the study takes into 

account these distinct hourly values for the exposure calculation. The resulting 

computed exposure values for the selected time-periods are presented in Figure 

18(c) and Figure 18(f). The population exposure was calculated by multiplying 

the concentration value (µg/m³) from the dispersion model and the 

corresponding population value (personhours).  
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Figure 18 (a)-(f). The predicted density of population (a,d), ambient pollutant 

concentrations of NO2 (b,e) and the exposure of the population to NO2 (c,f), evaluated for 

two randomly selected moments, both on Tuesday the 19th of April 2005. The maps on 

the left side (a-c) present values at 2 am while the maps on the right side (d-f) correspond 

to the values predicted for the 2 pm time-period. The size of the depicted area is 2000 

km². 
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The mean exposure concentrations estimated by this ‘dynamic’ approach for the 

entire Dutch study area in the month of April 2005 were first compared to 

results of a traditional ‘static’ approach (departing from residential data only and 

thus implicitly assuming that people are always at home). The exposure results 

were examined by time of day (hourly basis) to gain more insight into ‘when’ the 

largest differences between both approaches occur.  

Figure 19 clearly shows that there is no significant difference between the 

traditional static approach and the new dynamic assessment between 8 pm and 

6 am. Since, at night, the dynamic population approximates the residential 

population this conclusion is quite straightforward. During the day (6 am – 3 

pm) the dynamic exposure assessment yields a much higher estimate for the 

exposure compared to the static mean exposure concentration with aberrations 

of up to 35 % (p<0.05; paired two-sided t-test). At that time, a large part of the 

dynamic population will be performing out-of-home activities (see Figure 17) 

and, apparently, these non-residential activities occur at locations with higher 

NO2 concentrations. In the early evening (5 pm – 7 pm) however the static 

mean exposure concentration presents slightly higher exposure values than the 

dynamic approach, indicating that the NO2 concentrations near the residential 

locations are higher than in other areas at that time. In the late evening the 

differences between both approaches disappear again.  

 

Comparing the weighted daily exposure of the dynamic approach concentration 

relative to the static exposure concentration results in an overall difference of 

approximately 4 %. Although relative differences during some hours are much 

larger, these large differences tend to occur when concentrations are relatively 

low and vice-versa. Our result implies that, by neglecting people’s activity-travel 

behaviour the exposure will be underestimated by approximately 4% on 

average. This is consistent with the results of Marshal et al. (2006) who also 

concluded that taking into account travel patterns increases estimates of 

exposure for traffic related pollutants (+5% for benzene and  +8% for diesel 

PM2.5). The fact that a dynamic exposure analysis yields a higher estimate of 

exposure is linked to the fact that workplaces, traffic activities and shopping 

areas tend to be located in (urban) areas that have, on average, higher 

concentrations. While the differences may look small at first, we should consider 
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that many national measures and plans to reduce transport related air pollution 

will only change exposure by a fraction of this amount. Present European 

policies (EU Directive 2008/50/EC), designed to reduce exposure to air pollution 

aim for a 5-20% reduction depending on the area. Our assessment shows that 

traditional exposure assessment methods are probably not accurate enough to 

develop efficient policies to meet this requirement. 
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Figure 19. Dynamic exposure estimates relative to exposure concentrations from a static 

approach. Relative differences for NO2 per time of day for an average weekday in April 

2005. The asterisks mark the hours with significant differences between both approaches 

(p<0.05; paired 2-sided t-test). 
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6.3.2 Disaggregated exposure analysis 

In addition to conclusions that have been drawn in the previous sections, the 

true power of activity-based dynamic exposure modelling lies in identifying 

subgroups in the population and in activities that are associated with higher 

pollutant concentrations. To this end, a disaggregation of the exposure 

concentration by different subcategories is presented in the next section. 

 

6.3.2.1 Exposure by activity 

Using activity-based modelling as the basis of exposure assessments enables us 

to disaggregate exposure for different activities. Because different activities are 

performed in different areas (postal areas in this case study) each with its own 

concentration profile (on an hourly basis), different activities can be associated 

with different average concentrations. This is illustrated in Figure 20 for NO2 

concentrations on an average weekday in April 2005. General modelled 

concentrations vary between 20 and 80 NO2 µg/m³ for most locations with a 

distinct peak in the morning and a protracted peak in the evening. 

Concentrations associated with work activities are consistently higher than 

concentrations associated with home-activities. Exposure while shopping only 

occurs during opening hours and shopping areas are characterized by 

intermediary NO2 concentrations when compared to residential areas or 

workplaces. Average outdoor concentrations of NO2 encountered while being in 

transport are often much higher than elsewhere, except in the late afternoon.  
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Figure 20. NO2 exposure concentrations per time of day for different activities on an 

average weekday in April 2005. 

 

In Figure 21 the estimated exposure concentrations for different activities are 

presented relative to the dynamic exposure concentrations. The dynamic 

exposure concentration (expressed relative to the static exposure in Figure 19) 

can be considered as the weighted average of all the activity-specific exposure 

concentrations (taking into account the number of personhours spent on each 

activity). Differences for people working at night are not statistically significant 

because of low numbers and are therefore not shown. Shopping activities only 

occur between 8 am and 20 pm. Figure 21 clearly shows that between 6 am and 

2 pm the mean exposure concentration at home, at the workplace or in a 

shopping area is lower than the mean exposure concentration over the entire 

population. On the other hand, the exposure concentration of people in transport 

is, on average, much higher than the mean population exposure. In the early 

evening the analysis yields an opposite observation. 
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Figure 21. Estimated mean exposure concentration for each subgroup (activity) relative to 

the overall mean (dynamic) population exposure concentration. Values are presented per 

hour for the exposure to NO2 on an average weekday in April 2005.  The horizontal axis 

presents the time of day per hour. Note that a different ordinate scale was used for the 

transport activity. The asterisks mark the hours with significant differences between both 

approaches (p<0.05; paired 2-sided ttest). 
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6.3.2.2 Exposure by subpopulation 

Another interesting feature of activity-based models is their ability to retain 

demographic and socio-economic data of the people making trips and 

performing activities. In this way the exposure analysis can be disaggregated by 

different population subgroups. In this paper two examples were shown to 

illustrate this point: an analysis by gender and by socio-economic classification. 

In Figure 22 the exposure differences were plotted (relative to the total dynamic 

exposure concentration) by hour of day. The exposure patterns of the male and 

the female subpopulation display opposite values. Since the exposure values for 

men and women contribute almost equally to the total dynamic exposure values 

(there are only slightly more women in the Dutch population than men), this 

observation is rational. In the early morning men seem to be exposed to higher 

NO2 concentrations compared to the mean population exposure values, 

conversely women are less exposed at that moment. Exposure differences of up 

to 12% were recorded in the morning, indicating that, at that time, men perform 

activities at locations with much higher concentrations than women. Since men 

appear to travel earlier in the morning than women (travel results not shown 

here) and morning traffic concentrations appear to be quite high (see Figure 20) 

the difference in the morning can be explained by a different travel behaviour. 

Exposure differences between 9-11 am are reversed because at that time more 

women than men travel, exposing themselves to higher concentrations than 

those experienced by men (many of whom are then subjected to workplace 

concentration levels). In the afternoon men experience once again a slightly 

higher exposure which can be explained by the fact that more men than women 

have a paid job outside the house especially in the afternoon (more women work 

part-time jobs) and the workplace exposure concentrations are always slightly 

higher than at home. The overall (24 hour) difference in exposure between men 

and women is 1.16  % (i.e. exposure of men relative to women), consistent with 

the findings from Marshall (2008). Marshall (2008) also reported that these 

differences in pollutant intake rate will be even more explicit when taking into 

account gender-specific breathing rates (men: 14.9 m³ d-1; women: 10.5 m³ d-

1). 
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In the second exposure analysis by subpopulation a similar disaggregated 

exposure analysis was used to distinguish the exposures of people of different 

socio-economic groups. Within the ALBATROSS model people (households) are 

categorised into four socio-economic classes (SEC) according to their income. By 

means of example the exposure concentrations between people from the lowest 

SEC (income less than average) and people belonging to the highest SEC 

(income more than double of average) was compared. As can be seen in the 

bottom graphs from Figure 22 people belonging to the lowest socio economic 

group appear to be exposed to slightly higher concentrations of NO2  throughout 

the day, but there is a large variation within the day. Differences of up to 3% in 

the early morning/night are statistically significant. This effect is caused by 

concentration differences in the residential areas of both groups, a phenomenon 

which was also described by Marshall (2008). It is interesting to see the 

opposite during the morning rush hour. People belonging to the highest SEC 

then have a higher exposure, an effect that is caused by the fact that they are 

more likely to be driving to work, exposing themselves to the higher traffic 

concentrations. This offsets most of the original difference between both classes 

and hence the overall (24h) difference between both subgroups is small (0.84 

%) and not statistically significant. 

 

It is likely that the true difference in exposure between different socio-economic 

groups is even larger than the value that was presented here. It is well known 

that lower income groups tend to live in cheaper houses, including those that 

lose value because of higher noise levels. Differences in noise levels and 

important differences in NO2 concentrations are known to occur over much 

smaller distances than the resolution of the present model version (3x3 km). It 

is therefore likely that we have underestimated this difference. On the other 

hand is it remarkable that we can observe this phenomenon even at the national 

level.  
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Figure 22. Estimated mean exposure concentration for each subgroup (population) relative 

to the overall mean (dynamic) population exposure concentration. Values are presented 

per hour for the exposure to NO2 on an average weekday in April 2005.  The horizontal 

axis presents the time of day per hour. The asterisks mark the hours with significant 

differences between both approaches (p<0.05; paired 2-sided ttest). 
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6.4 Conclusion 

In this study a model chain is presented to estimate the population exposure to 

NO2 based on activities and associated trips. For the first time to our knowledge 

an activity-based transport model was integrated with concentration data from 

an air quality model, to perform such a nation-wide dynamic assessment of 

exposure to air pollution. The dynamic exposure analysis from the activity-based 

approach yielded higher total exposure estimates than the conventional static 

assessment that assumes people are always at home. Depending on the 

perspective taken, differences can either said to be small (approximately 4% 

over the entire population) or rather important (from an air quality policy 

perspective).  

 

A disaggregated analysis of the population exposure to NO2 revealed that 

exposure may vary significantly between activities and between subpopulations. 

Concerning the classification by activity, highest exposure concentrations were 

estimated in-transport, followed by workplaces, shopping areas and home 

activities. When neglecting the exposure during non-residential activities total 

exposure values will be underestimated by 4% on average during the day. An 

analysis on two population classifications was also performed: one by gender 

and another by socio-economic status. The overall (24h) relative exposure 

difference between men and women was small but large intra-day differences 

appeared due to a different activity-travel behaviour (e.g. more men participate 

in the morning traffic peak). An analysis by SEC revealed that people from the 

lowest SEC are exposed to slightly higher NO2 concentrations during the day 

compared to the mean population exposure except in the early morning. Both 

the home location (living in more polluted areas) and the travel behaviour (not 

participating in the morning traffic peak) explain these differences. Such 

disaggregated population exposure information can be used to refine the health 

effects resulting from this exposure. 
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7 GENERAL CONCLUSIONS AND 

PERSPECTIVES 
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7.1 General conclusions 

This section summarizes the main conclusions that evolved from this research. 

Research results can be classified under the following topics: 

 

7.1.1 The DPSIR integrated modelling chain 

In this dissertation the development of an integrated modelling framework to 

model the population exposure to air pollution was set as an important goal. In 

theory, the framework developed in this PhD should comprise al the components 

of the DPSIR chain, the environmental problem framework, taking into account 

the different causal links between activities, trips, emissions, concentrations and 

exposure (see section 1.1). In Figure 23 the DPSIR conceptual model from 

section 1.1 is presented conform the components discussed in this thesis.  

 

As illustrated in Figure 23, in this thesis the driving forces (D) behind the 

problem of traffic air pollution (and exposure) are covered by the ALBATROSS 

model that simulates the activities that people perform. By considering the 

travel demand as derived from the demand for activities, this model provides 

insight into reasons for people’s travel behaviour. The environmental pressures 

(P) in the modelling chain are calculated by the MIMOSA emission model. This 

model determines the amount of pollutants being emitted to the atmosphere. 

Finally, the state (S) of the environment is modelled by AURORA that converts 

the emissions into concentrations and the impact (I) of this state on human 

health is calculated by using the entire exposure assessment framework to 

calculate the population exposure to air pollution. Hereby the calculation of the 

real health effects (e.g. the reduction in ‘disability adjusted life years’) was not 

part of the scope of this study. On each of these described components (DPSI) 

the society can carry out a response (R) through various actions to reduce or 

prevent the negative impacts of traffic air pollution. However, these responses 

were not evaluated in this research. 
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Figure 23. The DPSIR model chain adapted to this dissertation 

 

 

Except for the ‘responses’, all components of the DPSIR-chain were covered in 

this thesis. Each chapter of this manuscript describes one or more steps to 

develop and evaluate a methodology for the assessment of population exposure 

to air pollution. Chapter 2 describes the different components of this modelling 

framework: an activity-based model for modelling the travel-behaviour of 

people, an emission model to convert vehicle trips into emissions and a 

dispersion model to convert the emissions into concentrations. Chapters 3 and 4 

present two intermediary applications to develop the exposure modelling 

framework. In chapter 3 the activity-based model ALBATROSS was linked with 

the MIMOSA emission model (D,P). In chapter 4 this chain was further extended 

with the AURORA dispersion model to convert the emissions into concentrations 

(S). In chapters 5 and 6 finally two studies are presented that use the entire 
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activity-based exposure modelling framework to calculate the population 

exposure to air pollution (I). These latest studies used the activity-based model 

both for modelling the air quality as for assessing the population exposure. By 

using this approach, an integrated exposure modelling framework was therefore 

successfully established. 

 

7.1.2 The activity-based approach for air quality purposes 

Activity-based ‘transport’ models were originally developed to provide more 

insights into the ‘transport’ or ‘travel’ behaviour of people.  Recent applications 

of these models (e.g. Roorda et al. 2008; Timmermans and Zang; 2009) still 

focus on their advantages for travel behaviour research. However, due to the 

richer set of concepts which are involved in activity-based modelling 

(information on travel by time of day, exact time between trips, vehicle miles 

travelled,…) the advantages for both transportation and air quality purposes are 

more and more acknowledged. Literature reveals that few authors have 

described the (theoretical) advantages of activity-based models for air quality 

purposes, but models that have been developed along these lines are still scarce 

(e.g. Shiftan, 2000; Hatzopoulou  et al. 2007). This is partly due to the lacking 

of an operational activity-based model. On the other hand this delay can also be 

attributed to the difficulties arising when trying to setup such a multidisciplinary 

endeavour. 

 

The applications that were performed as part of this Ph.D. dissertation 

demonstrate that an activity-based model can definitely be used for air quality 

purposes. The following three achievements can be mentioned (related to the 

three ‘specific tasks’ mentioned in section 1.2): 
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In a first application the activity-based model ALBATROSS was used to provide 

emission estimates for the Dutch traffic situation. By combining the simulated 

vehicle trips from ALBATROSS with emission factors from the MIMOSA emission 

model, vehicle emissions were calculated. A comparison between the modelled 

emissions and reported emission values demonstrated that both values 

correspond quite well. CO2 emissions were overestimated by 11%. Differences 

between modelled and reported emissions of NOx, Voc, SO2 and PM varied 

between 3 and 26%. However, the mere replication of approximately the same 

emission values with a different model is no innovation. In effect this result 

cannot even be validated because emissions cannot be measured at the national 

level and hence cannot be compared to model results. Compared to other 

(technology based) travel or emission studies, this study provides much more 

detailed temporal and spatial information on passenger car emissions instead of 

allowing only aggregated (yearly) emission values. Unfortunately the accuracy of 

spatially disaggregated emissions can also not be validated.  

 

In a second application the activity-based emission approach was further 

explored by converting the activity-based emissions into pollutant 

concentrations. For this purpose, the AURORA dispersion model was applied to 

simulate the transport and conversion of the emissions into concentrations. The 

first important advantage of this air quality modelling step is that it enables to 

validate the activity-based model predictions by comparing the simulated 

concentrations with measured concentrations at Dutch monitoring stations. Both 

temporal and spatial validation analyses were performed. Self evidently this 

comparison is difficult for PM10 which is (in small countries like The Netherlands) 

largely imported from abroad and formed from other precursors. Results of the 

statistical analysis demonstrate a very good correspondence between the 

simulated and measured concentrations of O3 (IA between 0.69 and 0.80). For 

NO2 the IA value varied between 0.40 and 0.70. And for PM10, finally, IA values 

between 0.48 and 0.64 were calculated. The comparison of concentrations 

constitutes an end-of-pipe validation of the accuracy of the entire model chain 

but does not allow a crisp analysis of each models individual performance. We 

have specifically looked at the results for NO2 which is a pollutant typical of 

transport which has both a strong spatial and temporal variation. NO2 is 
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therefore the pollutant best suited to attempt a validation of the ALBATROSS-

MIMOSA-AURORA model chain because its (modelled) concentrations will tend to 

be sensitive to errors in traffic streams, emission functions as well as 

atmospheric modelling. This study demonstrated that the activity-based air 

quality model chain was able to simulate the hourly concentration patterns in 

the Dutch study area with sufficient accuracy.  

 

The last two applications in this dissertation (see chapters 5 and 6) described 

the activity-based modelling approach for exposure purposes. The predicted 

hourly concentration fields from the ALBATROSS-MIMOSA-AURORA modelling 

chain were combined with hourly information on people’s location to calculate 

the exposure. By using the population information from the activity-based 

simulation, hourly population maps were simulated and dynamic exposure 

values could be estimated. As a result of this, a dynamic exposure modelling 

framework was established. In chapter 5 this framework was applied on a Dutch 

urban area to demonstrate the importance of taking into account people’s travel 

behaviour when calculating the exposure. The exposure study in the Dutch 

urban area demonstrated that large inflows of people occur during the day in the 

urban areas (the population more than doubled), causing people to be exposed 

to higher concentration values compared to their residential situation. Traditional 

exposure studies that link concentration values with residential information 

therefore often underestimate the exposure values. In chapter 6 these dynamic 

exposure values were calculated for the entire Dutch study area and further 

disaggregated according to different activity-based features like the gender of 

the person or the performed activity. Understanding exposure variations among 

activities and subpopulations can be very useful for scientific and policy 

purposes. It can provide information on locations or population groups most at 

risk, or can indicate where and when the largest exposure values occur.  

 

In summary, this dissertation demonstrated the advantages of an activity-based 

approach for air quality purposes by presenting three kinds of applications: the 

calculation of vehicle emissions, the  simulation of pollutant concentration 

patterns and the assessment of the population exposure to air pollution. 
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7.1.3 Activity-based models for environmental policy making 

The kind of integrated modelling approach presented in this thesis, using a 

transport model for air quality purposes, is not only innovative from a scientific 

and methodological perspective, but it also offers advantages for policy makers. 

It enables them to take into account that trips both cause transport related 

emissions and at the same time change the distribution and attributes of the 

population which will result in different exposure estimates. The availability of 

activity-based models for exposure analysis therefore opens up a myriad of 

possibilities for innovative policies and measures. Policy makers will be able to 

design measures aimed at reducing the exposure at the most important sites, at 

the most critical times and for selected population groups. These efforts may 

partly coincide with currently implemented measures to meet general air quality 

standards. However, in addition to this, we expect that new policies can 

especially be made more effective in reducing health impacts. In any case, 

policies in other domains which nowadays risk to offset environmental policies 

can be screened on their environmental effects before being implemented. In 

the past the use of different models and policy schemes has often caused one 

policy in one domain to offset effects of another policy in a different domain 

because secondary effects could no be taken into account. Enabling to make the 

link between policies in different policy domains (e.g. mobility, energy and 

health) is therefore an important advantage of the integrated modelling chain 

developed in this research.  

 

Further, by applying an activity-based model for the transport modelling part of 

this framework, instead of a traditional four-step transport model, the range of 

measures that can be evaluated will increase. In an activity-based model each 

individual is represented as an agent belonging to the population of a certain 

study area. During simulation, the model simulates the full pattern of activity 

and travel episodes of each agent and each day of the simulated time period. 

The pattern of activity and travel episodes, i.e. the schedule, is constructed by a 

scheduling model or scheduler, which takes personal, household, and 

environmental attributes as well as constraints into account. These constraints 

can be situational, institutional, household, spatial, timing, and spatial-temporal 

constraints. The scenarios corresponding to particular policy measures that can 
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be evaluated with such an activity-based model consist of changes in the 

personal, household, and environmental attributes and/or in the constraints. In 

this way, the policy measures that are investigated in the scenarios are taken 

into account by the scheduler, and thus result in potential changes in the 

scheduling behaviour. The traffic demand is in its turn derived from the 

schedules of all the agents in the simulation.  Examples of measures or 

scenarios that can be evaluated by such an approach are changing shop opening 

hours, ageing of the population, teleworking, etc.…  

 

 

7.2 Recommendations for future research 

7.2.1 Methodological challenges 

Establishing the link between an activity-based model and an air quality module 

was an important accomplishment in this PhD research. Applying the developed 

model chain to a certain region was another important realization. But of course, 

some challenges still remain to improve this modelling tool even more. For each 

model in the chain some recommendations are mentioned which can or should 

be applied to improve the model’s outcome. In this section these challenges are 

briefly described and discussed. 

 

7.2.1.1 Improving the prediction of activity-travel patterns and traffic 

flows 

In this doctoral research the activity-based model ALBATROSS was applied to 

demonstrate the advantages of activity-based models for air quality purposes. 

This model was however not originally developed for these environmental 

purposes but mainly to gain more insights into people’s travel behaviour and 

travel demand. To improve its usefulness for environmental applications, 

improvements on the following issues can be mentioned: 
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Limited number of time frames 

The ALBATROSS model schedules the fixed activities on a continuous time scale,  

but flexible activities are allocated to one of the six fixed time periods (<10h, 

10h-12h, 12h-14h, 14h-16h, 16h-18h, >18h). To obtain a more detailed 

temporal analysis in the current research the periodical trips and trip matrices 

that resulted from the activity-based model were reorganized into hourly values. 

For this purpose, information from a Dutch travel behaviour research (NTS) was 

used and derived time adjustment factors were applied. Of course, it would be 

more precise if the hourly trips were provided immediately from the activity-

based model to include the different geographic variations in trip prediction over 

the study area (the redistribution of the trips per time period was similar for the 

entire study area).  

 

Stochastic modelling of activity-travel patterns 

In this research the activity-based model ALBATROSS was used for the 

simulation of activity-travel patterns for all the individuals in the Dutch 

population. After adapting the model according to the specifications presented in 

section 2.2.2.3 the output of one single model run was used as input in the 

environmental models. By performing multiple stochastic model runs however, 

more insights into the model variations can be obtained. 

 

Traffic assignment 

Concerning the traffic assignment used in this PhD research, improvements can 

be made on the following two issues. First of all, after the assignment of the 

O/D-matrices from ALBATROSS to the traffic network, the activity-based 

information is lost. Due to technical problems we were not able to keep both the 

hourly traffic flow information together with the information on the trip 

performer or on the trip motive when assigning the trips to the road network. 

This means that the hourly traffic flows cannot be disaggregated by socio-

economic groups or by activity, while this information is provided by the activity-

based model. An assignment of multidimensional O/D sets to the network should 

therefore be studied in future research.  
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Further, the assignment in the current research applied an ‘all-or-nothing’ 

assignment algorithm that did not take into account the present traffic volumes 

when assigning the trips to the road network. This means that we assume that 

traffic will not be reallocated to alternative routes when traffic volumes reach the 

maximum capacity of the road. To apply a more realistic, equilibrium 

assignment, future studies need to include information on the road capacity. 

Therefore, also information on freight transport flows needs to be available since 

the presence of freight transport can have a large influence on the remaining 

road capacity.  

 

7.2.1.2 Improving the calculation of vehicle emissions  

Concerning the calculation of vehicle emissions the following improvements can 

be mentioned. 

 

Hourly average speeds 

The activity-based model itself provides no hourly speeds. In this research 

average link speeds from the ‘Basisnetwerk’ road network were used, also 

applied in the ALBATROSS model to estimate travel times between origins and 

destinations. These average speeds were kept constant during the day. Because 

average speeds are the single most important input into macroscopic COPERT-

like emissions, enabling different average speeds to be modelled on different 

road segments at different times would greatly improve the power of activity-

based models to discriminate between the emissions associated with different 

time periods and activities. Future research, involving a more advanced traffic 

modelling procedure that predicts hourly changing speeds per traffic link, can 

therefore attribute to a more accurate emission assessment. Obviously, one of 

the previous comments on a more advance traffic assignment procedure is also 

valid here. 
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Cold start emissions 

Compared to the more traditional four-step transport models, the activity-based 

models have the advantage that they simulate entire time periods and take into 

account the interdependency between activities and trips at different moments. 

Due to this, information on the time between two subsequent trips can be 

extracted and, therefore, the number of cold starts can be predicted more 

accurately. In Hatzopoulou et al. (2007) for example this issue was taken into 

account and engine start emissions were modelled based on the travel patterns 

of each vehicle in the simulation. However, in the current research this 

information was not yet taken into account for the emission calculation. 

Information on the average trip length was used to account for cold start 

emissions. Future research should bear this issue in mind to improve the 

emissions assessment.  

 

Disaggregating emissions by activity-based information 

A rough analysis of the emissions (after aggregating the trips per activity 

instead of per hour) was performed by Beckx et al. (2008).  In this analysis total 

yearly emissions were disaggregated according to travel motive to gain more 

insights into the causes of the emissions. Results from this analysis 

demonstrated that 47% of the emissions were caused by commuter trips, 17% 

by social trips, 10% by shopping trips,…. However, as a result of the first 

limitation mentioned on the traffic assignment (loss of activity-based information 

after assignment), such a disaggregated analysis could not be performed on the 

hourly emission values. A more detailed classification, based on socio-economic 

or activity-related characteristics instead of technological characteristics, could 

however give regional and local policy makers more information on the sources 

of this environmental problem per time of day. And since technological issues 

are regulated at a European level, this information provides them with the tools 

to manage those aspects of communities, activities and travel that are within 

their own competences.  
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7.2.1.3 Improving exposure and health assessment 

The final goal of this research was to develop (and apply) an integrated 

exposure modelling framework that includes an activity-based transport model 

for both the activity-travel part as for the population exposure. Future research 

may extend this exposure procedure to include also the following issues. 

 

Indoor exposure modelling 

Our analysis was limited to modelling exposure to outdoor pollutant 

concentrations. A possible future analysis could focus on indoor-outdoor ratios to 

determine also the indoor concentrations and extend the analysis to the 

evaluation of indoor exposure. Since these indoor-outdoor ratios are not 

straightforward to determine, this might require a good thorough research.  

 

Integration of land use information 

Another interesting topic for future studies on exposure analysis would be the 

integration of land use information with population distribution. By taking into 

account information on the land use, the population can be distributed more 

accurately within a population zone instead of assuming a homogenous 

distribution over this location. The activity-based information on the performed 

activity of each individual can contribute to the assessment of a more precise 

location, and therefore a more accurate exposure assessment will be achieved. 

Furthermore, simulations on future land use developments, can provide useful 

spatial information to the activity-based model when performing long term 

prognoses on travel behaviour.  

 

Inhaled dose 

Besides the use for a more detailed location of the population, the activity-based 

information can also be taken into account when calculating the inhaled dose for 

certain pollutants. The distinction between low breathing rates during sleeping 

activities versus higher breathing rates at work activities for example will allow 

us to determine the actual inhaled dose during different activities. Further, 

personal information on the individual (age, gender,…) can also be taken in to 

account as for example breathing rates of men are higher compared to women 

(men: 14.9 m³ d-1; women: 10.5 m³ d-1; see the study of Marshall 2008). 
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Individual exposure values 

This PhD studies the calculation of exposure at the population level to conclude 

on differences between different (sub)populations (men versus women, working 

versus shopping,…) or different approaches (static versus dynamic) population 

exposure. Another approach would be to focus on the (accumulated) individual 

exposure level and conclude on differences in total accumulated exposure values 

during a certain time period (a day, week, year,..). This kind of analysis requires 

a different computer-technical setup since all the individuals in the population 

need to be ‘followed’ during the day. However, it would provide us with more 

data on the variations in exposure between the individual agents which is very 

useful for health impact analyses. 

 

Spatial resolution 

The more detailed the spatial resolution of both concentrations and individuals, 

the more accurate the exposure assessment will be. The 3 by 3 km grid used in 

the current work is therefore not able to capture intrazonal differences in 

exposure and only provides insights on more general exposure differences that 

occur on larger distances. A more detailed spatial resolution,  for example with a 

resolution of tens of metres, will provide more detailed exposure analyses. 

Future research should focus on improving the spatial resolution of the 

modelling framework. However, the following remarks can already be made. 

First of all, one should apply a similar detailed resolution on all models involved 

in the modelling framework, both on the concentration model as on the 

population model to improve the exposure assessment. This means that the 

number of zones in the activity-based model and in the emission model have to 

increase significantly. Also, one should keep in mind that the dispersion 

modelling step is computationally burdensome, even at a more coarse modelling 

grid (see details in section 2.4.2.2). Applying a finer spatial resolution will 

enlarge the computational runtime of this modelling step significantly and can 

therefore imply that a smaller study area should be looked at to maintain an 

‘acceptable’ runtime.  
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Health effects 

Concerning the health effects of exposure to pollutants such as PM10, PM2.5 and 

NO2, a lot of studies are already performed. In this study however conclusions 

on the specific health impacts were not made. Future research can focus on 

these health effects, but they should take the following issues into account. 

 

Although the link between air pollution and adverse health effects was clearly 

established 15 years ago (e.g. Dockery et al. 1993) the epidemiological health 

effect functions that determine the health effects of the exposure are based on 

static information (residential address data and fixed monitoring stations) and 

not on a dynamic exposure approach. Several recent epidemiological studies 

have used the proximity of the home to major roads as a surrogate for exposure 

and suggested that proximity of people to traffic sources partly explains 

observed health effects (eg. Beelen et al. 2007). However as demonstrated by 

Petersen et al. (2004), it is probably the participation of people in traffic that 

determines risk rather that the location of their home. Exposure analysis could 

be improved by determining more accurately where people spend their time, 

because people are only exposed to concentrations occurring in the areas where 

they are active at that time, which during the day is very often not at their home 

address. We therefore suggest that exposure modelling takes advantage of the 

new possibilities offered by activity-based transport models. Besides providing a 

better total estimate of exposure, activity-based modelling also enables the 

disaggregation of individual exposure over activities and locations and may 

therefore serve to reduce exposure misclassification and thus empower 

epidemiological studies to establish relationships with air quality more precisely. 

A large challenge for future studies on the health effects therefore concerns the 

interpretation of dynamic exposure values as effects on human health.  
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7.2.2 Extending the model chain for scenario analysis 

As can be seen in Figure 23, the responses (R) link is missing in the DPSIR-

modelling chain. The responses (measures or scenarios) are not discussed in 

this thesis, but this extension of the modelling chain is definitely possible in 

future research.  

 

Future research can adopt the new approach presented in this thesis as a policy 

instrument to study the impact of different societal trends or specific policy 

measures that have an direct or indirect impact on traffic flows. This will imply 

setting up a scenario analysis of some kind. Scenarios will typically consist of 

different parameter settings different from the defaults describing current 

conditions and referring to a future situation. The fact that we have been able to 

integrate an activity-based model into the modelling chain will enable us to set-

up scenarios of a completely different nature. Environmental analysis is no 

longer confined within the strict limits of pure technical scenarios.  Examples of 

measures that are currently being studied include the aging of European 

populations (which impacts on their travel and activity patterns and hence on 

their exposure) and the impact of institutional constraints like widening of shop 

opening hours (which tends to shift traffic to the early morning and late evening 

and hence changes the temporal concentration profile of transport related 

pollutants). Because one model (the activity-based transport model) is used 

both for the population modelling as for the travel demand modelling part, the 

framework enables us to analyze scenarios without overlooking any secondary 

effects. 
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Appendix A 

This appendix A gives a general overview of the structure of important data files 

that have been used for the activity-based transport modelling. Data files 

involve information used by the ALBATROSS model for predicting activity-travel 

patterns for the Dutch population. We acknowledge the Urban Planning Group 

from the University of Eindhoven (The Netherlands) for providing us these data 

and allowing us to simulate activity schedules with the ALBATROSS model.  

 

 

A.1  Activity classifications  

Table A.1 shows the classifications of activities used in ALBATROSS. The 

distinction between fixed and flexible refers to activities that supposedly belong 

to the schedule skeleton (fixed) and those that are scheduled on a daily basis 

(flexible). The duration and start time of fixed activities are predicted on a 

continuous time scale, whereas the flexible activities are scheduled according to 

pre-defined discrete time steps.  

 

Table A.1. Activity classifications used in ALBATROSS 

Activity Description 

Sleep Sleep activity during the night and morning 

Work out of home (long) Work or school activity longer than 60 minutes 

Work out of home (short) Work or school activity 60 minutes or shorter 

Voluntary work Voluntary work 

Bring/get Bring or get persons or goods 

Other fixed Medical, other non-leisure 

Daily shopping Grocery shopping 

Service Bank, Post office,… 

Non-daily shopping Non-grocery shopping 

Social out of home Social visits family, friends,… 

Leisure out of home Café, restaurant, concert, sport,… 

In-home All in-home activities other than sleep 
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A.2  Physical data  

Arentze and Timmermans (2005) constructed a physical database for 

ALBATROSS. Table A.2 summarizes the data sources that were used to construct 

this database.  

 

Concerning the distance and travel time data, information was used from the 

network file (‘Basic Network’). The Basic Network file describes the nationwide 

road network down to the level of neighbourhood roads. Distance and travel 

time data for car and slow modes are derived from this file in which car distance 

data are based on the fastest route (slow mode distance is based on the 

shortest route) and link specific speeds are used to estimate car travel times. To 

construct the link specific speeds in the Basic Network file, expert assessment 

was used to estimate average flow speed on each link throughout the day. 

However, since it is important to have time-of-day dependent travel times 

instead of using only daily averages, time-of-day dependent travel time 

adjustment coefficients were calculated based on information from the national 

model system (LMS). By applying this approach free-floating, morning-peak and 

evening-peak travel time data were estimated.  

 

NRM data and LISA data were used to provide useful information on the 

location. They provide sector-specific employment and population data at the 

4PCA level. This information is used in ALBATROSS as indicators of availability 

and attractiveness of facilities for conducting particular activities (e.g. total 

employment data indicate the number of work activities, the number of primary 

school children indicate the number of bring/get activities,…). LMS parking data 

were collected at the level of subzones. These data describe the number of 

available parking places for each subzone, subdivided into paid and free parking 

places and with information on the parking prices.  
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Table A.2. Physical data sources (see also Arentze and Timmermans, 2005) 

Distance/travel time data  

Basic network Car distance fastest route 

 Car travel time fastest route 

 Slow distance shortest route 

  

LMS car distance/travel time (subzone) Car travel time fastest route, free floating 

 Car travel time fastest route, morning peak 

 Car travel time fastest route, evening peak 

  

LMS train distance/travel time (subzone) Distance 

 In-vehicle travel time 

 Access, egress travel time 

  

BTM tariff zones (subzone) Number of tariff zones passed 

  

NRM data (4PCA) # of households 

 Total # of employees 

 # of pupils primary schools 

  

LISA employment data (4PCA) # of employees daily good retailing 

 # of employees non-daily good retailing 

 # of employees banks/post offices 

 # of employees restaurants/cafés 

  

LMS parking data (zone) # of paid parking places 

 # of free parking places 

 Mean price per hour for long parking times 

 Mean price per hour for short parking times 

LMS is the national model system; BTM is bus, tram or metro; NRM is the new regional 

model; LISA is a national employment database 
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Appendix B 

This appendix B gives a general overview of the structure of important data files 

that have been used for the emission model MIMOSA. These files involve 

information on the Dutch vehicle fleet and the COPERT-III emission factors.  

 

B1. Vehicle fleet data 

To calculate the emissions for a certain region or country information on the 

local vehicle fleet is required since the composition of this fleet determines the 

emission factors that apply to this specific region. 

 

Information on the composition of the Dutch vehicle fleet was obtained from 

CBS statistical information (CBS, 2001). On the CBS website information was 

retrieved on the characteristics of the passenger cars in The Netherlands on 

January 1st 2001. Hereby we assume that the situation on this date reflects the 

vehicle composition during the past year and can therefore be used to calculate 

the passenger car emissions for the year 2000. Table B.1 presents the data that 

were gathered on the Dutch passenger cars. Information on both fuel type and 

vehicle age (year of construction) were used to construct the composition of the 

Dutch vehicle fleet. Concerning the fuel type, we did not include the vehicles 

running on electric energy or on CNG due to the small numbers in the database 

(58 and 46 for electricity and CNG respectively). 
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Table B.1. Characteristics of the Dutch vehicle fleet (passenger cars only). 

Fuel type Age of the vehicle Number of vehicles 
Total Total 6539040 
 <1 year 583333 
 1 - 2 year 1105672 
 3 - 4 year 887131 
 5 - 6 year 808955 
 7 - 8 year 794775 
 9 - 11 year 1136368 
 12 - 14 year 782488 
 15 - 19 year 254528 
 20 - 24 year 49857 
 >24 year 135933 
Petrol Total 5345589 
 <1 year 434295 
 1 - 2 year 820225 
 3 - 4 year 687461 
 5 - 6 year 653524 
 7 - 8 year 667603 
 9 - 11 year 994140 
 12 - 14 year 701732 
 15 - 19 year 230834 
 20 - 24 year 44831 
 >24 year 110944 
Diesel Total 870862 
 <1 year 132487 
 1 - 2 year 238115 
 3 - 4 year 140443 
 5 - 6 year 99617 
 7 - 8 year 79746 
 9 - 11 year 92020 
 12 - 14 year 61933 
 15 - 19 year 19418 
 20 - 24 year 3218 
 >24 year 3865 
LPG Total 322485 
 <1 year 16524 
 1 - 2 year 47304 
 3 - 4 year 59207 
 5 - 6 year 55802 
 7 - 8 year 47418 
 9 - 11 year 50203 
 12 - 14 year 18821 
 15 - 19 year 4275 
 20 - 24 year 1807 
 >24 year 21124 
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B2. Copert-III emission calculations 

Here we briefly describe the methodology and relevant emission factors, 

incorporated in the computer programme COPERT-III, to calculate emission 

estimates of road transport. Since the current research only involves passenger 

cars, information on other vehicle types (light duty trucks, heavy duty trucks,…) 

will not be discussed here. 

 

COPERT assigns emission factors to vehicles by classifying the vehicles according 

to information on their fuel type, vehicle size and construction/production year. 

The production year of the vehicle is hereby used to classify the vehicles 

according to legislative (ECE, Euro) or technology (‘improved conventional’, 

‘open loop’) steps. The vehicle categories applied in COPERT are listed in Table 

B2.1. Besides the vehicle category, also information on the average speed will 

be applied to determine the appropriate emission factor. Hereby, for some 

categories or pollutants, different functions will be applied for different speed 

ranges. A presentation of all COPERT-III emission factors would be to redundant 

in this manuscript. One example of this approach is given in Table B2.2 on the 

NOx emission factor. More detailed information on the applied emission factors 

can be found in the COPERT-III manual  (Ntziachristos and Samaras, 2000). 

 

Table B2.1. Vehicle category split in COPERT (adapted from: Ntziachristos and Samaras, 

2000) 

Vehicle Class Legislation 

Petrol <1.4l PRE ECE 

 ECE 15/00-01 

 ECE 15/02 

 ECE 15/03 

 ECE 15/04 

 Improved Conventional 

 Open Loop 

 Euro I – 97/441/EEC 

 Euro II – 94/12/EC 

 Euro III – 98/69/EC Stage 2000 

 Euro IV – 98/69/EC Stage 2005 

Petrol 1.4l-2.0l PRE ECE 
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 ECE 15/00-01 

 ECE 15/02 

 ECE 15/03 

 ECE 15/04 

 Improved Conventional 

 Open Loop 

 Euro I – 97/441/EEC 

 Euro II – 94/12/EC 

 Euro III – 98/69/EC Stage 2000 

 Euro IV – 98/69/EC Stage 2005 

Petrol >2.0l PRE ECE 

 ECE 15/00-01 

 ECE 15/02 

 ECE 15/03 

 ECE 15/04 

 Improved Conventional 

 Open Loop 

 Euro I – 97/441/EEC 

 Euro II – 94/12/EC 

 Euro III – 98/69/EC Stage 2000 

 Euro IV – 98/69/EC Stage 2005 

Diesel <2.0l Conventional 

 Euro I – 97/441/EEC 

 Euro II – 94/12/EC 

 Euro III – 98/69/EC Stage 2000 

 Euro IV – 98/69/EC Stage 2005 

Diesel >2.0l Conventional 

 Euro I – 97/441/EEC 

 Euro II – 94/12/EC 

 Euro III – 98/69/EC Stage 2000 

 Euro IV – 98/69/EC Stage 2005 

LPG Conventional 

 Euro I – 97/441/EEC 

 Euro II – 94/12/EC 

 Euro III – 98/69/EC Stage 2000 

 Euro IV – 98/69/EC Stage 2005 

 Euro IV – 98/69/EC Stage 2005 
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N0x emission factors for gasoline cars (adapted from Ntziachristos and Samaras, 2000) 

Vehicle 

Class 

Engine Capacity Speed Range 

(km/h) 

NOx Emission Factor (g/km) 

cc < 1.4l 10-130 1,173 + 0,0225V - 0,00014V² 

1.4 < cc < 2.0l 10-130 1,360 + 0,0217V - 0,00004V² 

PRE ECE & 

ECE 15-00/01 

cc > 2.0l 10-130 1,5 + 0,03V + 0,0001V² 

cc < 1.4l 10-130 1,479 - 0,0037V + 0,00018V² 

1.4 < cc < 2.0l 10-130 1,663 - 0,0038V + 0,00020V² 

ECE 15-02 

cc > 2.0l 10-130 1,87 - 0,0039V + 0,00022V² 

cc < 1.4l 10-130 1,616 - 0,0084V + 0,00025V² 

1.4 < cc < 2.0l 10-130 1,29e0,0099V 

ECE 15-03 

cc > 2.0l 10-130 2,784 - 0,0112V + 0,000294V² 

cc < 1.4l 10-130 1,432 + 0,0026V + 0,000097V2 

1.4 < cc < 2.0l 10-130 1,484 + 0,013V + 0,000074V² 

ECE 15-04 

cc > 2.0l 10-130 2,427 - 0,014V + 0,000266V² 

cc < 1.4l 10-130 -0,926 + 0,7192ln(V) Improved 

conventional 
1.4 < cc < 2.0l 10-130 1,387 - 0,0014V + 0,000247V² 

cc < 1.4l 10-130 -0,921 + 0,616ln(V) Open Loop 

1.4 < cc < 2.0l 10-130 -0,761 + 0,515ln(V) 

cc < 1.4l 5-130 0,5595 - 0,01047V+ 10,8E-05V² 

1.4 < cc < 2.0l 5-130 0,526 - 0,0085V + 8,54E-05V² 

EUROI 

cc > 2.0l 5-130 0,666- 0,009V + 7,55E-05V² 
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