
MIGRATING REAL-TIME DEPTH IMAGE-BASED RENDERING
FROM TRADITIONAL TO NEXT-GEN GPGPU

Sammy Rogmans ∗,† , Maarten Dumont †, Gauthier Lafruit ∗, and Philippe Bekaert †

∗ Multimedia Group, IMEC
Kapeldreef 75, 3001 Leuven, Belgium

† Hasselt University – tUL – IBBT, Expertise centre for Digital Media
Wetenschapspark 2, 3590 Diepenbeek, Belgium

ABSTRACT
This paper focuses on the current revolution in using the GPU for
general-purpose computations (GPGPU), and how to maximally ex-
ploit its powerful resources. Recently, the advent of next-generation
GPGPU replaced the traditional way of exploiting the graphics hard-
ware. We have migrated real-time depth image-based rendering – for
use in contemporary 3DTV technology – and noticed however that
using both GPGPU paradigms leads to a higher performance than
non-hybrid implementations. Using this paper, we want to sensitize
other researchers to reconsider before migrating their implementa-
tion completely, and use our practical migration rules to achieve
maximum performance with minimal effort.

Index Terms— traditional, next-generation, GPGPU, migrat-
ing, real-time, image-based rendering

1. INTRODUCTION

For many years, people have been exploiting the powerful data paral-
lel resources of graphics hardware for general purpose computations
– a phenomenon consistently known as GPGPU. Previously, the only
way to harness these computational resources, was the traditional
approach by exploiting the graphics pipeline through the Direct3D
or OpenGL API and their respective shader code. Since these APIs
expose the GPU hardware in its true form – a graphics processor, it
is quite cumbersome to efficiently port an application to this archi-
tecture. However, much research has been conducted in this domain,
which has led to a rich and extensive amount of related knowledge
and expertise [1]. More recently thanks to the GPGPU prolifera-
tion, the next-generation APIs CUDA and Brook+ were released to
provide a means to exploit the powerful graphics processors more
flexibly with a minimal learning curve requirement. These next-gen
APIs should be seen as an alternative way to expose the GPU hard-
ware, more specifically as a true generic massive data parallel co-
processor. This induces a programming style in a more familiar way
to CPU programming, nonetheless, fully optimizing an application
still remains expert work and low-level thinking [2]. Researchers and
developers therefore either stick to traditional GPGPU to be able to
reuse the existing expertise, or they are dedicated to use next-gen
GPGPU for the flexibility and ease of use.

As depicted in Fig. 1, we propose to retain the valuable knowl-
edge of traditional GPGPU, and avoid needless optimization effort
in the next-gen paradigm, using the best of both worlds. To provide
a case study to validate our claims, we have migrated a real-time

This work is supported by the IWT within the Hasselt University under
grant number SB071150.

Fig. 1. High performance is achieved with both traditional and next-
gen GPGPU, however proper hybrid programming is superior.

image-based rendering (IBR) framework [3] from traditional to next-
gen GPGPU, as it is the main driver behind contemporary 3DTV
technology. We demonstrate how parts of the application are best
kept in the traditional paradigm, because they have a more intrinsic
graphics nature. As a result, the overall hybrid application perfor-
mance is anticipated higher than when compared to a non-hybrid
implementation. Other researchers and developers can therefore use
our practical migration rules to achieve maximum end-to-end appli-
cation performance with minimal effort.

2. DIFFERENT GPGPU PARADIGMS

The next-generation GPGPU paradigm using CUDA or Brook+, has
sprouted out of necessity due to the constraints of the traditional
one (i.e. using Direct3D or OpenGL). Since the traditional paradigm
exposes the GPU hardware as a pipeline of four-component vector
processors and raster operators with Z-testing hardware, it is purely
graphics minded. The main difference with the next-gen paradigm,
is that the latter abstracts the GPU as a generic coprocessor with
the possibility of random writes. Moreover, it uses a user-managed
cache on-chip to provide a means for explicit data transfer control
between the video memory (VRAM) and the GPU chip. However,
due to the great level of abstraction, the paradigm is unable to expose
all available hardware in the GPU, mainly the Z-testing.

2.1. Traditional GPGPU

In the traditional paradigm, the four-component vector processors
are exploited for GPGPU. Although primarily the fragment proces-

Fig. 2. The traditional paradigm exposes the graphics hardware as a
pipeline with four-component vector processors.

Fig. 3. The next-generation paradigm exposes the graphics hardware
as a generic coprocessor, using a distributed-shared memory model.

sors are used (see Fig. 2), many researchers also exploit the other
available resources for maximum performance [1, 4]. More specif-
ically, Early-Z culling is often used to apply computational masks,
resulting in executing only a sparse set of threads in an efficient way.
Furthermore, threads can only read (i.e. texture lookups) from the
VRAM, while the data caching is completely automatic and out of
control of the programmer. The write location of the output is more-
over determined in advance, and therefore offers minimal flexibility
considering general-purpose computations.

2.2. Next-Generation GPGPU

The next-gen paradigm offers random writes and flexibility by ab-
stracting the GPU as a generic coprocessor that exists out of multiple
multiprocessors. Each multiprocessor contains an equal number of
stream (scalar) processors and an on-chip shared memory, following
a distributed-shared memory model (see Fig. 3). The shared mem-
ory therefore acts a user-managed cache to control the data transfers
from global or texture memory inside the VRAM to the GPU.

The joint execution model uses blocks of threads inside a grid
to execute individual blocks on a dedicated multiprocessor, while an
(idle) multiprocessor can swap to different thread blocks. Since the
next-generation paradigm exposes the graphics hardware in a more
generic and familiar way, it is hereby not able to expose all available
hardware contained inside the GPU.

Fig. 5. Performing a convolution in (a) the traditional, and (b) the
next-gen GPGPU paradigm.

3. MIGRATING IMAGE-BASED RENDERING

We have systematically migrated a real-time depth image-based ren-
dering (DIBR) framework [3] from its traditional paradigm to next-
gen GPGPU. Real-time IBR is one of the most important drivers
behind contemporary 3D technologies such as autostereoscopic dis-
plays and 3DTV, hence it has a valuable research interest. Following
the taxonomy of Scharstein et al. [5] and its DIBR extension of Rog-
mans et al. [4], the application exists out of five elementary kernels
– the cost computation, the cost aggregation, the disparity selec-
tion, the image warping, and the occlusion handling. As depicted in
Fig. 4, in the highest level of abstraction this can be seen as creating
a depth map using stereo matching, and synthesizing an intermediate
view using the acquired depth map.

Since the cost aggregation kernel is in its very essence a sepa-
rable two dimensional convolution, it can be noticed that this kernel
severely stresses the GPU hardware when used through the tradi-
tional paradigm. This is due to the large amount of data-reuse and
high-speed memory transfer requirement, which are typical to any
convolution. However, all other kernels map quite well to the archi-
tecture as it is exposed via traditional GPGPU.

When the kernels are one-by-one migrated to a next-generation
implementation, they are noticed to map properly to the exposed ar-
chitecture, thanks to its intrinsic flexibility and generality. Neverthe-
less, the occlusion handling kernel suddenly generates a non-trivial
amount of overhead, as there is no intrinsic support for sparse com-
putational masks within the next-gen paradigm. For this reason, it
is important to evaluate all kernels individually using both GPGPU
paradigms, such that initial migration rules can be composed to avoid
needless effort in migrating an existing implementation.

3.1. Cost Computation

For a given intermediate position s, e.g. the center view s = 0.5, the
cost computation takes in a stereo image pair I0 and I1, and gener-
ates a cost C(x, y, d) for each disparity hypothesis d out of a given
search range S (see Eqn. 1). The cost is consequently truncated to a
maximum τ , to avoid discrepancies due to noise (see Eqn. 2).

C(x, y, d) = |I0 (x+ sd, y)− I1 (x− (1− s)d, y)| (1)

Cτ (x, y, d) = min [C (x, y, d) , τ] (2)

In the traditional paradigm, proper care should be taken to pack
four disparity hypotheses together, in order to fully utilize the four-
component vector processors. If implemented like this, there will not
be a large performance difference between a port to next-generation
GPGPU, as both approaches can efficiently handle the presented

Fig. 4. The application chain of depth image-based rendering takes in 2 input images, and outputs a number of requested intermediate images.

computations. However, using the next-gen paradigm will not re-
quire four-component data packing, resulting in more flexibility.

3.2. Cost Aggregation

Consequently to the cost computation, the reliability of the cost is
improved by aggregating over anN×M sized window. By applying
a (separable) convolution kernel w (u, v), the confident aggregated
cost A (x, y, d) is obtained using Eqn. 3.

A (x, y, d) = w (u, v) ∗u ∗v Cτ (x+ u, y + v, d) (3)

Performing a convolution (most definitely a large kernel size) in-
duces a lot of data-reuse, and its performance is therefore highly de-
pendent of the memory transfer speed. This stresses the GPU hard-
ware as it is exposed in traditional GPGPU, considering that memory
reads (i.e. texture lookups) between the VRAM and the processors
inside the GPU chip are quite slow in terms of clock cycles. In gen-
eral,N+M slow reads are necessary for each pixel or thread, to per-
form the convolution (see Fig. 5a). However, as depicted in Fig. 5b,
porting this implementation to the next-generation paradigm is very
beneficial for its performance. The shared memory can be used as a
user-managed cache to reuse the required data straight out of this on-
chip memory [6]. In other words, the convolution can be performed
with a single slow read per thread, since all other data is loaded in-
side the shared memory by the neighbouring threads.

3.3. Disparity Selection

After obtaining confident costs for the different disparity hypotheses
d in the search range S, the minimum cost indicates the best possi-
ble match found. The corresponding disparity is directly correlated
to the depth information, and is therefore consequently stored in a
depth map D (x, y), according to Eqn. 4.

D (x, y) = arg mind∈S A (x, y, d) (4)

In traditional GPGPU, the raster operators – more specifically
the Z-test – is often used to automatically select and save the mini-
mum value. This provides a means to integrate the disparity selec-
tion into the same execution kernel as the cost aggregation. This is
unfortunately not the case in the next-generation paradigm, as the
generality requires to manually check for the minimum, resulting in
a reduced performance of the individual kernel. However, in prac-
tice, the optimal end-to-end performance should always be kept as
the primary goal of the individual GPGPU paradigm selection.

Fig. 6. Performing occlusion handling in (a) the traditional, and (b)
the next-gen GPGPU paradigm.

3.4. Image Warping

After obtaining a depth map, the intermediate view Is can be syn-
thesized by blending the sampled colors of the two input images
together, using the correct parallax from D (x, y) (see Eqn. 5–6).

Is(x, y) = (1− s)I0 (xL, y) + sI1(xR, y) (5)

xL = x+ sD (x, y) , xR = x− (1− s)D (x, y) (6)

Although a color-blend is very graphics-minded, both traditional
and next-generation GPGPU will perform equally well, because the
arithmetic logical units (ALUs) inside the GPU processors intrin-
sicly have good support for these kind of operations.

3.5. Occlusion Handling

During the image warping, a check is performed whether the two
colors are close to identical. If not, this indicates an occluded area
(i.e. the concerning pixel is only visible in one of the two input im-
ages), and the blend is therefore aborted. These (sparse) occlusions
are consequently handled as a final step in the IBR process.

By exploiting the Early-Z mechanism available in the traditional
paradigm, threads can be efficiently rejected, causing the occlusion
handling to only run on the necessary pixels (see Fig. 6a). The Early-
Z mechanism can therefore be seen as intrinsic support for sparse
computational masks [7]. However, using next-gen GPGPU forces a

Fig. 7. (a) Individual kernel performance using both traditional and
next-gen GPGPU, and (b) the profit by using either paradigm.

programmer to manually reject the appropriate threads. This can be
implemented by thread conditionals, or by use of stream compaction
to collect all threads that need execution [8], as depicted in Fig. 6b.
Nonetheless, this introduces a significant overhead that is avoided by
exposing the GPU hardware as the traditional pipeline.

4. EXPERIMENTAL RESULTS

We evaluated the cost computation (K1), the cost aggregation (K2),
the disparity selection (K3), the image warping (K4), and the oc-
clusion handling (K5) implemented in both the traditional and the
next-generation paradigm. The traditional implementation uses Mi-
crosoft Direct3D, while the next-generation implementation uses the
Compute Unified Device Architecture (CUDA) from NVIDIA. The
performance was benchmarked on an Intel Xeon 2.8GHz, housing
an NVIDIA GeForce 8800GTX with 512MB video memory.

4.1. Performance Evaluation

Fig. 7a depicts the benchmarks of each individual kernel using either
traditional or next-gen GPGPU. The framerate of K1–3 was mea-
sured while performing four disparity hypotheses at once, to achieve
a fair comparison between both paradigms. The view synthesis ker-
nels K4–5 generated a single intermediate view I0.5.

On an individual basis, the kernel performances are quite consis-
tent with the presented dual architecture analysis in Section 3. How-
ever, only the cost aggregation kernel K2 is significantly faster in ab-
solute terms, when migrated to CUDA. We suspect this performance
offset to manifest due to an overhead related to the GigaThread man-
ager, which is the core mechanism to swap between running threads
on the same processor (i.e. context switches). Nonetheless, consider-
ing the profit through using a proper GPGPU paradigm (see Fig. 7b),
it is clear that the cost aggregation and occlusion handling gain the
most speedup in the next-gen, and traditional paradigm respectively.
All other kernels are close to the equal performance barrier.

4.2. Practical Hybrid Programming

Although the individual migration rules would propose to make a
hybrid Direct3D implementation where only the cost aggregation
is migrated to CUDA, we have noticed some practical constraints
that affect the end-to-end performance. As the interoperability –
needed for the hybrid implementation – uses a mapping and unmap-
ping (i.e. locking and unlocking a semaphore lock in the VRAM),
the memory is iteratively locked and unlocked by iterating over the
disparity search range, if only K2 is implemented in CUDA. As this

introduces a significant practical overhead, The lock/unlock is best
performed only once, surrounding the stereo matching chain, and
forcing K1 and K3 to CUDA as well. This will lead to an optimal
end-to-end performance, as kernel K1 and K3 do not greatly benefit
a traditional implementation.

5. CONCLUSIONS

We have systematically migrated a real-time image-based render-
ing framework from traditional to next-gen GPGPU. When consid-
ering the related kernels individually, the results indicate that cost
aggregation and occlusion handling significantly increase their per-
formance when migrated to next-generation GPGPU, and kept in the
traditional paradigm respectively. The performance difference by
the other kernels are far less pronounced, and could be considered
almost equal. In this extent, we have found that an optimal end-to-
end performance can be achieved by migrating all stereo matching
kernels to next-gen GPGPU, while keeping the subsequent kernels of
the view synthesis chain in the traditional paradigm. Hence, a hybrid
implementation that exploits the best of both worlds is obtained.

6. ACKNOWLEDGEMENTS

We want to express our sincerest gratitude to Patrice Rondao Alface,
who has assisted us with migrating and benchmarking our existing
kernels. Sammy Rogmans would also like to thank the IWT for its
PhD specialization bursary. Furthermore, all authors acknowledge
the financial support from the IBBT.

7. REFERENCES

[1] J. D. Owens, D. Luebke, N. Govindaraju, M. Harris, J. Kruger,
A. E. Lefohn, and T. J. Purcell, “A survey of general-purpose
computation on graphics hardware,” EG Computer Graphics
Forum, vol. 26, no. 1, pp. 80–113, March 2007.

[2] S. Ryoo, C. I. Rodrigues, S. S. Baghsorkhi, S. S. Stone, D. B.
Kirk, and W.-M. W. Hwu, “Optimization principles and ap-
plication performance evaluation of a multithreaded GPU using
CUDA,” in ACM SIGPLAN Symposium on Principles and Prac-
tice of Parallel Programming, February 2008, pp. 73–82.

[3] S. Rogmans, J. Lu, and G. Lafruit, “A scalable end-to-end opti-
mized real-time image-based rendering framework on graphics
hardware,” in 3DTV-CON, The True Vision Capture, Transmis-
sion and Display of 3D Video, May 2008, pp. 129–132.

[4] S. Rogmans, J. Lu, P. Bekaert, and G. Lafruit, “Real-time stereo-
based view synthesis algorithms: A unified framework and eval-
uation on commodity GPUs,” Signal Processing: Image Com-
munication, vol. 24, no. 1-2, pp. 49–64, January 2009, Special
issue on advances in three-dimensional television and video.

[5] D. Scharstein and R. Szeliski, “A taxonomy and evaluation of
dense two-frame stereo correspondence algorithms,” Int’l Jour-
nal of Computer Vision, vol. 47, no. 1-3, pp. 7–42, April 2002.

[6] V. Podlozhnyuk, “Image convolution with CUDA,” in NVIDIA
CUDA SDK Documentation, June 2007.

[7] P. V. Sander and J. L. Mitchell J. R. Isidoro, “Computation
culling with explicit early-z and dynamic flow control,” in ACM
SIGGRAPH GPU Shading Course 37, August 2005.

[8] D. Roger, U. Assarsson, and N. Holzschuch, “Efficient stream
reduction on the GPU,” in Workshop on General Purpose Pro-
cessing on Graphics Processing Units, October 2007.

