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Abstract

Semi-parametrically specified models for multivariate, longitudinal, clustered, multi-
level, and other hierarchical data, particularly for non-Gaussian outcomes, are ubiq-

uitous because their parameters can most often be conveniently estimated using the
important class of generalized estimating equations (GEE). The focus here is on

marginal models, to be understood as models that condition neither on random
effects nor on other outcomes, but merely on fixed covariates. In spite of their

well-deserved popularity, concern could be raised as to whether such models can
always be viewed as a partially specified version of a model with full distributional
assumptions, or rather whether such a parent simply does not exist. It is shown,

through the use the hybrid marginal-conditional models, that the answer is affir-
mative. For conventional GEE with a working correlation structure, the Bahadur

model is sometimes considered to be the natural parent candidate, but we show
this is a misconception. The result presented here, which is conceptual in nature,

is valid whenever the exponential family is used for the semi-parametric specifica-
tion, or when a straightforward transformation to an exponential family member

is possible, implying validity for a broad classes of binary, ordinal, nominal, and
count data. The result is illustrated in the context of trivariate binary data. Fur-

ther, as an illustration, many of the models considered are applied to data from a
developmental toxicity study.
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1 Introduction

The statistical literature boasts many modelling approaches for hierarchically
organized data structures, including longitudinal, clustered, spatial, and mul-
tivariate data. Models for non-Gaussian data are usefully subdivided into
marginal, conditional, and random-effects models. Here, we focus on marginal
models, where a component of the outcome vector is modelled in terms of
covariates but with no additional structure involving other outcomes or latent
constructs, such as random effects. Examples in a categorical setting include
the models formulated by Bahadur (1961), Dale (1986), Molenberghs and
Lesaffre (1994), Lang and Agresti (1994), and Glonek and McCullagh (1995).
An extensive review is provided by Molenberghs and Verbeke (2005). These
authors point out that such fully parametrically specified models pose non-
trivial computational challenges, largely explaining the popularity of semi-
parametrically specified alternatives, of which generalized estimating equa-
tions (GEE; Liang and Zeger 1986) are a prominent example. In their original
form, GEE’s only require the correct specification of the first moment of the
distribution to get consistent estimates. Correlation between outcomes is ac-
commodated by means of a working correlation matrix. There are a number
of variations to this theme, including the use of odds ratios rather than corre-
lations to capture association, and second- and higher-order versions, in which
not just the first, but rather the first few, moments of the joint distribution
are specified. An excellent early review is Liang, Zeger, and Qaqish (1992),
who also show that the set of moments specified by GEE coincide with these
of the Bahadur model. When the pairwise correlations are modelled as well,
it is customary to refer to GEE2, as opposed to the basic GEE, or GEE1. For
further review, see Molenberghs and Verbeke (2005).

Rather than being a model, GEE is an estimation technique. It is usually used
to fit marginal models, although Zeger, Liang, and Albert (1988) provided an
early instance of GEE applied to random-effects models. In this paper, we are
concerned with marginally-specified semi-parametric models.

There are obvious advantages to operating within the full likelihood paradigm,
including the availability of a well stocked inferential toolkit, existence of
goodness-of-fit machinery, access to the full data generating mechanism, the
relative ease with which incomplete data can be analysed (Little and Ru-
bin 2002, Molenberghs and Kenward 2007), an so on. Commonly quoted dis-
advantages are the aforementioned computational complexity, which can be
prohibitive even for moderate-length outcome sequences, and a greater vul-
nerability to model misspecification, relative to GEE or other semi-parametric
approaches.

There is another, sometimes overlooked but nevertheless important, consid-
eration, which is the focus of this contribution. We explain this in terms of
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GEE for binary data. Upon correctly specifying a semi-parametric model for
an outcome sequence of, say, length n, all pairwise and bivariate models that
can be formed from this sequence are coherent, in the sense that all pairwise
probabilities belong to the unit interval. In other words, all pairwise models
emanating from such a sequence are coherent. This, in itself, may not always
be guaranteed. However, we start from the premise that the portions of the
model actually specified are coherent, and then look beyond this, addressing
the concern as to whether there then is a corresponding n-way model. This
is an understandable consideration because, even in the absence of specified
higher-order correlations, it may be esthetically and conceptually undesirable
to estimate marginal regression relationships that cannot be placed within
a fully specified model. We will provide examples where such non-existence
arises. However, this ought not to be confused with the broader statement that
there is no compatible model. We will establish that, whenever the lower-order
marginal model, needed for GEE or other semi-parametric estimation tech-
nique such as pseudo-likelihood (Molenberghs and Verbeke 2005) is correctly
specified, then there is always at least one fully specified compatible model,
even in situations where no single compatible Bahadur model exists. There is
no justification for a particular focus on the Bahadur model, other than that
it is sometimes perceived as the ‘natural’ fully-specified counterpart of a semi-
parametric model in terms of univariate logit links and bivariate correlations.
This focus notwithstanding, our result hold generically and is tied neither to
the Bahadur model nor to correlations as measures of association.

To establish this result, we will employ the mixed marginal-conditional, or
hybrid, modelling framework, proposed by Fitzmaurice and Laird (1993); see
also Molenberghs and Ritter (1996), Molenberghs and Danielson (1999), and
Glonek (1996). Fitzmaurice and Laird (1993) model the marginal mean param-
eters, together with the canonical interaction parameters in the multivariate
exponential family distribution of Cox (1972). Molenberghs and Ritter (1996)
and Molenberghs and Danielson (1999) also incorporate the second-order as-
sociation into the marginal part, leaving the third- and higher-order parame-
ters conditional in nature. Their model is thus parameterized using marginal
means, pairwise marginal odds ratios and higher order conditional odds ratios.
It is our contribution here to expand a collection of marginally specified means
and pairwise association parameters, resulting from a semi-parametric model,
into a compatible, fully-specified model. Because the marginal and conditional
sets of parameters are orthogonal in the sense of Cox and Reid (1987), validity
is assured. A particularly simple completion is in terms of higher-order con-
ditional independence, i.e., by setting all additional parameters equal to zero.
Note that connections between fully and semi-parametrically specified models
have also been discussed by Heagerty and Zeger (1996).

Such a fully specified model, compatible with a semi-parametrically speci-
fied one, will be termed a parent. Our result is constructive in nature, rather
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than just one of existence. The relevance of the construction lies in the fact
that the parent provides a natural description of the framework into which
the semi-parametrically specified parameters fit. The implication is that such
semi-parametric methods as GEE1, GEE2, ALR, etc. can always be applied
because there is always a valid parent, and hence a probabilistic basis. The
sole condition is that the parametrically specified portion of the model be
valid, but this is no different to any other statistical modelling exercise.

It ought to be clear that a parent need not be unique, and examples of the re-
verse are provided. When one is interested in a partially specified model only,
i.e., when a strict semi-parametric view-point is adopted, this is irrelevant.
However, should one be interested in modelling additional higher-order mo-
ments, or even all moments, thereby shifting to a full likelihood approach, then
a particular parent can be chosen in accordance with various considerations,
both statistical and/or a substantive in nature. For example, the quality of
fit can be considered, or rather the particular parent can be chosen that best
relates to quantities of scientific relevance (e.g., correlations or odds ratios to
capture association).

Our results hold for binary and categorical data, but more generally for the
entire exponential family, including cases where the outcome vector does not
even need to be homogeneous, but rather can amalgamate different data types.

The rest of the paper is organized as follows. Various modelling frameworks
are presented in Section 2: the Bahadur model (Section 2.1), generalized es-
timating equations (Section 2.2), the beta-binomial model (Section 2.3), the
hybrid marginal-conditional model (Section 2.4), and second-order generalized
estimating equations (Section 2.5). The main result about compatible, fully-
specified models is presented in Section 3. Conceptual examples and coun-
terexamples are the subject of Section 4. Many of the models discussed are
applied to data from a developmental toxicity study in Section 5.

2 Modelling Frameworks

Denote, for each individual, subject, or experimental unit i = 1, . . . , N , as-
sumed to be independent, a series of measurements by Y i = (Yi1, . . . , Yni

)′,
along with covariate information, usually grouped into a matrix Xi; wherever
possible, the latter will be dropped from notation.

2.1 The Bahadur Model

We first present the general form of the Bahadur model, to then focus on the
case of clustered, exchangeable data.

4



Bahadur (1961) introduced this model, with its elegant closed form. It does
however have a number of computational problems surrounding it, which stem
from the complicated and highly restrictive shape of its parameter space. The
model is conceived for binary data.

Assume the marginal distribution of Yij to be Bernoulli with E(Yij) = P (Yij =
1) ≡ πij. Let the multinomial joint distribution f(y) of Y i = (Yi1, . . . , Yini

)′

with associated 2ni probability vector and let

εij =
Yij − πij√
πij(1 − πij)

and eij =
yij − πij√
πij(1 − πij)

, (1)

where yij is an actual value of the binary response variable Yij . Further, let
ρijk = E(εijεik), ρijk` = E(εijεikεi`),. . . ρi12...ni

= E(εi1εi2 . . . εini
). Then, the

general Bahadur model can be written as f(yi) = f1(yi) · c(yi), where

f1(yi)=
ni∏

j=1

π
yij

ij (1 − πij)
1−yij ,

c(yi)= 1 +
∑

j<k

ρijkeijeik +
∑

j<k<`

ρijk`eijeikei` + . . .+ ρi12...ni
ei1ei2 . . . eini

.

Consider the Bahadur model for the special case of exchangeable clustered
data, as used by Aerts et al (2002) in an environmental context, that is for
which the ordering of the measurements Yij within unit i is immaterial. This
motivates motivating the choices: πij = πi, ρijk = ρi(2), for j < k, ρijk` = ρi(3)

for j < k < `, etc. We do not need the individual outcomes Yij; rather the
summary statistic Zi =

∑ni

j=1 Yij, representing the number of successes within
a unit, with realized value zi, is sufficient. In this setting, the Bahadur model
reduces to

f(yi) = πzii (1 − πi)
ni−zi



1 +
ni∑

r=2

ρi(r)
r∑

s=0




zi

s








ni − zi

r − s



 (−1)s+rλr−2s
i



 ,(2)

with λi =
√
πi/(1 − πi). In addition, setting all three- and higher-way corre-

lations equal to zero, and rewriting the probability mass as a function of Zi
leads to:

f(zi)≡ f(zi|πi, ρi(2), ni) =

(
ni
zi

)

πzii (1 − πi)
ni−zi
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×



1 + ρi(2)









ni − zi

2




πi

1 − πi
− zi(ni − zi) +




zi

2




1 − πi
πi








 . (3)

We will refer to model (3) as Bah(ni, p = 2), the second-order Bahadur model
for clusters of size ni, higher-order versions Bah(n, p) derived from (2). In
Section 4, we will pay particular attention to Bah(n, p = 2) and Bah(n, p = 3).
Note that, when n = p, the model is the fully specified, unrestricted model
(2).

In spite of its simplicity, estimation with moderate to large cluster sizes is
a more time-consuming endeavour than with the semi-parametrically speci-
fied GEE. More importantly for our purposes, the parameter space is highly
constrained (Bahadur 1961, Kupper and Haseman 1978, Prentice 1988, De-
clerck, Aerts, and Molenberghs 1998, and Aerts et al 2002). The constraints
are more severe with increasing n and, for given n, with decreasing p. For
Bah(n = 12, p = 2), for example, the pairwise correlation is bounded from
above by a value in [0.09; 0.18], the bound itself being a function of the
marginal probability π. The severity of these constraints imply that, for large
clusters, the low-order (exchangeable) Bahadur models, while simpler and
seemingly closer to GEE, suffer from highly constrained correlation parameter
spaces. This is troublesome because it makes it likely that for a given GEE a
corresponding Bahadur model simply does not exist. This is a an observation
crucial to our developments in the coming sections. We now introduce such a
GEE.

2.2 Generalized Estimating Equations

A technique that enables a researcher to restrict modelling to the mean pro-
file is based on so-called generalized estimating equations (GEEs, Liang and
Zeger 1986, Diggle et al 2002, Molenberghs and Verbeke 2005). GEE’s are
conveniently introduced as the equations:

U(β) =
N∑

i=1

∂µi
∂β′

V −1
i (yi − µi) = 0, (4)

where Vi = A
1/2
i RiA

1/2
i , Ai is the matrix with the marginal variances on the

main diagonal and zeros elsewhere, and Ri = Ri(α) is the marginal correlation
matrix. Because the correlation requires a new parameter α, it is not assumed
to be correctly modelled, but rather a working assumption is made.

Given that the marginal mean µi has been correctly specified as h(µi) = Xiβ

and with mild regularity conditions holding, the estimator β̂ obtained from

6



solving (4) is consistent and asymptotically normally distributed with mean
β and asymptotic variance-covariance matrix

Var(β̂)= I−1
0 I1I

−1
0 , (5)

I0 =
N∑

i=1

∂µ′

i

∂β
V −1
i

∂µi
∂β′

,

I1 =
N∑

i=1

∂µ′

i

∂β
V −1
i Var(Y i)V

−1
i

∂µi
∂β′

.

Consistent estimates can be obtained by replacing all unknown quantities
in (5) by consistent estimates. Var(Y i) in (5) is typically replaced by (yi −
µi)(yi−µi)′. The working correlation parameters α are based on the eij in (1).
Independence, exchangeability, AR(1), and unstructured working correlation
matrices are commonly used.

The need to specify third- and higher-order moments or, more precisely, third-
and higher-order correlations, is thereby avoided, and two-way correlations can
be be misspecified without affecting the consistency of the marginal parameter
estimators. Should the two-way correlations be correctly specified, and should
a set of appropriate third- and higher-order correlations be chosen, together
with marginal logit links for binary outcomes, then the Bahadur model would
follow. Thus, classical GEE can be viewed as a moment-based version of the
Bahadur model. After choosing the marginal response functions, there is al-
ways at least one, trivial, Bahadur model that corresponds to the estimating
equations, found by setting all correlations to zero. This sets independence
apart as a special but trivial case. Thus, subtle compatibility issues arise only
when at least one pairwise correlation is non-zero.

In general, the working correlations, found upon convergence of GEE, need
not correspond to a valid compatible model within the Bahadur family , given
the severe constraints on the Bahadur model parameters (Section 2.1). It
remains to be shown that another family, specifically the hybrid model family
(Section 2.4), will take on this role (Section 3).

There exist a number of variations to the above-sketched GEE theme. We
will briefly mention three of these; they will be applied in the data analy-
sis Section 5. A detailed overview of these and other GEE versions can be
found in Molenberghs and Verbeke (2005). First, Prentice (1988) replaced the
moment-based estimation for the working correlation parameters by a second
set of estimating equations. Under the working assumption that both sets are
independent, computational complexity is avoided and, again, the correlation
model need not be correctly specified for the marginal regression parameters
to be consistent and asymptotically normal. Second, one can set out by lin-
earizing the link function, in the sense of Nelder and Wedderburn (1972),
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to construct a working variate, so that iteratively reweighted least squares
(IRLS) can be used (McCullagh and Nelder 1989). The third, while impor-
tant in general, is particularly so in the current context, is due to Lipsitz,
Laird, and Harrington (1991) who considered GEE for binary data with odds
ratios rather than correlations. Essentially, the Bahadur-based correlation is
replaced by

ψijk =
(µijk)(1 − µij − µik + µijk)

(µij − µijk)(µik − µijk)
, (6)

which leads to the following bivariate joint probabilities:

µijk =






1+[µij+µik ](ψijk−1)−Sijk

2(ψijk−1)
if ψijk 6= 1,

µijµik otherwise,
(7)

where

Sijk =
√

[1 + (ψijk − 1)(µij + µik)]
2 + 4ψijk(1 − ψijk)µijµik.

These are due to Plackett (1965) and form the basis of the bivariate (Dale
1986) and multivariate (Molenberghs and Lesaffre 1994) Dale models. Note
that the relationship between correlation-GEE and the Bahadur model is mir-
rored by the relationship between the odds-ratio-GEE and the Dale model.

The odds-ratio formulation of GEE will play a key role when establishing our
main result regarding the relationship between GEE and fully specified models.
To this end, we will need an odds-ratio type model, but rather of a hybrid
marginal-conditional nature (Section 2.4). For both the correlation-based and
odds-ratio-based GEE, second-order versions have been formulated. These,
too, will play a role in the developments to come (Section 2.5). Also, from
the preceding it is clear that there is a conceptual link between GEE and the
Bahadur model, when the outcomes are of a binary type and the dependence
structure is captured via correlations. However, the Bahadur model is not
unique in its family relationship with GEE. To discuss this issue, and to study
its impact for the relationship between partially and fully specified models, it
is helpful to introduce two further models.

2.3 The Beta-binomial Model

This model is conceived for clustered data, for which we operate in the setting,
and with notation, of Section 2.1.
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Assume, again, that Y i is a ni-dimensional vector of Bernoulli-distributed out-
comes, with now cluster-specific success probability bi. Assuming the elements
in Y i to be independent, conditionally on bi, we have that the resulting condi-
tional density of Y i given bi is binomial with ni trials and success probability
bi. It is conveniently expressed in terms of Zi =

∑
j Yij. The beta-binomial

model (Skellam 1948, Kleinman 1973, Molenberghs and Verbeke 2005) as-
sumes the parameters bi to be sampled from a beta distribution with pa-
rameters α and β (which can depend on covariates, but this dependence is
temporarily dropped from notation), i.e., the density of bi equals

f(bi|α, β) =
bα−1
i (1 − bi)

β−1

B(α, β)
,

where B(., .) denotes the beta function. The mean and variance take the form:

µi = E(Zi) = ni
α

α+ β
, Var(Zi) = niπ(1 − π)[1 + (ni − 1)ρ], (8)

and the density can be written as

fi(zi|π, ρ) =




ni

zi




B[zi + π(ρ−1 − 1), ni − zi + (1 − π)(ρ−1 − 1)]

B[π(ρ−1 − 1), (1 − π)(ρ−1 − 1)]
, (9)

in terms of the average proportion π of successes and the within-cluster corre-
lation ρ. A purely moment-based view would merely require that the mean (8)
and variance (8) be correctly specified, i.e., π must lie within the unit interval
and ρ ≥ −1/(n − 1).

2.4 A Hybrid Marginal-conditional Model

For each individual, subject, or experimental unit i in a study, a series of n
categorical measurements Yij, grouped into a vector Y i is recorded, together
with covariate information xi. Assume that the parameters of primary interest
are the first and second order marginal parameters. Extensions to more than
two orders follow from similar logic.

Model building originates from the quadratic version of the joint distribu-
tion proposed by Cox (1972) and used by ] Zhao and Prentice (1990) and
Fitzmaurice and Laird (1993). Write

f(yi|Ψi,Ωi) = exp
{
Ψ′

ivi + Ω
′

iwi −A(Ψi,Ωi)
}
, (10)
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with outcomes and pairwise cross-products thereof grouped into

vi = (y
′

i; yi1yi2, . . . , yi,n−1yin)
′

, (11)

third- and higher-order cross-products collected in

wi = (yi1yi2yi3, . . . , yi1yi2 . . . yin)
′

, (12)

for Ψi and Ωi the corresponding canonical parameter vectors. Further, let
µi = E(V i) and νi = E(W i). The distribution is fully parameterized by
modelling Ψi and Ωi. However, we choose to model µi and Ωi, enabling a
direct representation of the marginal means and the pairwise marginal odds
ratios. A model for µi is specified via a vector of link functions ηi = ηi(µi).
From the covariate vector xi a design matrix X i is derived, such that ηi =
X iβ, with β a vector of parameters of interest.

Similarly, a model for the conditional higher order parameters needs to be con-
structed. As in Fitzmaurice and Laird (1993), and because the components
of Ωi can be interpreted as conditional higher order log odds ratios, Molen-
berghs and Ritter (1996) assumed an identity link and specified the covariate
dependence as Ωi = X ′

iα, with X ′

i another design matrix and α a parameter
vector. A simple model is found by setting the components of Ωi equal to
constants.

Following derivations in Fitzmaurice and Laird (1993) and Fitzmaurice, Laird,
and Rotnitzky (1993), the likelihood equations can be written as:

∂`

∂(β,α)
=

N∑

i=1





∂µ
i

∂β
0

0 ∂Ωi

∂α





′ 


M−1

i 0

−N iM
−1
i I








vi − µi
wi − νi



 , (13)

with M i = cov(V i) and N i = cov(V i,W i). The form of the derivatives in
the first matrix of (13) depends on the choice of link functions and linear
predictors. Under the assumed linear model for Ωi, the derivative reduces to
X ′

i. Let
(
∂µi
∂β

)′

=X
′

i(D
′

i)
−1, Di =

(
∂ηi
∂µi

)

.

Given that the model is a mixed parameterization of an exponential family
model (Barndorff-Nielsen 1978), the parameter vectors β and α are orthogonal
in the sense of Cox and Reid (1987). This implies that the maximum likelihood
estimators of β and α are asymptotically independent, with the inverse of the

10



expected information matrix:





[∑N
i=1X

′

i(D
′

i)
−1M−1

i D
−1
i X i

]
−1

0

0
[∑N

i=1(X
′

i)
′

(P i −N iM
−1
i N

′

i)X
′

i

]
−1



 ,

where P i = cov(W i). It is this property that will play a key role in Section 3.
Details on parameter estimation are reviewed in Molenberghs and Verbeke
(2005).

2.5 Second-order Generalized Estimating Equations

Second-order GEE, referred to as GEE2, has been proposed by Zhao and
Prentice (1990), using correlations, and by Liang, Zeger, and Qaqish (1992),
using odds ratios. These explicitly model the pairwise association structure
and require working assumptions for the third and fourth moments. Both are
of a marginal type and therefore can be seen as lying in between GEE with
correlations and the Bahadur model on the one hand, and GEE with odds
ratios and the multivariate Dale model on the other hand.

However, a third, and for our purposes, very important set of GEE2, proposed
also by Heagerty and Zeger (1996), can be derived directly from the hybrid
model by specifying only its first and second moments:

U(β) =
N∑

i=1

(
∂µi
∂β

)

M−1
i (vi − µi) = 0. (14)

Observe that these estimating equations assume the same form for any fixed
value of Ωi, with Ωi = 0 as a special but important case. However, this leaves
M i partly unspecified. A standard procedure is to replace it by a working
covariance matrix, depending on a set of (nuisance) parameters α. Heagerty
and Zeger (1996) advocated setting the higher order conditional association
parameters equal to zero (or, more generally, to a fixed constant). This partic-
ular set of GEE2 does not require estimation of extra parameters. It can also
be seen as score equations for the likelihood specified by the following member
of the quadratic exponential family of Zhao and Prentice (1990):

f(yi|Ψi) = exp
{
Ψ

′

ivi − A(Ψi)
}
. (15)

Computing the covariance M i in (14) involves the third- and fourth-order
probabilities.

A technique, related to but slightly different from GEE, is alternating logistic
regressions (Carey, Zeger, and Diggle 1993, Diggle et al 2002, Molenberghs and
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Verbeke 2005). It is intended for binary data and is based on marginal logistic
regressions combined with the odds ratio as a measure of association. The
appeal is that it allows for formal inferences, not only about the marginal mean
regressions, but also about the association parameters, as in GEE2, whereas
the computational complexity does not exceed that of GEE1. The method has
been implemented in standard statistical software. For example, along with
GEE1, it can be fitted using the SAS procedure GLIMMIX. Important related
models, to which our ideas also apply, can be found in Heagerty (2002) and
Ilk and Daniels (2007).

With µijk the pairwise success probabilities, as in (7), and αijk = ln(ψijk)
the marginal log odds ratio, the method is based on specifying marginal and
conditional logistic regressions simultaneously:

logit Pr(Yij = 1|xij)=xijβ, (16)

logit Pr(Yij = 1|Yik = yik)=αijkyik + ln

(
µij − µijk

1 − µij − µik + µijk

)

, (17)

for j = 1, . . . , ni and 1 ≤ k < j. Whereas (16) is a conventional logistic
regression, (17) has no intercept and the second term is treated as an offset.
Carey, Zeger, and Diggle (1993) established compatibility of (16) and (17).
Estimation is based on alternating between fitting the sets (16) and (17).

2.6 Categorical Outcomes

Upon noting that a categorical outcome variable with c modalities can be
represented by c− 1 (dependent) binary indicator variables, Molenberghs and
Ritter (1996) and Molenberghs and Danielson (1999) showed how the hybrid
model can easily be extended to both nominal as well as ordinal outcome
vectors. The same is true for the marginal GEE and GEE2 models, with both
correlations and odds ratios (Liang, Zeger, and Qaqish 1992, Molenberghs and
Lesaffre 1999). In addition, the multivariate Dale model has been formulated
for ordinal outcomes (Molenberghs and Lesaffre 1994), while the beta-binomial
model extends by transforming itself into the Dirichlet-multinomial model
(Aerts et al 2002). Only the Bahadur model has not been formulated for
categorical outcomes, even though this is possible, in principle.

3 Every Valid Semi-parametric Model Corresponds to At Least

One Full Model

A concern that might arise when formulating and fitting semi-parametric
marginal models, in the sense of limiting modelling to lower order moments
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only, is that the model may be incompatible with a fully specified model, in
the sense that no model exists with the prescribed low-order moments. Such
a compatible model will be termed here, for brevity, a parent.

There are cases where a parent trivially exists. For example, consider a semi-
parametric model for binary outcomes with logistic regression models for the
means and independence working assumptions. Then, the Bahadur model with
the same logistic regressions and with all second- and higher-order correlations
equal to zero is such a parent. Obviously, there is nothing particular here about
the outcome being binary or the choice for the Bahadur model. It is evident
that for independence working assumptions no problem arises. Note also that
such a parent will not be unique. Indeed, given that zero correlations specify a
valid joint distribution and provided that the joint probabilities are all different
from 0 and 1, valid Bahadur distributions will arise in a sufficiently small
open neighbourhood of the zero-correlation vector, showing that there are
uncountably many parents. Now, the condition of non-boundary probabilities
is satisfied as soon as all regression parameters and all covariate values are
finite, since then the mean probabilities lie in the interior of the unit interval.
The same then holds for the joint probabilities under independence, since these
are merely products of mean probabilities and their complements.

In Section 4, we will present a semi-parametric model without a Bahadur par-
ent that does have, at the same time, a hybrid marginal-conditional parent.
This example and other developments notwithstanding, it is important to reit-
erate that there is no particular focus on either the Bahadur model or the use
of correlation coefficients to quantify pairwise and higher-order association. In
particular, these considerations apply to the commonly encountered marginal
odds ratios as well (Molenberghs and Verbeke 2005).

The result presented here is for the case of a correctly specified semi-parametric
model, in the sense that all lower-order moments, up to order p < n are
specified and valid. For example, a first-order model will have provided valid
bivariate distributions for all possible pairs from the n outcomes. In such
a case, p = 2. While the results hold for any p, we focus, without loss of
generality, on the pairwise case.

Our assumption implies that all

f(yij, yik|θ), (1 ≤ j < k ≤ n), (18)

where θ is the parameter vector describing the lower-order moments, are valid.
In case one starts from a value for θ that results from fitting a model, it would
be proper to write θ̂. However, this is immaterial for our purposes and we will
merely assume θ is any parameter corresponding to valid lower-order densities.
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We claim that there always exists a valid f(yi1, . . . , yin|θ̂,ψ), where ψ is ad-
ditionally needed to parameterize the n-way distribution. Note first that the
set (18) by its very construction is always internally compatible, in the sense
that for any choice of j 6= k 6= ` 6= j, f(yij , yik|θ) and f(yij, yi`|θ) produce the
same univariate margin f(yij |θ′), for an appropriate sub-vector θ′ of θ.

We will show that one can, almost trivially, make use of the hybrid marginal-
conditional model to establish existence of a parent. The essence of the ar-
gument is that the semi-parametrically specified marginal model can be com-
pleted, using conditional specifications for the higher orders.

To enable progress, we first need to remove a stumbling block. The hybrid
model is specified in terms of logits and (log) odds ratios. This is sufficient
in cases where the same holds for the semi-parametrically specified model
such as, for example GEE1 or GEE2 with odds ratios. However, a problem
arises when the Bahadur-related GEE1 or GEE2 with correlations is employed.
Fortunately, one can rewrite the correlation-based bivariate probabilities in
odds-ratio form. To see this, note that, given the univariate probabilities πij
and πik, together with the correlation ρijk, the bivariate probabilities easily
follow. Then, a 2 × 2 contingency table can be constructed as:

µ11 = πijπik + ϑ µ12 = πij(1 − πik) − ϑ

µ21 = (1 − πij)πik − ϑ µ22 = (1 − πij)(1 − πik) + ϑ
, (19)

where ϑ = ρijk
√
πij(1 − πij)πik(1 − πik). Switching to the odds ratio,

ψijk =
[πijπik + ϑ] · [(1 − πij)(1 − πik) + ϑ]

[πij(1 − πik) − ϑ] · [(1 − πij)πik − ϑ]
, (20)

while the univariate probabilities remain intact.

A few remarks are appropriate here. First, one has to establish validity of
this parameter combination. However, it has been shown by several authors
that in the bivariate case every triple (πij, πik, ψijk) with 0 ≤ πij, πij ≤ 1 and
0 ≤ ψijk, specifies valid second-order probabilities (Fréchet 1951, Dale 1986,
Palmgren 1989). But even beyond that, given that a valid two-by-two table
is specified, the marginal probabilities and odds ratio derived from it form a
valid combination. Second, the above procedure applies, when covariates are
recorded along with the outcomes, separately for every covariate level. The rest
of the derivation is then conducted separately for every covariate level. Third,
while the transformation towards logits and odds ratios is specific for Bahadur-
type semi-parametric models, such as GEE with correlations, it is important
to realize that the construction is general. For example, a semi-parametrically
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specified model in terms of kappa (agreement) parameters could be used as
input, too. This statement is clearly valid, upon noting that all that is required
is the input µ11, µ12, µ21, and µ22, as in (19), to apply the transformation to
an odds-ratio representation.

Given this lower-order (second-order, say) specification, a hybrid model is
then easily constructed. The validity follows from the orthogonality, derived
by Barndorff-Nielsen (1978) for this type of hybrid model placed within the
exponential family, where the lower-order, marginal (mean) parameters are
dual to the corresponding conditional parameters. Thus, in principle, one can
choose an arbitrary set of higher-order parameters. However, in the interest
of simplicity and elegance, and since we merely aim to illustrate that a parent
exists, it is convenient to complete the model in a conditionally specified GEE2
way, specified by the equations (14). The corresponding parent then reduces
to (15).

We will now discuss four important extensions, thereby broadening the scope
of our result.

First, the above result applies not only to a pairwise but also to a higher-order
semi-parametric specification. Assume that the moments up to order p have
been specified and derived using GEE or any other semi-parametric method.
This produces a contingency table of order p, for which the univariate marginal
probabilities and the pairwise and up to the pth order marginal odds ratios
are specified, as in the multivariate Dale model (Molenberghs and Lesaffre
1994). The moments of orders p+1 to n are then conditionally specified. This
comes down to adopting model (10), with (11) now containing outcomes and
cross-products of orders 1 to p, and (12) containing cross-products of orders
p + 1 to n. It is again a convenient choice to set the Ωi parameters equal to
zero, producing a p-dimensional analog of (15), i.e., a GEEp with conditional
higher-order assumptions.

Second, it has been assumed implicitly that the semi-parametric specification
is purely marginal in nature. This need not be a limitation because, in the
case that some or all of the lower-order moments are conditionally specified,
the transformation is needed only for the marginal part. This is executed
by placing the outcomes and cross-products corresponding to the marginally
specified part in (11) and relegating the remaining ones to (12).

Third, the results also apply to categorical data, using the argument of Sec-
tion 2.6.

Fourth, and building on the previous point, the result is applicable to any
exponential family setting. To see this note that, even though in Section 2.4
the categorical case has been emphasized, the general results of Fitzmaurice
and Laird (1993) and Molenberghs and Ritter (1996) makes use only of (10),
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the split of the outcome and cross-product vector into the sub-vectors (11) and
(12), and the orthogonality between the dual sets of (conditional) canonical
and (marginal) mean parameters (Barndorff-Nielsen 1978). For example, the
likelihood equations (13) are generic for the entire multivariate exponential
family.

In the light of these considerations, it follows that the result presented here
applies to encompassing classes such as models for binary, nominal, ordinal,
and count data. In addition, outcome vectors that amalgamate responses of
various types can be placed under the umbrella of this result.

4 Examples and Counterexamples in the Clustered Data Case

Table 1 contains a number of illustrations for the clustered data case, with
cluster size n = 3. It is assumed that the first and second moments are specified
through the mean π, common to the cluster and the second-order correlation
ρ(2), common to all pairs within a cluster. Such a specification corresponds, for
example, to GEE with exchangeable (working) correlation structure. The given
method is valid if and only if all pairwise distributions that can be formed from
the cluster are valid. This is the same as requiring the corresponding Bahadur
model, Bah(2, 2) to be valid. Note that Bah(2, 2) is not a fully specified model
in this case, because clusters are of size 3 but the model specifies the three pairs
of outcomes only. For each parameter combination, the full models Bah(3, 2)
and Bah(3, 3) are considered, only the latter of which is unconstrained in
the sense that the additional parameters are allowed to be free. Of course, in
this case with n = 3, there is only one additional parameter, ρ(3), the three-
way correlation coefficient. Furthermore, the marginal beta-binomial model is
considered, as well as the hybrid model.

Given our general result, the hybrid model is always valid, whenever the spec-
ification for π and ρ(2) is valid. In other words, the validity of the hybrid
model coincides with the validity of the original GEE. Because the validity
of GEE derives, by construction, from the existence of the Bah(2, 2) model,
effectively these three situations coincide. All other models considered exhibit
restrictions. We discuss the Bahadur and beta-binominal restrictions in turn.

Declerck, Aerts, and Molenberghs (1998) and Aerts et al (2002) present cor-
relation bounds on ρ(2) for, among other models, the Bah(n, p = 2) and
Bah(n, p = 3) distributions. For the case of p = 2, Bahadur (1961) provided
the following bounds:

− 2

n(n− 1)
min

(
π

1 − π
,
1 − π

π

)
≤ ρ(2) ≤

2π(1 − π)

(n− 1)π(1 − π) + 0.25 − γ0
,(21)
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Table 1
Examples and counterexamples of the existence of valid models, within a particular
family, when the pairwise model have been pre-specified. A clustered-data example is

considered, implying that there is a common univariate probability π and a common
pairwise correlation ρ(2). Bah(n,p) stands for the Bahadur model for a cluster of

size n, where correlations strictly higher than p are set equal to zero. BB(n) is the
beta-binomial model for clusters of size n. Data cluster size is n = 3. The cases of

π = 0.5 and π = 0.1 are considered. (
√

: a valid model exists; ×: no valid model
exists.)

Valid pairwise-correlation ranges per model

Model π = 0.5 π = 0.1

GEE/Bah(2, 2); Hybrid [−1; 1] [−1/9; 1]

Bah(3, 2) [−1/3; 1] [−1/27; 18/34]

Bah(3, 3) [−1/3; 1] [−1/10; 7/10]

BB(2) [−1; 1] [−1; 1]

BB(3) [−1/2; 1] [−1/2; 1]

Validity of models by pairwise-correlation interval

Hybrid

Sit. π ρ(2) GEE/Bah(2, 2) Bah(3, 2) Bah(3, 3) BB(2) BB(3)

1 0.5 [−1.000;−0.500]
√ × × √ ×

2 0.5 [−0.500;−0.333]
√ × × √ √

3 0.5 [−0.333; 1.000]
√ √ √ √ √

4 0.1 [−1.000;−0.500] × × × √ ×
5 0.1 [−0.500;−0.111] × × × √ √

6 0.1 [−0.111;−0.100]
√ × × √ √

7 0.1 [−0.100;−0.037]
√ × √ √ √

8 0.1 [−0.037; 0.529]
√ √ √ √ √

9 0.1 [ 0.529; 0.700]
√ × √ √ √

10 0.1 [ 0.700; 1.000]
√ × × √ √

where

γ0 =
n

min
z=0

{
[z − (n− 1)π − 0.5]2

}
.

Applying these bounds for n = 2 and n = 3, respectively, provides the valid
ranges for Bah(2, 2) and Bah(3, 2), respectively, and, therefore, also for GEE
and the hybrid model. Declerck, Aerts, and Molenberghs (1998) derived the
corresponding bounds for the three-way Bahadur model, Bah(n, p = 3). These
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are more involved than (21), and some additional notation is required. Let the
coefficient of ρi(r) in expression (2) be denoted by gr(λ, n, z). Hence, the three-
way Bahadur model under exchangeability can be written as

f(y) = πz(1 − π)n−z
[

1 +
3∑

r=2

ρ(r)gr(λ, n, z)

]

.

Let the values for n and λ (or equivalently π) be arbitrary but fixed and drop
them from notation. Hence, gr(λ, n, z) is abbreviated as gr(z). Let zP , zZ ,
and zN be the vectors containing the values of z for which g3(z) is positive,
zero and negative, respectively. Denote a general element of zP , zZ , and zN
by zP , zZ and zN , respectively. Further, let ∆(zP , zN) = g3(zN) − g3(zP ) and
τ (zP , zN) = g2(zN)g3(zP )− g2(zP )g3(zN). Straightforward but tedious algebra
then produces the following bounds:

max

[

max
(zP ,zN ):τ>0

(
∆

τ

)
, max
zP :g2>0

(

−1 + g3

g2

)

, (22)

max
zN :g2>0

(

−1 − g3

g2

)

, max
zZ :g2>0

(

− 1

g2

)

,−1

]

(23)

≤ ρ(2) ≤ (24)

min

[

min
(zP ,zN ):τ<0

(
∆

τ

)
, min
zP :g2<0

(

−1 + g3

g2

)

, (25)

min
zN :g2<0

(

−1 − g3

g2

)

, min
zZ :g2<0

(

− 1

g2

)

, 1

]

. (26)

In contrast, the bounds for the beta-binomial model are much simpler. First,
when a hierarchical view is taken, i.e., preserving the random-effects interpre-
tation of the model, and hence the connection with the beta distribution, then
it is clear from density (9) that the correlation must be non-negative, exactly
as one would expect from this and any other model with a random-effects
interpretation and the correlation parameter governing the distribution of the
random effects. However, when a marginal, moment-based view is taken, it is
sufficient for the mean and variance to be valid. It then follows immediately
from (8) that the model is valid if and only if ρ belongs to [−1/(n − 1); 1].
When there are more than two cluster members this is, again, a non-fully
specified model, relaxing restrictions on the parameter space, but preventing
in some cases the existence of a fully specified model of the beta-binomial type.

The hybrid model can also be used here to specify a valid model. The use of
(26) still is straightforward, even though a bit more involved than the two-way
counterpart (21).

Note that there are two crucial differences between π = 0.5 and other values,
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such as π = 0.1. First, none of the fully and partially specified models have
an upper bound. Second, the pairwise models, including therefore GEE and
BB(2), have no lower bound neither. Thus, when cluster sizes are n = 2, or
when pairwise models are fitted to clusters of size n = 3, the correlation is not
restricted. By implication, in the interval [−1,−1/2], examples can be found
of models for which either Bah(3, 2) and Bah(3, 3) are non-existent, or BB(3)
combined with these two does not provide a valid parameter combination. In
the rest of the correlation interval, all models are valid.

For π = 0.1, the allowable interval is different for every model and the Bahadur
models for clusters of size n = 3 also exclude values close to 1. This is the more
generic situation, with bounds becoming tighter as n increases. Thus, outside
the interval [−1/10; 7/10], there is no valid fully specified model for clusters
of size n = 3 in this case, even though GEE spans [−0.111; 1.000]. While the
three-way beta-binomial model enjoys a broader range, it still is not possible
to formulate one with correlations below -0.5. Recall also that, when a beta-
binomial model with hierarchical interpretation is envisaged, then no negative
correlations are allowable. Of course, given our general result, it is possible to
formulate a hybrid model whenever a GEE is correctly formulated.

5 Analysis of Developmental Toxicity Data

This developmental toxicity study investigates the dose-response relationship
in mice of the potentially hazardous chemical compound DEHP, standing for
di(2-ethylhexyl)phthalate, used in vacuum pumps (Windholz 1983) and as
plasticizers for numerous plastic devices made of polyvinyl chloride. DEHP
provides the finished plastic products with desirable flexibility and clarity
(Shiota, Chou, and Nishimura 1980). It has been well documented that small
quantities of phthalic acid esters, of which DEHP is an instance, may leak out
of polyvinyl chloride plastic containers in the presence of food, milk, blood, or
various solvents. Due to their ubiquitous distribution and presence in human
and animal tissues, considerable concern has developed as to the possible toxic
effects of the phthalic acid esters (Autian 1973). The developmental toxicity
study, conducted in timed-pregnant mice during the period of major organo-
genesis and described by Tyl et al (1988), has attracted much interest in the
toxicity of DEHP. The doses selected for the study were 0, 44, 91, 191, and 292
mg/kg/day, respectively. For analysis, they are rescaled to range in the unit
interval, i.e., 0, 0.125, 0.25, 0.5, and 1. The dams were sacrificed, just before
normal delivery, and the status of uterine implantation sites recorded. A total
of 1082 live foetuses were dissected from the uterus, anesthetized, and exam-
ined for external, visceral, and skeletal malformations. Foetuses are clustered
within mothers; hence the implied association needs to be accommodated in
the analysis.
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The univariate marginal dose-response takes the form

Yij ∼ Bernoulli(πij), logit(πij) = β0 + βd di, (27)

where di ranges through the rescaled dose levels. The outcome is coded as
Yij = 1 if any malformation occurs and 0 when the animal is malformation-
free.

To illustrate our results, we fit sixteen different models to these data. Param-
eter estimates and standard errors are presented in Table 2. All marginal and
hybrid models share the univariate marginal regression function (27). For the
conditional models, the corresponding first-order logit takes the form:

logit[P (Yij = 1|di, Yik = 0, k 6= j)] = β0 + βd di.

Here, conditioning is on all other fetuses in the same litter. The association
parameter is the conditional odds ratio, ψc, for a pair of outcomes Yij and Yik,
given all others are failures.

Among the marginal models, there are two full-likelihood models, fitted
with maximum likelihood: the Bahadur (Model 1) and beta-binomial models
(Model 9). For GEE 1 with correlations (Models 3–8), three estimation meth-
ods are considered, as discussed in Section 2.2: the original approach of Liang
and Zeger(1986), Prentice’s (1988) modification, and the quasi-likelihood-
based linearization method. Moreover, both exchangeable as well as indepen-
dence working assumptions are considered. For all other GEE approaches,
exchangeable working assumptions (for GEE1), or simply an exchangeable as-
sociation structure (for GEE2), is assumed. A further GEE1 is reported as
Model 13, where now the odds ratio is used (Section 2.2), as proposed by Lip-
sitz, Laird, and Harrington (1991). Switching to GEE2 (Section 2.5), there are
three instances. First, Model 2 corresponds to GEE2 with correlations, in the
spirit of Zhao and Prentice (1988). Second, Model 12 features odds ratios, as
proposed by Liang, Zeger, and Qaqish (1992). Third, the hybrid Model 14 can
be considered both GEE2 with marginal exchangeable second-order struc-
ture and conditional independence higher-order assumptions, as well as full
likelihood. Next to conventional GEE2, also alternating logistic regressions,
described in Section 2.5 as well, are presented as Model 10.

A further non-likelihood method is pseudo-likelihood, also termed composite
likelihood or pairwise likelihood for this case (Model 11; Molenberghs and
Verbeke 2005, Ch. 9). Essentially, the likelihood function for a sequence of
n measurements is replaced by the product of pairwise contributions for all
possible n(n−1)/2 pairs. These pairwise contributions are written as the Dale
probabilities (7). As with GEE, consistency and asymptotic normality follows,
and an information sandwich is used for precision estimation.
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Table 2
Developmental Toxicity Data. Any malformation in the DEHP study. Parameter

estimates (standard errors) from analyses based on marginal models, conditional
models, and the hybrid model β0 and βd are the intercept and dose effect, respectively;

the association parameter is either the correlation, ρ, or the odds ratio, ψ. (exch:
exchangeable working correlation; ind: independence working correlation.)

Number Model Estimation β0 βd Association

Marginal models

1 Bahadur ML -3.83(0.27) 5.38(0.47) ρ 0.06(0.01)

2 GEE2(exch) ZP -5.23(0.40) 5.35(0.60) ρ 0.09(0.01)

3 GEE1(exch) LZ -4.05(0.31) 5.84(0.61) ρ 0.11

4 GEE1(ind) LZ -3.98(0.30) 5.56(0.61)

5 GEE1(exch) Prentice -4.06(0.31) 5.89(0.61) ρ 0.15(0.05)

6 GEE1(ind) Prentice -3.98(0.30) 5.56(0.61)

7 GEE1(exch) Lineariz. -4.04(0.31) 5.82(0.61) ρ 0.11

8 GEE1(ind) Lineariz. -3.98(0.30) 5.56(0.61)

9 Beta-binomial ML -3.83(0.31) 5.59(0.56) ρ 0.16(0.05)

10 ALR CZD -3.8(0.31) 5.59(0.56) ψ 3.22(0.93)

11 Pairwise PL -3.98(0.30) 5.57(0.61) ψ 3.00(0.81)

12 GEE2(exch) LZQ -3.69(0.25) 5.06(0.51) ψ 2.64(0.61)

13 GEE1(exch) LLH -4.02(0.31) 5.79(0.62) ψ 1.51(0.51)

Hybrid models

14 GEE2(exch)/full MR -3.69(0.25) 5.06(0.51) ψ 2.64(0.61)

Conditional models

15 Quadr. loglin. ML -2.04(0.42) 2.98(0.66) ψc 1.17(0.04)

16 Quadr. loglin. PL -1.80(0.35) 2.95(0.56) ψc 1.22(0.04)

(Estimation: CZD: Carey, Zeger, and Diggle; LLH: Lipsitz, Laird, and Harrington;

LZQ: Liang, Zeger, and Qaqish; ML: maximum likelihood; MR: Molenberghs and
Ritter; PL: pseudo-likelihood; ZP: Zhao and Prentice; )
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As a useful basis for comparison, the basic exponential family model (10)
is considered, with the elements of wi removed, i.e., the quadratic approxi-
mation, but without the transformation from the natural parameters to the
marginal mean parameters. This means not the hybrid model results but
rather a model with fully conditionally interpreted parameters. The model
is fitted using either maximum likelihood (Model 15) or pseudo-likelihood
(Model 16). The latter pseudo-likelihood, described in Molenberghs and Ver-
beke (2005, Ch. 12), is similar in spirit, yet different from, the one employed
in Model 11. Here, the likelihood contribution for a subject is replaced by the
product of n full conditionals f(yij |{yik, k 6= j}).

The regression parameters β0 and βd are very similar among all marginal mod-
els. Note that, while the beta-binomial model is generated hierarchically, its
mean and variance have a marginal interpretation. Furthermore, the hybrid
model is marginal in the mean and pairwise association parameters; thus, what
is reported in Table 2 for the hybrid has got a marginal interpretation. Only
Models 15 and 16 features regression and association parameters with a con-
ditional interpretation. The regression parameters, therefore, do not describe
the marginal odds but rather the odds of a success, conditional on all other
outcomes within a cluster being failures. Evidently, this odds is lower than the
corresponding marginal odds. For a detailed discussion, see Molenberghs and
Verbeke (2005, Part III).

Turning to the models with correlation parameters, note that the correlation
is smallest for the Bahadur model, followed first by GEE2, then by GEE1,
with finally the beta-binomial model at the other end. This is entirely natural
in view of the constraints operating. Indeed, (1) the Bahadur model is valid
only if all higher-order probabilities are valid; (2) GEE2 is based on validity
of probabilities in the orders 1 to 4; (3) for GEE1, only the first and second
orders are required; (4) the beta-binomial model has no constraints in the
range of positive correlations.

The marginal odds ratios, resulting from Models 10–14 are all similar, espe-
cially when compared against the background of the precision with which they
are estimated. The noticeable exception is Model 13. This is the only GEE1-
based model, with the others either of a GEE2 (Models 12 and 14) or of a
related (Models 10 and 11) nature. Since the null hypothesis of no association
corresponds to ψ = 1, the odds ratio is non-significant in Model 13, while it
is significant in the other odds ratio model. Given the odds ratio is consider-
ably less constrained in general and even unconstrained for a pair of outcomes
(Palmgren 1989, Molenberghs and Lesaffre 1994), constraints are less of a
plausible explanation than would be inefficiency associated with GEE1.

Finally, GEE2 Models 12 and 14 are similar but slightly different, in the sense
that the higher-order structure is set to zero in a marginal way in Model 12
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and in a conditional way in the hybrid Model 14. In terms of the first and
second order marginal parameters they coincide. These considerations lead to
the conclusion that the parameter and precision estimates are equal, up to
two decimal places.

6 Concluding Remarks

In this paper, we have shown that a broad class of semi-parametrically speci-
fied models always admits a fully-specified parent model. The result is shown
by construction, using a mixed marginally and conditionally parameterized
multivariate exponential family model. First, the result is valid for a wide
class of semi-parametric models where specification is done in terms of (parts
of) the exponential-family formulation, including binary, nominal, ordinal, and
Poisson outcomes. Second, it is also valid when the outcome vector combines
outcomes of different types. Third, using transformation results, the result
can be applied as well when the semi-parametric specification is not directly
in terms of the exponential family, such as logistic regressions for binary data
coupled with pairwise correlation, as in classical generalized estimating equa-
tions.

While the hybrid model provides an elegant vehicle to derive the existence
of a fully-specified parent model, it may not be the most obvious choice a
priori. For example, for the aforementioned correlation-based GEE, the Ba-
hadur model may come to mind first as a candidate parent. However, this
family is not always able to provide a parent. This underscores the use of the
result derived. Examples and counterexamples have been given. The appeal
of the existence of a valid parent, even when not explicitly constructing it ,
is that the type of semi-parametric modelling considered here can always be
seen as describing a portion of a joint distribution. If this would be the case,
it would have been impossible to provide an entirely natural description as to
what framework GEE-based parameters, for example, fit in. The implication
is that such semi-parametric methods as GEE1, GEE2, ALR, etc. can always
be applied because there always is at least one valid parent. Thus, for every
application of such semi-parametric models, there always is a probabilistic
basis. The sole condition is that the parametrically specified portion of the
model be valid, but this is not different from any other statistical modelling
exercise.

Clearly, our results do not imply uniqueness of a parent. In fact, the applica-
tions have demonstrated that there can be more than one. As long as one is
interested in a partially specified model only, i.e., so long as one takes a semi-
parametric view, this is of neither use nor concern. Should one be interested
in modelling more moments, or even all moments so as to move towards full

23



likelihood, then a parent can be chosen in accordance with statistical crite-
ria (e.g., quality of model fit) and/or scientific criteria (e.g., which additional
parameters are best suited to provide insight in the problem at hand).

The suite of models used in this paper to derive and illustrate our main result,
jointly with a few additional models, have been fitted to clustered data from
a developmental toxicity study conducted in mice. As such, the impact of
the constraints operating on the association parameters, in particular when it
takes the form of a correlation, is clearly demonstrated.
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