
Made available by Hasselt University Library in https://documentserver.uhasselt.be

Haptic Linear Paths for Arm Rehabilitation in MS Patients

Peer-reviewed author version

DE BOECK, Joan; NOTELAERS, Sofie; RAYMAEKERS, Chris & CONINX, Karin

(2009) Haptic Linear Paths for Arm Rehabilitation in MS Patients. In: Proceedings of

IEEE International Workshop on Haptic Audio visual Environments and Games,

2009. HAVE 2009. p. 42-47..

Handle: http://hdl.handle.net/1942/10326

Haptic Linear Paths for Arm Rehabilitation
in MS Patients

Joan De Boeck Sofie Notelaers Chris Raymaekers Karin Coninx
Hasselt University - tUL - IBBT

Expertise Centre for Digital Media
Wetenschapspark 2

B-3590 Diepenbeek (Belgium)
Email: {joan.deboeck, sofie.notelaers, chris.raymaekers, karin.coninx}@uhasselt.be

Abstract—Force feedback in the context of a rehabilitation
program may have its benefits. The generated forces can be
used to assist, support or oppose the patients according to their
personal needs and abilities. Using the Phantom haptic device,
we conducted a pilot study focussing on the rehabilitation of the
upper limbs in MS patients. Apart from the promising clinical
results, we found that only a few haptic effects are commonly
necessary. Among them is a ‘linear path’, a haptic effect that
generates the necessary forces to follow a path defined by two
or more points in space. In this paper we motivate why the
current implementations in existing haptic APIs (such as H3D)
are not completely suitable. We propose two possible alternative
implementations based on our requirements: one using rounded
polygons, another using cardinal splines. It will turn out that
both solutions are equivalent, but depending on the application
one of both will be more suitable.

I. INTRODUCTION AND RELATED WORK

Haptic interfaces have been gaining importance over the
last decades in a variety of domains [1]. One of the promising
domains undoubtedly is rehabilitation, where force feedback
devices are applied in the training sessions of locomotory
impaired people [2][3]. The major advantages are that the
training can be more finely tailored to the abilities and
needs of the patient, while less assistance of the therapist is
required. The ultimate goal is to allow a patient to perform the
force feedback enabled setup at home while being remotely
monitored by the therapist [4][5]. This opens possibilities for
an increased training intensity, which at its turn provides better
results [6]. Additionally, a computer driven therapy also has
the ability to integrate gaming concepts within the training
program, which may improve the patient’s motivation [7].

Recently, our research lab participated in a pilot study
focussing on the training of the upper limbs in Multiple
Sclerosis (MS) patients [8]. MS is a autoimmune disease of
the central nervous system, resulting in an increasing loss of
force and coordination. A Phantom haptic device was used to
control some game-like training exercises, while the generated
force could be applied to assist, support or oppose the patient.
Based on the promising results of this pilot study, a research
project in a multidisciplinary consortium is currently being
executed.

In this pilot study, and during the preparation of additional
exercises for the continuation of this project, we noticed that

Fig. 1. Exercise where the patient has to steer a car from the start to the
finish.

only a few basic haptic effects were necessary. Among them,
we identify the ones available in most haptic APIs such as
feedback when touching objects, spring forces or magnetic
force fields.

These and other force effects, applied in a rehabilitation
context can be classified into three groups [9]:
• Assisting forces: These forces ‘assist’ the patient in

performing a (new) movement. The patient can remain
passive and can feel how the movement has to be made.

• Supporting forces: With these forces, patients have to
perform the movement by themselves, but the force
avoids making too large deviations from the intended
motion path.

• Opposing forces: These forces oppose the patient by
generating forces opposite to the intended motion. As a
result, larger force amplitudes are necessary in order to
complete the movement.

We also found in our pilot study that a ‘linear path’ between
two or more points in space is a frequently used force effect.
A practical example of this ‘linear path’ in our study is shown
in figure 1. Here the patient has to ‘steer’ the car on the
road from start to finish, while being ‘assisted’ by several
forces classified as mentioned above: an adjustable spring
force supports the patient by attracting the car to the center
of the road. Additional forces, such as an assisting forward
force, or an opposing friction or viscosity may be useful as
well.

It is a key requirement in our project that for this ‘linear

path’, the entire scope of forces (assisting, supporting and
opposing) must be covered. However, as will be motivated in
the next section, it appears that the ‘linear paths’ built in into
existing APIs do not fully cover all of our requirements. There-
fore, we report on two possible alternative implementations
that cover the full range of necessary forces. The first solution
uses rounded polygons, the other uses cardinal splines. Similar
mathematical approaches and haptic issues may be found in
Sjostrom et al. [10] where mathematical functions are made
‘touchable’ in order to teach blind students. Furthermore,
Raymaekers et al. [11] implemented a haptic paradigm for
curve drawing using Bezier splines. Here, assisting forces are
generated to facilitate the modification of an existing curve.

In the next section, we first enumerate the design re-
quirements, and when appropriate motivate why the current
implementations are not fully suitable. Thereafter in sec-
tion III, we briefly describe both proposed solutions. Next, in
section IV, we discuss the practical integration within H3D.
Next, in section V we describe some considerations with both
implementations and discuss their strengths and weaknesses.
We end this paper by proposing which solution is the better
in what situation.

II. DESIGN REQUIREMENTS

As mentioned in the introduction it may have become clear
that the definition of a haptic linear path between a set of pre-
defined points in space is one of the common building blocks
in our rehabilitation project. However, the current existing
implementations, are not completely suitable. In what follows,
we first enumerate the different design requirements, and when
appropriate argue why the standard API implementations are
not suitable. We consider OpenHaptics [12], CHAI3D [13] and
H3D [14]. However, as for our rehabilitation project, we opted
for H3D, in the remainder of this paper we mainly focus on
the H3D implementation.

1) Continuous Path: It is required that the interpolated
path is continuous in the first derivative in each point.
This is necessary for a smooth haptic rendering with
no bumps or oscillations. Furthermore, the normal and
tangential lines (first derivative) must be continuous as
well when superimposing additional forces (see item
5). If this requirement is not met, patients tend to get
stuck in sharp corners. The CHAI3D implementation
only supports individual line segments, and hence is not
continuous in the first derivative.

2) Easy to design: For the developer of a scene, the
interface must be as easy as possible, preferably by
just enumerating the subsequent points in space. This is
how H3D’s magnetic lines are implemented. Taking the
continuity requirement into account, splines appear to be
the obvious solution. However, depending on the chosen
spline, coping with tangent lines and control points may
not always be intuitive for novice designers.

3) Approximate the given path: The interpolated contin-
uous path must approximate the original linear path as
close as possible. Dependent on the applied interpolation

Fig. 2. Cubic spline curve through given set of points strongly differs from
the original ‘linear path’ (gray line).

formula the result may strongly differ from the original
path, as can be seen from figure 2.

4) Support for several devices: In our rehabilitation
project we consider three different haptic devices: the
HapticMaster, the Phantom and the Falcon. Obviously,
the same software should apply to all devices. CHAI3D
currently does not support the HapticMaster and al-
though H3D supports all of our devices, the magnetic
lines implementation only works on the Phantom device
as it relies on the openHaptics API. Obviously, the Open-
Haptics solution at its own only supports the Phantom
device, as well.

5) Apply additional forces: As will be elaborated upon in
more detail in section IV and V-B, for our rehabilitation
program it is necessary not only to generate a spring
force to the center of the curve. Additional forces, either
supporting or opposing (such as a forward force, friction
or viscosity) have to be superimposed, as well. In the
current H3D implementation other force fields can be
combined with the ‘magnetic lines’, but very often this
results in a jerky or instable rendering.

III. PROPOSED SOLUTIONS

Taking the above considerations into account, we selected
two possible solutions:

1) Rounded polygons, where the corners of a polygon are
rounded using arc segments [15].

2) Cardinal splines [16], a subset of Hermite Splines where
the tangent control points are defined as a function of
the other control points.

In what follows, we briefly describe the mathematical
principles of both solution. Within the scope of this paper,
we will particularly focus on the issues of a smooth haptic
rendering.

A. Rounded Polygons

The first selected solution adopts the principles of rounded
polygons [15]. This solution guarantees maximal coincidence
of the interpolated curve with the linear connection between
the control points, but as a result, the curve will never actually
go through these control points (as the corners are rounded).

Fig. 3. Rounded corners between two line segments.

Figure 3 shows how the arcs are defined. Given two sub-
sequent segments of a ‘linear path’, defined by s1,s2 and s3,
at a user-defined distance from s2, two points p and q are
chosen. The intersection between the two perpendicular lines
through p and q define the center c of the arc. Now, the arc︷︸︸︷
pcq defines a new segment that is placed in between segments
−→s1p and −→qs3.

For a smooth haptic rendering the perpendicular projection
h′ of the position of the haptic pointer h is calculated in each
haptic loop iteration. This is mostly a trivial operation for both
the line and the arc segments, although some issues with the
arc segment exist, as will be explained in section V. For the
calculation of the required forces (spring, friction, viscosity,
. . .) we need to calculate the tangent and the perpendicular
line in h′. From figure 3 it may be clear that at the segment
transitions points (p and q) the first derivative is continuous,
which guarantees a smooth haptic rendering for all additional
forces.

B. Cardinal Splines

Our second solution guarantees that the continuous curve
runs through the control points. As a result, however, the path
in between may slightly deviate, depending on the ‘tension
factor’. Cardinal splines are a subset of Hermite Splines, where
the tangent control points are calculated depending on the
other control points.

Given the points s1 and s2 and the tangential lines T1

and T2 (see figure 4), the tangential line Tn is given by
α · (sn−1 − sn+1). This means that the tangential is parallel
with the line between the previous and the next control point.
Alpha (α) is the tension factor, typically between 0 and 1,
defining how ‘tight’ the curve is in the control points.

The spline curve is defined by four parametric functions:

h1(t) = 2t3 − 3t2 + 1
h2(t) = −2t3 + 3t2

Fig. 4. Cardinal Spline interpolation.

h3(t) = t3 − 2t2 + t
h4(t) = t3 − t2

An arbitrary point P on the curve is calculated by:

−→
P (x, y, z) = h1(t) · s1 + h2(t) · s2 + h3(t) · s1 + h4(t) · s2

For a smooth haptic rendering, again we need to find the
perpendicular projection h′ from the position of the haptic
device h. The calculation of the minimal distance of a point
to the spline is not trivial and can be achieved by solving the
equation ∂P (t)/∂t = 0 [17].

In our implementation we decided to take a more pragmatic
approach and exploit the strong coherence between successive
haptic rendering steps by searching for a new local minimum
‘in the neighborhood’ of the previous projection point. Obvi-
ously for the very first rendering step (at startup), the entire
closest line segment has to be sought for a minimum distance.
For performance optimization, the spline curve is precalculated
in a spline table.

Another implementation consideration is the resolution of
the spline interpolation. The spline equation is a parametric
equation (in t), with t varying between 0 and 1, respectively
corresponding with the start and the end point of a segment.
With a fixed step-size, longer segments hence have a coarser
resolution, while small segments may be over-sampled. There-
fore, the number of steps is proportional to the euclidian
distance between the control points (nsteps = k · |pn−pn−1|,
where k is determined at 7000 based upon the Phantom’s
resolution of 0.03mm). For the other devices, this value
appears to produce good results, as well.

IV. PRACTICAL IMPLEMENTATION IN H3D

The above described principles have been implemented in
an H3D node that can be used within an H3D (X3D) scene
file. Listing 1 shows an example of the syntax.

The implementation requires that the developer first defines
the control points of the desired path using the ‘LinearPath’
tag. Next, in line 21, the haptic representation is defined using
the ‘LinearPathForces’ tag. This tag includes the control points
in line 27. The applied interpolation algorithm (polygons
or splines) is chosen by the ‘interpolation’ attribute, while

the force parameters are defined each by their appropriate
attribute(s) (as shown in line 22 to 26)

In the enumeration below we discuss the possible pa-
rameters and, when appropriate, refer to the example. The
mathematical background for the generated forces is discussed
later in section V-B.
• Assisting forces: Here we define a constant forward force

with a given magnitude, tangential to the interpolated
curve. Similarly a force can be defined that strives for
constant (forward) velocity. Line 23 in listing 1 shows the
definition of a constant forward force using the attribute
aidConstant. It’s also possible to provide negative force
values; obviously the force will then become opposing.

• Supporting forces: This is the main spring-force, perpen-
dicular to the interpolated curve. The developer can adjust
the stiffness by changing the attribute springConstant
(line 20).

• Opposing forces: These forces include static and dy-
namic friction, as well as viscosity (both shown in
listing 1). Friction is defined by ‘staticFriction’ and ‘dy-
namicFriction’ (line 25 and 26). Viscosity can be added
using the ‘viscosityConstant’ attribute (line 24).

1 <ToggleGroup DEF=” L i n e a r P a d ” h a p t i c s O n =” f a l s e ” g r a p h i c s O n =” f a l s e ”>
2 <Shape>
3 <Appearance>
4 <M a t e r i a l e m i s s i v e C o l o r =” 0 0 0 ” />
5 <L i n e P r o p e r t i e s l i n e w i d t h S c a l e F a c t o r =” 5 ” />
6 </ Appearance>
7 <L i n e a r P a t h v e r t e x C o u n t =” 11 ” DEF=” myPath ”>
8 <C o o r d i n a t e p o i n t =”−0.1466667 0 .02666667 0 ,
9 −0.1053333 0 .078 0 ,

10 −0.005333333 0 .07933334 0 . 0 ,
11 0 .018 0 .04666667 0 . 0 ,
12 −0.01066667 0 .01866667 0 ,
13 −0.06933333 0 .04333333 0 ,
14 −0.07333333 0 .1213333 0 ,
15 0 .05466667 0 .1266667 0 ,
16 0 .1166667 0 .05333333 0 ,
17 0 .1146667 −0.012 0 ,
18 0 .072 −0.036 0 ” />
19 </ L i n e a r P a t h>
20 </ Shape>
21 <L i n e a r P a t h F o r c e s DEF=” myForces ” i n t e r p o l a t i o n =” s p l i n e s ”
22 s p r i n g C o n s t a n t =” 40 ”
23 a i d C o n s t a n t =” 1 . 3 ”
24 v i s c o s i t y C o n s t a n t =” 5 ”
25 s t a t i c F r i c t i o n =” 0 . 8 ”
26 d y n a m i c F r i c t i o n =” 0 . 5 ”>
27 <L i n e a r P a t h USE=” myPath ” />
28 </ L i n e a r P a t h F o r c e s>
29 </ ToggleGroup>

Listing 1. Listing example of a linear path with some haptic effects.

V. CONSIDERATIONS

In this section we report on some considerations that rose
when implementing and testing the aforementioned solutions.

A. Artifacts when approaching a corner from the inside bend

When approaching a corner from the inside bend as shown
in figure 5 (dashed line), both the rounded polygon as the
spline solution suffer from some artifacts.

With the rounded polygons implementation a problem arises
when a path H[..., h1, h2, h3, h4, ...] is followed (figure 5). As
soon as h traverses the line cp, a transition to the next segment
has to be made. In our case the arc

︷︸︸︷
pcq should be expected

as the successor. However, when in h3, the closest point on
the curve already lies on the next segment [qs3]. It may be
clear that a jump from h′2 (lying on segment [s1p]) to a point
on segment [qs3] in two successive iteration would violate the

Fig. 5. ‘Getting Stuck’ when approaching the control point s2 from the
inside bend (polygon solution).

continuity requirement. Therefore, an extra condition has been
added to solve this problem: upon traversing the line cp, when
the haptic pointer is ‘below’ the center of the circle (e.g. point
h3), it is first projected onto the arc

︷︸︸︷
rcq (h′3). Next the arc︷︸︸︷

rcq is linearly mapped onto the arc
︷︸︸︷
pcq , bringing h′3 to h′′3 .

This way, the continuity requirement is maintained. As soon
as h′′n = h′n, which is only true if h′′n = h′n = q, this special
condition is left, and the path can continue in a continuous
way with segment [qs3].

The result of this solution for the user is that apparently the
cursor ‘gets stuck’ when the inside bend is taken too sharp.
This blockage is only released when the cursor is brought close
enough to the control point (s2), in particular when traversing
the line cq. This solution requires the user to take the curve
close enough to the control point. In practice this is not a
problem when the spring-force is stiff enough (as it attracts
the pointer close enough to the curve). In a very loose situation
however, the described artefact may be confusing for the user.

A similar (but inverse) artefact shows up with the spline
implementation. From figure 6, it can be easily understood that
for the depicted path H[..., h1, h2, h3, h4, ...] the projections
of [h2, h3], covers nearly the entire curve [h′2, h

′
3]. This may

give the feeling of slipping off the edge of an object, fast-
forwarding the curve at that point. Here again, a stiffer
attraction to the curve’s center reduces this effect. Although
the haptic rendering remains smooth and stable, the artefact
may be undesired in some situations, as well.

Whether or not it is too easy (spline) or difficult (rounded
polygon) to take the inside bend, depending on the application
both artifacts may be desired or undesired, and may be key
arguments to choose for one or the other implementation.

B. Additional Forces

As already stated in section IV, additional forces can be
easily added from within the H3D-file. In what follows, we
shortly describe how the respective forces are designed.

Fig. 6. ‘FastForward’ when approaching the control point s2 from the inside
bend (spline solution).

For the assisting forces, we defined a constant forward
force, with a given magnitude, tangential to the interpolated
curve. Similarly we have added an assisting force that tries
to keep a constant (forward) velocity: when the velocity is
below a given value, the forward force is slowly increased
in a continuous way. Alternatively when the given velocity is
exceeded, a negative force will slow down the movement.

The supporting force is a spring-force, attracting the
pointer perpendicular to the center of the interpolated curve,
with a magnitude proportional to the distance from the center.
The force is given by Fs = k.s. With k the spring stiffness
and s the perpendicular distance from the curve.

The opposing forces include friction and viscosity. Both
static and dynamic friction are implemented using the ‘classic’
Coulomb friction model, as described in [18]. Static friction
is implemented as a spring force, until the force exceeds the
‘static friction force’ given by Fcs

= ks.N . Dynamic friction
is calculated by the formula Fcd

= kd.N . With ks > kd,
respectively the static and dynamic friction coefficient. N is
the normal force caused by the ‘weight of the object’. In
our implementation N = Fs, the supporting spring force, but
alternatively, a constant N can be entered as well.

Viscosity is implemented as Fv = −kv.v
2: the viscosity

force is proportional to the square of the cursor’s velocity,
opposing the direction of the movement.

C. Compatibility with the required devices

As already stated in the requirements-section three devices
are considered to be applied in the rehabilitation project: the
HapticMaster as a high-end, high-force device; the Phantom,
as a high-end device, requiring a finer coordination and the
Falcon, as a low-cost solution. All three devices are required
to smoothly render the designed curve, according to their
characteristics.

Although the proposed solution is independent of the chosen
renderer, We have chosen to verify our solution using H3D’s
Ruspini Renderer [19]. As this renderer is device independent,
it may not surprise that the solution automatically runs on all
compatible devices. An informal test on our three devices did
not show any surprising results: the Phantom showed a very
smooth and stable rendering of the interpolated curve. With the

HapticMaster, we had a more ‘bouncy’ simulation, that could
very easily started to oscillate (low frequency oscillations).
This result, however, was expected as the HapticMaster is an
admittance-controlled haptic device [20] where H3D ‘simu-
lates’ a frictionless free mass. In particular the property of
being frictionless easily leads to these low-frequency oscilla-
tions. Simply adding a viscosity-effect of kv = 15 on our path,
entirely solved the problem. The Falcon device, showed a nice
rendering, but as could be expected the lower resolution and
higher friction were noticeable.

As these findings are the result of the properties of the
haptic devices, rather than from our solution, further details
fall beyond the scope of this paper.

VI. COMPARISON

As both solutions meet our requirements, the question
rises which of both proposed solution is the most preferable:
both solutions provide a smooth and stable haptic rendering,
are continuous in the first derivative, include the required
additional forces, are compatible with all required devices,
are easy to design, and approach the original linear path. The
rounded polygons solution never actually ‘includes’ the control
points in the curve, while the spline implementation slightly
deviates from the original path. Both differences are small
however, and do not argue for one or the other.

As described in section V-A, however, a substantial dif-
ference exists when approaching a control point from the
inside bend. With the rounded polygons, the projection point
is ‘blocked’ until the curve is taken decently. In contrast, the
spline interpolation gives the feeling of slipping off the corner,
making it easier to continue the curve.

For very small spring forces, where large deviations from
the path are allowed, the ‘blocking’ behavior of the rounded
polygons can be confusing as the users do not feel where they
actually went wrong. With a moderately high spring constant
however, this solution is ideal to enforce the user to follow
the path as good as possible.

The spline interpolation, provides a very natural way to
follow the curve, even when the actual cursor is (too) far
from the curve. This may give a convenient feeling, but in a
rehabilitation setup is sometimes undesired. On the other hand,
with a moderately high spring force, the feeling of ‘sliding off’
the corner may feel ‘uncomfortable’.

Choosing between both solutions is hence dependent on the
application in particular, and what behavior is desired. It may
be expected that practical tests with patients are necessary
to determine the preference for one of both solutions. For
this reason, we decided to provide both solution in our H3D
implementation, making it easy for the developer to alter
between both.

VII. CONCLUSION

From our pilot study on the rehabilitation of MS patients
using force feedback supported training sessions, we learned
that a haptic ‘linear path’ is one of the frequently necessary

effects. In this paper we argued why the existing implemen-
tations in current APIs do not completely satisfy our needs.
We proposed two possible implementations, one using rounded
polygons, another using cardinal splines. Both solutions have
been implemented as a H3D node. They appear to be equiv-
alent and also fully suit our initial requirements. However
both solutions have a different behavior when approaching a
control point from the inside bend. Which of both solutions
is preferable depends on the particular application and the
required behavior. In order to allow the developer to choose
between both solutions, they can be easily changed within the
H3D file. Finally, the implemented software can be found at
http://research.edm.uhasselt.be/haptic-linear-paths.

ACKNOWLEDGMENT

Part of the research at EDM is funded by the ERDF
(European Regional Development Fund) and the Flemish
government. This research was funded by the INTERREG-
IV programme (project Nr. 4-BMG-II-1-84, Euregio Benelux).
The authors also want to thank Lode Vanacken for his appreci-
ated assistance during the implementation phase of this work.

REFERENCES

[1] J. K. Salisbury, “Making graphics physically tangible,” Communications
of the ACM, vol. 42, no. 8, pp. 74–81, August 1999.

[2] J. E. Deutsch, J. Latonio, G. C. Burdea, and R. Boian, “Post-stroke
rehabilitation with the rutgers ankle system: A case study,” Presence:
Teleoper. Virtual Environ., vol. 10, no. 4, pp. 416–430, 2001.

[3] M. Holden, “Virtual environments for motor rehabilitation,” in Cy-
berPsychology and Behaviour, June 2005, pp. 212–219.

[4] M. Rosen, “Telerehabilitation,” in NeuroRehabilitation, special topic
issue on Technology in Neurorehabilitation, vol. 12, 1999, pp. 11–26.

[5] G. Lathan, “Dimensions of diversity in design of telerehabilitation
systems for universal usability,” in CUU ’00: Proceedings on the 2000
conference on Universal Usability. New York, NY, USA: ACM, 2000,
pp. 61–62.

[6] G. Kwakkel, R. van Peppen, R. Wagenaar, S. Dauphinee, C. Richards,
A. Ashburn, K. Miller, N. Lincoln, C. Partridge, I. Wellwood, and M. P.
Langhorne, “Effects of augmented exercise therapy time after stroke: a
meta-analysis,” in Stroke 35, 2004, pp. 2529–2539.

[7] S. J. Housman, T. Rahman, V. Le, R. J. Sanchez, and D. J. Reinkens-
meyer, “Arm-training with T-WREX after chronic stroke: Preliminary
results of a randomized controlled trial,” in 2007 IEEE International
Conference on Rehabilitation Robotics, 2007.

[8] J. De Boeck, G. Alders, D. Gijbels, T. De Weyer, C. Raymaekers,
K. Coninx, and P. Feys, “The learning effect of force feedback enabled
robotic rehabilitation of the upper limbs in persons with MS - a pilot
study,” in Proc. of ENACTIVE08, November 2008, pp. 117 – 122.

[9] V. Popescu, G. Burdea, M. Bouzit, M. Girone, and V. Hentz, “Pc-based
telerehabilitation system with force feedback,” in IEEE Trans Inf Technol
Biomed, vol. 4(1), 2000, pp. 45–51.

[10] C. Sjostrom, H. Danielsson, C. Magnusson, and K. Rassmus-Grohn,
“Phantom-based haptic line graphics for blind persons,” Visual Impair-
ment Research: The official publication of the International Society for
Low-vision Research and Rehabilitation ISL, vol. 5, 2003.

[11] C. Raymaekers, G. Vansichem, and F. Van Reeth, “Improving sketching
by utilizing haptic feedback,” in Proceedings of AAAI Spring Symposium
on Sketch Understanding, march 25-27 2002.

[12] Sensable Technologies, “OpenHaptics Toolkit,” Available at
http://www.sensable.com/, 2008.

[13] “Chai 3d api,” Available at http://www.chai3d.org/, June 2009.
[14] SenseGraphics, “H3D API,” Available at http://www.h3dapi.org/, June

2009.
[15] “Rounded polygons,” Available at http://www2.tcl.tk/15313, June 2009.
[16] “Hermite splines,” Available at http://www.cubic.org/docs/hermite.htm,

June 2009.

[17] “Distance to a bezier curve,” Available at
http://www.tinaja.com/glib/bezdist.pdf, June 2009.

[18] C. Richard, “On the identification and haptic display of friction,” Ph.D.
dissertation, Stanford University, Stanford, 2000.

[19] D. Ruspini, Haptics: From Basic Principles to Advanced Applications,
ser. Course Notes for SIGGRAPH ’99. ACM, August 8–13 1999,
no. 38, ch. Haptic Rendering.

[20] K. Wen, D. Necsulescu, and J. Sasiadek, “Haptic force control based
on impedance/admittance control aided by visual feedback,” Multimedia
Tools and Applications, vol. 37, no. 1, pp. 39–52, 2008.

