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Abstract

In this paper we present a method for efficient calibra-
tion of a screen-camera setup, in which the camera is not di-
rectly facing the screen. A spherical mirror is used to make
the screen visible to the camera. Using Gray code illumina-
tion patterns, we can uniquely identify the reflection of each
screen pixel on the imaged spherical mirror. This allows
us to compute a large set of 2D-3D correspondences, using
only two sphere locations. Compared to previous work, this
means we require less manual interventions, combined with
a more robust screen pixel detection scheme. This results in
a consistent improvement in accuracy, which we illustrate
with experiments on both synthetic and real data.

1 Introduction

Present day personal computers come with a large vari-
ety of peripheral devices. One of the most frequently en-
countered devices, the webcam, has seen a significant in-
crease in quality, while staying relatively cheap compared to
other computer peripherals. This has motivated the software
industry to create a new array of more demanding applica-
tions, aside from its traditional use for video conferencing.
One typical example can be found in vision-based inter-
faces, where the user interacts with the application by sim-
ply pointing toward the screen, looking at certain regions, or
making gestures that are observed by the camera [4, 14, 6].

Another category of popular new applications are shape
acquisition methods, where the screen is used as a planar il-
luminant, while the camera captures the illuminated scene.
For example, methods using a screen-camera setup have
been invented for the purpose of photometric stereo [5, 12,
11], specular surface acquisition [9, 23, 27], environment
matting [29], and many more applications [17, 22, 19]. The
attractive feature that all these techniques have in common,

is the fact that a cheap setup consisting only of off-the-shelf
components can often replace otherwise expensive hard-
ware setups, while still producing comparable results. An
example of a screen-camera setup is depicted in Figure 2.

However, while being cheaper and simpler than their
more expensive counterparts, most of these methods still
require the camera(s) and screen(s) to be calibrated with re-
spect to each other. We distinguish between geometric and
radiometric calibration. While geometric calibration tries
to find the position and orientation of the screen(s) with
respect to the camera [27, 2, 10, 12], radiometric calibra-
tion establishes the relation between the light emitted by
the screen and the light received by the camera [28, 11]. In
this work, we will focus on geometric calibration.

If the screen is directly visible to the camera, the calibra-
tion process is straightforward: displaying a checkerboard
pattern on the screen, standard calibration tools can be used
to locate the screen plane [16, 3]. In case the camera and
screen are facing a similar directon, a different approach is
needed: a mirror is required in order to render the screen
visible to the camera [27, 2, 10, 12]. In this work, we will
only focus on the latter case, presenting a novel approach.
The main contributions of this work are:

1. Increased accuracy is achieved due to an increased
amount of contraints on our solution.

2. Less manual interventions are required, as the opti-
mal number of mirror displacements is minimal.

3. Robust detection of screen reflections is achieved by
employing a sophisticated masking approach.

2 Related Work

In this section we will provide a brief overview of the
existing methods for screen-camera calibration, in the non-
trivial case where the screen is not directly visible to the
camera. However, before we start the discussion of the
different approaches, we need to have a look at catadiop-
tric systems first. Catadioptric systems are combinations



Figure 1. Gray codes uniquely identify matching camera pixels (top row) and screen pixels (bottom
row). The patterns are refined step by step, narrowing down the possible regions illuminating the
camera pixel. At the finest pattern level, the only remaining possibility will be the reflected pixel.

of reflective (cataoptric) and refractive (dioptric) objects, or
as in this paper, a mirror and lens combination which will
be used to geometrically calibrate the screen and camera.
Depending on the type (plane/sphere/hyperbolic/. . . ) and
placement (central/off principal axis) of the mirror and the
lens, a single or multi-viewpoint catadioptric camera is cre-
ated [1, 13]. Notice that in the case of a multi-viewpoint
system, it is possible to reconstruct 3D geometry from a sin-
gle image because of the viewpoints created by the mirror
reflections [18, 20]. In this section only two major mirror
types will be referred, being a planar and a spherical one.
The former produces a single viewpoint system, whereas
the latter produces a multi-viewpoint system [1, 13].

Funk and Yang [12] determine the screen’s position and
orientation with respect to the camera using a planar sur-
face mirror. In order to determine the location of the mirror,
a calibration pattern is attached to the mirror. The camera
proceeds to capture this calibration pattern, in addition to
the reflected image of an additional calibration pattern emit-
ted by the screen. The screen coordinates can then be deter-
mined by mirroring back the reflected screen pattern over
the planar mirror. Bonfort et al. [2] present an alternative
approach using a planar mirror, but instead of using a cali-
bration pattern to identify the mirroring plane, they employ
a mirroring hard disk platter with known interior and exte-
rior radii. The projections of these circle boundaries yield
two ellipses, which provide sufficient constraints to iden-
tify the mirroring plane. Another type of mirror is used by
Tarini et al. [27] and Francken et al. [10] who use a spher-
ical mirror. The main advantage of these methods is that
no manual distance measurements are required. The only
exception to this is the required knowledge of the sphere’s
radius, but this value is commonly provided by the manu-
facturer of the mirror. However, these approaches only take
reflected screen corners and edges into account, resulting in
a reduced accuracy of the results.

In our method, we will also employ a spherical mirror
to render the screen visible. However, instead of only tak-
ing into account the reflected screen corners and edges, we
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Figure 2. Our setup consists of an LCD
screen and a digital still camera. The cam-
era records Gray code patterns reflected off a
spherical mirror. This procedure is executed
for two different sphere locations.

will let every single screen pixel contribute to the estimated
solution. This is achieved by efficiently encoding their po-
sitions by employing Gray code patterns, requiring only a
small number of input images [26, 9]. In order to encode
M×N screen positions, only 2(log2M+log2N) images are
needed. Since we can generate many correspondences from
a small number of input images, only two sphere place-
ments are required. Furthermore, the feature detection is
very robust, requiring no manual intervention.

3 Calibration from Gray Code Reflections

In this section, we will explain our method for screen-
camera calibration, based on the analysis of reflected Gray
code patterns displayed by the screen. However, before we
begin our analysis, it might be useful to elaborate on the
input required by our algorithm. Because we are making
use of encoded illumination, we need a set of n images for
each different spherical mirror. As such, when we refer to a



camera pixel for a sphere i, it is important to remember that
we are referring to the n-bit illumination code stored in the
set of n images associated with this sphere.

Our processing pipeline consists of three separate mod-
ules. First, for each set of images associated with a single
sphere position, we estimate the 3D location of the spherical
mirror. Second, we establish the bijective function between
the camera pixels and the corresponding screen pixels. This
relationship is uniquely defined, due to the use of encoded
illumination patterns. Finally, we estimate the optimal 3D
screen location by minimizing the geometric error between
the reprojected 2D screen pixels and the computed reflected
ray intersections. We will now discuss each module in more
detail.

3.1 Spherical Mirror Detection

The first step of our algorithm consists of the detection
of the sphere for each set of images in our dataset. This
is done by first performing background subtraction on each
set. As the reflected background texture is deformed and has
a lower intensity with respect to the real background, stan-
dard background subtraction performs well. After cleaning
up the resulting mask, we extract the edge pixels using stan-
dard image processing operators. This yields an ellipsoidal
contour, which is fitted using a tailored RANSAC-based ap-
proach [7]. Assuming we know both the internal camera pa-
rameters (determined in a preceding preprocessing step) and
the radius of the spherical mirror (defining the scale of our
solution), we have sufficient data to estimate the sphere’s
location. This procedure is similar to the one described by
Francken et al. [10].

3.2 Screen Pixel Labeling

Now we will explain how Gray codes can provide us
with a unique labeling for the screen pixels, as well as how it
facilitates distinguishing between screen reflections among
other pixels.

3.2.1 Gray codes

As we want to reconstruct the screen’s position with respect
to the camera, the reflected screen pixels have to be matched
to their reflections on the sphere. In order to uniquely iden-
tify each individual reflected pixel, we need to encode its 2D
position on the screen. Therefore we employ Gray code il-
lumination patterns, as they robustly and efficiently encode
ten thousands of screen positions with only tens of images.
An example of Gray code illumination is given in Figure 1.

The principle behind Gray code illumination is simple
but effective. At each step, we need to establish if the re-
flected pixel is illuminated by a white or a black region of
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Figure 3. The mask indicates whether or not a
pixel is a screen reflection. Top left: input im-
age. Top right: generated mask. Bottom: plot
of the intensity differences between scene re-
flections under normal and complement illu-
mination patterns.

the screen. In order to increase the robustness of this pro-
cess, we also employ the complementary illumination pat-
tern and compare it to the original. The patterns are refined
step by step, narrowing down the possible regions illumi-
nating the pixel of interest. Because of the construction of
the patterns, ultimately only one single screen pixel location
will remain at the finest pattern level (Figure 1).

Because every pattern doubles the number of white and
black stripes, the number of encoded screen positions will
double for every extra pattern refinement that is applied.
Since we also use the complementary patterns, the exact
amount of input images is 2(log2M +log2N) where M and
N represent the vertical and horizontal number of locations.

3.2.2 Reflection Mask

Using the Gray code patterns, we will get a code for every
single camera pixel. Of course, only the reflections of the
screen have to be extracted for use in the next step of our
algorithm. A naive method to accomplish this would con-
sist of illuminating the sphere with a complete black and
a complete white pattern, subtract the first captured image
from the second one, and threshold the result. This way
reflections of alternative constant light sources would be fil-
tered out. However, this is not optimal as there may still be



(a) (b)

(c) (d)

Figure 4. Detected screen positions for dif-
ferent pattern refinement levels, blended with
the obtained reflection mask. Decoded hori-
zontal 2D screen positions are expressed rel-
ative to the screen dimensions. Number of
vertical light patterns used: (a) two, (b) four,
(c) six and (d) eight.

other bright reflections caused by high albedo diffusers.
In our method we present a more sophisticated masking

technique that selects only sufficiently specular screen re-
flections. It is inspired by a recently proposed glossiness
acquisition method, which employs Gray codes in a simi-
lar setup [8]. In order to limit our mask to screen reflections
only, we will observe the intensity differences between their
complements for each pattern refinement level. As has been
shown in the work of Ramamoorthi et al. [25], reflections
can be seen as a convolution of the incoming light pattern
and the BRDF kernel of the material. Because of this prop-
erty, the stripe pattern will be blurred away when a certain
pattern refinement level has been reached, as the BRDF ker-
nel will be larger than the pattern stripes . Thus, the reflec-
tion of a pattern and its complement tend to converge at
a certain pattern refinement level, which means that their
intensity differences will converge to zero. This is the key
idea behind the masking algorithm, which will be combined
with the information from the mask already obtained from
the background subtraction step.

First, we determine the per pixel intensity differences by
subracting the complement pattern from the original one.
This is followed by determining the pattern refinement level

at which all the absolute values of the intensity differences
stay bellow a certain threshold. Intuitively we now have a
number indicating the size of the BRDF kernel, where a low
number indicates a large kernel (diffuse reflections) and a
high number indicates a narrow kernel (specular reflection).
Simply thresholding this “glossiness” number gives a robust
estimate of the useful screen reflections.

The previous procedure is illustrated in Figure 3. Our
method performs well in the presence of alternative constant
light sources, high albedo diffusers, and under all viewing
angles with respect to the LCD screen. Our method cannot
deal with specular interreflections, so we avoid other shiny
objects beside the spherical mirror in our setup. In Figure 4
we show a combination of the obtained reflection mask and
detected screen positions of the (extended) data set depicted
in Figure 1.

3.3 3D Reconstruction

In the final phase of our algorithm, our goal is to estimate
the optimal 3D screen location, with respect to the camera.
For the remainder of this section, we will assume the posi-
tion of the sphere to be known, as it can be estimated using
the method described by Francken et al. [10].

3.3.1 Reflected Ray Intersections

In the previous phases, we have established a bijective func-
tion between each screen pixel x and its observed camera
pixel for each set of images associated with sphere position
i. If we use the camera’s internal parameters to backpro-
ject this camera pixel, we can locate its intersection point
pi on sphere i. Once this point is known, we can compute
the associated reflected ray li : pi + t�ri, where �ri stands
for the reflection direction and t represents a scalar value.
Combining the information from all reflected rays associ-
ated with a single Gray code / screen pixel, we estimate the
3D position for each individual screen pixel x, minimizing
the combined point-line distance d(x, li).

d(x, li) =
‖�ri × (pi − x)‖

‖�ri‖
(1)

=

∥∥∥∥∥
(

[�ri]×
‖�ri‖

)
x −

(
[�ri]×
‖�ri‖

pi

)∥∥∥∥∥ (2)

As can be seen in Equation 2, this is a least-squares mini-
mization of the form ‖Ax − b‖, which can be solved using
the normal equations (AT A)x = AT b. If AT A is invertible,
x = (AT A)−1AT b provides us with the solution.

3.3.2 Plane Estimation

Once we have a point cloud of estimated 3D screen pixel
locations, the next step is to enforce the constraint that all



pixels are part of the same planar illuminant. As such, we
need to estimate the 3D plane π = (a, b, c, d)T which min-
imizes the point-plane distance d(π, x) = (π · x)/|π|. We
initiate our estimation with a RANSAC search for a good
intial parameter guess, followed by Levenberg-Marquardt
minimization with distance measure d(π, x).

3.3.3 Grid Estimation

Once we have a rough estimate of the plane on which the
screen should be located, the next step consists of finding
the exact 3D coordinates for each screen pixel. In this final
step of the 3D reconstruction, we use the final contraint for
our estimation problem: the pixels are part of a rigid grid
structure. As such, there exists a 2D-to-3D similarity trans-
formation M , which maps each 2D screen pixel location u
as close as possible to its 3D counterpart x. Assuming we
can estimate this optimal M for each given plane π, this
gives rise to a second Levenberg-Marquardt plane estima-
tion routine, minimizing the point-point distance d(Mu, x).

Similarity Transformation M In order to guarantee good
numerical stability for the estimation of M , we have to per-
form numerical pre-conditioning on both point sets [15]. As
we want to apply the same normalization procedure on both
{u} and {x}, we compute the similarity transformation in a
2D reference frame. For this purpose, we first transfer the
3D plane π to the xy-plane using transformation T3D.

T3D =
[

R3 −R3x̄
0T 1

]
(3)

In this equation, x̄ is the mean vector of the 3D point cloud,
and R3 rotates plane normal nπ to plane normal nxy . Note
that the transformation moves the mean x̄ to the origin, fa-
cilitating subsequent normalization procedures. We follow
up this transformation by a projection onto xy-plane coor-
dinates.

Pxy =

⎡
⎣ 1 0 0 0

0 1 0 0
0 0 0 1

⎤
⎦ (4)

Finally, after this transformation, we rescale the resulting
point set {x′′} to map the average distance ‖x′′‖ to

√
2.

S3D =

⎡
⎣

√
2/‖x′′‖ 0 0

0
√

2/‖x′′‖ 0
0 0 1

⎤
⎦ (5)

In a similar fashion, we need to normalize the 2D screen
pixel set. First we need to convert the screen resolu-
tion (eg. 1280 × 1024 pixels) into a physical resolution
(eg. 474 × 297 mm).

Sres =

⎡
⎣ wphys/wres 0 0

0 hphys/hres 0
0 0 1

⎤
⎦ (6)

After this aspect ratio correction, we relocate the new point
set’s mean u′ to the origin.

T2D =

⎡
⎣ 1 0 −u′

x

0 1 −u′
y

0 0 1

⎤
⎦ (7)

As finally, we normalize the 2D {u′′} coordinates, in a
similar fashion to the normalization we performed on the
3D {x′′} coordinates.

S2D =

⎡
⎣

√
2/‖u′′‖ 0 0

0
√

2/‖u′′‖ 0
0 0 1

⎤
⎦ (8)

After we have transformed both {x} and {u} to a com-
mon reference frame, we can employ standard techniques
to estimate the 2D-to-2D similarity transformation H that
minimizes the geometric error d(Hu′′′, x′′). After this min-
imization, we can concatenate all matrices to find our final
2D-to-3D similarity transformation.

M = (S3DPxyT3D)−1HS2DT2DSres (9)

As such, all the obtained calibration information is com-
pressed in a single matrix M , allowing for the direct trans-
formation of 2D screen pixels into 3D locations by a simple
matrix multiplication: x = Mu.

4 Results

In this section we will discuss the results produced by
our technique. Initially, we will determine the relation be-
tween the number of pattern refinements and the error of
the produced calibration. Afterwards, we will analyze the
influence of the sphere location on the quality of the results.
Results from both real-world and virtual data sets are pro-
vided, and are compared to previous work.

In order to determine the correctness of the estimated
screen positions, we perform a ground truth evaluation. Our
ground truth constitutes a virtual set of images created with
the POV-Ray [24] ray tracer. The accuracy of the produced
solution is is measured by the sum of squared distances be-
tween the estimated screen corners and their corresponding
ground truth values.

4.1 Pattern Refinements

The accuracy of our method is largely dependent on the
number of estimated ray-ray intersections. As the number
of pattern refinements is directly related to the number of
possible intersection points, an increase in pattern refine-
ments will result in a higher accuracy. This is illustrated
in Figure 5, where we have plotted the error in function of



1 2 3 4 5 6 7 8 9
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Gray code levels

E
rr

o
r

Figure 5. Error in function of the maximum
applied pattern refinement level.

the pattern refinement level. At a certain point in the func-
tion, the extra refinements will no longer yield any improve-
ments. On the contrary, the results start to deteriorate as the
least significant bits of the detected code are no longer de-
tected, lowering the chance to find exactly this code in other
images.

4.2 Sphere Placement

The quality of our results not solely depends on the cho-
sen pattern refinement level, but also on the the number
of sphere displacements as well as the positioning of the
sphere. From our experiments, we have concluded that only
two sphere locations are required, as this case produces the
lowest error values. In contrast to previous methods, the
error does not decrease and converge when adding extra,
less optimal, sphere locations. As can be seen in Table 1,
where we compare the error values of two sphere locations
in terms of their distance to the camera, the sphere locations
closest to the camera produce the best results. Additionally,
in order to maximize the accuracy of the sphere location de-
tection algorithm, we place the center of the sphere on the
principal axis of the camera. Finally, a minimum distance
between two different locations is preserved, avoiding de-
generate configurations.

A side-by-side comparison with previous methods em-
ploying a spherical mirror and our method is also per-
formed. As it turns out, our error is approximately 7 to 8
times lower compared to the most recent method [10], and
we only require 2 different sphere locations instead of 6/7.

Since no ground truth is available for our real-world
setup, we have measured the vertical and horizontal edges
of the LCD screen. In order to verify the accuracy of our
method for real-world data, our error metric consist of a

simple comparison of the measured screen edge lengths and
the distances between the estimated screen corners. For a
screen of 474 × 297 (measured in millimeters), we com-
pute dimensions of 478.7 × 300.4, suggesting an accuracy
up to a few millimeters. The method of Francken et al. [10]
produces dimensions of 449.8 × 286.7, suggesting an accu-
racy up to a few centimeters.

5 Conclusions

In this paper, we have presented a novel method for per-
forming screen-camera calibration, using a spherical mirror
and screen pixel encoding using Gray code patterns. Be-
cause it is based on robust feature detection, and geomet-
ric error minimization, we have provided a solid solution
to the calibration problem of these setups. We have shown
our method is more accurate, requires a reduced number of
manual interventions, and detects screen reflections more
robustly than previous methods.

6 Future Work

As cameras are often focussed on the scene in front of
the setup, and not on the reflected screen, we currently need
to refocus the camera. This is not desirable since we then
alter the internal camera parameters implying a recalibra-
tion. Therefore, we are now looking for alternative pattern
sequences which are more insensitive to blur due to an out
of focus camera.

In the near future, we will also compare the use of Gray
code patterns to other codification methods in order to limit
the number of required recordings. In concreto, we expect
the use of gradient patterns [21] can reduce the number of
input images from 30-35 to less than 10, reducing the cali-
bration time even more.
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