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Gravitational lensing provides a direct means for measuring the masses of galaxies and galaxy

clusters. Provided that enough constraints are available,one might even hope to obtain a handle

on the precise distribution of the mass, which in turn may reveal information about the spatial

distribution of the dark matter. We present an approach using genetic algorithms, allowing the

user to ‘breed’ solutions which are compatible with available strong lensing data. The procedure

allows various types of constraints to be used, including positional information, null-space infor-

mation, and time-delay measurements. The method is non-parametric in the sense that it does

not assume a particular shape of the mass distribution. Thisis accomplished by placing circularly

symmetric basis functions – projected Plummer spheres – on adynamic grid in the lens plane.

Using simulations, we show that our procedure is able construct a mass distribution and source

positions that are compatible with a given set of observations. We discuss the degeneracies that

are inherent to lens inversion (and hence any lens inversiontechnique) and that limit the poten-

tial of strong lensing to yield precise estimates of the dark-matter distribution. We show how

these degeneracies cause most of the differences between inversions of the same lensing cluster

by different authors, using the famous cluster Cl 0024+1654as a working example.
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1. Introduction

The gravitational lens effect depends on the total mass distribution – both luminous and dark
– of the deflecting object, thereby providing a direct means for determining itsmass. Here, we
focus on the strong lens effect, in which the deflection is powerful enough to cause a single source
to be transformed into several images of the same object. Clearly, the preciseconfiguration of the
images will depend on the precise mass distribution of the lens. Therefore one might hope to obtain
a handle on said mass distribution by looking for solutions which are compatible with the observed
images, i.e. by trying to invert the lens. In this article, we present an overview of our work on
gravitational lens inversion.

2. Lensing formalism

The gravitational lens effect is described by the lens equation (2.1), which relates the image
plane (θ -space) to the source plane (β -space).

~β (~θ) = ~θ −

Dds

Ds

~̂α(~θ) (2.1)

The image plane describes what one will see because of the lens effect; the source plane describes
what one would see without the deflection of light rays. The deflection itselfis described by the
bending angle~̂α, which depends on the projected mass distributionΣ of the lens. The distancesDds

andDs describe the angular diameter distances between lens and source, and observer and source
respectively. A thorough review of the lensing formalism can be found in [1].

3. Inversion method

Ideally, one would like to avoid making assumptions about the shape of the lensing mass
distribution, i.e. one would like to have a non-parametric inversion method. In practice, this is
approximated by building the shape of the mass distribution from a large numberof basis functions.
Inverting the lens then corresponds to finding appropriate weights for thisset of basis functions.
In our method, the user has to specify a square-shaped area in which theprocedure will try to
reconstruct the mass density. Initially, this area is subdivided into smaller gridcells in a uniform
way and to each grid cell, a projected Plummer sphere [2] is associated. A genetic algorithm is
then used to optimize the weights of these basis functions. Based on this initial solution, a new grid
is constructed, in which regions containing a large fraction of the total mass are subdivided further.
This new grid is then used to find a new estimate of the mass distribution and this procedure can be
repeated until an acceptable reconstruction is found. A similar dynamic grid system is used in [3].

The optimization of the weights of the Plummer basis functions is done using a genetic al-
gorithm, an optimization strategy inspired by the theory of evolution by Darwin. In essence, one
tries to ‘breed’ solutions to a problem. To do so, one starts with an initial ‘population’, a set of
randomly initialized trial solutions. Using this first population, a new one is created by combining
and cloning trial solutions of the existing population, and by introducing some mutations. This
simple routine is then repeated over and over until an acceptable solution is reached. A vital part of
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the method is the application of selection pressure: one would like to make sure that trial solutions
which are deemed better than others, have a better chance in creating more offspring. This will
make sure that the genetic algorithm evolves towards increasingly better solutions.
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Figure 1: Left panel: an artificial mass map (top) is used
to generate simulated images (bottom). Right panel: the
images from the left panel are used as input into our in-
version procedure, which reconstructs the mass map in
this panel (top). When the input images are projected
back onto the source plane, the source shapes shown in
the lower part are reconstructed. The actual source posi-
tions are marked by crosses.

To be able to apply selection pres-
sure, one needs a way to determine how
well suited a trial solution is: one needs
a fitness measure. In our method, the im-
ages of each source are projected back onto
their source planes, using the lens equa-
tion (2.1) which corresponds to the trial
mass map. If the correct lens were to
be used, the back-projected images of a
source would overlap perfectly. An incor-
rect lens on the other hand, will project
the images onto slightly different regions
in the source plane. For this reason, we use
the amount of overlap between the back-
projected images of a source as the fitness
measure.

This approach works well if many
sources have multiple images, as is shown
in figure 1 using simulated data (see [4] for
additional information). However in the
case of only one or a few sources, the solu-
tions which are generated are often not compatible with the observed situation. The reason is clear:
while we made sure that the images are projected onto the same region, nothing was done to avoid
projecting other parts of the image plane into that very region. If this happens, additional (unob-
served) images will be predicted. To avoid this, we need an extra fitness criterion, which takes the
information from the null space, i.e. the region in which no images are observed, into account.
Fortunately, genetic algorithms are able to optimize several fitness measures simultaneously; they
are then referred to as multi-objective genetic algorithms. In a similar way, it is possible to take
additional constraints into account (e.g. time delay information). For more detailed information
about how the null space is used, we refer to [5]; a detailed account ofmulti-objective genetic
algorithms can be found in [6].

When this inversion method is applied to the famous cluster lens Cl 0024+1654,the result in
figure 2 (left and middle panel) is obtained. The images of two sources wereused; the positions of
these images are marked with the letters A and B respectively. The reconstruction shows a good
general agreement with the light originating from the cluster: the largest fraction of the cluster
mass coincides with the location of the central cluster galaxies. The two galaxies in the lower left
corner of the left hand figure are also retrieved automatically. Aside fromthis general agreement,
there is also the interesting feature marked by the letter P. At that location, the algorithm seems to
suggest the presence of a peak in the mass density, in a region where onlylittle cluster light can be
seen. For more information about the inversion of this cluster, the reader isreferred to [7].

3



P
o
S
(
i
d
m
2
0
0
8
)
0
5
1

Strong lens inversion using genetic algorithms J. Liesenborgs

Σ/Σcr

-0.8-0.6-0.4-0.2 0 0.2 0.4 0.6 0.8

X (Arcmin)

-0.8

-0.6

-0.4

-0.2

 0

 0.2

 0.4

 0.6

 0.8

Y (Arcmin)

 

-3

-2

-1

 0

 1

 2

 3

 4

Figure 2: Left panel: reconstructed mass density as a contour map on top of the ACS image. Locations
marked by A and B correspond to the input images of two sources. At the location marked by P, there is a
clear peak in the mass map where little cluster light can be seen. Center panel: 3D plot of the reconstructed
mass distribution, which also clearly shows the peak aroundP. Right panel: after redistributing the mass (see
text) this mass map is obtained, which is equally compatiblewith the observed situation.

4. Degeneracies
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Figure 3: Example of a circu-
larly symmetric mass distribu-
tion with a total mass of zero
beyond a specific radius.

To know which features of a reconstructed mass map can
be considered as true features, it is important to understand the
degeneracies present in lens inversions. Suppose one has a mass
reconstruction which is compatible with the observed images of a
single source. Then, it is possible to create an infinite amount of
other mass distributions which are equally acceptable. One only
needs to rescale the original mass map and add a mass sheet of a
specific density (e.g. [8]). The overall effect of this operation is that the same image plane will
then be projected onto a scaled version of the source plane by the new massmap. It is shown in [9]
that this mass-sheet or steepness degeneracy can be generalized to thecase when one has two or
more sources at different redshifts. However, instead of using a masssheet in the construction of a
degenerate solution, a more complex distribution is required.

For a circularly symmetric mass distribution, the bending angle~̂α at a specific radius only
depends on the total enclosed mass within that radius. This implies that if the totalmass stays zero
beyond a certain radius, no gravitational lens effect will be generated inthat region. Figure 3 shows
a mass distribution with this property. As an example, consider the mass distribution in the upper
left panel of figure 4, which transforms a circular source into five distinct images, as is shown in
the lower left panel. Inside the circle on the same figure, we then add the ‘monopole’ from figure
3. Because the non-zero part of the monopole does not overlap with anyof the images, the lens
equation at the location of the images will not be affected. Indeed, when weuse the resulting
mass map (upper right panel of figure 4) to recalculate the images of the circular source, the exact
same images are found. This example shows explicitly how, using this monopole degeneracy, a
considerable mass peak can be easily introduced into an existing mass map which is compatible
with the observed images. For the case of Cl 0024+1654, a large number of monopole basis
functions were used, making sure that none of them overlapped with the images. The weights of the
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basis functions were then optimized to minimize the overall gradient of the mass map. The result
of this procedure can be seen in the right panel of figure 2; note that thisprocedure automatically
erased the mysterious mass peak.

5. Conclusion
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Figure 4: Left panel: elliptical mass distribution (top)
transforms a circular source into five images (bottom).
Right panel: after adding the ‘monopole’ (see text), the re-
sulting mass distribution (top) still transforms the source
into the same five images (bottom).

In this article we have described
the basic ideas underlying our lens in-
version procedure and we illustrated
the method using the cluster lens
Cl 0024+1654. It is clearly important
to understand degeneracies, otherwise,
for example, one might have easily in-
terpreted the mass peak found in the re-
construction of Cl 0024+1654 as dark
matter. The monopole and mass-sheet
degeneracy together can easily create a
wide variety of mass maps which are all
compatible with the observed situation.
The mass-sheet degeneracy becomes in-
creasingly hard to break as sources are
added; the monopole degeneracy on the
other hand always allows mass in between the images to be redistributed. It is then clear that for
accurate non-parametric mass maps, many multiply imaged sources are necessary, since it is the
density of the images which determines the resolution that can be attained.
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